Differentialgleichungen

Übungszettel 07

Abgabe: **Freitag, 01.06.**, 10:00 Uhr (ins Postfach Ihres Tutors)

Jede Aufgabe ist fünf Punkte wert.

Aufgabe 1. Sei $U \subseteq E$ offen in einem Banachraum. Zeige, daß jeder Punkt $x \in U$ positiven Abstand vom Rand $\partial(U)$ hat.

Sei $V \subseteq E$ eine beliebige Teilmenge mit nicht-leerem Rand und $x \in V$ ein Punkt, der zum Rand Abstand 0 hat. Folgt dann $x \in \partial(V)$? Begründe die Antwort.

Aufgabe 2. Sei $X:I\times U\to E$ ein stetiges Vektorfeld, lokal uniform Lipschitzstetig im Raum und beschränkt auf Mengen der Form $[a,b]\times V$, wobei $V\subseteq U$ positiven Abstand zum Rand $\partial(U)$ hat. Sei $\gamma:J\to U$ eine maximale Integralkurve mit $t_+:=\sup J<\sup I$. Zeige:

$$\lim_{t \nearrow t_{+}} \min \left\{ \operatorname{dist}(\partial(U), \gamma(t)), \frac{1}{\|\gamma(t)\|} \right\} = 0$$

Aufgabe 3. Sei $X: I \times \mathbb{B}_{2+\varepsilon}(0) \to E$ ein stetiges Vektorfeld, das auf $\mathbb{B}_2(0)$ beschränkt ist durch D, d.h.:

$$||X_t(x)|| \le D$$
 für alle $x \in \mathbb{B}_2(0)$, $t \in I$

In der Vorlesung habe ich die intuitiv klare Tatsache benutzt, daß ein Teilchen entlang einer Integralkurve mindestens Zeit $\frac{1}{D}$ benötigt, um von einem Punkt innerhalb von $\mathbb{B}_1(0)$ zu einem Punkt außerhalb von $\mathbb{B}_2(0)$ zu gelangen. Und obgleich niemand protestiert hat, steht eine formale Rechtfertigung noch aus.

Sei also $\gamma: J \to \mathbb{B}_{2+\varepsilon}(0)$ eine Integralkurve von X. Es gelte $\gamma(t_0) \in \mathbb{B}_1(0)$ und $\gamma(t_1) \notin \mathbb{B}_2(0)$. Zeige: $|t_1 - t_0| \ge \frac{1}{D}$.

Aufgabe 4. Sei $X: I \times U \to E$ ein Vektorfeld. Definiere das Vektorfeld

$$Y: \longrightarrow \mathbb{R} \times E$$
$$(t, x) \longmapsto \begin{pmatrix} 1 \\ X_t(x) \end{pmatrix}$$

Diskutiere die Entsprechung von Integralkurven in X und Y. Zeige, daß die Stetigkeit des einen Vektorfeldes die des anderen impliziert. Zeige auch, daß Y nicht unbedingt Lipschitz-stetig ist, auch wenn X uniform Lipschitz-stetig im Raum ist.