
Gewöhnliche Differentialgleichungen 3, June, 2024

Aufgabe 1. Construction of integral curves for a given vector field using polygonal line.

Lösung: Firstly we want to review the argument used in the lecture. Let X : I × U → Rd

be a continuous vector field. Suppose that X is bounded, i.e., 󰀂X󰀂 ≤ C. The existence of
an integral curve is as follows:
Let p ∈ U . Then for some 󰂃 > 0, there exists an integral curve γ : [0, 󰂃) → U such that
γ(0) = p.
Now we make the use of an appropriate translation, shrinking U , and a dilation so that we
may assume that p is the origin, i.e., 0, and U is an open disc around the origin, and the
image X(U) lies in a disc D of radius 1, i.e., 󰀂X󰀂 ≤ 1. Then the statement of the existence
of integral curves is as follows:
There exists an integral curve γ : [0, 1] → D for X such that γ(0) = 0.
We shall construct the integral curve γ as a limit of polygonal line γn : [0, 1] → D. To do
this, we define γn by the piecewise-linear curve as follows:
Divide the interval [0, 1] into n intervals [ k

n
, k+1

n
] for 0 ≤ k ≤ n. The curve γn starts at 0, then

on the interval [0, 1
n
] follows the straight line in the direction of X(0), then on [ 1

n
, 2
n
] follows

the straight line in the direction of X(γn(
1
n
)), and so on. In summary, γn is formulated by

γn(t) = γn(
k

n
) + (t− k

n
)X(γ(

k

n
)), 0 ≤ k < n, t ∈ [

k

n
,
k + 1

n
],

and γn(0) = 0.
Since 󰀂X󰀂 ≤ 1 we have 󰀂γn(t)󰀂 ≤ 1 for all t ∈ [0, 1]. Hence we can use the Arzela-Ascoli
theorem to obtain a continuous function γ : [0, 1] → D, an uniform limit of a subsequence
of γn. To prove that γ is truly the integral curve for the vector field X, we shall prove the
following inequality holds for all 󰂃 > 0: there exists δ > 0 and N ∈ N such that if |t− s| < δ
then

󰀐󰀐󰀐󰀐
γ(t)− γ(s)

t− s
−X(γ(s))

󰀐󰀐󰀐󰀐 < 󰂃.

To do this, we first prove the similar inequality for the polygonal line: there exists δ > 0 and
N ∈ N such that if |t− s| < δ and n > N , then

󰀐󰀐󰀐󰀐
γn(t)− γn(s)

t− s
−X(γn(s))

󰀐󰀐󰀐󰀐 < 󰂃,

where s < t. To prove this, we first note that

γn(t)− γn(s)

t− s
=

󰁝 t

s

γ′
n(u) du,

and hence it is the average of the quantity γ′
n(u) as u range over the interval [s, t]. Thus

our proof is reduced to the problem of showing that the average has the distance 󰂃 with
X(γn(s)). By construction, for u ∈ [s, t] we have γ′

n(u) ∈ X(γn([s− 1
n
, t])). Since X(γn(s)) ∈

X(γn([s − 1
n
, t])) and the average of a vector-valued function must lie in the convex hull of

its image, it is sufficient to show that the diameter of the image X(γn([s− 1
n
, t])) is at most

󰂃.
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Since 󰀂X󰀂 ≤ 1, the diameter of the image X(γn([s − 1
n
, t])) is at most t − s + 1

n
. Since X

is bounded and continuous on the closed and bounded disc D, X is uniformly continuous
and hence the required claim is true. Indeed, it suffices to show that for n ≥ N , x, y ∈ D
with 󰀂x− y󰀂 < δ + 1

n
, we have 󰀂X(x)−X(y)󰀂 < 󰂃, which directly follows from the uniform

continuity of X. Finally, we arrive at the step of proving the inequality

󰀐󰀐󰀐󰀐
γ(t)− γ(s)

t− s
−X(γ(s))

󰀐󰀐󰀐󰀐 < 󰂃,

provided that |t− s| < δ, n ≥ N . We see that

󰀐󰀐󰀐󰀐
γ(t)− γ(s)

t− s
−X(γ(s))

󰀐󰀐󰀐󰀐 ≤
󰀐󰀐󰀐󰀐
γn(t)− γn(s)

t− s
−X(γn(s))

󰀐󰀐󰀐󰀐+

󰀐󰀐󰀐󰀐
γn(s)− γ(s)

t− s

󰀐󰀐󰀐󰀐

+

󰀐󰀐󰀐󰀐
γn(t)− γ(t)

t− s

󰀐󰀐󰀐󰀐+ 󰀂X(γn(s))−X(γ(s))󰀂 < 4󰂃.

Aufgabe 2. Seien a, b > 0 Konstanten. Betrachte das zeitunabhängige Vektorfeld

X : R2 → R2, X(x, y) = (a− bx+ x2y − x, bx− x2y).

Zeige, dass durch einen Punkt (x0, y0) im ersten Quadranten (daher x0, y0 > 0) genau eine
Integralkurve geht, die in positiver Zeitrichtung unendlich lang existiert und den ersten
Quadranten nicht verlässt.

Lösung: We follow the hind given and consider firstly the vector field on the x-axis:

X(x, 0) = (a− (b+ 1)x, bx),

and hence the integral curve (x(t), y(t)) of the vector field X(x, 0) satisfies the following
differential equations:

x′(t) = a− (b+ 1)x(t), y′(t) = bx(t)

Then we have the solutions x(t) and y(t):

x(t) =
a

b+ 1
+

󰀕
x0 −

a

b+ 1

󰀖
e−(b+1)t,

y(t) =
ab

b+ 1
t+ y0 +

b

b+ 1

󰀕
x0 −

a

b+ 1

󰀖
(1− e−(b+1)t).

It is easy to see that x(t), y(t) > 0 for all t > 0. For example, the inequality x(t) ≤ 0 is
equivalent to the inequality

a

b+ 1
(e(b+1)t − 1) + x0 ≤ 0,
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which is impossible when a, b, x0 > 0. On the other hand, the vector field X(0, y) on the
y-axis is given by

X(0, y) = (a, 0),

and hence the integral curve is simply given by

x(t) = at+ x0, y(t) = y0,

which always lies in the first quadrant.

Aufgabe 3. Seien f, g : R → R stetig. Die Funktion f sei überdies Lipschitz-stetig. Betra-
chte das zeitunabhängige Vektorfeld

X : R2 → R2, X(x, y) = (f(x), yg(x)).

1. Zeige unter Angabe eines Beispiels für f und g, dassX nicht umbedingt lokal Lipschitz-
stetig ist.

2. Zeige, dass X dennoch eindeutige Integralkurve hat, daher: zu jedem Punkt (x0, y0)
und zu jeder Zeit t0 gibt es genaue eine maximale Integralkurve mit: γ(t0) = (x0, y0).

Lösung: 1. It suffices to choose g a continuous function, but not even locally Lipschitz
continuous function. For example, g(x) = x

3
2 sin( 1

x
), or even simpler, g(x) =

√
x, which is

not Lipschitz-continuous near x = 0.
2. Let γ1 and γ2 be two integral curves for the vector field X with γ1(t0) = γ2(t0) = (x0, y0)
defined on an interval I ⊂ R. Set

J = {t ∈ I : γ1(t) = γ2(t)}.

Assume that the complement of J in I is non-empty, i.e., there exists some points t′ ∈ I \ J
such that γ1(t

′) ∕= γ2(t
′). We put t1 := sup{t ∈ J}. Then for t > t1, we have γ1(t) ∕= γ2(t).

We may assume that the length of the set I\J is at most 󰂃. Now we write γ1(t) = (x1(t), y1(t))
and γ2(t) = (x2(t), y2(t)), respectively. We put

D = sup
t∈I\J

(|x1(t)− x2(t)|+ |y1(t)− y2(t)|) > 0,

and hence D > 0 is a fixed constant. Since g is not locally Lipschitz-continuous, we may
assume that g is not Lipschitz-continuous around 0. To exploit this property, we also assume
that the integral curves satisfy |x1(t)|, |x2(t)| ≤ δ, for some small δ > 0. Then we see that

󰀂γ1(t)− γ2(t)󰀂 ≤ |x1(t)− x2(t)|+ |y1(t)− y2(t)|

≤
󰁝 t

0

󰀂X(γ1(t))−X(γ2(t))󰀂 dt

≤
󰁝 t

0

|f(x1(t))− f(x2(t))|+ |y1(t)g(x1(t))− y2(t)g(x2(t))| dt

≤
󰁝 t

0

|f(x1(t))− f(x2(t))| dt+
󰁝 t

0

|y1(t)||g(x1(t))− g(x2(t))| dt

+

󰁝 t

0

|y1(t)− y2(t)||g(x2(t))| dt.
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For the first integral, we simply use the Lipschitz-continuity of f to obtain the bound

󰁝 t

0

|f(x1(t))− f(x2(t))| dt ≤
󰁝 t

0

Lf |x1(t)− x2(t)| dt

≤ Lf󰂃D.

On the other hand, we can bound the third integral easily since the function g is continuous
and |x2(t)| ≤ δ, and the quantity |g(Dδ)| is bounded where Dδ is a disc of radius δ > 0.
Indeed, we have

󰁝 t

0

|y1(t)− y2(t)||g(x2(t))| dt ≤
󰁝 t

0

Mg|y1(t)− y2(t)| dt

≤ Mg󰂃D.

For the second integral, since g is at least continuous, and |x1(t)|, |x2(t)| ≤ δ, we deduce that
|x1(t)− x2(t)| ≤ 2δ. Hence if necessary by shrinking δ > 0, we obtain |g(x1(t))− g(x2(t))| ≤
D󰂃. Thus we have

󰁝 t

0

|y1(t)||g(x1(t))− g(x2(t))| dt ≤ MD󰂃,

where we used the continuity of y1(t) on a small interval [0, t]. In conclusion, we obtain

D ≤ 󰂃D(Mg +M + Lf ).

By shrinking 󰂃 sufficiently we have 󰂃(Mg+M+Lf ) <
1
2
and hence we obtain D < 1

2
D, which

contradicts to our assumption that D > 0. Thus we have γ1 = γ2 on I.

Aufgabe 4. Betrachte das Vektorfeld

X : R× R → R, X(t, u) = 2t−√
u+.

Dabei ist u+ = max(u, 0). Die Picard-Iteration zum Anfangswertproblem γ(0) für dieses
Vektorld lautet:

γn+1(t) = 0 +

󰁝 t

0

2s−
󰁳

γn(s)+ ds.

Zeige, dass die Folge (γn) der Picard-Iterationen zur Anfangskurve γ0(t) = 0 abwechselnd
zwischen zwei Funktionen hin- und herspringt. Insbesondere konvergiert die Picard-Iteration
nicht. Welche Voraussetzung(en) des Satzes von Picard-Lindelöf ist (sind) nicht erfüllt?

Lösung: The map (t, u) 󰀁→ 2t− 2
√
u+ is not locally Lipschitz in space, since the derivative

of
√
u+ is not bounded around 0.
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