Gewohnliche Differentialgleichungen 3, June, 2024

Aufgabe 1. Construction of integral curves for a given vector field using polygonal line.

Lésung: Firstly we want to review the argument used in the lecture. Let X : [ x U — R¢

be a continuous vector field. Suppose that X is bounded, i.e., || X| < C. The existence of

an integral curve is as follows:

Let p € U. Then for some ¢ > 0, there exists an integral curve v : [0,¢) — U such that

7(0) = p.

Now we make the use of an appropriate translation, shrinking U, and a dilation so that we

may assume that p is the origin, i.e., 0, and U is an open disc around the origin, and the

image X (U) lies in a disc D of radius 1, i.e., || X|| < 1. Then the statement of the existence

of integral curves is as follows:

There exists an integral curve « : [0,1] — D for X such that v(0) = 0.

We shall construct the integral curve 7 as a limit of polygonal line =, : [0,1] — D. To do

this, we define ,, by the piecewise-linear curve as follows:

Divide the interval [0, 1] into n intervals [£, #1] for 0 < k < n. The curve 7, starts at 0, then
12

on the interval [0, +] follows the straight line in the direction of X (0), then on [, 2] follows

the straight line in the direction of X (v,(%)), and so on. In summary, 7, is formulated by

o = Ex ), o<k <m, teE Y,

n n n n n

Tn(t) =

and 7,(0) = 0.

Since || X|| < 1 we have ||,(¢)|| < 1 for all ¢ € [0,1]. Hence we can use the Arzela-Ascoli
theorem to obtain a continuous function v : [0, 1] — D, an uniform limit of a subsequence
of v,. To prove that v is truly the integral curve for the vector field X, we shall prove the
following inequality holds for all € > 0: there exists 6 > 0 and N € N such that if |t —s| < ¢
then

H’y(t) —(s)

1 X(y(s))

<

To do this, we first prove the similar inequality for the polygonal line: there exists 0 > 0 and
N € N such that if [t — s| < § and n > N, then

‘ Tn(t) = Yuls)

t—s
where s < t. To prove this, we first note that

Yn(t) = Yn(s) _ / V;L(u) du,

t—s

— X(7a(s))

<

and hence it is the average of the quantity 7/ (u) as u range over the interval [s,¢]. Thus
our proof is reduced to the problem of showing that the average has the distance e with
X (7n(s)). By construction, for u € [s,¢] we have 7}, (u) € X (7,([s — £, ])). Since X (,(s)) €
X (a([s — =,t])) and the average of a vector-valued function must lie in the convex hull of
its image, it is sufficient to show that the diameter of the image X (7, ([s — £,¢])) is at most
€.
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Since || X|| < 1, the diameter of the image X (v,([s — £,t])) is at most ¢ — s 4+ +. Since X
is bounded and continuous on the closed and bounded disc D, X is uniformly continuous
and hence the required claim is true. Indeed, it suffices to show that for n > N, x,y € D
with ||z — y|| < 6 4+ £, we have || X (2) — X(y)|| < ¢, which directly follows from the uniform
continuity of X. Finally, we arrive at the step of proving the inequality

=2 - x0)

‘<E,

provided that [t — s| <, n > N. We see that

Hw - X(v(s))H < ‘ M R X(%(S»H + ' w ’
[0 o) - X < e

Aufgabe 2. Seien a,b > 0 Konstanten. Betrachte das zeitunabhéangige Vektorfeld
X :R? 5 R? X(2,9) = (a — br + 2%y — z, bz — 2%y).

Zeige, dass durch einen Punkt (zg,yy) im ersten Quadranten (daher zg,yo > 0) genau eine
Integralkurve geht, die in positiver Zeitrichtung unendlich lang existiert und den ersten
Quadranten nicht verlasst.

Losung: We follow the hind given and consider firstly the vector field on the z-axis:
X(z,0) = (a— (b+ 1)z, bx),

and hence the integral curve (z(t),y(t)) of the vector field X (z,0) satisfies the following
differential equations:

2(t)=a— (b+1)x(t), y'(t) = bx(t)

Then we have the solutions z(t) and y(t):

= a _ a —(b+1)t

z(t) b+1+(xo b+1>e ’

y(t):a_bt+y +L Ta — a (1_6—(b+1)t)
b+1 T+ 7Y b1 :

It is easy to see that x(t),y(t) > 0 for all ¢ > 0. For example, the inequality x(t) < 0 is
equivalent to the inequality

pr =D <o,



Gewohnliche Differentialgleichungen 3, June, 2024

which is impossible when a,b,zg > 0. On the other hand, the vector field X (0,y) on the
y-axis is given by
X(0,9) = (a,0),
and hence the integral curve is simply given by
z(t) = at + xo, y(t) = Yo,
which always lies in the first quadrant. O

Aufgabe 3. Seien f,g: R — R stetig. Die Funktion f sei iiberdies Lipschitz-stetig. Betra-
chte das zeitunabhangige Vektorfeld

X R* =R, X(2,y) = (f(2),y9(2)).
1. Zeige unter Angabe eines Beispiels fiir f und g, dass X nicht umbedingt lokal Lipschitz-
stetig ist.

2. Zeige, dass X dennoch eindeutige Integralkurve hat, daher: zu jedem Punkt (zo,yo)
und zu jeder Zeit ty gibt es genaue eine maximale Integralkurve mit: v(¢y) = (o, %o)-

Losung: 1. It suffices to choose g a continuous function, but not even locally Lipschitz
continuous function. For example, g(z) = z2 sin(1), or even simpler, g(z) = /z, which is
not Lipschitz-continuous near z = 0.

2. Let v, and -, be two integral curves for the vector field X with (o) = Y2(to) = (20, yo)
defined on an interval I C R. Set

J={tel:n(t)=r0)}

Assume that the complement of J in I is non-empty, i.e., there exists some points ¢’ € '\ J
such that v, (') # 72(t'). We put t; := sup{t € J}. Then for t > t;, we have 7, (t) # Ya(t).
We may assume that the length of the set I'\J is at most e. Now we write v1(t) = (z1(t), y1(t))
and Yo (t) = (22(t), y2(t)), respectively. We put

D= tselllg(ml(t) — 2a(t)] + [y: () = 42(1)]) > 0,

and hence D > 0 is a fixed constant. Since g is not locally Lipschitz-continuous, we may
assume that g is not Lipschitz-continuous around 0. To exploit this property, we also assume
that the integral curves satisfy |z,(t)[, |z2(t)| < d, for some small § > 0. Then we see that

17(8) =22l < |21() = 22(0)] + [y1(2) = y2(?)]

< [ 1xene) - Xatopl

< [ 1500) = S0 + 1 (Oola) — (a6

< [ 150 - sl dt-+ [ @) - otaa(0)
+ [ ) - v0llgteate) e
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For the first integral, we simply use the Lipschitz-continuity of f to obtain the bound

/0If(ﬂvl(t))—f(fcz(lt))|aht§/0 Lylz1(t) — 2o(1)| dt
SLfED.

On the other hand, we can bound the third integral easily since the function ¢ is continuous
and |z2(t)] < 6, and the quantity |g(Ds)| is bounded where Djs is a disc of radius § > 0.
Indeed, we have

[ 106 = ittt < [ Myhte) = o
< MgyeD.
For the second integral, since g is at least continuous, and |z1(t)|, |z2(t)] < 6, we deduce that

|z (t) — 22(t)| < 28. Hence if necessary by shrinking 6 > 0, we obtain |g(z1(t)) — g(z2(2))| <
De. Thus we have

Anmmmmw»—m@wnﬁSMD@

where we used the continuity of y;(¢) on a small interval [0,¢]. In conclusion, we obtain
D < eD(My+ M+ Ly).

By shrinking € sufficiently we have e(My+ M + Ly) < 5 and hence we obtain D < 3D, which
contradicts to our assumption that D > 0. Thus we have y; = v, on I. m

Aufgabe 4. Betrachte das Vektorfeld
X:RxR—=R, X(t,u) =2t — Ju,.

Dabei ist uy = max(u,0). Die Picard-Iteration zum Anfangswertproblem ~(0) fiir dieses
Vektorld lautet:

Ynt1(t) =0+ /Ot 25 — \/Yu(8)+ ds.

Zeige, dass die Folge (v,) der Picard-Tterationen zur Anfangskurve ~,(t) = 0 abwechselnd
zwischen zwei Funktionen hin- und herspringt. Insbesondere konvergiert die Picard-Iteration
nicht. Welche Voraussetzung(en) des Satzes von Picard-Lindel6f ist (sind) nicht erfiillt?

Lésung: The map (t,u) — 2t — 2,/u is not locally Lipschitz in space, since the derivative
of \/uy is not bounded around 0. O



