Aufgabe 1. Construction of integral curves for a given vector field using polygonal line.

Lösung: Firstly we want to review the argument used in the lecture. Let $X: I \times U \to \mathbb{R}^d$ be a continuous vector field. Suppose that X is bounded, i.e., $||X|| \leq C$. The existence of an integral curve is as follows:

Let $p \in U$. Then for some $\epsilon > 0$, there exists an integral curve $\gamma : [0, \epsilon) \to U$ such that $\gamma(0) = p$.

Now we make the use of an appropriate translation, shrinking U, and a dilation so that we may assume that p is the origin, i.e., 0, and U is an open disc around the origin, and the image X(U) lies in a disc D of radius 1, i.e., $||X|| \le 1$. Then the statement of the existence of integral curves is as follows:

There exists an integral curve $\gamma:[0,1]\to D$ for X such that $\gamma(0)=0$.

We shall construct the integral curve γ as a limit of polygonal line $\gamma_n : [0,1] \to D$. To do this, we define γ_n by the piecewise-linear curve as follows:

Divide the interval [0,1] into n intervals $\left[\frac{k}{n},\frac{k+1}{n}\right]$ for $0 \le k \le n$. The curve γ_n starts at 0, then on the interval $\left[0,\frac{1}{n}\right]$ follows the straight line in the direction of X(0), then on $\left[\frac{1}{n},\frac{2}{n}\right]$ follows the straight line in the direction of $X(\gamma_n(\frac{1}{n}))$, and so on. In summary, γ_n is formulated by

$$\gamma_n(t) = \gamma_n(\frac{k}{n}) + (t - \frac{k}{n})X(\gamma(\frac{k}{n})), \ 0 \le k < n, \ t \in [\frac{k}{n}, \frac{k+1}{n}],$$

and $\gamma_n(0) = 0$.

Since $||X|| \le 1$ we have $||\gamma_n(t)|| \le 1$ for all $t \in [0,1]$. Hence we can use the Arzela-Ascoli theorem to obtain a continuous function $\gamma:[0,1]\to D$, an uniform limit of a subsequence of γ_n . To prove that γ is truly the integral curve for the vector field X, we shall prove the following inequality holds for all $\epsilon > 0$: there exists $\delta > 0$ and $N \in \mathbb{N}$ such that if $|t-s| < \delta$ then

$$\left\| \frac{\gamma(t) - \gamma(s)}{t - s} - X(\gamma(s)) \right\| < \epsilon.$$

To do this, we first prove the similar inequality for the polygonal line: there exists $\delta > 0$ and $N \in \mathbb{N}$ such that if $|t - s| < \delta$ and n > N, then

$$\left\| \frac{\gamma_n(t) - \gamma_n(s)}{t - s} - X(\gamma_n(s)) \right\| < \epsilon,$$

where s < t. To prove this, we first note that

$$\frac{\gamma_n(t) - \gamma_n(s)}{t - s} = \int_s^t \gamma'_n(u) \, du,$$

and hence it is the average of the quantity $\gamma_n'(u)$ as u range over the interval [s,t]. Thus our proof is reduced to the problem of showing that the average has the distance ϵ with $X(\gamma_n(s))$. By construction, for $u \in [s,t]$ we have $\gamma_n'(u) \in X(\gamma_n([s-\frac{1}{n},t]))$. Since $X(\gamma_n(s)) \in X(\gamma_n([s-\frac{1}{n},t]))$ and the average of a vector-valued function must lie in the convex hull of its image, it is sufficient to show that the diameter of the image $X(\gamma_n([s-\frac{1}{n},t]))$ is at most

Since $||X|| \leq 1$, the diameter of the image $X(\gamma_n([s-\frac{1}{n},t]))$ is at most $t-s+\frac{1}{n}$. Since X is bounded and continuous on the closed and bounded disc D, X is uniformly continuous and hence the required claim is true. Indeed, it suffices to show that for $n \geq N, x, y \in D$ with $||x-y|| < \delta + \frac{1}{n}$, we have $||X(x) - X(y)|| < \epsilon$, which directly follows from the uniform continuity of X. Finally, we arrive at the step of proving the inequality

$$\left\| \frac{\gamma(t) - \gamma(s)}{t - s} - X(\gamma(s)) \right\| < \epsilon,$$

provided that $|t - s| < \delta$, $n \ge N$. We see that

$$\left\| \frac{\gamma(t) - \gamma(s)}{t - s} - X(\gamma(s)) \right\| \le \left\| \frac{\gamma_n(t) - \gamma_n(s)}{t - s} - X(\gamma_n(s)) \right\| + \left\| \frac{\gamma_n(s) - \gamma(s)}{t - s} \right\| + \left\| \frac{\gamma_n(t) - \gamma(t)}{t - s} \right\| + \left\| X(\gamma_n(s)) - X(\gamma(s)) \right\| < 4\epsilon.$$

Aufgabe 2. Seien a, b > 0 Konstanten. Betrachte das zeitunabhängige Vektorfeld

$$X: \mathbb{R}^2 \to \mathbb{R}^2, \ X(x,y) = (a - bx + x^2y - x, bx - x^2y).$$

Zeige, dass durch einen Punkt (x_0, y_0) im ersten Quadranten (daher $x_0, y_0 > 0$) genau eine Integralkurve geht, die in positiver Zeitrichtung unendlich lang existiert und den ersten Quadranten nicht verlässt.

Lösung: We follow the hind given and consider firstly the vector field on the x-axis:

$$X(x,0) = (a - (b+1)x, bx),$$

and hence the integral curve (x(t), y(t)) of the vector field X(x, 0) satisfies the following differential equations:

$$x'(t) = a - (b+1)x(t), \ y'(t) = bx(t)$$

Then we have the solutions x(t) and y(t):

$$x(t) = \frac{a}{b+1} + \left(x_0 - \frac{a}{b+1}\right) e^{-(b+1)t},$$

$$y(t) = \frac{ab}{b+1}t + y_0 + \frac{b}{b+1}\left(x_0 - \frac{a}{b+1}\right) (1 - e^{-(b+1)t}).$$

It is easy to see that x(t), y(t) > 0 for all t > 0. For example, the inequality $x(t) \le 0$ is equivalent to the inequality

$$\frac{a}{b+1}(e^{(b+1)t}-1)+x_0 \le 0,$$

which is impossible when $a, b, x_0 > 0$. On the other hand, the vector field X(0, y) on the y-axis is given by

$$X(0,y) = (a,0),$$

and hence the integral curve is simply given by

$$x(t) = at + x_0, \ y(t) = y_0,$$

which always lies in the first quadrant.

Aufgabe 3. Seien $f, g : \mathbb{R} \to \mathbb{R}$ stetig. Die Funktion f sei überdies Lipschitz-stetig. Betrachte das zeitunabhängige Vektorfeld

$$X: \mathbb{R}^2 \to \mathbb{R}^2, \ X(x,y) = (f(x), yg(x)).$$

- 1. Zeige unter Angabe eines Beispiels für f und g, dass X nicht umbedingt lokal Lipschitzstetig ist.
- 2. Zeige, dass X dennoch eindeutige Integralkurve hat, daher: zu jedem Punkt (x_0, y_0) und zu jeder Zeit t_0 gibt es genaue eine maximale Integralkurve mit: $\gamma(t_0) = (x_0, y_0)$.

Lösung: 1. It suffices to choose g a continuous function, but not even locally Lipschitz continuous function. For example, $g(x) = x^{\frac{3}{2}} \sin(\frac{1}{x})$, or even simpler, $g(x) = \sqrt{x}$, which is not Lipschitz-continuous near x = 0.

2. Let γ_1 and γ_2 be two integral curves for the vector field X with $\gamma_1(t_0) = \gamma_2(t_0) = (x_0, y_0)$ defined on an interval $I \subset \mathbb{R}$. Set

$$J = \{t \in I : \gamma_1(t) = \gamma_2(t)\}.$$

Assume that the complement of J in I is non-empty, i.e., there exists some points $t' \in I \setminus J$ such that $\gamma_1(t') \neq \gamma_2(t')$. We put $t_1 := \sup\{t \in J\}$. Then for $t > t_1$, we have $\gamma_1(t) \neq \gamma_2(t)$. We may assume that the length of the set $I \setminus J$ is at most ϵ . Now we write $\gamma_1(t) = (x_1(t), y_1(t))$ and $\gamma_2(t) = (x_2(t), y_2(t))$, respectively. We put

$$D = \sup_{t \in I \setminus J} (|x_1(t) - x_2(t)| + |y_1(t) - y_2(t)|) > 0,$$

and hence D > 0 is a fixed constant. Since g is not locally Lipschitz-continuous, we may assume that g is not Lipschitz-continuous around 0. To exploit this property, we also assume that the integral curves satisfy $|x_1(t)|, |x_2(t)| \le \delta$, for some small $\delta > 0$. Then we see that

$$\|\gamma_{1}(t) - \gamma_{2}(t)\| \leq |x_{1}(t) - x_{2}(t)| + |y_{1}(t) - y_{2}(t)|$$

$$\leq \int_{0}^{t} \|X(\gamma_{1}(t)) - X(\gamma_{2}(t))\| dt$$

$$\leq \int_{0}^{t} |f(x_{1}(t)) - f(x_{2}(t))| + |y_{1}(t)g(x_{1}(t)) - y_{2}(t)g(x_{2}(t))| dt$$

$$\leq \int_{0}^{t} |f(x_{1}(t)) - f(x_{2}(t))| dt + \int_{0}^{t} |y_{1}(t)||g(x_{1}(t)) - g(x_{2}(t))| dt$$

$$+ \int_{0}^{t} |y_{1}(t) - y_{2}(t)||g(x_{2}(t))| dt.$$

For the first integral, we simply use the Lipschitz-continuity of f to obtain the bound

$$\int_0^t |f(x_1(t)) - f(x_2(t))| dt \le \int_0^t L_f |x_1(t) - x_2(t)| dt \le L_f \epsilon D.$$

On the other hand, we can bound the third integral easily since the function g is continuous and $|x_2(t)| \leq \delta$, and the quantity $|g(D_{\delta})|$ is bounded where D_{δ} is a disc of radius $\delta > 0$. Indeed, we have

$$\int_0^t |y_1(t) - y_2(t)| |g(x_2(t))| dt \le \int_0^t M_g |y_1(t) - y_2(t)| dt \le M_g \epsilon D.$$

For the second integral, since g is at least continuous, and $|x_1(t)|, |x_2(t)| \leq \delta$, we deduce that $|x_1(t) - x_2(t)| \leq 2\delta$. Hence if necessary by shrinking $\delta > 0$, we obtain $|g(x_1(t)) - g(x_2(t))| \leq D\epsilon$. Thus we have

$$\int_0^t |y_1(t)| |g(x_1(t)) - g(x_2(t))| \, dt \le MD\epsilon,$$

where we used the continuity of $y_1(t)$ on a small interval [0,t]. In conclusion, we obtain

$$D \le \epsilon D(M_g + M + L_f).$$

By shrinking ϵ sufficiently we have $\epsilon(M_g + M + L_f) < \frac{1}{2}$ and hence we obtain $D < \frac{1}{2}D$, which contradicts to our assumption that D > 0. Thus we have $\gamma_1 = \gamma_2$ on I.

Aufgabe 4. Betrachte das Vektorfeld

$$X: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \ X(t, u) = 2t - \sqrt{u_+}.$$

Dabei ist $u_+ = \max(u, 0)$. Die Picard-Iteration zum Anfangswertproblem $\gamma(0)$ für dieses Vektorld lautet:

$$\gamma_{n+1}(t) = 0 + \int_0^t 2s - \sqrt{\gamma_n(s)_+} \, ds.$$

Zeige, dass die Folge (γ_n) der Picard-Iterationen zur Anfangskurve $\gamma_0(t) = 0$ abwechselnd zwischen zwei Funktionen hin- und herspringt. Insbesondere konvergiert die Picard-Iteration nicht. Welche Voraussetzung(en) des Satzes von Picard-Lindelöf ist (sind) nicht erfüllt?

Lösung: The map $(t, u) \mapsto 2t - 2\sqrt{u_+}$ is not locally Lipschitz in space, since the derivative of $\sqrt{u_+}$ is not bounded around 0.