
Algebra I and II

Kai-Uwe Bux

May 11, 2007



2



Contents

1 Groups and Actions 7

1.1 Basic Notions . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Monoids . . . . . . . . . . . . . . . . . . . . . . 7

1.1.2 Group Actions . . . . . . . . . . . . . . . . . . . 14

1.1.3 Homomorphisms . . . . . . . . . . . . . . . . . . . 18

1.1.4 Example: Left Multiplication . . . . . . . . . . 20

1.1.5 Right-actions . . . . . . . . . . . . . . . . . . . 21

1.1.6 Stabilizers, Subgroups and Cosets . . . . . . . . 24

1.1.7 Equivariant Maps and Invariant Partitions . . . . 28

1.1.8 Generating Sets and Cayley Graphs . . . . . . . . 37

1.1.9 Fixed Points and Fix Groups . . . . . . . . . . . 42

1.1.10 Example: Conjugation . . . . . . . . . . . . . . . 44

1.1.11 Extensions and (Short) Exact Sequences . . . . . . 49

1.1.12 Solvable and Nilpotent Groups . . . . . . . . . . 55

1.1.13 Simple Groups . . . . . . . . . . . . . . . . . . . 57

1.2 Finite Groups . . . . . . . . . . . . . . . . . . . . . . 59

1.2.1 Warm-up Example . . . . . . . . . . . . . . . . . . 59

1.2.2 Detecting Subgroups . . . . . . . . . . . . . . . . 59

1.2.3 The Structure of Finite p-Groups . . . . . . . . . 62

1.2.4 Sylow Subgroups . . . . . . . . . . . . . . . . . . 65

1.2.5 Applications: Groups of \Small" Orders . . . . . 68

1.3 Infinite Groups . . . . . . . . . . . . . . . . . . . . . 74

1.3.1 Free Groups . . . . . . . . . . . . . . . . . . . . 74

1.3.2 Presentations of Groups . . . . . . . . . . . . . . 78

3



2 Rings 79

2.1 Basic Notions . . . . . . . . . . . . . . . . . . . . . . 79

2.1.1 Rings and Modules . . . . . . . . . . . . . . . . . 79

2.1.2 Homomorphisms and Ideals . . . . . . . . . . . . . 85

2.1.3 Module Homomorphisms . . . . . . . . . . . . . . . 90

2.2 Non-Commutative Rings . . . . . . . . . . . . . . . . . . 93

2.2.1 Noetherian Rings and Modules . . . . . . . . . . . 93

2.2.2 Artinian Rings and Modules . . . . . . . . . . . . 96

2.2.3 Simple Rings and Modules . . . . . . . . . . . . . 96

2.3 Commutative Rings . . . . . . . . . . . . . . . . . . . . 104

2.4 Constructions . . . . . . . . . . . . . . . . . . . . . . 104

2.4.1 Polynomials and Power Series . . . . . . . . . . . 104

2.4.2 Localization . . . . . . . . . . . . . . . . . . . 106

2.5 Important Classes of Rings . . . . . . . . . . . . . . . 112

2.5.1 Euclidean Domains . . . . . . . . . . . . . . . . . 112

2.5.2 Principal Ideal Domains . . . . . . . . . . . . . . 112

2.5.3 Noetherian Rings . . . . . . . . . . . . . . . . . 113

2.5.4 Unique Factorization Domains . . . . . . . . . . . 113

3 Modules and Bi-Modules 127

3.1 Functors . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.1.1 Direct Product and Sum . . . . . . . . . . . . . . 127

3.1.2 Tensor Products . . . . . . . . . . . . . . . . . . 131

3.1.3 Algebras . . . . . . . . . . . . . . . . . . . . . 149

3.1.4 Appendix: Categories and Functors . . . . . . . . 157

3.1.5 Appendix: Homotopy . . . . . . . . . . . . . . . . 160

3.1.6 Appendix: Dual Vector Spaces . . . . . . . . . . 161

3.2 Modules over Group Rings (aka Representation Theory) . . 163

3.2.1 Representations as Modules . . . . . . . . . . . . 163

3.2.2 Constructions . . . . . . . . . . . . . . . . . . . 164

3.2.3 Example: The Regular Representation . . . . . . . 167

3.2.4 Characters . . . . . . . . . . . . . . . . . . . . 169

3.3 Modules over Principal Ideal Domains . . . . . . . . . . 176

4



3.3.1 The Smith Normal Form . . . . . . . . . . . . . . . 177

3.3.2 Presentations of Finitely Generated Modules . . . 180

3.3.3 Torsion and Annihilation . . . . . . . . . . . . . 183

3.3.4 The Classification of Finitely Generated Modules . 185

3.3.5 Advanced Linear Algebra . . . . . . . . . . . . . . 187

4 Fields 195

4.1 Field Extensions . . . . . . . . . . . . . . . . . . . . 195

4.1.1 Basic Definitions . . . . . . . . . . . . . . . . . 195

4.1.2 Algebraic and Transcendent Elements . . . . . . . 196

4.1.3 Splitting Fields . . . . . . . . . . . . . . . . . 200

4.1.4 The Algebraic Closure . . . . . . . . . . . . . . . 202

4.2 Galois Theory . . . . . . . . . . . . . . . . . . . . . . 204

4.2.1 The Galois Group . . . . . . . . . . . . . . . . . 204

4.2.2 Normal Field Extensions . . . . . . . . . . . . . . 206

4.2.3 Separable Field Extensions . . . . . . . . . . . . 208

4.2.4 Characterizations of Galois Extensions . . . . . . 208

4.2.5 Galois Correspondence . . . . . . . . . . . . . . . 211

4.2.6 Finite Fields . . . . . . . . . . . . . . . . . . . 212

4.3 Separability . . . . . . . . . . . . . . . . . . . . . . 213

4.3.1 Perfect Fields . . . . . . . . . . . . . . . . . . 213

4.3.2 xx . . . . . . . . . . . . . . . . . . . . . . . . 214

4.3.3 Primitive Elements . . . . . . . . . . . . . . . . 215

4.4 Determinants . . . . . . . . . . . . . . . . . . . . . . 215

4.4.1 Norms . . . . . . . . . . . . . . . . . . . . . . . 215

4.4.2 Normal Bases . . . . . . . . . . . . . . . . . . . 216

4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 216

4.5.1 Symmetric Functions . . . . . . . . . . . . . . . . 216

4.5.2 The General Polynomial . . . . . . . . . . . . . . 217

4.5.3 Roots of Unity . . . . . . . . . . . . . . . . . . 218

5 Appendix: Sets 221

5.1 Zorn's Lemma and the Well-Ordering Theorem . . . . . . . 221

5



5.1.1 Ordered Sets . . . . . . . . . . . . . . . . . . . 221

5.1.2 The Theorems . . . . . . . . . . . . . . . . . . . 222

6



Chapter 1

Groups and Actions

1.1 Basic Notions

1.1.1 Monoids

Definition 1.1.1.1 (monoid). A monoid is a set M together with

1. a distinguished element 1 ∈M, called the identity element of

M, and

2. a binary operation in M, called multiplication,

M×M −→ M
(µ, ν) 7→ µν,

such that the following axioms are satisfied:

1. The element 1 is a two-sided identity, i.e., 1µ = µ = µ1 for all

µ ∈M.

2. The law of associativity holds, i.e.: (µ0µ1)µ2 = µ0(µ1µ2) for all

µ0, µ1, µ2 ∈M.

Observation 1.1.1.2. In a monoid, the identity element is uniquely

determined by the binary operation: suppose 11 and 12 would both

qualify, then

11 = 1112 = 12.

7



Thus, to specify a monoid, we only have to declare the

multiplication operation and confirm the existence of an identity

element.

Example 1.1.1.3. The natural numbers including 0 form a monoid N+

with respect to addition where 0 serves as the identity element.

Example 1.1.1.4. The natural numbers including also form a monoid N×

with respect to multiplication where 1 serves as the identity

element.

Definition 1.1.1.5. Let M and N be monoids. A map ϕ :M→N is

called a homomorphism if:

1. The map ϕ preserves the identity element, i.e.,

ϕ(1M) = 1N .

2. The map ϕ is compatible with multiplication, i.e.,

ϕ(µν) = ϕ(µ)ϕ(ν)

for all µ, ν ∈M.

A surjective homomorphism is called an epimorphism, an

injective (1-1) homomorphism is called a monomorphism, and an

invertible homomorphism (i.e., it has an inverse that is also a

homomorphism) is called an isomorphism. A homomorphism from M
(in)to M is called an endomorphism and an invertible endomorphism

is called an automorphism.

Exercise 1.1.1.6. Show that a monoid homomorphism is an isomorphism

if and only if it is 1-1 and onto.

Exercise 1.1.1.7. The composition of two monoid homomorphisms is a

monoid homomorphism.

8



Example 1.1.1.8. The map

N+ −→ N×

n 7→ 2n

is a monoid-monomorphism.

Example 1.1.1.9 (free monoid). Let X be a set. The free monoid with

basis X is the monoid X∗ := {(x1, x2, . . . , xu) u ≥ 0, xi ∈ X} consisting

of all finite sequences (ordered tuples of all possible lengths)

with entries from X. We consider X as an alphabet and such tuple

as a word. The binary operation is concatenation of words. The

identity element is the empty word of length 0.

To simplify notation, we shall represent the finite

sequence (x1, x2, . . . , xu) simply as x1x2 · · · xu. Note that this notation

fits perfectly: one can regard X as a subset of X∗ by regarding

every letter of the alphabet X as a one-letter word in X∗. Then

the expression x1x2 · · · xu can be interpreted two ways: we can regard

it as a shorthand for a certain u-letter word, but we can also

regard it as a product of u one-letter words. In fact, any grouping

allows us to read a product structure into this expression. Since

concatenation is associative, all those readings refer to the same

element of X∗.

Theorem 1.1.1.10 (universal property of free monoids). Let X be a

set. For any monoid M and any map f : X →M, there exists a unique

monoid homomorphism ϕ : X∗ →M such that

X

²²

f //M

X∗
ϕ

==zzzzzzzz

commutes, where the vertical arrow is the canonical inclusion

X ↪→ X∗.
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Proof. Note that we really have no choice but to define

ϕ : X∗ −→ M
x1x2 · · · xu 7→ f(x1) f(x2) · · · f(xu)

Now, we just need to observe that this is a monoid

homomorphism. q.e.d.

Example 1.1.1.11. Let X be a set. The set

Endset(X) := Mapsset(X;X) := {f : X → X} of all maps from X to X is a

monoid with respect to composition of maps. The sets

Monoset(X;X) := {f : X → X f is injective} and

Episet(X;X) := {f : X → X f is surjective} are two important

submonoids. Their intersection is the monoid

Perm(X) := {f : X → X f is bijective} .

Example 1.1.1.12. Similarly, in any category, the set of

endo-morphisms of an an object is a monoid; it contains as

submonoids the set of endo-monomorphism, the set of

endo-epimorophisms, and the set of automorphisms.

For instance, for any monoid M, the set

Endmon(M) = {ϕ :M→M ϕ is a monoid homomorphism}

of all homomorphisms is a monid with respect to composition. It

containing the submonoids Monomon(M;M) and Epimon(M;M) and their

intersection Autmon(M) = {ϕ :M→M ϕ is a monoid isomorphism} .

Definition 1.1.1.13 (action). Let M be a group and let X be a set.

A left-action of M on X is a map

α :M×X −→ X

(µ, x) 7→ µnα x

satisfying the following axioms:

1. For all x ∈ X,

1nα x = x.
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2. For all µ, ν ∈M and all x ∈ X,

µnα (ν nα x) = (µν) nα x.

As for notation, we will drop the subscript α whenever there is no

reasonable doubt about which action is meant.

Example 1.1.1.14 (trivial action). Let M be a monoid. Any set X

can be endowed with the trivial M-action:

M×X −→ X

(µ, x) 7→ x

Example 1.1.1.15 (left multiplication). The multiplication map

M×M −→ M
(µ, ν) 7→ µν

is an action of the monoid M on the set underlying M. Checking

the axioms is straight forward. This action is called

left multiplication.

Example 1.1.1.16 (tautological action). Let X be a set. Then the

monoid Endset(X) := Mapsset(X;X) acts on X via

Endset(X)×X −→ X

(f, x) 7→ f(x)

Definition 1.1.1.17. Let M be a monoid. An M-set is a set X

together with a specified M-action.

Let X and Y be two M-sets. A map

h : X → Y

is a M-map if for every µ ∈M and every x ∈ X,

h(µn x) = µn h(x) .
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Let N be another monoid and let ϕ :M→N be a

homomorphism. Now, let X be an M-set and let Y be an N-set. A

map

h : X → Y

is ϕ-equivariant if for every µ ∈M and every x ∈ X,

h(µn x) = ϕ(µ)n h(x) .

Observation 1.1.1.18 (universal property of the tautological action).

Let X be a set. For any monoid M and any action α :M×X → X of

M on X, there exits a unique monoid homomorphism

ϕ :M −→ Endset(X)

µ 7→ fµ

such that for every µ ∈M and every x ∈ X:

µn x = fµ(x)

Note that this means the identity map idX : X → X is

ϕ-equivariant. q.e.d.

Exercise 1.1.1.19. Let ϕ :M→N be a monoid homomorphism and let

α : N ×X −→ X

(ν, x) 7→ ν n x

be a left-action of N on the set X. Show that

αϕ :M×X −→ X

(µ, x) 7→ ϕ(µ)n x

is a left-action of M on X.

Exercise 1.1.1.20. Let M be a monoid and let X be a set. Show

that there is a 1-1 correspondence

{left-actions of M on X} ←→ {monoid homomorphisms M→ Endset(X)} .
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Exercise 1.1.1.21. Let M act on a set X, and observe that the

relation ∼ defined on X by

x ∼ y if and only if there exist z ∈ X, µ, ν ∈M with x = µz and y = νz

is reflexive and symmetric.

1. Let ≡ be the transitive closure of ∼, let M
∖
X be the set of

≡-equivalence classes in X, and let π : X → M
∖
X be the

canonical projection. Show that π is an M-map when we regard

M
∖
X as a M-set with the trivial M-action.

2. Let Y be a set and consider it as a M-set with the trivial

M-action. Show that for any M-map f : X → Y , there exists a

unique map f∗ : M
∖
X → Y such that

X
f //

π
²²

Y

M
∖
X

f∗

>>||||||||

commutes. (This is a universal property.)

3. Let N be another monoid and let ϕ :M→→N be a monoid

epimorphism. Show that there exists a pair (Xϕ, π : X → Xϕ)

where Xϕ is an N-set and π is a ϕ-equivariant map so that the

following universal property holds:

For any N-set Y and any ϕ-equivariant map f : X → Y

there exists a unique N-map fϕ : Xϕ → Y such that

X

π
²²

f // Y

Xϕ

fϕ

>>}}}}}}}}

commutes.

4. Suppose (X1, π1 : X → X1) and (X2, π2 : X → X2) are two pairs

satisfying the universal property above. Show that there is a

unique N-isomorphism

ψ : X1 −→ X2
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such that

X1
ψ // X2

X

π1

``BBBBBBBB π2

>>||||||||

commutes.

Exercise 1.1.1.22. A monoid M is called left-cancellative if for

any µ, ν1, ν2 ∈M the implication

if µν1 = µν2 then ν1 = ν2

holds.

1. Show that the free monoid X∗ over any set X is

left-cancellative.

2. Show that Monoset(X) is left-cancellative for any set X.

3. Show that Episet(X) is not left-cancellative for any infinite set

X.

4. Show that Endset(X) is not left-cancellative for any set X that

contains at least two elements.

5. Show that a submonoid of a left-cancellative monoid is

left-cancellative.

6. Show that M is left-cancellative if and only if the map

M→ Endset(M)

induced by the left-multiplication action has image within

Monoset(M).

1.1.2 Group Actions

Definition 1.1.2.1 (group). A (left-)group is a set G together with

1. a distinguished element 1 ∈ G, called the identity element of

G, and
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2. a binary operation in G, called multiplication,

G×G −→ G

(g, h) 7→ gh,

such that the following axioms are satisfied:

1. The element 1 is a left-identity, i.e., 1g = g for all g ∈ G.

2. For each g ∈ G there is a left-inverse, i.e., an element gl ∈ G
such that glg = 1.

3. The law of associativity holds, i.e.: (g0g1)g2 = g0(g1g2) for all

g0, g1, g2 ∈ G.

Remark 1.1.2.2. It is not obvious, yet, that groups are monoids: we

have not required the identity to be two-sided. However, we shall

see later that it actually follows.

Example 1.1.2.3 (permutations). Let X be a set. The symmetric group

over X is the set

Perm(X) := {σ : X → X σ is a bijection}

together with the identity element

idX : X −→ X

x 7→ x

and the multiplication

Perm(X)× Perm(X) −→ Perm(X)

(σ, τ) 7→ σ ◦ τ

where the composition σ ◦ τ is defined by

σ ◦ τ : X −→ X

x 7→ σ(τ(x)) .

With these definitions, Perm(X) is a group.

The group Perm({1, 2, . . . , r}) is commonly denoted by Sr.

15



Definition 1.1.2.4 (action). Let G be a group and let X be a set.

A left-action of G on X is a map

α : G×X −→ X

(g, x) 7→ g nα x

satisfying the following axioms:

1. For all x ∈ X,

1nα x = x.

2. For all g, h ∈ G and all x ∈ X,

g nα (hnα x) = (gh) nα x.

As for notation, we will drop the subscript α whenever there is no

reasonable doubt about which action is meant.

Remark 1.1.2.5. Once we see that groups are monoids, we can say that

a group action is the same as an action of the monoid that the group

happens to be.

Example 1.1.2.6 (trivial action). Let G be a group and let X be a

set. The trivial action of G on X is given by

G×X −→ X

(g, x) 7→ x

In this case, we also say that G acts trivially on X.

Remark 1.1.2.7. Groups are meant to act: almost everything we can

prove in group theory is proved by looking at a particular action.

Example 1.1.2.8 (tautological action). Let X be a set. Then the

symmetric group Perm(X) acts on X by evaluation

ev : Perm(X)×X −→ X

(σ, x) 7→ σ n x := σ(x)

16



Table 1.1: A highly symmetric graph

Observation and Definition 1.1.2.9 (orbit). Let α be a left-action

of G on X. Then the relation

x ∼α y :⇐⇒ x = g nα y for some g ∈ G

is an equivalence relation. The equivalence classes are called

orbits of the given action. The orbit of x is denoted by Orb(x) if

the group action is understood. Otherwise, we use a more explicit

notation like OrbG(x) if we want to stress the group, or Orbα(x) if

we want to stress the action.

Definition 1.1.2.10. An action with exactly one orbit is called

transitive.

Example 1.1.2.11. The tautological action of Perm(X) on X is

transitive.

Example 1.1.2.12. Groups often arise as symmetry groups. For

instance, consider the group G of symmetries of the graph1 Γ given

in table 1.1. Note that G naturally acts on several sets:

1A graph is a simple combinatorial structure: it is a set (whose elements are

called vertices) together with a collection of 2-element subsets (those are called

edges). A morphism of graphs is just a map sending vertices of one graph to ver-

tices of another graph that does not tear apart edges. That's it, no strings

attached. Note, that the way a graph is drawn is not part of the structure; so

in the example, a symmetry (i.e., an automorphism of the graph) is allowed to swap

inner yellow vertices and outer yellow vertices.

17



1. the set of vertices Γ

2. the set of edges in the graph (symmetries do not tear apart

edges!)

3. the set of degree 4 vertices in Γ (symmetries preserve

valencies!)

4. the set of degree 2 vertices in Γ

Exercise 1.1.2.13. How many elements has the full symmetry group of

the graph Γ, and which of the four actions above are transitive?

1.1.3 Homomorphisms

Definition 1.1.3.1. Let G and H be groups. A map ϕ : G→ H is

called a homomorphism if:

1. The map ϕ preserves the identity element, i.e.,

ϕ(1G) = 1H .

2. The map ϕ is compatible with multiplication, i.e.,

ϕ(gh) = ϕ(g)ϕ(h)

for all g, h ∈ G.

A surjective homomorphism is called an epimorphism, an

injective (1-1) homomorphism is called a monomorphism, and an

invertible homomorphism (i.e., it has an inverse that is also a

homomorphism) is called an isomorphism. A homomorphism from G

(in)to G is called an endomorphism and an invertible endomorphism is

called an automorphism.

Remark 1.1.3.2. Note that we did not require that homomorphisms

preserve inverses. Thus, a map ϕ : G→ H from a group G to a group

H is a group homomorphism if and only if it is a monoid

homomorphism.

18



Observation 1.1.3.3. The composition of two group homomorphisms is a

group homomorphism. q.e.d.

Proposition 1.1.3.4. Let α be a left-action of the group G on the

set X. Then, for each g ∈ G, the map

αg : X −→ X

x 7→ g nα x

is a bijection. Moreover, the map

α̃ : G −→ Perm(X)

g 7→ αg

is a homomorphism.

Conversely, any homomorphism ϕ : G→ Perm(X) induces an

action

αϕ : G×X −→ X

(g, x) 7→ g n x := ϕ(g)(x)

The two constructions are inverses of one another and yield a 1-1

correspondence:

{left-actions of G on X} ←→ {homomorphisms G→ Perm(X)} .

Proof. First observe that for any g ∈ G we have

αgl ◦ αg = idX

whence αg is 1-1: the first map in a composition has to be 1-1 if

the composite map is 1-1. Since this applies to any group element,

αgl is 1-1 as well.

Now, we see that αg is onto: Suppose x ∈ X is not in the

image of αg. Since αgl is 1-1, the element αgl(x) cannot be in the

image of αgl ◦ αg which is absurd since this composition is the

identity on X.

The other statements follow exactly as in the monoid

case. q.e.d.
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Definition 1.1.3.5. An action α of G on X is faithful if 1 is the

only element G that acts trivially on X, i.e., if αg = idX then

g = 1.

Exercise 1.1.3.6. Show that an action α is faithful if and only if

the associated homomorphism α̃ is a monomorphism.

Exercise 1.1.3.7. Which of the actions from Example 1.1.2.12 are

faithful?

Proposition 1.1.3.8. Let α be an action of H on X, and let

ϕ : G→ H be a homomorphism. Then G acts on X by

G×X −→ X

(g, x) 7→ ϕ(g)nα x

Proof. Easy. q.e.d.

1.1.4 Example: Left Multiplication

Let G be a group. Then

λ : G×G −→ G

(g, h) 7→ g nλ h := gh

is a left-action of G on itself: the group axioms turn directly

into the axioms for a left action.

Definition 1.1.4.1. The action λ defined thus is called the

left-multiplication action of G on itself.

Consider the corresponding homomorphism λ : G→ Perm(G) . It

follows that for each g ∈ G, we have λg ∈ Perm(G). In particular,

for any h ∈ G, we have:

1 = gh⇐⇒ 1 = λg(h)
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However, since λg is a bijection, there is one and only one h ∈ G
satisfying 1 = gh. This proves existence and uniqueness of

right-inverses.

Let us denote the right-inverse of g by gr. Let gl be any

left-inverse. Then we have:

λg ◦ λgr = id = λgl ◦ λg

whence

λgr = λ−1
g = λgl .

In particular

grg = λgr(g) = λgl(g) = 1.

I.e., the right-inverse will also be a left-inverse.

Furthermore, this implies:

g1 = ggrg = 1g = g.

I.e., the left-identity 1 also serves as a right-identity.

Remark 1.1.4.2. We have now established the right-handed versions of

the axioms. Thus, running through the same arguments with left and

right reversed, we see that left-inverses also must be unique.

Proposition 1.1.4.3 (Cayley). The left-multiplication of G in itself

is faithful.

Proof. Easy: 1 is a right-identity. q.e.d.

1.1.5 Right-actions

Definition 1.1.5.1 (right-action). Let G be a group and let X be a

set. A right-action of G on X is a map

α : X ×G −→ X

(x, g) 7→ xnα g

satisfying the following axioms:
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1. For all x ∈ X,

xnα 1 = x.

2. For all g, h ∈ G and all x ∈ X,

xnα (gy) = (xnα g) nα h.

As for notation, we will drop the subscript α whenever there is no

reasonable doubt about which action is meant.

Remark 1.1.5.2. Since we have established right-handed versions of

the group axioms, we see that all considerations for left-actions

apply mutatis mutandis to right-actions. In particular, every right

on a set X induces a decomposition of X into disjoint orbits.

Example 1.1.5.3 (right-multiplication action). Multiplication

ρ : G×G −→ G

(g, h) 7→ g oρ h := gh

also defines a right-action of G on itself. Moreover, for each

g ∈ G, the map

ρg : G −→ G

h 7→ hg

is a bijections. However, the map

ρ : G −→ Perm(G)

g 7→ ρg

is not a homomorphism. It is an anti-homomorphism.

Definition 1.1.5.4. A map ϕ : G→ H is called a anti-homomorphism

if:

1. The map ϕ preserves the identity element, i.e.,

ϕ(1G) = 1H .
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2. The map ϕ swaps the order of multiplication, i.e.,

ϕ(gh) = ϕ(h)ϕ(g)

for all g, h ∈ G.

Proposition 1.1.5.5. If α is a right-action of G on X, then the map

α̃ : G −→ Perm(X)

g 7→ αg

is an anti-homomorphism where:

αg : X −→ X

x 7→ xoα g.

Proof. Easy. q.e.d.

Exercise 1.1.5.6. Show that inversion g 7→ ḡ is an anti-automorphism

of G.

Exercise 1.1.5.7. Show that the composition of two

anti-homomorphisms is a homomorphism.

Corollary and Definition 1.1.5.8. Let α : G×X → X be a left action.

Then

ᾱ : X ×X −→ X

(x, g) 7→ xoᾱ g := ḡ nα x

is a right-action. It is called the right-action induced by α.

Proof. Easy: inverting is an anti-automorphism. q.e.d.
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1.1.6 Stabilizers, Subgroups and Cosets

Definition 1.1.6.1. A subset U of a group G is a subgroup if it

contains the identity element and is closed with respect to taking

inverses and products, i.e.:

1. The identity element belongs to U.

2. The inverse of any element in U lies in U.

3. For any two elements g, h ∈ U, we have gh ∈ U.

Observation 1.1.6.2. Subgroups are groups.

Example 1.1.6.3. The image of any homomorphism is a subgroup in its

range.

Example 1.1.6.4. The kernel of a homomorphism ϕ : G→ H is defined

as

ker(ϕ) := {g ∈ G ϕ(g) = 1H} .

The kernel is a subgroup of G.

Example 1.1.6.5. The intersection of a family of subgroups is a

subgroup.

Definition 1.1.6.6. Let A,B ⊆ G be subsets. We put:

AB := {ab a ∈ A, b ∈ B}
Ā := {ā a ∈ A}

Exercise 1.1.6.7. Let A be a non-empty subset of G. Show that A is

a subgroup if and only if ĀA ⊆ A.

Exercise 1.1.6.8. Let U and V be subgroups. Show that UV is a

subgroup if and only if UV = V U.
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Proposition and Definition 1.1.6.9. Let α be an action of G on X.

For each element x ∈ X, the stabilizer

Stab(x) := {g ∈ G g nα x ∈ A}

is a subgroup of G. We also use the notation Stabα(x) and StabG(x)

if there is a need to be more specific.

Proof. Easy. q.e.d.

Example 1.1.6.10. Consider the tautological action of Perm(X) on X.

The stabilizer of x ∈ X is

Stab(x) = {σ ∈ Perm(X) σ(x) = x} .

Note that such bijections σ restrict to bijections on X − {x}.
Thus, Stab(x) acts on X − {x}.

Exercise 1.1.6.11. Show that restriction to X − {x} induces an

isomorphism of groups:

StabPerm(X)(x) −→ Perm(X − {x}) .

Discussion 1.1.6.12. Let G be a group and U ≤ G be a subgroup.

1. Multiplication induces a left- and a right-action of U on G:

λU : U ×G −→ G

(u, g) 7→ ug

and:

ρU : G× U −→ G

(g, u) 7→ gu

The orbits of the left-action are called right-cosets and the

orbit of the right-action are called left-cosets.
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2. Now, fix an element g ∈ G. The right-coset of g is

Ug = {ug u ∈ U} = {ρg(u) u ∈ U} = ρg(U) and its left-coset is

gU = λg(U) . Since ρg and λg are permutations of G, we find that

they induce bijections

gU
λg←− U

ρg−→ Ug.

In particular, all cosets (left and right) have the same

cardinality as U.

3. Consider the inversion anti-automorphism in G. Since subgroups

are closed with respect to taking inverses, it leaves the subset

U invariant. Since anti-automorphisms interchange left and

right, inversion takes right-cosets of U to left-cosets and

vice versa. Thus, inversion induces a 1-1 correspondence

U

∖
G := {right-cosets of U} ←→ {left-cosets of U} =: G

/
U .

In particular, both sets have the same cardinality.

4. The quotients U

∖
G and G

/
U are not structureless sets. In fact,

the left-multiplication action of G on itself is compatible

with the partition of G into left-cosets of U. Thus, we have

an induced left-action of G on G
/
U. With respect to this

action, we have:

StabG(U) = U.

This is tricky to read: on the left hand, U represents an

element of G
/
U, i.e., a left-coset of U; recall that every

subgroup is a left-coset of itself.

Analogously, the orbit space U

∖
G carries a right-action induced

by the right-multiplication action.

Definition 1.1.6.13. The number of (left-)cosets of U in G is

called the index of U. It is denoted by [G : U ].

Thus:
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Lagrange's Theorem 1.1.6.14. If G is a finite group, then

card(G) = [G : U ] card(U) .

In particular, the order and index of any subgroup divide the order

of G.

Example 1.1.6.15 (cyclic and dihedral groups). Let X5 be a set of

five elements. Fix a cyclic order on X5 as represented by the

following directed graph:

∆ :=

The cyclic group C5 can be realized as a subgroup of PermX5 as

follows:

C5 = Aut(∆) = {σ ∈ Perm(X5) σ preserves the graph ∆} .

Now ditch the orientations of edges:

Γ :=

The dihedral group of order 10 can be realized as a subgroup of

Perm(X5) in the same way:

D10 = Aut(Γ) = {σ ∈ Perm(X5) σ preserves the graph Γ} .

The group D10 has index 12 in Perm(X5). The 12 cosets have a

geometric meaning: they represent the different possible ways of

arranging five elements into an undirected cycle:
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Exercise 1.1.6.16. Explain why and how these pictures represent the

cosets of D10 in Perm(X5). In particular, decide whether these

pictures represent right-cosets or left-cosets.

1.1.7 Equivariant Maps and Invariant Partitions

Definition 1.1.7.1. Let G acting on X by means of an action α and

on Y by an action β. A map f : X → Y is called G-equivariant

(should be (α, β)-equivariant, but this is never used since actions

are always suppressed anyway) if

f(g nα x) = g nβ f(x) for all g ∈ G and all x ∈ X.

The name G-map is also used because a set for which an action of G

is specified is often called a G-set.

Observation 1.1.7.2. Compositions of G-maps are G-maps, as a

straight forward computation shows.

Remark 1.1.7.3. One might wonder why not just saying \equivariant".

If you are determined to suppress the actions involved, why not go

28



all the way? Well, if U is a subgroup of G it will act also on X

and Y . Clearly, every G-map is an U-map. However the converse is

not true. Thus you will often want to be specific about the group.

Definition 1.1.7.4. Let α be an action of G on X. An equivalence

relation ∼ on X is called α-invariant if for all x, y ∈ X and all

g ∈ G, we have

x ∼ y ⇐⇒ g nα x ∼ g nα y.

A partition of X into equivalence classes of an invariant

equivalence relation is called an invariant partition.

Example 1.1.7.5 (graph automorphisms). Let Γ be a graph. An

orientation of Γ is an assignment of a direction to each edge in Γ.

The distance of two orientations is the number of edges on which

they are opposite. Two orientations are called equivalent if they

have an even distance.

Let us see that this notion actually defines an

equivalence relation. Only transitivity needs proof: Let o1, o2 and

o3 be three orientations on Γ. We compute distances:

d (o1, o3) = card({e edge in Γ o1(e) 6= o3(e)})
= card({e edge in Γ o2(e) 6= o1(e) or o2(e) 6= o3(e)})
− card({e edge in Γ o2(e) 6= o1(e) and o2(e) 6= o3(e)})

and

d (o1, o2) + d (o2, o3) = card({e edge in Γ o2(e) 6= o1(e) or o2(e) 6= o3(e)})
+ card({e edge in Γ o2(e) 6= o1(e) and o2(e) 6= o3(e)})

Thus,

d (o1, o3) ≡ d (o1, o2) + d (o2, o3) mod 2

and transitivity follows.

Equivalence classes of orientations are called

orientation types. We denote the set of all orientation types of Γ
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by O(Γ). Note that a finite graph has exactly two orientation

types.

Note that the action of Aut(Γ) on Γ induces an action of

Aut(G) on the set of all orientations on Γ. For instance, consider

the following graph:

Then a rotation by 180 degrees will map orientations as follows:

7→

whereas a flip around the diagonal will act like so:

7→

This action preserves distances of orientations: two orientations

agree/disagree on an edge e if and only if their translates

agree/disagree on the translate of e. Since the group action

preserves distances, it preserves parity of distances. Thus

equivalence of orientations is a Aut(Γ)-invariant equivalence

relation.

Example 1.1.7.6 (left-multiplication). The partitions of G invariant

with respect to left-multiplication are in 1-1 correspondence with

the subgroups of G. The correspondence is given by the following

two mutually inverse constructions:

1. Let U be a subgroup of G. We already noted that the

decomposition of G into left-cosets of U is an invariant
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partition arising from the invariant equivalence relation

h ≡U g :⇐⇒ h = gu for some u ∈ U
⇐⇒ ḡh ∈ U.

2. Conversely, suppose ≡ is an equivalence relation on G invariant

under left-multiplication. Then

U := {g ∈ G g ≡ 1}

is a subgroup of G and the ≡-equivalence classes are exactly

the left-cosets of U.

To see this, consider g, h ≡ 1. Since ≡ is invariant, we find

that

gh ≡ g1 = g ≡ 1.

Also,

1 = ḡg ≡ ḡ1 = ḡ.

It follows that U is a subgroup.

Also, note that

h ≡ g ⇐⇒ ḡh ≡ 1

⇐⇒ ḡh ∈ U
⇐⇒ h ≡U g

Proposition 1.1.7.7. Let ∼ be an α-invariant equivalence relation on

the G-set X. Let X
/
∼ be the set of ∼-equivalence classes. Then

there is a unique G-action α
/
∼ on X

/
∼ such that the natural

projection X →→ X
/
∼ becomes G-equivariant.

Proof. Let [x] denote the ∼-equivalence class of x. If we want the

projection x 7→ [x] to be G-equivariant, we have no choice but to

define:

g n [x] := [g n x] .
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This settles uniqueness. To finish the proof, we need to observe

(a) that g n [x] is well-defined, i.e., independent of the choice of

the representative x, and (b) that we have actually defined an

action on X
/
∼.

Now, (a) is just restating α-invariance of ∼, and (b)

follows from the fact that α is an action. q.e.d.

Example 1.1.7.8 (the sign of a graph automorphism). As a direct

consequence of Proposition 1.1.7.7, we see that a group Aut(Γ) of

automorphisms of a graph Γ acts on the set of orientation types

O(Γ), i.e., we have a canonical homomorphism

sign : Aut(Γ) −→ Perm(O(Γ)) .

The kernel of this homomorphism consists of orientation preserving

or even automorphisms.

A special case deserves mentioning: The symmetric group

Perm(X) can be regarded as the automorphism group of the complete

graph K(X) over X wherein all pairs of elements are joined by an

edge. Thus there is an induced homomorphism

sign : Perm(X) −→ Perm(O(K(X))) .

Since finite graphs have exactly two orientation types, we find a

homomorphism

sign : Sr −→ S2
∼= {−1, 1}

that sends all transpositions (swaps of exactly two numbers) to −1.

[BTW: yes, this is the one used to define determinants.]

Definition 1.1.7.9. Let X be a finite set. The kernel

Alt(X) := ker(sign : Perm(X) −→ S2)

is called the alternating group over X. We put

Ar := Alt({1, 2, . . . , r}) .
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Definition 1.1.7.10. If f : X → Y is a G-map of G-sets, then

x0 ∼f x1 :⇐⇒ f(x0) = f(x1)

defines a G-invariant equivalence relation on X, which we call

f-equivalence.

Observation 1.1.7.11. Let f : X → Y be a G-map, and let ∼ denote

f-equivalence on X. Then, f factors through the natural projection

X →→ X
/
∼ as a product of G-maps

X
f //

ÃÃA
AA

AA
AA

A Y

X
/
∼

f
/
∼

>>}}}}}}}

where the induced map f
/
∼ is 1-1. In particular, if f is onto, then

f
/
∼ is a G-bijection.

Orbit-Stabilizer Theorem 1.1.7.12. Let α be a transitive action of G

on X { or, equivalently, let X be an orbit of a G-action. For any

x ∈ X, the map

G
/
Stab(x) −→ X

[g] 7→ g nα x

is a G-equivariant bijection.

In particular, all points in a given orbit have

stabilizers of equal index, and that index equals the size of the

orbit.

Remark 1.1.7.13. The statement says that we may think of any G-orbit

as some quotient G
/
U.

Proof. We just observe that

αx : G −→ X

g 7→ g nα x
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is a G-map. The stabilizer StabG(x) consists exactly of those

elements αx-equivalent to the identity element. Thus, by (1.1.7.6),

the αx-equivalence classes are the cosets of StabG(x), and the map αx

factors through G
/
StabG(x). Clearly the induced map G

/
StabG(x) → X is

onto and 1-1. q.e.d.

Definition 1.1.7.14. Let f : X → Y be a map. For any equivalence

relation ≈ defined on Y , the pull-back is the equivalence relation

≈f defined on X by

x1 ≈f x1 :=⇒ f(x0) ≈ f(x1) .

Remark 1.1.7.15. Note that the pull-back of the identity-relation on

Y is just the relation of f-equivalence introduced in (1.1.7.10).

Also note that X and Y are G-sets and f is

G-equivariant, then every G-invariant equivalence relation on Y

pulls back to a G-invariant equivalence on X.

Definition 1.1.7.16. let ∼ and ≈ be two equivalence relations on

the set X. Then ≈ is called coarser than ∼ if

x0 ∼ x1 =⇒ x0 ≈ x1 for all x0, x1 ∈ X.

This means that ≈-equivalence classes are unions of ∼-equivalence
classes.

Correspondence Theorem for G-sets 1.1.7.17. Let f : X →→ Y be

surjective. Then pull-back with respect to f induces a 1-1

correspondence

{coarsenings of f-equivalence} ←→ {equivalences on Y } .

Moreover, if X and Y each carry a G-action and f is G-equivariant,

then the above correspondence induces a 1-1 correspondence

{G-inv. coarsenings of f-equivalence} ←→ {G-inv. equivalences on Y } .
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Proof. Pull-back preserves the partial order \is coarser than". In

particular, since every equivalence relation is coarser than the

identity, which pulls back to f-equivalence on X, all pull-backs are

coarser than f-equivalence.

Since f is onto, any two difference equivalence relations

will pull-back to different relations on X. On the other hand any

coarsening ≈ of f-equivalence can be \pushed forward" to Y by

defining:

y0 ≈f y1 :⇐⇒ x0 ≈ x1 for some x0 ∈ f−1(y0) and x1 ∈ f−1(y1) .

A straight forward computation (using that ≈ is coarser than

f-equivalence) show that ≈f is well-defined. Another straight

forward computation shows that pushing forward and pulling back are

mutually inverses operations.

In the presence of a G-action, all operations are

compatible with the action as long as the equivalence relations

involved are G-invariant; this is, again, a straight forward

computation. [In fact more is true: G acts (from the right!) on

the set of all equivalence relations on X and Y , and pull-back and

push-forward are G-maps. See Exercise 1.1.7.20.] q.e.d.

As a corollary, we obtain the useful:

Correspondence Theorem for Subgroups 1.1.7.18. Let U0 ≤ G be a

subgroup. We have a 1-1 correspondence

{U U0 ≤ U ≤ G} ←→ {
G-invariant partitions of G

/
U0

}
.

Proof. Just observe that G-invariant coarsenings of the congruence

≡U0 are exactly the congruences induced by subgroups between U0 and

G. Now apply the Correspondence Theorem for G-sets. q.e.d.

Corollary 1.1.7.19. Let X be a set and consider the tautological

action of Perm(X) on X. For each x ∈ X, the subgroup

Stab(x) ≤ Perm(X) is a maximal subgroup.
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The same statement holds for Alt(X): one-point stabilizers

are maximal subgroups.

Proof. By the Correspondence Theorem for Subgroups, subgroups

containing Stab(x) are in 1-1 correspondence with Perm(X)-invariant

equivalence relations on the set Perm(X)
/
Stab(x). This set carries a

natural Perm(X)-action induced by left-multiplication, and with

respect to this action it is Perm(X)-equivariantly bijective to the

set X endowed with the tautological Perm(X)-action. Thus, it

suffices to show that there are exactly two Perm(X)-invariant

equivalence relations on X, namely the identity relation where no

two different elements are equivalent (corresponding to the subgroup

Stab(x)) and the trivial relation where any two elements are

equivalent (this corresponds to the subgroup Perm(X)).

For contradiction, suppose that ∼ is an invariant

equivalence relation on X such that there are elements x0, x1, x2 ∈ X
with x0 ∼ x1 but x0 6∼ x2. Then the transposition interchanging x1 and

x2 clearly does not stabilize ∼.
To deal with Alt(X), we run the same argument. However, at

the very end, we replace the transposition, which is not orientation

preserving, by a three-cycle on the elements x0, x1, x2. q.e.d.

Exercise 1.1.7.20. Let α be an action of G on X. For any

equivalence relation ∼ on X (not necessarily invariant), and any g,

define the relation ∼g by

x ∼g y :⇐⇒ g n x ∼ g n y.

1. Let E(X) be the set of equivalence relations on X. Show that

E(X)×G −→ E(X)

(∼, g) 7→ ∼g

defines a right-action of G on the set of all equivalence

relations on X.

36



2. Show that the fixed points of this right-action are exactly the

α-invariant equivalence relations. (If Y ×G→ Y is a

right-action, then an element y ∈ Y is a fixed point of the

action, if yg = y for each g ∈ G.)

3. Also consider the natural left-action of G induced on the set

P(X) of partitions of X. Since there is a 1-1 correspondence

of equivalence relations on X and partitions of X, one would

hope that these two actions are related. Figure out the

relationship. Pay particular attention to the fact that one

action is from the right and the other is from the left!

Exercise 1.1.7.21. Let G be the automorphism group (group of

symmetries) of the following graph Γ:

Let H be the group of all symmetries of a solid cube (including

orientation reversing symmetries, e.g., reflections).

1. Show that G and H both have 48 elements.

2. Determine whether G and H are isomorphic.

1.1.8 Generating Sets and Cayley Graphs

Definition 1.1.8.1. Let G be a group and let X ⊆ G be a subset. The

Cayley graph of G with respect to X is the graph ΓX(G) whose

vertices are the elements of G and any two vertices g, h ∈ G (group

elements!) are connected by an edge if and only g = hχ for some

χ ∈ X. (Notice that the element χ goes to the right!)
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Example 1.1.8.2. Here are some Cayley graphs for the infinite cyclic

group Z:

• First just the canonical one-element generating set {1}:

• Now, let us look at the Cayley graph with respect to the set

{2}:

Note that this graph has two connected components, one for each

coset of the subgroup of even integers.

• Low, and behold: this pattern also obtains for the set {3}:

We have three connected components, just comprising the cosets

of the subgroup of multiples of 3.

• Now, Z is generated by 2 and 3. The corresponding Cayley graph

is connected:

Observation 1.1.8.3. Left-multiplication induces an action of group

G on ΓX(G) by graph automorphisms:

there is an edge from h0 to h1

⇐⇒ h0 = h1χ for some χ ∈ X

⇐⇒ gh0 = gh1χ for some χ ∈ X

⇐⇒ there is an edge from gh0 to gh1

Definition 1.1.8.4. Define a relation ∼X on G by

g ∼X h :⇐⇒ g and h are connected by a path in ΓX(G) .
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Note that this is an equivalence relation and the fact that G acts

by automorphisms on the Cayley graph implies that this equivalence

relation is invariant. Thus the connected components of the Cayley

graph ΓX(G) are exactly the left-cosets of some subgroup 〈X〉, called

the subgroup generated by X, which of course is the connected

component of the identity element. The set X is called a

generating set for 〈X〉 and its elements are called generators.

Observation 1.1.8.5. Clearly, G = 〈X〉 if and only if ΓX(G) is

connected.

Discussion 1.1.8.6. Let us look at 〈X〉 a little closer: it contains

exactly those elements g ∈ G that are connected to the identity

element by a path in ΓX(G). That means you can get from 1 to g by

repeatedly multiplying (from the right) by an element of X or an

inverse thereof. Thus, G can be written as a product of generators

and inverses of generators. Such a representation of g is usually

called a word.

This describes the subgroup 〈X〉 from the inside. Now, we give a

description from the outside:

Observation 1.1.8.7. The subgroup 〈X〉 is the smallest subgroup of G

containing X, i.e., every subgroup U ≤ G that contains X also

contains 〈X〉 .

Example 1.1.8.8. Let X = {1, 2, . . . , r}. A neighbor transposition is a

permutation

τi,i+1 : X −→ X

x 7→





i if x = i+ 1

i+ 1 if x = i

x otherwise.

The neighbor transpositions form a generating set for the symmetric

group Perm(X).
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Proof. What I will show is that every arrangement of the numbers

1, 2, . . . , r can be sorted into ascending order by a finite sequence of

neighbor transformations. That shows that the subgroup generated by

neighbor transformations acts transitively on the set of all orders.

But then, it must be the whole symmetric group Perm(Xr) just because

of size.

So, suppose you are given an ordering of {1, 2, . . . , r}. To

sort, look at the position of 1. If it is put at the bottom, fine.

If not, use a neighbor transposition to move 1 closer to the bottom.

Iterate until 1 is the bottom element. Now use the same trick to

put 2 in the second slot. Go on until everything is

ordered. q.e.d.

Exercise 1.1.8.9. Show that the cyclic rotations of three

consecutive elements, i.e., permutations of the type

i 7→ i+ 1 7→ i+ 2 7→ i

form a generating set for Ar. Draw the corresponding Cayley graph

for A4. Be sure to make it look cool.

Corollary 1.1.8.10. The group Ar is the only subgroup of index 2 in

Sr.

Proof. Observe that any subgroup of index 2 is normal. Thus, we

only need to show that the kernel of any homomorphism Sr → C2

contains Ar. Since the cyclic rotations of length 3 generate Ar, we

are reduced to proving that any homomorphism Sr → C2 vanishes on

three cycles. Note that three cycles are the squares of their

inverses. Since homomorphisms take squares to squares and all

sqares in C2 are trivial, the claim follows. q.e.d.

Example 1.1.8.11. Table 1.2 shows the Cayley graph of the symmetric

group S4 := Perm({1, 2, 3, 4}) with respect to the generating set

consisting of the three neighbor transpositions. Note:
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Table 1.2: The Cayley graph for S4 relative to the generating set

of neighbor transpositions

1. The graph has 24 vertices, one for each group element.

2. The edges are left-cosets of the cyclic subgroups 〈τ1,2〉, 〈τ2,3〉,
〈τ3,4〉.

3. The squares are the left-cosets of the subgroup 〈τ1,2, τ3,4〉.
Similarly the hexagons correspond to the left-cosets of 〈τ1,2, τ2,3〉
and 〈τ2,3, τ3,4〉.

Exercise 1.1.8.12. Let GLn(Z) be the set of all n× n matrices with

integer coefficients and determinant ±1. Use the identity matrix as

identity element and matrix multiplication as multiplication.

1. Show that every matrix in GLn(Z) can be transformed into the

identity matrix by applying a finite sequence of \very

elementary" row operations: (i) swapping two rows, (ii)

multiply a row by −1, and (iii) add a row to another row.

[Hint: use the ideas from the previous problem.]
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2. Show that GLn(Z) is a group.

3. Construct a finite generating set for GLn(Z).

[Remark: you will receive partial credit for the case n = 2.]

Definition 1.1.8.13. A group is cyclic if it is generated by one

element.

Exercise 1.1.8.14. Show that every subgroup of a cyclic group is

cyclic and that any two cyclic groups are isomorphic if and only if

they have the same cardinality.

1.1.9 Fixed Points and Fix Groups

Definition 1.1.9.1. A fixed point of an action α of a group G on a

set X is an element x ∈ X that is not moved by any element in G,

i.e., g nα x = x for each g ∈ G. The set of all fixed points is

denoted by Fix(α) or, suppressing the action, by XG.

More generally, for any subgroup U ≤ G, we put:

Fixα(U) = XU := {x ∈ X unα x = x for all u ∈ U} .

For any element g ∈ G, we put:

Fixα(g) := {x ∈ X g nα x = x} .

Burnside's Lemma 1.1.9.2 (Gasch�utz). For any action of a finite

group G on a finite set X,

ord(G) card
(
G

∖
X

)
=

∑
g

card(Fix(g)) .

In other words: the number of orbits equals the average number of

fixed points for group elements.

Proof. This is just counting two different ways: Consider the set

X := {(g, x) ∈ G×X g n x = x}
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Grouping by first coordinates yields:

card(X ) =
∑
g∈G

card(Fix(g)) .

Grouping by second coordinates and then by orbits yields:

card(X ) =
∑
x∈X

ord(Stab(x)) =
∑
x∈X

ord(G)

card(Orb(x))
=

∑

O∈G

∖
X

∑
x∈O

ord(G)

card(O)

=
∑

O∈G

∖
X

ord(G) = card
(
G

∖
X

)
ord(G)

Duh! q.e.d.

Corollary 1.1.9.3. Consider the tautological action of Sr on a set

of r elements. Since the action is transitive, we have

ord(Sr) =
∑
σ∈Sr

card(Fix(σ))

which implies that permutations in Sr have on average exactly one

fixed point.

Exercise 1.1.9.4. For r > 1, compute the standard deviation for the

number of fixed points of permutations in Sr.

Definition 1.1.9.5. Let G act on X. Note that

G× Pow(X) −→ Pow(X)

(g, A) 7→ g n A := {g n x x ∈ A}

defines an action of G on Pow(X). The stabilizer of a subset with

respect to this action is denoted (unsurprisingly) as follows:

StabG(A) := {g ∈ G g n A = A} .

Note, that Stab(A) acts on A. The kernel of this action is the

fix group of A:

FixG(A) := {g ∈ G g n x = x for each x ∈ A} =
⋂
x∈A

StabG(x)

43



1.1.10 Example: Conjugation

Lemma and Definition 1.1.10.1. Let G be a group. Then

ad : G×G −→ G

(g, h) 7→ adg(h) := ghḡ

defines an action of G on itself.

This action is an action by automorphisms, i.e., for each

g ∈ G, the map adg : G→ G is an invertible homomorphism called the

inner automorphism associated to g.

This action is called conjugation. Its orbits are called

conjugacy classes.

Proof. Straight forward computations. q.e.d.

Example 1.1.10.2. The problem of deciding whether two given elements

are conjugate is called the conjugacy problem. Of course, for

finite groups, this problem can be solves by exhaustive search for a

conjugating element. However, sometimes more elegant solutions can

be obtained. Here, we shall solve the conjugacy problem in Perm(X)

for finite X.

Let σ : X → X be a permutation of X. A σ-cycle (of

length u) is a tuple

(x1, x2, . . . , xu)

such that

σ(xi) =




xi+1 for i < u

x1 for i = u

The following are easily checked:

1. If (x1, x2, . . . , xu) is a σ-cycle, then so is (x2, x3, . . . , xu, x1) .

2. Two σ-cycles either share all elements or no elements. In the

former case, we consider the cycles equivalent (or actually

equal); and in the later case, we call them disjoint.
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3. If (x1, x2, . . . , xu) is a σ-cycle, and τ is another permutation of

X, then (τ(x1) , τ(x2) , . . . , τ(xu)) is a τστ̄-cycle.

The cycle-type of σ is the sorted list of all lengths of all

(equivalence classes of) σ-cycles. The last observation implies

that conjugate permutations have the same cycle-type.

On the other hand, suppose two permutations σ0 and σ1 have

the same cycle-type. Then, we can \align their cycles". For

instance

σ0 : (125)(86)(43)(7)

σ1 : (238)(71)(56)(4)

Now, the permutation τ defined by

τ : 1 7→ 2

τ : 2 7→ 3

τ : 5 7→ 8

τ : 8 7→ 7

τ : 6 7→ 1

τ : 4 7→ 5

τ : 3 7→ 6

τ : 7 7→ 4

conjugates σ0 to σ1. This also follows from the last observation

above.

Thus, we conclude:

Two elements of Perm(X) are conjugate if and only if they

have the same cycle-type.

Definition 1.1.10.3. The conjugation action of G on itself extends

naturally to an action of G on the set of all subsets of G. Since

the conjugacy action is an action by automorphisms of G, the induced
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action takes subgroups of G to subgroups. Two subgroups in the same

orbit are called conjugate subgroups.

A subgroup U ≤ G is normal if it is stabilized by the

conjugation action. It is central if conjugation fixes the subgroup

pointwise. The stabilizer of U with respect to the conjugation

action is called the normalizer NG(U). The fix-group of U with

respect to conjugacy is called the centralizer CG(U).

Exercise 1.1.10.4. Show that two subgroups U0 and U1 in G are

conjugate if and only if there is a G-equivariant bijection between

the coset-sets G
/
U0 and G

/
U1.

Exercise 1.1.10.5. Let U be a subgroup of G. Show that the set

{H ≤ G U is a normal subgroup in H}

has a unique maximal element, namely the normalizer NG(U).

Characterization of Normal Subgroups 1.1.10.6. Let N ≤ G be a

subgroup. Then the following are equivalent:

1. N is normal in G.

2. Every left-coset of N is a right-coset of N (and vice versa).

3. The left-multiplication action of G on the coset set G
/
N

restricts to a trivial action of N on G
/
N.

4. The coset set G
/
N carries a (unique) group structure such that

the canonical projection G→ G
/
N is a homomorphism. (Note that

N then is the kernel of this homomorphism!)

5. N is the kernel of some homomorphism defined on G.

Proof.

(1)=⇒ (2) Exercise. (You know this already!)

(2)=⇒ (3) Pick n ∈ N. Then ng ∈ Ng = gN whence ngN = gN.
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(3)=⇒ (4) The requirement that G→→ G
/
N be a homomorphism leaves no

choice but to define the multiplication on G
/
N via

(gN)(hN) := (gh)N. This is well defined since

(gn0hn1)N = g(n0hN) = g(hN) = (gh)N. The group axioms are

inherited from G.

(4)=⇒ (5) Obvious.

(5)=⇒ (1) Straightforward computation. q.e.d.

Definition 1.1.10.7. A subgroup of G is called characteristic if it

is stabilized by all automorphisms of G.

Observation 1.1.10.8. Every characteristic subgroup is normal.

Example and Definition 1.1.10.9. The set of all fixed points of the

conjugacy action of G is called the center of G, its elements are

called central. It is denoted by Z(G) and is a characteristic

subgroup.

Definition 1.1.10.10. Let g, h ∈ G. We say that g and h commute if

gh = hg. If all elements of G commute pairwise, we call G

commutative or Abelian.

Failure to commute is measured by the commutator, defined

as:

[g, h] := ghḡh̄ = adg(h) h̄ = g adh(g) .

Definition 1.1.10.11. Let A,B ⊆ G be subsets. We put:

[A,B] := 〈{[a, b] a ∈ A, b ∈ B}〉

The subgroup [G,G] is called the commutator subgroup.

Remark 1.1.10.12. Note that AB does not need to be a subgroup even

if A and B happen to be subgroups.

Exercise 1.1.10.13. Show that a subgroup N ≤ G is normal if and only

if [N,G] ≤ N.
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Exercise 1.1.10.14. The commutator subgroup is characteristic (hence

normal). The quotient G
/
[G,G] is Abelian. Every normal subgroup

N ≤ G with Abelian quotient G
/
N contains the commutator subgroup.

Exercise 1.1.10.15. Show that for any element g ∈ G, the following

are equivalent:

1. The element g is central, i.e., it is fixed by the conjugacy

action.

2. The element g commutes with all elements in G, i.e., gh = hg for

any h ∈ G.

3. The automorphism adg : G→ G is the identity.

Infer that Z(G) = CG(G).

Observation 1.1.10.16. Let N0 and N1 be two subgroups in G with

trivial intersection, i.e., N0 ∩ N1 = {1} . If N0 and N1 mutually

normalize one another (e.g., if both are normal), then they already

centralize one another. In other words: any two elements g ∈ N0 and

h ∈ N1 commute: gh = hg.

Proof. The commutator [g, h] lies in N0 ∩ N1. q.e.d.

Exercise 1.1.10.17. Let G act on X. Prove that for every subset

A ⊆ X, the fix group FixG(A) is normal in the stabilizer StabG(A).

Exercise 1.1.10.18. Let G be a group and put

Aut(G) := {ϕ : G→ G ϕ is an automorphism} .
1. Show that Aut(G) is a subgroup of Perm(G).

2. Show that the homomorphism

ad : G −→ Perm(G)

g 7→ adg

takes values in Aut(G). Let Inn(G) denote the image of ad.

3. Show that Inn(G) is a normal subgroup of Aut(G).

4. Show that G is Abelian if Inn(G) is cyclic.

48



1.1.11 Extensions and (Short) Exact Sequences

Definition 1.1.11.1. A sequence

· · · ϕi−3−−→ Gi−2
ϕi−2−−→ Gi−1

ϕi−1−−→ Gi
ϕi−→ Gi+1

ϕi+1−−→ Gi+2
ϕi+2−−→ . . .

is called exact at Gi if ker(ϕi) = im(ϕi−1) . A short exact sequence is

a sequence

1 −→ N −→ G −→ Q −→ 1

that is exact at N, G, and Q. Note that exactness at N just

requires N → G to be 1-1 and exactness at Q just means that G→ Q

is onto. In this case, the group G is called

an extension of N by Q.

Isomorphism Theorem 1.1.11.2. Suppose we have a commutative diagram

with short exact rows:

N // // G
π1 // // Q1

N // // G π2

// // Q2

Then there is a unique homomorphism ϕ : Q1 → Q2 such that

N // // G
π1 // // Q1

ϕ

²²
N // // G π2

// // Q2

commutes. Moreover, ϕ is an isomorphism.

Proof. Since π1 and π2 are both onto, ϕ is uniquely determined

already on the level of sets: we have to satisfy

ϕ(π1(g)) = π2(g) ,

which determines ϕ on all of Q1. For the above equation to yield a

well-defined map ϕ, we need independence of representatives, i.e:

π1(g) = π1(h) =⇒ π2(g) = π2(h) for all g, h ∈ G.
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Now, this condition follows from exactness: the epimorphisms π1 and

π2 have the same kernel. In fact, at this point, we only need that

ker(π1) ⊆ ker(π2) . The map ϕ is a homomorphism since

ϕ(π1(g)π1(h)) = ϕ(π1(gh)) = π2(gh) = π2(g)π2(h) = ϕ(π1(g))ϕ(π1(h))

That ϕ is an isomorphism follows actually from uniqueness

by means of a neat trick worth knowing: Consider the diagram

N // // G
π1 // // Q1

ϕ

²²
N // // G π2

// // Q2

ψ
²²

N // // G
π1 // // Q1

Then the top and bottom row are a problem of the same kind, clearly

solved by ψ ◦ ϕ. Since the identity map on Q1 also solves the

problem, uniqueness implies ψ ◦ ϕ = idQ1 . By the same trick:

ϕ ◦ ψ = idQ2 . Thus ϕ and ψ are inverse isomorphisms. q.e.d.

Exercise 1.1.11.3. Suppose the following commutative diagram has

exact rows:

G−2
//

²²

G−1
//

²²

G0
//

²²

G1
//

²²

G2

²²
H−2

// H−1
// H0

// H1
// H2

Assume that the vertical arrows at G−2, G−1, G1, and G2 are

isomorphisms. Show that the arrow G0 → H0 is an isomorphism, too.

What hypotheses would you need to prove just injectivity? { just

surjectivity?

Exercise 1.1.11.4. Suppose that the following commutative diagram of

groups has short exact columns.

N1
//

²²

G1
//

²²

Q1

²²
N2

//

²²

G2
//

²²

Q2

²²
N3

// G3
// Q3
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1. Show: if the two top rows are short exact sequences, then so is

the bottom row.

2. Disprove: if the top and the bottom row are short exact

sequences, then so is the middle row.

3. Show: if the two bottom rows are short exact sequences, then so

is the top row.

The technique of proving these claims is called diagram chase.

As a model argument, we show that if the two bottom rows are exact,

then the right arrow in the top row is onto. When reading the

argument, follow the path of the elements as they are running

through the diagram:

Let q1 be in Q1.

Let q2 be the image of q1 in Q2.

By exactness of the middle row, q2 is the image of some

g2 ∈ G2.

Let g3 be the image of g2 in G3.

By exactness, the image of q2 in Q3 is 1.

By commutativity, the image of g3 in Q3 is 1.

By exactness of the bottom row, q3 is the image of some

n3 ∈ N3.

By exactness of the left column, n3 is the image of some

n2 ∈ N2.

Let h2 be the image of n2 in G2.

By commutativity, g2 and h2 both have image g3 in G3.

Put f2 := h−1
2 g2 ∈ G2. Note that f2 goes to 1 in G3.

By exactness of the middle column, f2 has a preimage f1 in

G1.

Claim: f1 goes to q1 in Q1.

By exactness of the middle row, the image of h2 in Q2 is

1.

Thus, f2 and g2 both go to q2 in Q2.
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By commutativity, f1 goes to a preimage of q2 in Q1.

By exactness of the right column, q2 has only one preimage

in Q1.

That preimage is q1.

Example 1.1.11.5 (yet another isomorphism theorem). Assume N1 is

normal in G and N0 is normal in both, N1 and G. Then, we have the

diagram:

N0
//

²²

N1
//

²²

N1
/
N0

²²
N0

//

²²

G //

²²

G
/
N0

²²

1 // G
/
N1

//

„
G
/

N0

«
/„

N1

/
N0

«

which yields an isomorphism that you know already from your

undergraduate algebra.

Correspondence Theorem 1.1.11.6. Let

1 −→ N −→ G
π−−→ Q −→ 1

be a short exact sequence of groups. Then π induces 1-1

correspondences:

{U N ≤ U ≤ G} ←→ {V V ≤ Q}

and:

{U N ≤ U ≤ G, U is normal in G} ←→ {V V ≤ Q V is normal in Q}

Proof. To see the first correspondence, we first apply the

Correspondence Theorem for subgroups to see that the subgroups of G

containing N actually correspond to G-invariant partitions of the

quotient G
/
N. But this quotient is canonically isomorphic to Q.

Thus, the G-invariant partitions of Q represent the subgroups in G
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above N. Finally, note that the G-action on Q factors through the

left-multiplication action of Q on itself. Thus G-invariant

partitions are exactly the Q-invariant partitions. These, however,

correspond to the subgroups of Q.

Chasing through and unravelling the identifications, you

will find that the correspondence is actually realized by sending a

subgroup V ≤ Q to its preimage π−1(V ).

This correspondence restricts to a bijection on the level

of normal subgroups by the Characterization of Normal Subgroups,

e.g., that a subgroup is normal if and only if the set of cosets

carries a group structure so that the natural projection is a

homomorphism. (elaborate, or do it differently.) q.e.d.

A special case of extensions are direct products

Definition 1.1.11.7. Let G and H be groups. The direct product

G×H is the group with set G×H = {(g, h) g ∈ G and h ∈ H} and

multiplication

(g0, h0) (g1, h1) := (g0g1, h0h1) .

Exercise 1.1.11.8. Show that the above actually defines a group.

Also verify that the identity element is (1G, 1H) .

Exercise 1.1.11.9. Verify the following claims by straight forward

calculations:

1. The projection onto the first coordinate

π1 : G×H −→ G

(g, h) 7→ g

is a homomorphism.

2. Similarly, the projection onto the second coordinate

π2 : G×H −→ G

(g, h) 7→ h

is a homomorphism.
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3. The inclusion of the first direct factor

ι1 : G −→ G×H
g 7→ (g, 1H)

is a homomorphism.

4. The inclusion of the second direct factor

ι2 : H −→ G×H
g 7→ (1G, h)

is a homomorphism.

5. The sequences

G
ι1−→ G×H π2−→ H

and

H
ι2−→ G×H π1−→ G

are both short exact sequences.

Exercise 1.1.11.10. Let U0 and U1 both be subgroups of G. Suppose:

1. U0 and U1 are both normal in G.

2. U0 ∩ U1 = {1} .

3. The map

U0 × U1 −→ G

(h0, h1) 7→ h0h1

is onto.

Show that

U0 × U1 −→ G

(h0, h1) 7→ h0h1

is an isomomorphism of groups.
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1.1.12 Solvable and Nilpotent Groups

Definition 1.1.12.1. Let foo, bar, and blah be properties. A group

is called foo-by-bar if it is an extension of a foo-group by a

bar-group. The class of poly-blah groups is the smallest class that

contains all blah-groups and is closed with respect to extensions.

Lemma 1.1.12.2. A group G is poly-blah if and only if it contains a

chain of subgroups

1 = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gu−1 ≤ Gu = G

such that each Gi is normal in Gi+1 and the quotient Gi+1
/
Gi

is a

blah-group.

Proof. Let Cα be the class of groups that have chains of the given

form with length u ≤ α. We have to show that the class
⋃
α Cα is the

class of poly-blah groups.

So, let N ∈ Cα with subgroup chain

1 = N0 ≤ N1 ≤ N2 ≤ · · · ≤ Nu−1 ≤ Nu = N

and let Q ∈ Cβ with subgroup chain

1 = Q0 ≤ Q1 ≤ Q2 ≤ · · · ≤ Qv−1 ≤ Qv = Q

Now, we consider a short exact sequence

N ↪→ G→→ Q.

Our first claim is that G ∈ Cα+β with subgroup chain

Gi :=




Ni for i ≤ u

preimage of Qi−u for i ≥ u

The claim follows immediately from the correspondence theorem and

the isomorphism theorem: the quotients Qi+1
/
Qi

and Gi+1
/
Gi

are

isomorphic. This proves that all poly-blah groups are in
⋃
α Cα.
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Conversely, we show by induction that
⋃
α Cα consists only

of poly-blah groups. To see that, we note that groups in C1 are

exactly the blah groups. Now, groups in Cα+1 are extensions of

groups in Cα, which are poly-blah by induction hypothesis, by blah

groups. The claim follows. q.e.d.

An important special case is:

Definition 1.1.12.3. A group is solvable if it is poly-Abelian.

A stronger condition is also quite frequently used:

Definition 1.1.12.4. A group G, not necessarily finite, is nilpotent

if it contains a chain of subgroups

1 = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gu = G

satisfying [P, Pi+1] ≤ Pi for all i < u.

Observation 1.1.12.5. Note that in such a chain all Gi are normal in

G. q.e.d.

Proposition 1.1.12.6. The direct product of two nilpotent groups G

and H is nilpotent.

Proof. Let

1 = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gu = G

be a subgroup chain for G and let

1 = H0 ≤ H1 ≤ H2 ≤ · · · ≤ Hv = H

be a subgroup chain for H. Note that we can assume without loss of

generality assume that u = v since we can always extend subgroup

chains by repeating terms.

Then

1 = G0 ×H0 ≤ G1 ×H1 ≤ G2 ×H2 ≤ · · · ≤ Gu ×Hu = G×H

is a subgroup chain proving G×H nilpotent. q.e.d.
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Exercise 1.1.12.7. Show that the class of nilpotent groups is the

smallest class containing all Abelian groups that is closed with

respect to taking central extensions. [Hint: this is to say that

(a) central extensions by nilpotent groups are nilpotent and (b)

every nilpotent group can be obtained starting with an Abelian group

by passing to a central extension finitely many times. Thus you

might want to introduce the notion of being \n step nilpotent" and

use induction.]

Corollary 1.1.12.8. Nilpotent groups are solvable.

Exercise 1.1.12.9. Give a direct proof of the corollary.

1.1.13 Simple Groups

Definition 1.1.13.1. A group is simple if it does not contain any

normal strict non-trivial subgroups. I.e., a group is simple if is

cannot be written as an extension in a non-trivial way.

Exercise 1.1.13.2. Show that all finite groups are poly-simple.

Exercise 1.1.13.3. Show that non-Abelian finite simple groups have

even order.

Exercise 1.1.13.4. Show that Abelian finite simple groups are cyclic

of prime order.

The H�older Program 1.1.13.5. Since all finite groups can be obtained

from finite simple groups by forming a finite number of extensions,

???. H�older formulated the following research project:

1. Classify all finite simple groups.

2. Classify all extensions that can be obtained from two finite

groups.
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A solution to the classification of finite simple groups has been

announced in 1980. People are still busy writing up a proof (the

first \proof" had a gap). Researchers in finite groups can be a

little touchy about this. So let us pretend that the classification

is correct.

The second part of the H�older program inspired a lot of

research, too. Despite considerable progress, it can safely be

considered hopeless.
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1.2 Finite Groups

Let G be a finite group. We already observed that all subgroups of

G have order and index dividing the order of G. Thus, the length

of any G-orbit in an action is also a divisor of ord(G). It is this

small set of observations that fuel the elementary theory of finite

groups: we will just apply these insights to various actions.

(Uhm, well, ok: since finite groups get smaller when you pass to

quotients and subgroups, we might run into an induction

occasionally.)

1.2.1 Warm-up Example

Example 1.2.1.1. Let p be the smallest prime divisor of ord(G). Then

any action of G on a set of size p is trivial if it has a fixed

point because all other orbits must have length 1 or length at least

p.

In particular, any subgroup U ≤ G of index p is normal:

The quotient G
/
U has size p. Restrict the left-multiplication action

of G on G
/
U to U. Note that U fixes the left-coset 1U. Since

non-trivial U-orbits also have length at least p, there cannot be

any. Thus, U acts trivially on G
/
U, i.e., U is normal in G.

1.2.2 Detecting Subgroups

Definition 1.2.2.1. Let p be a prime number. A finite p-group is a

group that has pm elements for some integer m.

Observation 1.2.2.2. Every quotient and every subgroup of a finite

p-group is a finite p-group. q.e.d.

The importance of p-groups stems from the following:

Observation 1.2.2.3. Let G act on the finite set X such that all

non-trivial orbits have length divisible by n, then

card(X) ≡ card(FixG(X)) mod n.
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In particular, if G is a finite p-group, all orbits have

p-power length. Thus:

card(X) ≡ card(FixG(X)) mod p.

Example 1.2.2.4 (counting block partitions). Let X be a finite set

whose size is a multiple of k. Let Pk(X) be the set of all

decompositions of X into pairwise disjoint subsets of size k. We

call such subsets the blocks of a partition and k is the block size.

Let us count the block partitions of block size k in a set

of size kd. We obtain:

card(Pk(X)) =
(kd)!

(d!)(k!)d
.

For instance, for k = 4 and a set X24 of 24 elements, we have

card(P4(X24)) =
24 · 23 · 22 · 21

4 · 3 · 2 · 1 · 6
20 · 19 · 18 · 17

4 · 3 · 2 · 1 · 5
16 · 15 · 14 · 13

4 · 3 · 2 · 1 · 4 · · ·
4 · 3 · 2 · 1

4 · 3 · 2 · 1 · 1
Miraculously, the result ends up being odd since all 2-prime factors

cancel. This works for other prime numbers, as well: For any

finite set X and any prime power pm, dividing the size of X, we

have the congruence:

card(Ppm(X)) ≡ 1 mod p.

Proof. Let A ⊂ X be a subset of X of exactly pm elements. It

clearly suffices to show:

card(Ppm(X)) ≡ card(Ppm(X − A)) mod p.

To argue this congruence, let the cyclic group of order pm act as a

cyclic permutation on the elements in A and fixes all elements of

X − A. This action induces an action on Ppm(X) whose fixed points

are exactly those partitions that feature A as a block. Thus the

number of fixed points of this action is given by card(Ppm(X − A)) .

Now the congruence follows from (1.2.2.3). q.e.d.
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Now recall from (1.1.7.6) that there is a 1-1 correspondence of

subgroups in G and left-invariant partitions of G. This restricts

to a 1-1-correspondence

{subgroups in G of size pm} ←→ {invariant partitions in Ppm(G)}

We shall use this correspondence and Observation 1.2.2.3 to prove

the first substantial result. It says, the world is teeming with

p-groups:

Strong Cauchy Theorem 1.2.2.5. Let G be a finite group and let pm be

a prime power dividing the order of G. Then G has a subgroup of

order pm.

Proof. We consider the action of G on Ppm(G) induced by

left-multiplication. Since card(Ppm(G)) ≡ 1 mod p, there is an orbits

whose length is not divisible by p. If this orbit is a fixed point,

we are done: we found a subgroup of size pm.

So assume that the orbits orbit is non-trivial Then the

stabilizer of any point in such an orbit is a strict subgroup of G

whose order is a multiple of pm. Now we only have to find a

subgroup in there. But this is a problem of smaller size whence the

result follows by induction. q.e.d.

Definition 1.2.2.6. A p-group is a group all elements of which have

p-power order.

Remark 1.2.2.7. Above we have defined the term \finite p-group".

Now, this phrase can be parsed two ways. This, however, is

harmless: finite p-groups are finite p-groups, i.e., a p-group that

happens to be finite has p-power order.

Proof. Let P be a p-group of finite order. If the order had a prime

factor other than p, the group P would contain an element of that

order. q.e.d.
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1.2.3 The Structure of Finite p-Groups

For p-groups, we can vastly improve upon the Strong Cauchy Theorem:

Proposition 1.2.3.1. Let P be a finite p-group. Fix a subgroup

U0 ≤ P and let pm be a p-power dividing the order of P but divisible

by the order of U0. Then there exists a subgroup U of order pm

satisfying U0 ≤ U ≤ P. In fact, the number of such subgroups is ≡ 1

mod p.

Moreover, if U0 is normal in P, then U can be chosen to

be normal, as well.

Proof. The Correspondence Theorem for Subgroups (1.1.7.18) implies

that subgroups in P containing U0 correspond exactly to the

P-invariant partitions of P
/
U0. If we require the order of U to be

pm, then the corresponding partition of P
/
U0 has block size k := pm

ord(U0)
.

Thus, we study the action of P on Pk
(
P
/
U0

)
induced by

left-multiplication. By (1.2.2.4), the set Pk
(
P
/
U0

)
has size ≡ 1

mod p. Thus, (1.2.2.3) implies that the number of fixed points also

is ≡ 1 mod p. This proves the first claim.

Now assume U0 is normal. Normal subgroups are exactly

those stable under the conjugacy action. Thus, we consider the

action of P

X := {U U0 ≤ U ≤ P, ord(U) = pm}
induced by conjugation (conjugation takes subgroups to subgroups of

the same order!). We just proved that card(X) ≡ 1 mod p. By

(1.2.2.3), any action of a p-group on a set of such size has a fixed

point. This is the normal subgroup U for which we were

searching. q.e.d.

Subgroup Structure of Finite p-Groups 1.2.3.2. Let P be a group of

order pm.

1. Every subgroup U occurs in a subgroup chain

1 = U0 ≤ U1 ≤ U2 ≤ · · · ≤ Um−1 ≤ Um = P
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wherein ord(Ui) = pi. In particular, all maximal subgroups of P

have order pm−1.

2. Every normal subgroup N occurs in a subgroup chain

1 = N0 ≤ N1 ≤ N2 ≤ · · · ≤ Nm−1 ≤ Nm = P

wherein ord(Ni) = pi and all Ni are normal in P. Any such chain

satisfies [P,Ni+1] ≤ Ni, for all i < m.

Moreover all maximal subgroups of P are normal, and all normal

subgroups of order p are central.

In particular, P is nilpotent and has non-trivial center.

Proof. To argue the first claim, we begin by constructing the upper

part of the subgroup chain: By Proposition 1.2.3.1, every subgroup

U has an index p-supergroup in P. Iterating this argument yields

the desired sequence. For the part of the subgroup chain below U,

note that the Strong Cauchy Theorem (Proposition 1.2.3.1) implies

that every non-trivial p-group has an index p subgroup. Now iterate

again.

The construction of a normal subgroup chain surrounding N

is similar: for the upper part apply again Proposition 1.2.3.1 to

embed N as an index p subgroup into some normal subgroup in P; then

iterate.

The lower part of the chain is a little mor subtle.

Consider the set of maximal subgroups in N:

X := {U ′ ≤ N U ′ has index p in N} .

By Proposition 1.2.3.1, card(X) ≡ 1 mod p. Since N is normal, P

acts on X by conjugation. Now (1.2.2.3) implies that this action

has a fixed point, i.e., a subgroup of index p in N that is normal

in P.

Maximal subgroups of P are normal by (1.2.1.1). Even more

was shown there: any action of a p-group on a set of size p is
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trivial as soon as it has at least one fixed point. This also

proves that normal subgroups of order p are central. Just look at

the conjugation action of P. It fixes the identity element and

therefore the other p− 1 elements are also fixed. But a group that

is fixed elementwise by under conjugation is central.

Finally, we argue the inclusion [P,Ni+1] ≤ Ni. Consider the

projection P →→ P/Ni. The image of Ni+1 in the quotient is a normal

subgroup of order p. Such a subgroup is central. The inclusion

[P,Ni+1] ≤ Ni is merely restating this fact in terms of

coset-representatives upstairs in P. q.e.d.

Proposition 1.2.3.3. Let P be a finite, Abelian p-group. Let x be

an element of maximum order in P. Then the cyclic subgroup C

generated by x is a direct factor of P.

Proof. Let V be a subgroup of P maximal among those intersecting C

trivially. Let U be the subgroup generated by C and V . Then

U = C × V since everything takes place in an Abelian group. We have

to show that U = P.

We argue by contradiction and assume that the quotient P/U

is non-trivial. Since it is a p-group it contains a element of

order p by Cauchys theorem. Let g be a preimage in P of such an

element. It follows that gp = xkv ∈ C × V. Let pi+1 be the order of g,

and let pj be the order of x. Then 1 = gpi+1 = xpiV pi+1 ∈ C × V whence

xkpi = 1. We infer that pj divides kpi And since the order of x is

maximal, we have j > i. Thus, p divides into k.

Put: h := gx̄k/p, and note that gU = hU ∈ P
/
U . Also,

hp = gpx̄k = v ∈ V and it follows that C intersects 〈h, V 〉 trivially:

Any word in h and elements from V can be sorted, moving all powers

of h to the left. Hence:

〈h, V 〉 =
{
hkv k ∈ Zv ∈ V }

.

On the other hand, any element hkv in C represents 1U in P
/
U. It

follows that k is a multiple of p, in which case hkv ∈ V ∩ C = 1.
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Since h, like g, is non-trivial in P/U, we have a contradiction to

maximality of V . q.e.d.

Induction yields immediately the following:

Corollary 1.2.3.4. Every finite Abelian p-group is a direct product

of cyclic subgroups.

1.2.4 Sylow Subgroups

Definition 1.2.4.1. Let p be a prime dividing the order of the

finite group G. A p-Sylow subgroup of G is a maximal p-subgroup of

G.

Sylow Theorem 1.2.4.2. Let G be a finite group of order pmd where p

does not divide d. Then G contains a p-Sylow subgroup S of order

pm. Moreover:

1. Every p-subgroup of G is contained in some conjugate of S. In

particular all p-Sylow subgroups are conjugate and of size pm.

2. Any p-subgroup P normalizes S if and only if P ≤ S. In

particular, a p-Sylow subgroup normalizes itself but no other

p-Sylow subgroup.

3. The number of p-Sylow subgroups of G divides d and is ≡ 1

mod p.

Proof. Since pm divides the order of G, the existence of a subgroup

S of that size follows from Theorem 1.2.2.5. This subgroup is

clearly a maximal p-subgroup since higher powers of p do not divide

evenly into ord(G). As for the moreover parts, we argue as follows:

1. Let P be any p-subgroup of G. Consider the left-multiplication

action of P on the left-cosets of S. Since p does not divide

the number of left-cosets, (1.2.2.3) implies that the action

must have a fixed point. Thus:

PgS = gS
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for some g ∈ G. It follows that P ≤ gSḡ.

2. The quotient NG(S) /S has order not divisible by p. Thus, P has

trivial image therein.

3. Let X be the set of all p-Sylow subgroups in G. First we

consider the action of G on X induced by conjugation. As

argued above, this action is transitive. Then StabG(S) has

index card(X) in G. However, S ≤ StabG(S) . It follows that

card(X) divides the complementary factor d.

Now restrict the conjugation action of G on X to S. Every

S-orbit of the conjugation action has length dividing

ord(S) = pm. Since, in the preceding item, we argued that S

normalizes exactly one p-Sylow subgroup, namely itself, it

follows that the conjugation action of S on X has a unique

fixed point. All other orbits have length divisible by p. The

congruence follows. q.e.d.

Observation 1.2.4.3. All p-Sylow subgroups are conjugate and every

conjugate of a p-Sylow subgroup is a p-Sylow subgroup. Hence a

p-Sylow subgroup is normal if and only if it is the only p-Sylow

subgroup. q.e.d.

Proposition 1.2.4.4. Let G be a finite group, let S be a p-Sylow

subgroup of G and suppose a subgroup U satisfies NG(S) ≤ U ≤ G. Then

NG(U) = U.

Proof. Let g ∈ G normalize U. We have to show g ∈ U.
Note that S is a p-Sylow subgroup of U Consider the

conjugate gSḡ ≤ U, which clearly is also a p-Sylow subgroup in U.

Therefore, these two groups are already conjugate in U, i.e., there

is an element u ∈ U such that

gSḡ = uSū.

Hence ūg normalizes S. Thus ūg ∈ NG(S) ≤ U whence g ∈ U. q.e.d.

66



Theorem 1.2.4.5. Let G be a finite group. Then, the following are

equivalent:

1. G is nilpotent.

2. U < NG(U) for each strict subgroup U < G.

3. Every maximal subgroup in G is normal.

4. Every Sylow subgroup in G is normal.

5. G is a the direct product of its Sylow subgroups for the

various primes.

Proof.

(1) =⇒ (2) Let G be nilpotent with a subgroup chain

1 = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gr = G

satisfying [G,Gi+1] ≤ Gi for each i. Let j be maximal with

Gj ≤ U.

Note

[U,Gj+1] ≤ [G,Gj+1] ≤ Gj ≤ U

It follows that Gj+1 normalizes U. Thus, Gj+1 ≤ NG(U) and

therefore (by maximality of j), we find U 6= NG(U).

(2) =⇒ (3) Let M ≤ G be maximal. Since M < NG(M) we have

NG(M) = G.

(3) =⇒ (4) Suppose S was a Sylow subgroup not normal in G, i.e.,

NG(S) 6= G. Then there is a maximal subgroup M containing NG(S).

By Proposition 1.2.4.4, we find NG(M) = M contradicting

normality of maximal subgroups.

(4) =⇒ (5) We have to show three items:
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1. For two different primes p and q, any p-Sylow subgroup Sp

intersects trivially with any q-Sylow subgroup: Note that

the intersection Sp ∩ S ′q is a p-group as well as a q-group.

Thus, it must be trivial (not much choice for a possible

order).

2. For two different primes p and q, any p-Sylow subgroup Sp

commutes with any q-Sylow subgroup: By hypothesis, all

Sylow subgroups are normal. From Sp being normal, we infer

[Sp, Sq] ≤ Sp. Similarly, [Sp, Sq] ≤ Sq whence, by the previous

item: [Sp, Sq] ≤ Sp ∩ Sq = 1.

3. G is generated by its Sylow subgroups for the various

primes: Let U be the subgroup generated by all Sylow

subgroups of G. Note that the order of every Sylow

subgroup divides into the order ord(U). Since the orders of

the Sylow subgroups in G form the prime factor

decomposition of ord(G) it follows that the order of G

divides the order of the subgroup U. Thus G = U.

(5) =⇒ (1) Note that the Sylow subgroups of G are finite p-groups.

Thus, they are all nilpotent. Direct products of nilpotent

groups are nilpotent by Proposition 1.1.12.6. q.e.d.

Structure Theorem for Finite Abelian Groups 1.2.4.6. Every finite

Abelian group is the direct product of cyclic subgroups of prime

power order.

Proof. Follows from Theorem 1.2.4.5 and Corollary 1.2.3.4. q.e.d.

Exercise 1.2.4.7. Let S be a Sylow subgroup of G. Show that

NG(S) = NG(NG(S)) .

1.2.5 Applications: Groups of \Small" Orders

Of course, \small" orders really are orders with simple prime factor

decompositions.
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Observation 1.2.5.1. Any group of prime order is cyclic.

Exercise 1.2.5.2. Show that a group of order p2 is Abelian (p is, of

course, prime); and infer that it is either Cp ×Cp or Cp2 . [Hint:

show that the group of inner automorphism is cyclic.]

Observation 1.2.5.3. Let G be a group of order pqm wherein p < q are

prime numbers. Then G is solvable: The number of q-Sylow subgroups

in G divides p and is ≡ 1 mod q. Thus, G has a unique, hence

normal, q-Sylow subgroup Sq and there is a short exact sequence

Sq ↪→ G→→ Cp.

Since Sq is nilpotent (hence solvable) and cyclic groups are Abelian

(hence solvable), G is solvable-by-solvable and hence

solvable. q.e.d.

This is a little more tricky, but in the same spirit:

Exercise 1.2.5.4. Let G be a group of order pmq wherein p < q are

prime numbers. Show that G is solvable.

It is worth noting that the methods of elementary finite

group theory are not sufficient to prove even the most naive

generalization of this type of results:

Fact 1.2.5.5 (Burnside). Show a group of order pmqn is not simple.

So don't be fooled: advanced finite group theory looks much

different from what is presented here.

Exercise 1.2.5.6. Determine the subgroup lattices of S4 and D8.

Proposition 1.2.5.7. Let G be a simple group of order 60. Then

G ∼= A5.

Proof. First, we construct a suitable action.

Claim A. There is a transitive action of G on a set of size 5.
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Proof. Let S2 be the set of all 2-Sylow subgroups in G. Since G is

simple, it cannot have a unique 2-Sylow subgroup as such a group

would be normal. Also, S2 cannot consist of three elements:

Conjugacy induces a transitive action of G on S2 which gives rise to

a non-trivial homomorphism

G→ Perm(S2) .

Since the target group has order six and the homomorphism is

non-trivial, we would find a proper non-trivial kernel. That does

not happen since G is simple.

That leaves two possibilities: G could have five or

fifteen 2-Sylow subgroups. If the size of S2 is five, we are done.

So, assume that G has fifteen 2-Sylow subgroups.

Any two distinct 2-Sylow subgroups intersect trivially: In this

case, we find a total of 45 non-identity elements in all fifteen

2-Sylow subgroups. All these elements have order 2 or 4. Note

that G cannot contain a unique 5-Sylow subgroup as that had to

be normal. Thus, we have six 5-Sylow subgroups. These are

cyclic of prime order whence they pairwise intersect trivially.

Thus, we find another batch of elements, namely 24 non-identity

elements of order 5. This exceeds the quota of 59 non-identity

elements in G { and we did not even consider elements of order

3.

There is a non-trivial g common in two distinct 2-Sylow subgroups:

Let S1 and S2 be two distinct 2-Sylow subgroups whose

intersection contains a non-trivial element g. Then CG(g) is a

subgroup of G. Since groups of order 4 are Abelian, we find

S1 ≤ CG(g) . Since CG(g) also contains S2, these inclusion is

strict and we infer that the order of CG(g) is a strict multiple

of 4. That leaves three possibilities: 12, 20, and 60.

Note that CG(g) cannot be all of G since in that case, g had to

be central. Then G has a non-trivial center. This cannot
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happen in simple groups, unless they are cyclic.

Also note that G cannot contain a subgroup U of index 3: The

left-multiplication would induce a transitive action on the

three cosets in G
/
U. As above, we obtain a non-trivial

homomorphism to a symmetric group of order 6. This rules out

order 20.

Thus, CG(g) has order 12, i.e., index 5. Then, the

left-multiplication action on the five cosets is the transitive

action we have been looking for.

We have finished the proof of the main analysis and can now finish

the proof. From a transitive action of G on a set of five elements,

we obtain a non-trivial homomorphism

G ↪→ S5

which is injective since G cannot host a non-trivial kernel. Since

G has order 60, we can regard G as a subgroup of index 2 in S5. Now

the claim follows from Corollary 1.1.8.10. q.e.d.

Proposition 1.2.5.8. A5 is simple.

Proof (Zassenhaus). We know the conjugacy classes in S5. They are

given by cycle types. Since A5 is normal in S5, a conjugacy class

of S5 is either contained in or disjoint from A5. The S5-conjugacy

classes inside of A5 are:

{1} size: 1

{(··)(··)(·)} size: 15

{(· · ·)(·)(·)} size: 20

{(· · · · ·)} size: 24

The first goal of our analysis is to determine the conjugacy classes

in A5. So let C ⊆ A5 be an A5-conjugacy class. Fix an odd

permutation σ ∈ S5. Since S5 = A5 ∪ σA5, the set C ∪ σCσ̄ is an
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S5-conjugacy class. Also, C is either equal to or disjoint from

σCσ̄. It follows that conjugacy classes in A5 either are

S5-conjugacy classes or have a disjoint parter with whom they form

an S5-conjugacy class. It follows that the conjugacy classes of A5

have sizes

1, 15, twice 10 or once 20, twice 12 or once 24.

A subgroup in A5 has order dividing 60. A normal subgroup is a

disjoint union of conjugacy classes. Thus, we can rule out the

existence of normal subgroups by looking at which divisors of 60 can

be written as a sum of terms involving only the numbers listed

above. As you can check. there simply is no way to do this (keep

in mind that you have to include 1as every subgroup contains the

identity.) q.e.d.

Theorem 1.2.5.9. For r 6= 4, the alternating group Ar is simple.

Proof. We use induction on r. The case r = 3 is easy, and the case

r = 5 was dealt with above. So assume r ≥ 6 and that Ar−1 is simple.

We consider the tautological action of Ar on {1, 2, . . . , r}.
Each stabilizer Stab(i) is isomorphic to Ar−1 and hence simple by

induction. Let N ≤ Ar be a normal subgroup.

N ∩ Stab(1) 6= {1}: Note that N ∩ Stab(1) is normal in Stab(1). Since

Stab(1) is simple, we infer Stab(1) ≤ N.

Note that the action of Ar on {1, 2, . . . , r} is transitive. Hence

all stabilizers Stab(i) are conjugate. Since N is normal, we

deduce for each i that Stab(i) ≤ N.

Since Ar is generated by the union of the Stab(i), it follows

that N = Ar.

N ∩ Stab(1) = {1}: As above, we observe that all Stab(i) are conjugate

to Stab(1). This time we infer that N ∩ Stab(i) = {1} for all i.

Thus, any element of N that fixes but one number is already

trivial.
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Suppose n ∈ N is non-trivial.

n is a product of disjoint transpositions: W.l.o.g., we assume

that n = (12)(34) · · · and we put n′ = (356)n(365) = (12)(54) · · · ∈ N.
Then the element n̄′n = (1)(2) · · · ∈ N fixes a point but is

non-trivial. This is a contradiction.

n has a cycle decomposition with at least one cycle of length ≥ 3:

W.l.o.g., we assume that n = (123 . . .) · · · and we put

n′ = (356)n(365) = (125 . . .) · · · ∈ N. Then the element

n̄′n = (1) · · · ∈ N fixes a point but is non-trivial. This is a

contradiction. q.e.d.
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1.3 Infinite Groups

1.3.1 Free Groups

Definition 1.3.1.1. Let X be a set. A

free group with free generating set X is a group F together with a

map ι : X → F satisfying the following universal property:

For every group G and every map f : X → G there exists a

unique group homomorphis ϕf : F→ G that makes the following

diagram commute:

X
f //

ι

²²

G

F

ϕf

>>~~~~~~~~

In this section, we shall prove the following:

Theorem 1.3.1.2. For every set X there is free group FX with free

generating set X and this free group is unique up to unique

isomorphism.

As usual, we start with uniqueness:

Lemma 1.3.1.3. Suppose ι0 : X → F0 and ι1 : X → F1 are two free groups

with free generating set X. Then there is a unique isomorphism

ϕ : F0 → F1

that makes the following diagram commute:

F0
ϕ // F1

X

ι0

``AAAAAAA ι1

>>}}}}}}}

Proof. Note that the uniquenes part of the universal property

implies that any homomorphism Fi → Fi that makes

Fi // Fi

X

ιi

``@@@@@@@ ιi

>>~~~~~~~
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commutative has to be the identity on Fi.

The universal property implies that there is a unique

homomorphism

ϕ : F0 → F1

with the desired property. On the other hand, we also have that

there is a unique homomorphism in the other direction:

ψ : F1 → F0

Finally, we observe that ϕ ◦ ψ is the identity on F1 and ψ ◦ ϕ is the

identity on F0 by our introductory observation. q.e.d.

As usual, the main problem is existence of the free object. There

are several ways to construct free groups, and I shall present two:

a one based upon pictures and one based upon words.

Definition 1.3.1.4. Let X−1 be a set of formal inverses of the

elements of X disjoint from X. A word over X is an element of the

free monoid over X ∪X−1. A word is called reduced if it does not

contain a subword of the form xx−1 or x−1x. Two words are called

neighbors if you can obtain one from the other by inserting or

deleting a subword of either of those two forms. Equivalence of

words is defined as the transitive closure of neighborhood.

Observation 1.3.1.5. Equivalence of words is compatible with

concatenation, i.e., if the words w0 and w1 are equivalent and if v0

and v1 are equivalent, too; then w0v1 is equivalent to w1v1.

Consequently, concatenation of equivalence classes is well-defined.

Proposition 1.3.1.6. The set F of equivalence classes of words with

the binary operation induced by concatenation is a free group over X

where the map ι : X → F sends every generator to the parallelism

class of its corresponding one-letter word.

Proof. We clearly have a monoid before us. Inverses are obtained by

formally inverting a word: reverse the order and flip the

exponents. Any product ww−1 visibly reduces to the empty word.
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It remains to argue the universal property. Let G be a

group and suppose we have a map f : X → G. Uniqueness of the

extending homomorphism is clear { we have to proceed as follows:

First, extrend this map to X ∪X−1 by sending x−1 to f(x)−1. Thus,

we obtain a monoid homomorphism
(
X ∪X−1

)∗ −→ G

and we want to see that this induces a (group) homomorphism from F

to G. Note that F is an epimorphic image of (X ∪X−1)
∗ and that all

we need to argue is that different lifts of elements in F to the

free monoid have equal images in G. Thus, all we need to observe is

that equivalent words map to identical group elements in G. This is

obvious since it visibly holds for neighboring words. q.e.d.

Definition 1.3.1.7. A diagram over the set X is a finite directed

tree D (i.e., a finite graph without cycles each of whose edges is

given orientation) drawn in the plane whose edges are labeled by

elements from the set X.

Let p be a path in D. Note that the given orientations

and edge labels allow us to read a word as we travel along p as

follows: we construct the word from left to right; whenever we

travel along an edge with label x ∈ X, we write x if we travel along

the orientation of the edge, and when we travel against the edge, we

write x−1.

A path in a diagram is called a left-boundard path if at

any given vertex you take the left-most possible turn. It is a

right-boundary path if you always take the right-most possible turn.

For any two distinct vertices in D there is a unique

left-boundary and a unique right-boundary path between them. We

call the two corresponding boundary words complementary. In

general, we call two words parallel if they can be realized as

complementary boundary words in some diagram.

Proposition 1.3.1.8. Parallelsm is an equivalence relation on the

set of words that is compatible with concatenation, i.e., if the
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words w0 and w1 are parallel and if v0 and v1 are parallel, too; then

w0v1 is parallel to w1v1. Consequently, concatenation of equivalence

classes is well-defined.

Proof. Clearly parallelism is symmetric. It is reflexive as shown

by a straight line path reading a given word. Given two diagrams D0

and D1 with a left-boundary path p0 in D0 and a right-boundary path

p1 in D1 that read the same boundary word, we can glue the diagrams

together by identifying p0 with p1. The result is a diagram that we

denote by: D0 ∪p0=p1 D1 This construction proves transitivity.

Compatibility with concatenation is obvious from glueing

diagrams along terminal vertices. q.e.d.

PICTURES

Proposition 1.3.1.9. The set F of parallelism classes of words with

the binary operation induced by concatenation is a free group over X

where the map ι : X → F sends every generator to the parallelism

class of its corresponding one-letter word.

Proof. Clearly, the set F is a monoid.

Note that a straight line reading a word w has a boundary

path reading ww−1 that goes all the way around. Thus, ww−1 is

parallel to the empty word. Therefore, F has inverses and is a

group.

We need to verify the universal property. So let

f : X → G be a map. AS in the previous case (using equivalence of

words instead of parallelism), the residual problem that remains to

be solved is to show that parallel words evaluate to identical

elements in G. This amounts to say that the complete boundary word

around a tree evaluates trivially. This can be seen easily using

induction on the edges of the tree: adding an edge just extends the

boundary word by a cancelling pair. q.e.d.

Exercise 1.3.1.10. Show that parellism of words and equivalence of

words are the same relations.
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Exercise 1.3.1.11. Show that every equivalence class of words

contains a unique reduced word.

Remark 1.3.1.12. It follows that one may think of elements in FX as

reduced words over X ∪X−1 where multiplication is defined as

concatenation followed up by reduction.

Observation 1.3.1.13. One letter words with different letters are

not equivalent. Consequently, the canonical inclusion ι : X → FX is

injective. Thus, we identify X with its image in FX. Note that FX

is generated by X.

Exercise 1.3.1.14. Show that the Cayley graph of FX with respect to

the generating set X is a regular tree of degree 2 card(X), i.e.,

each vertex has degree 2 card(X).

1.3.2 Presentations of Groups

Definition 1.3.2.1 (Presentation). Let X be a set and let R be a

set of elements in F := FX. Let N E F be the intersection of all

normal subgroups in F that contain R, Observe that N is normal in

F, i.e., N is the smallest normal subgroup of F containing R. The

pair 〈X R〉 is called a presentation for the quotient F
/
N; and the

group F
/
N is said to be defined by the presentation 〈X R〉 .
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Chapter 2

Rings

2.1 Basic Notions

2.1.1 Rings and Modules

Definition 2.1.1.1. A ring is a set R together with two distinct

distinguished elements 0 ∈ R (called zero) and 1 ∈ R− {0} (called one

or identity element) and with two binary operations

· : R×R −→ R

(a, b) 7→ ab

(called multiplication) and

+ : R×R −→ R

(a, b) 7→ a+ b

(called addition) such that (R,+, 0) is an Abelian group and such

that the following additional axioms hold:

1. 1a = a1 = a for each a ∈ R.

2. (ab)c = a(bc) for all a, b, c ∈ R.

3. (a+ b)c = ac+ bc for all a, b, c ∈ R.

4. a(b+ c) = ab+ ac for all a, b, c ∈ R.
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(The first two axioms say that (R, ·, 1) is a monoid.)

R is commutative if, in addition, ab = ba for all a, b ∈ R.
A ring is said to have no zero divisors if R− {0} is

multiplicatively closed. If, in addition, (R− {0} , ·, 1) is a group,

R is called a division ring or skew field. A commutative ring

without zero divisors is called a domain and a commutative division

ring is called a field.

Remark 2.1.1.2. A ring without multiplicative identity (i.e., an

algebraic structure satisfying the ring axioms except possibly those

that require the existence of 1) is a rng. We will not have much

use for rngs. Examples include real-valued functions with compact

support on R.

Remark 2.1.1.3. In a ring (as opposed to a rng), commutativity of

addition is forced by distributivity and the existence of a

multiplicative identity:

a+b+a+b = 1(a+ b)+1(a+ b) = (1 + 1)(a+ b) = (1 + 1)a+(1 + 1)b = a+a+b+b

whence

a+ b = b+ a

Remark 2.1.1.4. The additive inverses of a in (R,+) is denoted by

−a. Its multiplicative inverse, should it have one, is denoted by

a−1.

Observation 2.1.1.5. 1. We have ab = a(b+ 0) = ab+ a0 whence a0 = 0

for any a ∈ R. Similarly, 0a = 0 for each a ∈ R.

2. Also, ab+ ((−a)b) = (a+ (−a))b = 0b = 0 and consequently:

−(ab) = (−a)b = a(−b).

3. Above, we defined a ring as a set with two distinguished

elements. We already know from group theory, that the additive
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structure uniquely determines the additive identity element 0.

Also, the multiplicative structure determines the multiplicative

identity element since

1 = 11′ = 1′

if 1 and 1′ are two multiplicative identities.

4. R∗ := {a ∈ R ab = 1 = ba for some b ∈ R} is a group with respect

to multiplication and called the group of units of R. This

also settles the question as to what the elements of R∗ are

called.

Definition 2.1.1.6. An element a ∈ R is a left-divisor of b ∈ R if

there is a non-zero element c ∈ R− {0} with b = ac. The notion of a

right-divisor is defined symmetrically.

A non-zero element a ∈ R− {0} is called a left zero divisor

if there is an element c ∈ R− {0} with ac = 0. Note that a ring has

left zero divisors if and only if it has right zero divisors.

As a rule of thumb, units are good and zero divisors are bad.

Example 2.1.1.7. Z is a domain. Its group of units is {1,−1}.

Example 2.1.1.8. For any field K, the polynomial ring K[x] is a

domain. Its group of units consits precisely of the non-zero

constant polynomials.

Example 2.1.1.9. Let K be a field and let n ≥ 2. Then

Mn(K) := {n× n-matrices over K}

is a non-commutative ring with zero divisors:
(

1 0

0 0

)(
0 0

0 1

)
=

(
0 0

0 0

)
.

Its group of units is GLn(K).
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Example 2.1.1.10. Q, R, C are fields. So is the field of rational

functions K(x) over a field K.

Example 2.1.1.11. Z
[

1
m

]
:=

{
n
mk n, k ∈ Z}

is the smallest subring of Q

that contains 1
m
. It is a domain.

Remark 2.1.1.12. Any subring of a field is clearly a domain. The

converse is true, as well. We shall prove that in (??).

Example 2.1.1.13. Q[i] := {a+ ib a, b ∈ Q} is a subfield of C.

Example 2.1.1.14. Q
[√

2
]

:=
{
a+
√

2b a, b ∈ Q}
is a subfield of R.

Example 2.1.1.15. Let R be a ring and let M be a monoid. The set

R[M] := {f :M→ R f(µ) = 0 for all but finitely many µ ∈M}

is a ring with respect to pointwise addition

(f + g)(µ) := f(µ) + g(µ)

and the convolution product

(f · g)(µ) :=
∑
µ=ν1ν2

f(ν1) g(ν2)

where the sum is really finite since all but finitely many terms

vanish. Verification of the ring axioms is a straight forward

check.

Note that the monoid M embeds into the multiplicative

monoid of R[M] via sending every element to its characteristic

function:

M −→ R[M]

µ 7→ µ̂ := χµ : ν 7→




1 if µ = ν

0 if µ 6= ν

If G is a group, the ring R[G] is usually called the

group ring of G.
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Example 2.1.1.16. Let M be a monoid and suppose that the following

condition holds:

(?) Every µ ∈M can be written as a product µ = ν1ν2 in at

most finitely many ways.

Let R be a ring. Then, the set

R[[M]] := {f :M→ R}

is a ring with respect to pointwise addition and the convolution

product as in example 2.1.1.15. In this example, condition (?)

ensures that the sum is finite. Again, verification of the ring

axioms is a straight forward check.

Note that R[M] is a subring of R[[M]] .

Also note that both (N0,+) and (N1, ·) both satisfy (?).

Remark 2.1.1.17. For the free monoid in one variable, we recover the

polynomial ring and the ring of formal power series.

Definition 2.1.1.18. Let R be a ring. A left-R-module is an Abelian

group M together with a multiplication R×M →M such that the

following hold:

• 1m = m for all m ∈M.

• (a+ b)m = am+ bm for all a, b ∈ R and all m ∈M.

• a(m+ n) = am+ an for all a ∈ R and all m,n ∈M.

• (ab)m = a(bm) for all a, b ∈ R and all m ∈M.

A right-R-module is defined analogously.

An Abelian group together with a left-R-module and a

right-S-module structure is an R-S-bimodule if (am)b = a(mb) for all

a ∈ R, m ∈M, and b ∈ S.
A submodules of a (left-, right-, bi-) module is an

additive subgroup that is closed with respect to multiplication by

ring elements (so that it inherits a module structure).
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Remark 2.1.1.19. Modules are for rings, what actions are for groups.

Simple modules are somewhat like orbits.

Example 2.1.1.20. Let A be an Abelian group (written additively).

The set of endomorphisms End(A) := {ϕ : A→ A ϕ is a group hom.} is a

ring where

1. The sum of two homomorphisms ϕ and ψ is given by pointwise

addition:

(ϕ+ ψ)(g) := ϕ(g) + ψ(g)

2. Multiplication is composition of homomorphisms.

3. The zero-element is the trivial homomorphism sending every

element to 0 ∈ A.

4. The one-element is the identity homomorphism sending every

element to itself.

The group of units in End(A) is the automorphism group Aut(A).

Moreover, the group A is a left End(A)-module via

End(A)× A −→ A

(ϕ, g) 7→ ϕ(g)

Exercise 2.1.2.4 shows that End(A) can be considered an analogue of

the symmetric group and the module structure on A corresponds to the

tautological action.

Exercise 2.1.1.21. Any ring R is an R-R-bimodule.

Definition 2.1.1.22. Let M be an R-module and fix a subset X ⊆ R.

We say that M is generated by X if M does not contain a proper

submodule that contains X.

Note that for each subset X ⊆M, there is a unique

submodule S ≤M that is generated by X, namely the intersection of

all submodules that contain X. We write 〈X〉 for the submodule

generated by X.
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Exercise 2.1.1.23. Let M be a left-R-module. Show that, for any

subset X ⊆M,

〈X〉 =

{∑
χ∈X

aχχ aχ ∈ R and all but finitely many aχ vanish

}

Exercise 2.1.1.24. Let M be a monoid, let R be a ring and let M be

a left-R-module. Define

M [M] := {g :M→M g(µ) = 0 for all but finitely many µ ∈M}

Show that

R[M]×M [M] −→ M [M]

(f, g) 7→
(
fg : µ 7→

∑
µ=ν1ν2

f(ν1) f(ν2)

)

defines a left-R[M]-structure on M [M].

Similarly, suppose that M allows for the definition of

R[[M]]. Then

M [[M]] := {g :M→M}
is a left-R[[M]]-module via

R[[M]]×M [[M]] −→ M [[M]]

(f, g) 7→
(
fg : µ 7→

∑
µ=ν1ν2

f(ν1) g(ν2)

)

2.1.2 Homomorphisms and Ideals

Definition 2.1.2.1. Let R and S be rings. A homomorphism from R to

S is a map

ϕ : R −→ S

that is compatible with with addition and multiplication, i.e.,

ϕ(a+ b) = ϕ(a) + ϕ(b)

and

ϕ(ab) = ϕ(a)ϕ(b)
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for all a, b ∈ R. Note that ϕ(0R) = 0S. If, in addition, ϕ(1R) = 1S we

say that ϕ is a unital homomorphism.

Example 2.1.2.2. Embedding n× n matrices as North-West corners into

(n+ 1)× (n+ 1) matrices (with zeros in all other places) defines a

non-unital ring homomorphism.

Exercise 2.1.2.3. Show that every surjective ring homomorphism is

unital.

Exercise 2.1.2.4. Show that a left-R-module structure on an Abelian

group A is given by a ring unital homomorphism R→ End(A) and that

conversely, any such unital ring homomorphism defines a

left-R-module structure on A.

Definition 2.1.2.5. Let R be ring. The ring Rop is has the same

underlying additive group, but the law for multiplication is

reversed: a×op b := ba. An anti-homomorphism from R to S is a map

that is a ring homomorphism from R to Sop.

Exercise 2.1.2.6. Show that right-R-module structures on A are in

1-1 correspondence to unital ring anti-homomorphisms R→ End(A) .

Definition 2.1.2.7. An additive subgroup I ⊆ R is a left-ideal if

ai ∈ I for any a ∈ R and any i ∈ I. An additive subgroup I is a

right-ideal if ia ∈ I for any a ∈ R and any i ∈ I. A subset that is

simultaneously a left-ideal and a right-ideal is called a

two-sided ideal.

Remark 2.1.2.8. When talking about modules and ideals, I will often

forget the prefix. For modules, that means left-modules. For

ideals, the statement is actually an abbreviation for all three

interpretations, and all of them are supposed to hold (provided you

interpret all occurrences of \ideal" consistently).
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Observation 2.1.2.9. A subset of R is a left-ideal if and only if it

is a left-R-submodule of R.

A subset of R is a right-ideal if and only if it is a

right-R-submodule of R

A subset of R is a two-sided ideal if and only if it is a

R-R-sub-bimodule of R.

Example 2.1.2.10. In any ring, the subsets {0} and R are a two-sided

ideals.

Example 2.1.2.11. Let ϕ : R→ S be a homomorphism, and let J ⊆ S be

an ideal in S, then ϕ−1(J) is an ideal in R. In particular, the

kernel

ker(ϕ) := {a ∈ R ϕ(a) = 0S}

of ϕ is a two-sided ideal in R.

Observation and Definition. Since any ideal (left, right, or

two-sided) I is an additive subgroup and since R is an Abelian group

with respect to addition, the subgroup I is normal and we can form

the quotient group R
/
I := {a+ I a ∈ R} . The following are easily

checked by straight forward computations:

1. If I is a left-ideal in R, then the Abelian group R/I is a

left-R-module via

R×R/I −→ R/I

(a, b+ I) 7→ ab+ I

2. If I is a right-ideal in R, then the Abelian group R/I is a

right-R-module via

R/I ×R −→ R/I

(a+ I, b) 7→ ab+ I
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3. If I is a two-sided ideal in R, then the Abelian group R/I is a

ring with multiplication

(a+ I)(b+ I) := (ab+ I)

zero 0 + I and one 1 + I. This ring is called the quotient ring.

The natural projection

πI : R −→ R
/
I

a 7→ a+ I

is a unital homomorphism (and clearly onto). Its kernel is I.

Theorem 2.1.2.12 (First Isomorphism Theorem). Let ϕ : R→ S be a ring

homomorphism with kernel I := ker(ϕ). Then, ϕ factors as

R
ϕ //

πI ÂÂ?
??

??
??

S

R
/
I

ϕ∗

??ÄÄÄÄÄÄÄ

where ϕ∗ is 1-1 and uniquely determined by ϕ. Also, ϕ∗ is onto if

and only if ϕ is onto; and ϕ∗ is unital if and only if ϕ is unital.

Proof. Exercise. q.e.d.

Definition 2.1.2.13. An ideal that is generated (as a submodule) by

a single element, is called a principal ideal.

Definition 2.1.2.14. Let R be commutative. An proper ideal I is

called a prime ideal if ab ∈ I implies that a ∈ I or b ∈ I; i.e.,

whenever the ideal contains a product, it contains at least one of

the factors.

The set of prime ideals in R is called the spectrum of R

and denoted by Spec(R).

Definition 2.1.2.15. A proper ideal M in the ring R is maximal if

there are no proper ideals in R of which M is a proper subset.
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Observation 2.1.2.16. The union along an ascending chain of proper

ideals is a proper ideal. Thus, using Zorn's lemma, we see that

every proper ideal is contained in a maximal ideal. q.e.d.

We describe a source of prime ideals:

Proposition 2.1.2.17. Let R be a commutative ring and let L ⊆ R− {0}
be non-empty and multiplicative (i.e., for any a, b ∈ L, we have

ab ∈ L). Then any maximal element of

{I E R I ∩ L = ∅}

is a prime ideal. (Note again that Zorn's lemma implies that any

element of this set is contained in a maximal element of this set.)

Proof. Let M ∈ I := {I E R I ∩ L = ∅} be maximal. Assume ab ∈M. If

a 6∈M, then the ideal generated by M and a is not in I, i.e., it

intersects L. In other words: there are elements ca ∈ R, m ∈M
such that caa+m ∈ L. Similarly, if b 6∈M, then there are elements

cb ∈ R, n ∈M such that cbb+ n ∈ L. As L is multiplicative, we find

L 3 (caa+m)(cbb+ n) = caacbb+ caan+mcbb+mn ∈M

This is a contradiction. q.e.d.

Definition 2.1.2.18. Let I and J be two (left) ideals. Then, the

additive subgroup generated by all products ij (where i ∈ I and j ∈ J)
is a (left) ideal, called the product ideal IJ.

Theorem 2.1.2.19 (Correspondence and Second Isomorphism Theorem).

Let I be a two-sided ideal in R. Then, there is a 1-1

correspondence

{
ideals in R

/
I

} −→ {ideals in R containing I}
J̃ 7→ π−1

I

(
J̃
)

In other words, any ideal in R
/
I is of the form J

/
I for some ideal J

containing I.
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Moreover, for any ideal J containing I, we have an

isomorphism
R
/
J
∼=

R
/
I
/
J
/
I
.

The correspondence preserves prime ideals and maximal ideals in both

directions. Principal ideals in R above I are send to principal

ideals in R/I, and the same is true for finitely generated ideals.

Proof. Exercise. q.e.d.

Corollary 2.1.2.20. Let R be commutative and let I E R be an ideal.

Then I is maximal if and only if R/I is a field. The ideal I is

prime if and only if R/I is a domain. In particular, every maximal

ideal is prime. (We knew that already.)

Proof. Exercise. q.e.d.

Theorem 2.1.2.21 (Yet Another Isomorphism Theorem). Let R be a ring

and S ≤ R be a subring. Let I E R be a two-sided ideal in R. Then

1. S ∩ I is a two-sided ideal in S.

2. S + I is a subring in R.

3. S
/
S∩I = S+I

/
I .

Proof. Exercise. q.e.d.

2.1.3 Module Homomorphisms

Definition 2.1.3.1. Let R be a ring and let M and N be two

left-R-modules. A module homomorphism is a homomorphism of Abelian

groups

ϕ : M −→ N

that is compatible with multiplication:

ϕ(am) = aϕ(m) for all a ∈ R and m ∈M.
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Homomorphisms of right-R-modules are defined analogously.

Let R and S be rings and let M and N be two

R-S-bimodules. A bimodule homomorphism is a homomorphism of Abelian

groups

ϕ : M −→ N

that is compatible with multiplication:

ϕ(amb) = aϕ(m) b for all a ∈ R and m ∈M and b ∈ S.

The kernel

ker(ϕ) := {m ∈M ϕ(m) = 0}

is a (left-, right-, bi-) submodule of M, and the image

im(ϕ) := {ϕ(m) m ∈M}

is a (left-, right-, bi-) submodule of N.

Correspondence Theorem 2.1.3.2. Let S be a submodule of the (left-,

right-, bi-) module M. Then M/S is a (left-, right-, bi-) module

over the same ring(s), and

π : M −→M/S

is a module epimorphism.

Moreover, π induces a 1-1-corresponcence

{S ′ S ≤ S ′ ≤M} ←→
{
S̃ S̃ ≤M/S

}
.

Isomorphism Theorems 2.1.3.3. All modules are consistently left-,

right-, or bi-modules over fixed rings.

1. Suppose we have a commutative diagram with short exact rows:

S // // M
π1 // // Q1

S // // M π2

// // Q2
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Then there is a unique homomorphism ϕ : Q1 → Q2 such that

S // // M
π1 // // Q1

ϕ

²²
S // // M π2

// // Q2

commutes. Moreover, ϕ is an isomorphism.

2. Let S ≤M ≤ N be a chain of module inclusions. Then

N/S
/
M/S

∼= N/M

3. Let S0 and S1 be submodules of M. Then

S0 + S1 := {m0 +m1 m0 ∈ S0 and m1 ∈ S1}

is a submodule of M, and

S0 + S1

/
S0
∼= S1

/
S0 ∩ S1

All isomorphisms are naturally induced by looking at

representatives.

Proofs are straight forward.

Exercise 2.1.3.4. Let M be a left-R-module. Show that for any

element m ∈M, the annihilator

Ann(m) := {a ∈ R am = 0}

is a left-ideal in R.

Show that the intersection

Ann(M) := {a ∈ R am = 0 for all m ∈M} =
⋂
m∈M

Ann(m)

is a two-sided ideal in R.

Let S ≤M be a submodule. Show that M/S is an

R/Ann(S)-module.
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2.2 Non-Commutative Rings

2.2.1 Noetherian Rings and Modules

Proposition and Definition 2.2.1.1. Let R be a ring. A

left-R-module M is noetherian if it satisfies the following

equivalent conditions:

1. Every non-empty collection C of submodules in M contains

maximal elements.

2. Every submodule S of M is finitely generated.

3. M does not admit an infinite strictly ascending chain

S0 < S1 < S2 < · · ·

of submodules.

Proof. (1) =⇒ (2) Put

C := {T ≤ S T is finitely generated}

and let Tmax be a maximal element of C, i.e, a maximal finitely

generated submodule of S. For any element m ∈ S, the module

generated by Tmax and m is finitely generated, is contained in S and

does contain Tmax. By maximality of Tmax, we have m ∈ T and

Tmax = S.

(2) =⇒ (3) Suppose there was an infinite strictly

increasing chain

S0 < S1 < S2 < · · ·
and assume the union

S :=
⋃
i

Si = 〈m1, . . . ,mu〉

is finitely generated. Then we obtain a contradiction since there

is an index j such that Sj = S because at some finite stage all

generators made it into the union.
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(3) =⇒ (1) Suppose C does not contain a maximal element.

Since C is non-empty, we can choose S0 ∈ C and since S0 is not

maximal, the sub-collection C1 := {S ∈ C S0 < S} is non-empty and has

no maximal elements. Inductively, we could then construct an

infinite strictly ascending chain. q.e.d.

Exercise 2.2.1.2. Let R be a ring, and let

S ↪→M →→ Q

be a short exact sequence of left-R-module. Show that M is

noetherian if and only if both S and Q are noetherian.

Definition 2.2.1.3. A ring is called left-noetherian if it is

noetherian as a left-R-module. It is called right-notherian if it

is noetherian as a right-R-module. It is called noetherian if it is

simultaneously left- and right-noetherian

Exercise 2.2.1.4. Proof or disprove: a ring R is noetherian if and

only if it is noetherian as an R-R-bimodule.

Theorem 2.2.1.5 (Hilberts Basis Theorem). Let N0 denote the monoid

of non-negative integers with addition as binary operation. Let R

be a ring and let M be a noetherian left-R-module. Then M [N0] is a

noetherian R[N0]-module.

Proof. For any non-zero element f of M [N0] or R[N0], we define its

degree to be the maximum element n ∈ N0 for which f(n) 6= 0. We call

the value f(n) at the degree, the leading coefficient.

Let S ≤M [N0] be an infinitely generated submodule. Let f0

be a non-zero element of minimum degree. Since S is not finitely

generated, S − 〈f0〉 6= ∅. Let f1 be an element of S − 〈f0〉 of minimum

degree. Since S is not finitely generated, S − 〈f0, f1〉 6= ∅. Continue
and define f2, f3, . . .
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I claim that the leading coefficients, mi := fi(deg(fi))

generate a submodule of M which is not finitely generated.

Otherwise, there is an index j such that

mj ∈ 〈mi i < j〉

i.e., there are ring elements a0, a1, . . . such that

mj =
∑
i<j

aimi.

Define gj := ajχdeg(fj)−deg(fi), i.e.:

gi : N0 −→ R

n 7→



ai if deg(fj) = n+ deg(fi)

0 otherwise

Then, it is easy to check that

fj −
∑
i<j

gifi ∈ S − 〈fi i < j〉

has smaller degree than fj contrary to our construction

principle. q.e.d.

Corollary 2.2.1.6. If R is (left-) noetherian, then so is

R[N0]. q.e.d.

Exercise 2.2.1.7. Suppose that M is a monoid. We say that µ is a

right-divisor of ν there is a complementary divisor µcompl ∈M with

µcomplµ = ν. Suppose that right-divisibilty defines a total order on

M, i.e, for any two elements, one is a right-divisor of the other,

and if this holds either way, both elements are equal.

Prove or disprove the folowing generalization of Hilbert's

basis theorem: if M is a noetherian left-R-module, then M [M] is a

noetherian left-R[M]-module.

Exercise 2.2.1.8. Let R be a ring and let M be a noetherian

left-R-module. Then M [[N0]] is a noetherian R[[N0]]-module.
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2.2.2 Artinian Rings and Modules

Proposition and Definition 2.2.2.1. A (left-, right-, bi-) module M

is artinian if it satisfies the following equivalent conditions:

1. Every non-empty collection C of submodules in M contains

minimal elements.

2. M does not admit an infinite strictly descending chain

S0 > S1 > S2 > · · ·
of submodules.

Proof of equivalence. Exercise. q.e.d.

Example 2.2.2.2. Let K be a field. Any finite dimensional K-module

is an artinian K-module: since all submodules are vector spaces,

the dimension along a strictly descending chain has to go down at

each step. Thus, the chain cannot be infinite.

Exercise 2.2.2.3. Let

S ↪→M →→ Q

be a short exact sequence of left-R-modules. Show that M is

artinian if and only if S and Q are both artinian.

Exercise 2.2.2.4. Let D be a division ring. Show that Dm is an

artinian left-D-module.

Definition 2.2.2.5. A ring R is left-artinian if R is an artinian

left-R-module. It is right-artinian if R is an artinian

right-R-module.

2.2.3 Simple Rings and Modules

Definition 2.2.3.1. A (left-, right-, bi-) module is simple if {0} is

a maximal submodule, i.e., the module is non-trivial and does not

contain proper non-trivial submodules.

A ring is simple if {0} is a maximal two-sided ideal,

i.e., the ring does not contain proper non-trivial two-sided ideals.
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Example 2.2.3.2. Let K be a field. Then Km is a simple

left-Mm×m(K)-module.

Exercise 2.2.3.3. Let D be a division ring. Show that Dm is a

simple left-Mm×m(D)-module.

Observation 2.2.3.4. Let U be a simple left-R-module. Note that

the image and the kernel of any homomorphism are submodules of the

target and the domain, respectively. Hence every non-trivial

homomorphism into U is onto; and every non-trivial homomorphism

defined on U is 1-1.

In particularl, any non-trivial endomorphism of a simple

module is 1-1 and onto, i.e., invertible. We infer that the set of

endomorphisms EndR(U) is a division ring: (1) it is a ring in the

way illustrate in (??) and (2) every non-zero endomorphism is

invertible. q.e.d.

Observation 2.2.3.5. Let I E R be a left-ideal and let M be a

left-R-module. For any element m ∈M, the map

ρm : I −→ M

i 7→ im

is an R-module homomorphism. q.e.d.

Lemma 2.2.3.6. Let U be a simple left-R-module. Let b1,b2, . . . be a

sequence of non-trivial elements of U. Put

Ik :=
⋂

i<k

Ann(bi)

where I0 = R. Then for any m ∈ U with Ik ⊆ m, there are

endomorphisms ϕi : U → U for any i < k such that

m =
∑

i<k

ϕi(bi) .
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Proof. We use induction. The start is purely formal. So assume

Ik ∩ Ann(bk) = Ik+1 ⊆ Ann(m) . Consider the module homomorphisms

ρbk
: Ik → U

and

ρm : Ik → U

If ρbk
is trivial, we have Ik ⊆ Ann(bk) in which case

Ik = Ik+1 ⊆ Ann(m) , whence the claim follows by induction. Thus, we

may assume that ρbk
is onto (U is simple). By hypothesis,

ker(ρbk
) ⊆ ker(ρm) . Hence we have an induced map

ϕk : U −→ U

such that

Ik
ρbk

ÄÄ~~
~~

~~
~ ρm

ÂÂ@
@@

@@
@@

U ϕk

// U

commutes. Note that for each i ∈ Ik,

i(m− ϕk(bk)) = im− ϕk(ibk) = im− ϕk(ρbk
(i)) = im− ρm(i) = im− im = 0

Thus Ik ⊆ Ann(m− ϕk(bk)) and by induction hypotheses, there are

endomorphisms ϕi for i < k with

m− ϕk(bk) =
∑

i<k

ϕi(bi)

The claim follows. q.e.d.

Lemma 2.2.3.7. Let R be a left-artinian ring, and let U be a simple

left-R-module. Then U is a vector space over D := EndR(U) of

finite dimension.

Proof. Consider the collection of left-ideals

C :=

{ ⋂

b∈B
Ann(b) B ⊆ U is finite

}
.
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Since R is left-artinian, the collection has a minimal element

realized by some finite set B. Then, by minimality,
⋂

b∈B
Ann(b) ⊆ Ann(m)

for each element m ∈ U. Thus

m =
∑

b∈B
ϕb(b)

for suitably chosen ϕb ∈ D. q.e.d.

Corollary 2.2.3.8 (Jacobsons Density Theorem). Let R, U and D be as

above, and let B be a finite D-linearly independent subset of U.

Then for each D-linear map

ϕ : U −→ U

there exists an a ∈ R such that ϕ(b) = ab for all b ∈ B.

Proof. We use induction on the size of B. The case of B = ∅ is

formal. So assume that B = B′ ∪ {b} with b linearly independent from

B′; and assume and that we already found a ring element a with

ϕ(b′) = ab′ for all b′ ∈ B′. Note that we are free to choose a within

a+ Ann(B′) where

Ann(B′) :=
⋂

b′∈B′
Ann(b′) = Ann

(∑

b′
Db′

)

Thus, all we need to find is an element i ∈ Ann(B′) with

(a+ i)b = ϕ(b) .

Since b is linearly independent from B′, we have b does not lie in

the D-span of B′. Thus, Ann(B′) 6⊆ Ann(b) and we have U = Ann(B′)b.

Hence there is i ∈ Ann(B′) with i = ϕ(b)− ab. q.e.d.

Proposition 2.2.3.9. Let R be a simple artinian ring. Then R is

(isomorphic to) the endomorphism ring EndD(V ) of a finite

dimensional vector space V over a division ring D.
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Proof. Let U be a simple left-R-module (obtain that from a maximal

left-ideal). Put D := EndR(U). Then U is a D-vector space of

finite dimension. Moreover, the map

R −→ EndD(U)

a 7→ λa : m 7→ am

is a unitial ring homomorphism. Since R is simple, it is 1-1. By

Jacobsons Density Theorem (2.2.3.8), it is onto. q.e.d.

Exercise 2.2.3.10. Let D be a division ring, and let V = Dm be the

left-D-vector space of dimension m. Show:

EndD(V ) ∼= Mm(Dop)

Exercise 2.2.3.11. Let D be a division ring. Show that Mm(D) is a

simple left-artinian ring.

Exercise 2.2.3.12. Let R be a ring. Show that any two minimal

left-ideals in R are isomorphic as left-R-modules.

Observation 2.2.3.13. Let M be an R-S-bimodule. Then we have a

ring homomorphism

R −→ EndS(M)

a 7→ (λa : m 7→ am)

induced by left-multiplication. We also have a ring

antihomomorphism

S −→ EndR(M)

b 7→ (ρa : m 7→ mb)

induced by right-multiplication. (This is an anti-homomorphism

because, we always let endomorphisms act from the left, thus there

is a change of direction.) q.e.d.
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Example 2.2.3.14. Let D be a division ring. Consider Dm as a

Mm(D)-D-bimodule. Thus, we have a ring antihomomorphism

D −→ EndMm(D)(D
m)

which is non-trivial and hence 1-1.

To see that this homomorphism is onto, as well, let

B = {e1, . . . , em} be the standard basis of Dm, and let ϕ : Dm → Dm be

any Mm(D)-endomorphism of Dm. Then, using the right-D-vector

space structure on Dm, we cann write

ϕ(e1) =
m∑
i=1

eiai

for some elements ai ∈ D. Then

ϕ(ej) = ϕ
(
Ej1e1

)
= Ej1ϕ(e1) = Ej1

m∑
i=1

eiai = Ej1e1a1 = eja1

In other words: ϕ = ρa1 .

Thus,

D ∼= EndMm(D)(D
m)op .

Exercise 2.2.3.15. Let D be a division ring. Show that the scheme


∗ 0 · · · 0
...

... ... ...

∗ 0 · · · 0




defines a minimal left-ideal in Mm(D) .

Theorem 2.2.3.16 (Wedderburn). Every simple artinian ring R is

isomorphic to a ring Mm(D) where D is a division ring. Moreover,

m is uniquely determined by R and D is uniquely determined up to

unital isomorphism.

Proof. Existence of D and m follows from (2.2.3.9) and (2.2.3.10).

As for uniqueness, let V be a minimal left-ideal in R. Those

exists since R is artinian and are unique up to R-module
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isomorphisms by (2.2.3.12). Moreover, the set of all m×m matrices

over D all of whose columns vanish with the possible exception of

the first is a minimal left-ideal of Mm(D). Thus, any minimal

left-ideal in R is isomorphic to Dm. Thus, (2.2.3.14) allows us to

recover D from R:

D ∼= EndR(V )op

We now can regard V as a D-vector and recover m as its

dimension. q.e.d.

The following is immediate from correspondence theorem and

the defintions:

Observation 2.2.3.17. If M is a maximal left-ideal in R, then R/M

is a simple module and M = Ann(1 +M). q.e.d.

Here is a converse to (2.2.3.17)

Lemma 2.2.3.18. Let U be a simple left-R-module. For any non-zero

m ∈ U, the annihilator Ann(m) is a maximal left-ideal in R.

Moreover, the map

R/Ann(m) −→ U

a+ Ann(m) 7→ am

defines an isomorphism of left-R-modules.

Proof. Consider the map

R −→ U

a 7→ am

as a homomorphism of left-R-modules. Since m 6= 0, its image is a

non-trivial submodule of the simple module U. Thus, the map is

onto. The kernel is clearly the annihilator Ann(m). This already

proves the second statement. The first statement follows by

correspondence theorem from the fact that R/Ann(m) is

simple. q.e.d.
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Definition 2.2.3.19. Let R be a ring. Call an ideal I a

simple annihilator if there exists a simple left-R-module U with

I = Ann(U) . Recall that annihilators of modules (as opposed to

annihilators of individual elements) are two-sided ideals. The

Jacobson radical is the intersection of all simple annihilator

ideals:

J(R) :=
⋂

I is simple annihilator

I.

It is a two-sided ideal.

Proposition 2.2.3.20. The Jacobson radical of R is the intersection

of all maximal left-ideal of R.

Proof. By (2.2.3.17) and (2.2.3.18), maximal left-ideal arise

precisely as annihilators of non-zero elements in simple modules.

The annihilator of a simple module, in turn is the intersection of

all annihilators of its non-zero elements. q.e.d. q.e.d.

Definition 2.2.3.21. An element a ∈ R is called left-quasiregular if

(1− a) has a left-inverse, i.e.,

1 = b(1− a)

for some b ∈ R. Equivalently, a is left-quasiregular, if the

left-ideal generated by (1− a) is all of R.

Lemma 2.2.3.22. Every element of the Jacobson radical J(R) is

left-quasiregular.

Proof. Assume that a ∈ J(R). Then, a is contained in each maximal

left-ideal of R. Thus, 1− a does not belong to any maximal

left-ideal. Thus, the left-ideal generated by 1− a is all of

R. q.e.d.

Lemma 2.2.3.23. If a left-ideal I E R consists entirely of

left-quasiregular elements, then I ⊆ J(R).

Proof. ??? q.e.d.
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2.3 Commutative Rings

2.4 Constructions

2.4.1 Polynomials and Power Series

Recall the examples (2.1.1.15) and (2.1.1.16).

Definition 2.4.1.1. Let N0 be the monoid of non-negative integers

with addition as binary operation, let R be a ring, and let M be a

left-R-module. The power series ring over R is R[[N0]]. This ring

is usually denoted by R[[x]] (where x is an arbitrary letter denoting

a variable) and its elements are written as power series
∞∑
i=0

aix
i

where this series corresponds to the map i 7→ ai in R[[N0]]. This is

reasonable since under this correspondence, the Cauchy product of

power series corresponds to the convolution product in R[[N0]].

The subring R[N0] ≤ R[[N0]] is called the polynomial ring

over R. This ring is customarily denoted by R[x] and its elements

are written as polynomials in x. Recall that polynomials in x can

be regarded as power series that have only finitely many non-zero

coefficients and ordinary multiplication of polynomials is nothing

but the Cauchy product.

We also put M [[x]] := M [[N0]] and M [x] := M [[N0]] .

The degree of a non-zero element in R[x] or M [x] is the

highest degree with a non-vanishing coefficient. We define the

degree of 0 to be −∞. Then deg(pm) ≤ deg(p) + deg(m) for any p ∈ R[x]

and any m ∈M [x]. If Ann(M) = {0}, equality holds. (Note that

Ann(R) = {0} if R does not contain zero divisors.)

The degree of a non-zero element in R[[x]] or M [[x]] is the

lowest degree with a non-vanishing coefficient. Now, we define the

degree of 0 to be ∞. We have deg(pm) ≥ deg(p) + deg(m) for any

p ∈ R[[x]] and any m ∈M [[x]]. Equality always holds if Ann(M) = {0}.
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Exercise 2.4.1.2. Compute, if possible, AnnR[x](M [x]) and

AnnR[[x]](M [[x]]) in terms of AnnR(M).

Observation 2.4.1.3. The group of units in R[[x]] consists of exactly

those power series whose constant term is a unit in R.

Observation 2.4.1.4. Suppose R does not contain zero divisors. The

group of units in R[x] consists precisely of the degree 0 polynomials

whose constant term is a unit.

Exercise 2.4.1.5. Show that R is and integral domain if and only if

R[[x]] is an integral domain.

Exercise 2.4.1.6. Show that R is and integral domain if and only if

R[x] is an integral domain.

Exercise 2.4.1.7. Let M be the monoid of strictly positive integers

with multiplication as its binary operation. Show that the monoid

ring R[M] is a domain if and only if R is a domain.

Exercise 2.4.1.8. Let G be a finite, non-trivial group. Show that

the group ring R[G] is never a domain.

Exercise 2.4.1.9. Let K be a field. Show that K[[x]] has a unique

maximal ideal.

Exercise 2.4.1.10. Let R be commutative. Show that for each a ∈ R
there is a unique unital ring homomorphism (called evaluation at a)

ϕa : R[x] −→ R

satisfying ϕa(b) = b for any b ∈ R ⊂ R[x] and ϕa(x) = a.
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2.4.2 Localization

In this section on localization, all rings are commutative.

Definition 2.4.2.1. Let L ⊆ R be a subset of the commutative ring R.

We say that L is multiplicative if

1. 1 ∈ L,

2. 0 6∈ L, and

3. L is closed with respect to multiplication, i.e., for any

r, s ∈ L, we have rs ∈ L.

Example 2.4.2.2. Let P be a prime ideal in R. Then R− P is a

multiplicative set. In particular, R− {0} is multiplicative.

Construction 2.4.2.3. Let L ⊂ R be a multiplicative subset of the

commutative ring R. We define an equivalence relation on R× L via

(a, r) ≡ (b, s) if and only if there is t ∈ L with trb = tsa.

It is a straight forward check that ≡ is an equivalence relation.

The equivalence classes are called fractions. The ≡-equivalence
class of (a, r) is denoted by a

r
.

The set of ≡-equivalence classes is denoted by

L−1R :=
{a
r

a ∈ R, r ∈ L
}
.

We define addition and multiplication for fractions as follows:

a

r
+
b

s
:=

as+ rb

rs
a

r

b

s
:=

ab

rs

As L is multiplicative, the results are actually fractions. A

straight forward computation shows (a) that addition and

multiplication are well-defined and (b) that L−1R is a commutative

ring with these arithmetic operations. The zero element is 0
1
and

the one is 1
1
.
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Definition 2.4.2.4. The commutative ring L−1R is called the

localization of R with respect to L.

When doing the following exercises pay close attention as to where

you need to use that R is commutative.

Exercise 2.4.2.5. Check that ≡ is an equivalence relation.

Exercise 2.4.2.6. Show that addition and multiplication of fractions

is well-defined, i.e., independent of the choice of representatives.

Exercise 2.4.2.7. Carry out the verification that L−1R is a

commutative ring.

Construction 2.4.2.8. Let M be a left-R-module. The localization

L−1M is constructed as follows:

1. Define an equivalence relation on M × L as follows

(m1, r1) ≡ (m2, r2)

if there is an element s ∈ L such that sr2m1 = sr1m2. We denote

the equivalence class of the pair (a, r) as a fraction a
r
.

2. As a set, L−1M is the set of fractions, i.e., the set of

equivalence classes in M × L. One checks that

m

r
+
n

s
:=

sm+ rn

rs

and
a

r
× m

s
:=

am

rs

define the structure of a left-L−1R-module structure on L−1M.

Remark 2.4.2.9. Particularly useful is localization to obtain a

vector space over the field of fractions.
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Proposition 2.4.2.10. Let ϕ : M → N be a module homomorphism. Then,

there is an induced module homomorphism

ϕL : L−1M −→ L−1N

m

r
7→ ϕ(m)

r

Proof. Straight forward check. q.e.d.

Proposition 2.4.2.11. Let R be a commutative ring and let L ⊂ R be

multiplicative. Then

ιL : R −→ L−1R

a 7→ a

1

is a unital ring homomorphism with

ker(ιL) =
⋃
r∈L

AnnR(r) = {a ∈ R ra = 0 for some r ∈ L} .

If R is a domain, then the localization map ιL is 1-1.

Proof. To verify that ιL is a ring homomorphism, we observe

ιL(a+ b) =
a+ b

1
=

1a+ b1

1
=
a

1
+
b

1
= ιL(a) + ιL(b)

and

ιL(ab) =
ab

1
=
ab

11
=
a

1

b

1
= ιL(a) ιL(b) .

We compute the kernel:

ker(ιL) =

{
a ∈ R ιL(a) =

0

1

}

=

{
a ∈ R a

1
=

0

1

}

= {a ∈ R ra = 0 for some r ∈ L}

If L does not contain any zero divisors, it follows that

ker(ιL) = {0} . q.e.d.
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Theorem 2.4.2.12 (Universal Property of Localizations). Let L be a

multiplicative subset of the commutative ring R. For any

commutative ring S and any ring homomorphism ϕ : R→ S with ϕ(L) ⊆ S∗,

there is a unique ring homomorphism ϕL : L−1R→ S such that the

diagram

R
ϕ //

ιL
²²

S

L−1R

ϕL

<<yyyyyyyyy

commutes.

Proof. As usual, uniqueness is easy:

ϕL

(a
r

)
= ϕL

(
a

1

1

r

)
= ϕ(a)ϕ(r)−1

implies that ϕ determines ϕL.

Also, now we know how to prove existence: we just have to

verify that

ϕL

(a
r

)
:= ϕ(a)ϕ(r)−1

defines a ring homomorphism. Thus, one needs to check that this map

is well-defined, i.e., independent of the choice of representatives

for the fraction; and one needs to check that this map is a ring

homomorphism, i.e., compatible with addition and multiplication.

All three checks are simple straight forward calculations and left

as an exercise. q.e.d.

Exercise 2.4.2.13. Fill in the computational checks in the preceding

proof.

In the remainder of this section, we shall discuss the

ideals in the localization L−1R.

Proposition 2.4.2.14. Let L be a multiplicative subset of the

commutative ring R.

1. For any ideal I E R, the set L−1I :=
{
i
r
i ∈ I, r ∈ L}

is an ideal

in L−1R.
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2. The ideal L−1I is a proper ideal of L−1R if and only if

I ∩ L = ∅.

3. If I is a principal ideal in R with generator i, then, L−1I is a

principal ideal in L−1R with generator i
1
.

4. For any ideal Ĩ E L−1R, the preimage ĨR := ι−1
L

(
Ĩ
)

is an ideal in

R satisfying Ĩ = L−1ĨR. Note that the if R is a domain, the

localization map is injective so that we can regard R as a

subring of L−1R. In this case, ĨR = Ĩ ∩ R.

5. There is a 1-1 correspondence

{P ∈ Spec(R) P ∩ L = ∅} −→ Spec
(
L−1R

)

P 7→ L−1P

This correspondence preserves inclusion relations among ideals.

Proof. Consider i
r
, j
s
∈ L−1I. We have

i

r
+
j

s
=
is+ rj

ij
∈ L−1I

since is+ ij ∈ I as I is a two-sided ideal. Closure with respect to

multiplication by elements from L−1R is similar. This proves (1).

Note that if I contains an element of L, then the ideal

L−1I contains 1
1
and we have L−1I = L−1R. Conversely, if L−1I = L−1R.

we have that i
r

= 1
1
for some i ∈ I and some r ∈ L. Then for some s ∈ L,

we find si = r which implies that r ∈ I. This proves (2).

Claim (3) is clear.

Now, fix an ideal Ĩ E L−1R. Since preimages of ideals are

ideals, we know that ĨR = ι−1
L

(
Ĩ
)

is an ideal in R. Thus, we only

have to show that Ĩ = L−1ĨR. Since i
r
∈ Ĩ implies i

1
= r

1
i
r
∈ Ĩ whence

i ∈ ĨR, we find that Ĩ ⊆ L−1ĨR. The inclusion L−1ĨR ⊆ Ĩ follows

similarly as i ∈ ĨR implies that i
1
∈ Ĩ whence i

r
= 1

r
i
1
∈ Ĩ . This

proves (4).

Finally, we prove (5). First, let p be a prime ideal in R

not intersecting L. Then, L−1P is a proper ideal of L−1R by (2).
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To see that L−1P is prime, we assume a
r
b
s

= ab
rs
∈ L−1P. Then, ab

1
∈ L−1P

whence abt ∈ P for some t ∈ L. Since t 6∈ P, we infer ab ∈ P and, since

P is prime, it follows that a ∈ P or b ∈ P. Thus a
r
∈ L−1P or b

s
∈ L−1P.

Thus, L−1P is a prime ideal.

Now assume that P and Q are two prime ideals in R both

disjoint from L. Also, suppose that L−1P = L−1Q. We want to show

that P = Q. So suppose that i ∈ P. Then i
1
∈ L−1P = L−1Q which

implies i
1

= j
s
for some j ∈ Q and some s ∈ L. Thus, for some t ∈ L, we

have tsi = tj ∈ Q, which forces i ∈ Q as ts ∈ L and L ∩ Q = ∅. Thus, we

proved P ⊆ Q. The reversed inclusion is shown symmetrically. This

shows that the map P 7→ L−1P is 1-1.

This map is onto since preimages of prime ideals are prime

ideals by (??). It clearly preserves inclusion relations of

ideals. q.e.d.

Corollary 2.4.2.15. If R is a PID, then so is L−1R.

Corollary 2.4.2.16. If R is noetherian, then so is L−1R.

Theorem 2.4.2.17. If R is a UFD, then so is L−1R.

Proof. It follows that every element a
r
∈ L−1R has a prime factor

decomposition.

Recall that prime ideals in L−1R are in 1-1 correspondence

with prime ideals in R that are disjoint from L. This

correspondence restricts to principal prime ideals. Thus, the

primes element in L−1R are (up to units) exactly the elements p
1

where p ∈ R does not divide any element from L. Call those primes

green. We call the other primes red and observe that they turn

into units in L−1R.

It follows that every element a
r
∈ L−1R has a prime factor

decomposition.

Now suppose that

α
p1

1

p2

1
· · · pu

1
=
q1
1

q2
1
· · · qv

1
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is a counter example to uniqueness of prime factor decomposition in

L−1R. The primes pi and qj are all green. The primes that go into

the denominator and numerator of α are all red. Thus, we obtain an

idenity in R

(some red primes)p1p2 · · · pu = (some more red primes)q1q2 · · · qv.

Since R is a UFD, we deduce that the green primes must correspond

nicely. q.e.d.

2.5 Important Classes of Rings

2.5.1 Euclidean Domains

2.5.2 Principal Ideal Domains

Exercise 2.5.2.1. Let R be an integral domain. Let p(x) ∈ R[x] be a

non-zero polynomial whose leading coefficient is a unit in R. Show

that for any polynomial q(x) ∈ R[x] there are unique f(x) , r(x) ∈ R[x]

satisfying

1. q(x) = f(x) p(x) + r(x)

2. deg(r(x)) < deg(p(x))

Definition 2.5.2.2. An integral domain R is a principal ideal domain

(PID) if every ideal in R is principal.

Example 2.5.2.3. Let K be a field, then the polynomial ring K[x] is

a PID.

Proof. Let I E K[x] be an ideal. If I = {0}, it is clearly principal.

So we assume I 6= {0}. Choose p ∈ I − {0} with minimum degree. I claim

that p generated I.

Let q ∈ I. By exercise 2.5.2.1 there exists f, r ∈ R with

q = fp+ r
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and

deg(r) < deg(p) .

The first condition implies r ∈ I. Since p was chosen with minimum

degree, we conclude r = 0. Thus, q is a multiple of p. q.e.d.

2.5.3 Noetherian Rings

2.5.4 Unique Factorization Domains

In this section, all rings are commutative. Also, R is a ring.

Definition 2.5.4.1. For a, b ∈ R, we say that a divides b, in

shorthand a|b, if there is an c ∈ R with ac = b.

Observation 2.5.4.2.

a|b
⇐⇒ b ∈ 〈a〉
⇐⇒ 〈b〉 ⊆ 〈a〉

Observation 2.5.4.3. For any a ∈ R,

a ∈ R∗ if and only if a|1.

Also, for any unit α,

α|a and αa|a

These divisors are called trivial divisors of a.

Note: in an integral domain, if a|b and b|a, then a and b

are trivial divisors of one another.

Definition 2.5.4.4. An element of R is called irreducible if it is

neither 0 nor a unit and only has trivial divisors.

An element p ∈ R is called prime if the principal ideal

generated by p is prime.
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Observation 2.5.4.5. An element a is irreducible if and only if the

principal ideal 〈a〉 is a maximal element in the set of all principal

ideals of R.

Observation 2.5.4.6. For any element a ∈ R, we have

〈a〉 = {b a|b} .

Thus, p is prime if and only if for all a, b ∈ R,

p|ab =⇒ p|a or p|b,

i.e., in order to be prime: if you divide a product, you have to

divide a factor, too.

Observation 2.5.4.7. In any integral domain, prime elements are

irreducible.

Proof. Let p be prime and suppos a|p. We have to show that a is a

trivial divisor of p. Since we can write p = ab and p is prime, we

find

p|a or p|b.

In the first case, we are done since a and p are mutual divisors,

they are mutual trivial divisors.

In the second case, a is a unit. q.e.d.

Definition 2.5.4.8. A factorization of a ring element a is a

sequence (α; b1, b2, . . . , bu) with

a = αb1b2 · · · bu

where α is a unit and all bi are irreducible.

Such a factorization is considered unique if for any other

factorization (β; c1, c2, . . . , cv) of a,

1. u = v and
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2. there is a permutation σ ∈ Su such that for all i there is a unit

γi satisfying bi = γicσ(i).

I.e.: up to reordering, the irreducible factors differ only by

units.

An integral domain is called a unique factorization domain

(UFD) if every non-zero element has a unique factorization.

Koenig's Lemma 2.5.4.9. A graph is locally finite if every vertex

has only finitely many edges attached to it.

Every infinite locally finite connected graph contains a

repetition-free path of infinite length. In fact, at each vertex

you can find such a path issuing from there.

Proof. In a connected graph, we define the distance of two vertices

to be the minimum length of an edge path connecting them.

Let v be a vertex. Note that v has only finitely many

neighbors (at distance 1). Each of these has only finitely many

neighbors, too. Thus, there are only finitely many vertices at

distance 2 from v. Inductively, we see that for any specified

distance, there are only finitely many vertices that distance away

from v. Since the graph is infnite, it follows that there are

vertices of arbitrary large distance from v. Since each of these

vertices can be connected to v, we infer that there is an infinite

set P0 of paths starting at v such that the lengths of the paths in

P0 are not bounded. q.e.d.

Proposition 2.5.4.10 (existence of factorizations). Suppose that

every ascending chain of principal ideals

〈a1〉 ⊆ 〈a2〉 ⊆ 〈a3〉 ⊆ · · ·

stablizes, i.e., there is an index n such that for all i ≥ n, we have

〈ai〉 = 〈ai+1〉. Then, every element a ∈ R admits a factorization into

irreducible elements.

Note that the second condition holds automatically in any

noetherian ring.
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Proof. Given an element a q.e.d.

Proposition 2.5.4.11 (uniqueness of factorizations). Suppose R is an

integral domain wherein every irreducible element in R is prime.

Then, every factorization is unique.

Proof. Let

αa1a2 · · · au = βb1b2 · · · bv
be two factorizations of the same element into irreducible factors.

We may assume that this example has minimal total length u+ v.

Since a1 is irreducible, it is prime; and since it divides

the right hand side, it divides one of the factors there. This

factor cannot be the unit. Thus a1|bi for some i. By reordering the

right hand side, we may assume i = 1. Since b1 is also irreducible,

a1 is a trivial divisor. Since a1 is not a unit, we find that

b1 = γa1 for some unit γ. Thus:

αa1a2 · · · au = βγa1b2 · · · bv.

Now, we use that R is an integral domain { we may cancel:

αa2 · · · au = βγb2 · · · bv.

This yields a shorter counter example for a non-unique

factorization. q.e.d.

Proposition 2.5.4.12. In a PID, every irreducible is prime.

Proof. Let a be irreducible. Then 〈a〉 is a maximal element in the

set of all principal ideals. In a PID, this is the set of all

ideals. Thus, 〈a〉 is a maximal ideal. But all maximal ideal are

prime. q.e.d.

Corollary 2.5.4.13. Every PID is a UFD. q.e.d.

Proposition 2.5.4.14. In a UFD, every irreducible element is prime.
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Proof. Let p be irreducible and assume p|ab, i.e.,

cp = ab.

We have to show that p|a or p|b.
Fix factorizations into irreducible elements:

a = αa1 · · · aua

b = βb1 · · · bub

c = γa1 · · · cuc

Since p is irreducible, we find that

γa1 · · · cucp = (αβ)a1 · · · auab1 · · · bub

are two factorizations of the same ring element. Since

factorizations are unique up to reordering, we infer that p must

occur (maybe modified by a unit element) among the irreducible

factors on the right hand side. If it is one of the ai, we have p|a;
if it is one of the bi, we have p|b. q.e.d.

Definition 2.5.4.15. Let R be an integral domain. An element t is

called the greates common divisor of the elements a and b if the

following two conditions hold:

1. The element t divides both, a and b.

2. Any s ∈ R dividing a and b also divides t.

Let A ⊆ R− {0} be a non-empty subset of non-zero elements. An

element t is called a greatest common divisor of A if

1. A ⊆ 〈t〉

2. For any s ∈ R with A ⊆ 〈s〉, we have, t ∈ 〈s〉.

Observation 2.5.4.16. If 〈t〉 = 〈a, b〉, then t is a greatest common

divisor of a and b. Similarly, if 〈t〉 = 〈A〉, then t is the greatest

common divisor of A. Warning: the converse implications fail

miserably. q.e.d.
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Proposition 2.5.4.17. In a UFD, any non-empty set of non-zero

elements has a greatest common divisor. It is to be found as

follows: fix a set P ⊆ R of prime elements that contains exactly

one representative from each R∗-orbit of the action of R∗ on the set

of all prime elements. (Recall that prime elements are essentially

unique up to multiplication by units, thus P contains one prime

element from each equivalence class of prime elements.) Then, every

a ∈ A has a unique factorization

a = αa
∏
p∈P

pap .

For each p ∈ P, put

tp := min
a∈A

ap.

Then

t :=
∏
p∈P

ptp

is a greatest common divisor for A. Note that this product is

actually finite since all but finitely many exponents vanish: this

is already true for the exponents ap for any given a ∈ A, and these

exponents dominate the exponents tp ≤ ap.

Moreover, A contains a finite subset B for which t is a

greatest common divisor.

Proof. It is clear that t|a for each a ∈ A. Thus A ⊂ 〈t〉.
Now, let s = αs

∏
p∈P p

sp be the factorization of another

common divisor of A. Then, for each p ∈ P, we have sp ≤ tp whence

s|t.
To argue the moreover part, fix an a ∈ A. Put

Q := {q ∈ P aq 6= 0} and note that this is a finite set. For each

q ∈ Q, fix another element b(q) = αq
∏

p∈P p
bp(q) ∈ A so that tq = bq(q) for

each q ∈ Q. Then, t is the greatest common divisor of the finite set

{bq q ∈ Q} ∪ {a} . q.e.d.

Observation 2.5.4.18. In any integral domain R, the following are

equivalent:
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1. Any two elements a, b ∈ R have a common divisor t that is an

R-linear combination t = caa+ cbb.

2. Every ideal that is generated by two elements is a principal

ideal.

3. Every finitely generated ideal is a principal ideal.

Theorem 2.5.4.19. Let R be a UFD. Then the following are equivalent:

1. Every principal ideal generated by an irreducible element is

maximal.

2. Every finitely generated ideal is a principal ideal.

3. R is a PID.

Proof. Clearly, (3) implies (2): if every ideal is a principal

ideal, then this holds in particular for finitely generated ideals.

Conversely, assume (2). Let I be any non-trivial ideal in

R. By (??), the set I − {0} has a gcd t which is already the gcd of

a finite subset B ⊆ I − {0}. However, then 〈B〉 is finitely generated

and therefore a principal ideal. It follows that

〈t〉 = 〈B〉 ⊆ I ⊆ 〈t〉

which implies that all terms are equal. Thus, I is a principal

ideal.

Now, we show that (2) implies (1). Let p be irreducible.

In a UFD, this implies that p is prime. We have to show that every

coset a+ 〈p〉 6= 〈p〉 is a unit in R
/
〈p〉, i.e., we have to there is a b ∈ R

such that ab+ 〈p〉 = 1 + 〈p〉. In other words, we have to show that 1 is

an R-linear combination of a and p. However, if a is not a multiple

of the prime p, the only common divisors of these two elements are

units. Since (2) imlpies that we can combine a common divisor, the

claim follows. q.e.d.
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Exercise 2.5.4.20. Complete the proof by supplying a missing

implication. Hint: You might find the following lemma useful.

Lemma 2.5.4.21. Let R be a UFD such that every principal prime ideal

is maximal. Then, for any two elements a, b ∈ R, the following are

equivalent:

1. The elements a and b are relatively prime, i.e., there is no

prime element dividing both.

2. The unit 1 ∈ R is an R-linear combination of a and b, i.e.,

there are ca and cb in R such that

1 = caa+ cbb.

3. The element a projects to a unit in the ring R
/
〈b〉.

4. The element b projects to a unit in the ring R
/
〈a〉.

Proof. First note that (2) is clearly equivalent to (3). Similarly,

it is equivalent to (4). In particular, (4)and (3) are equivalent.

Also, since any prime dividing a and b divides any linear

combination, we find that (2) implies (1).

Finally, we prove that (1) implies (3). Now, let p ∈ R be

a prime factor of a. Then p does not divide b, i.e., b 6∈ 〈p〉. Since

〈p〉 is maximal, R
/
〈p〉 is a field and b projects to a non-zero element,

which is therefore a unit in R
/
〈p〉. Since (4)and (3) are equivalent,

we conclude that p projects to a unit in R
/
〈b〉. This applies to all

prime factors of a. Since a is the product of its prime factors

(with multiplicities) and since the product of units is a unit, a

projects to a unit in R
/
〈b〉, as the projection is a ring

homomorphism. q.e.d.

As opposed to the previous result, the following is

somewhat silly:
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Theorem 2.5.4.22. Let R be a noetherian domain. Then the following

are equivalent:

1. Every principal ideal generated by an irreducible element is

maximal.

2. Every finitely generated ideal is a principal ideal.

3. R is a PID.

Proof. Note that (1) implies that all irreducibles are prime. Since

R is noetherian, R is a UFD and the other two statements follow

from (2.5.4.19).

Similarly, (3) implies that R is a UFD. Again the other

two statements follow.

Finally, in a noetherian domain, all ideals are finitely

generated, whence (2) and (3) are clearly equivalent. q.e.d.

Our next goal is to show:

Theorem 2.5.4.23. If R is a UFD, then so is R[x].

The main idea is to reduce the question to K[x] where K ⊇ R is the

field of fractions of R. Since K is a field, K[x] is a PID and

thus a UFD. Thus, we need some lemmas relating irreducibility and

factorizations in K[x] and R[x].

Definition 2.5.4.24. A polynomial p = a0 + a1x+ a2x
2 + · · ·+ amx

m is

called primitive if units are the only divisors common to all

coefficients (or equivalently in a UFD: no prime element divides all

the ai).

Observation 2.5.4.25. If R is a UFD, any irreducible polynomial in

R[x] is primitive.

Proof. If a polynomial is not primitive, there is a common prime

factor for all coefficients. Splitting of that factor is a

non-trivial product decomposition. q.e.d.
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Lemma 2.5.4.26. If R is a UFD, then any prime p ∈ R is prime in R[x].

Proof. Let p = a0 + a1x+ a2x
2 + · · ·+ amx

m and q = b0 + b1x+ b2x
2 + · · ·+ bnx

n

be two polynomials. We argue by contradiction and assume that p

divides (all coefficients of) pq, but does neither divide p nor q.

Let i be minimal such that p does not divide ai and let j

be minimal such that p does not divide bj. Since

p|a0bi+j + a1bi+j−1 + · · · aibj + · · ·+ ai+jb0 it follows by minimality of i and

j that p|aibj. Since p is prime, this is a contradiction. q.e.d.

Lemma 2.5.4.27 (Gauss). Let R be a UFD with field of fractions K.

A non-constant polynomial p ∈ R[x] is irreducible in R[x] if and only

if it is primitive and irreducible as an element of K[x].

Proof. First, let us assume that p is irreducible in R[x]. We

already have seen that p must be primitive. So let us assume that

we had a non-trivial factorization

p = q′r′

in K[x]. Note that since all constant polynomials are units in K[x],

the polynomials on the right hand side have degrees strictly smaller

than p. Multiplying by all denominators of coefficients on the

right hand side, we see that we find an element a ∈ R and polynomials

q, r ∈ R[x] with

ap = qr.

Let us choose the element a and the polynomials q and r so that the

number of prime factors in the unique prime factor decomposition of

a is as small as possible. We claim that in this case, a is a unit:

This clearly concludes the proof.

So assume that some prime element p divides a. Then p

also divides qr. Since p is prime in R[x] we find that p divides on

of the polynomials q or r. In this case, we could cancel p on both

sides and thus reduce the number of prime factors in a.
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Now assume that p is primitive and irreducible in K[x].

Let us assume, we had a factorization

p = qr

in R[x]. Since p is irreducible in K[x] one of the polynomials on

the right hand side is constant (i.e., a unit in K[x]). Since p is

also primitive, this constant polynomial must be a unit in

R. q.e.d.

Proof of Theorem 2.5.4.23. First we argue that every polynomial

p ∈ R[x] has a decomposition into irreducible factors: We decompose p

as an element of K[x] where K is the field of fractions for R.

After multiplying with a common multiple for all denominators, we

find

p = ξq1 · · · qu
where ξ ∈ K and all qi ∈ R[x]. Moving further prime factors into the

field element, we may assume that all qi are primitive. Then, by the

previous lemma, they are irreducible. Moving the denominator of ξ

to the left hand side, we obtain:

ap = bq1 · · · qu

Note that since all qi are primitive, no prime divisor of a divides

into any of the polynomial factors on the right. Thus, all those

prime factors are actually in b. It follows that we can cancel a

completely. This yields a factorization in R[x].

Now we argue uniqueness. Let

p = p1 · · · pup1 · · · pu′

and

p = q1 · · · qvq1 · · · qv′

be two decompositions into irreducible elements of R[x] where we set

off the constant polynomial factors at the front: those are units
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in K[x]. The non-constant factors are primitive and irreducible in

K[x]. Since K[x] is a UFD (it is a PID), we find that u′ = v′ and

that the primitive polynomials coincide up to permutation: note

that two primitive polynomials cannot differ by a unit in K since

the argument above implies that for

ar = a′r′

with two primitive polynomials r and r′ the ring elements a and a′

have the same prime factors (up to units in R).

Since the non-constant polynomials in the decomposition of

p coincide, we find that

p1 · · · pu
and

q1 · · · qv
differ by a unit in R. Now uniqueness of factorizations in R

applies. q.e.d.

Theorem 2.5.4.28 (Eisenstein Criterion). Let R be a UFD and let

p = a0 + a1x+ · · · amxm ∈ R[x] be a primitive polynomial. Assume that

there is a prime element p ∈ R satisfying

1. The prime p does not divide the leading coefficient term am.

2. The prime p divides all other coefficients ai with i < m.

3. However, p2 does not divide the constant term a0.

Then p is irreducible in R[x]. Note: since p is primitive, it will

also be irreducible over the field of fractions of R.

Proof. Let us assume that p = qr = (b0 + b1x+ · · · bnxn)(c0 + c1x+ · · · cn′xn′).
Since p|a0 = b0c0, we may assume that p|b0. Since p2 does not divide

a0, we infer that p does not divide c0.

Let i be minimal such that p does not divide bi. Assume

i < m, then

p|b0ci + · · · bic0
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which, by minimality of i, implies p|bic0 and therefore p|bi. Hence q

and p have the same degree. Since p is primitive, r has to be a

unit. Thus p is irreducible. q.e.d.

Example 2.5.4.29. The polynomial ring Z[x] is a noetherian UFD that

is not a PID: the elements x and 2 are relatively prime, but it is

impossible to write 1 as a linear combination of these two elements.

Example 2.5.4.30. We already saw that the ring of Gaussian integers

Z[i] = {a+ ib a, b ∈ Z} is a Euclidean domain. In particular, this

ring is a UFD.

Example 2.5.4.31. The ring Z
[√−5

]
=

{
a+
√−5b a, b ∈ Z}

is not a UFD

but every element has a factorization into irreducible elements.

Existence of factorizations follows from considering the

norm of elements: there are only finitely many elements with norm

below a given bound. Thus, only finitely many ways of splitting off

factors arise. Hence we get trapped with a decomposition into

irreducible factors.

Non-uniqueness follows from the example

6 = 2× 3 =
(
1 +
√−5

) × (
1−√−5

)
.
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Chapter 3

Modules and Bi-Modules

3.1 Functors

Let R and S be two fixed rings. Unless otherwise specified, a

bimodule is always an R-S-bimodule. Note that a left-R-module is

the same as an R-Z-bimodule. Thus, the following notions apply to

left and right modules just as well.

3.1.1 Direct Product and Sum

Definition 3.1.1.1. Let I be a set (whose elements we shall be using

as indices). Let (Mi)i∈I be a family of bimodules. The

direct product is the bimodule

∏
i∈I

Mi :=
{
(mi)i∈I mi ∈Mi

}

where addition and multiplication are defined \slot-wise".

The direct sum is the submodule

⊕
i∈I

Mi :=

{
(mi)i∈I ∈

∏
i∈I

Mi only finitely many mi 6= 0

}

Note that for a finite index set I, there is no difference

between the direct product and the direct sum.
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We have canonical projections

πi :
∏
i∈I

Mi −→Mi

(these restrict to the direct sum) and canonical injections

ιi : Mi −→
⊕
i∈I

Mi ≤
∏
i∈I

Mi

Functoriality 3.1.1.2. Let (ϕi : Mi → Ni)i∈I be a family of bimodule

homomorphisms. Then there is a unique bimodule homomorphism

ϕ :
∏

i∈IMi →
∏

i∈IMi such that the following diagram commutes for

each i:

Mi
ιi //

ϕi

²²

∏
i∈IMi

πi //

ϕ

²²

Mi

ϕi

²²
Nj

ιi //
∏

i∈I Ni
πi // Ni

Moreover, ϕ restricts to a bimodule homomorphism from
⊕

i∈IMi to⊕
i∈I Ni. q.e.d.

Universal Property of Direct Products 3.1.1.3. Let M be a bimodule

and let (ϕi : M →Mi)i∈I be a family of bimodule homomorphisms. Then

there is a unique bimodule homomorphism ϕ : M →∏
i∈IMi such that the

following diagram commutes for each i:

M
ϕ //

ϕi
##HH

HH
HH

HH
HH

∏
i∈IMi

πi

²²
Mi

Proof. Exercise: do uniqueness first. q.e.d.

Corollary 3.1.1.4. Direct products are characterized by the

universal property as follows: Define a product of the familiy (Mi)

to be a bimodule P together with a familiy of morphisms (πi : P →Mi) .

Given two products (πi : P →Mi) and (ξi : Q→Mi) we say that a
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bimodule homomorphism Φ : P → Q is a morphism of products if for each

j the diagram

P
Φ //

πj ÃÃ@
@@

@@
@@

@ Q

ξj~~~~
~~

~~
~~

Mj

commutes. A product (πi : P →Mi) is called a direct product if it

satisfies the following universal property: whenever (πi : Q→Mi) is

another product, there is a unique morphism of products P → Q.

Direct products are unique up to unique product

isomorphism and the direct product
∏

iMi defined above is a direct

product.

Proof. All but the last paragraph is just definitions. The very

last sentence just restates the universal property of the direct

product. As for the uniqueness claim, we use the usual trick: Let

(πi : P →Mi) and (ξi : Q→Mi) be two direct products. By the

universal property, there are unique product morphisms Φ : P → Q and

Q : Q→ P. Note that the following diagrams commute:

P
Φ //

πj ÃÃ@
@@

@@
@@

@ Q Ψ //

ξj
²²

P

πj~~~~
~~

~~
~~

Mj

P
idP //

πj ÃÃA
AA

AA
AA

A P

πj~~}}
}}

}}
}}

Mj

From uniqueness, it follows that Ψ ◦ Φ = idP . By the same reasoning,

Φ ◦Ψ = idQ . Hence Φ and Ψ are inverse isomorphisms. q.e.d.

Universal Property of Direct Sums 3.1.1.5. Let M be a bimodule and

let (ϕi : Mi →M)i∈I be a family of bimodule homomorphisms. Then

there is a unique bimodule homomorphism ϕ :
⊕

i∈IMi →M such that the

following diagram commutes for each i:

⊕
i∈IMi

ϕ // M

Mi

ιi

OO

ϕi

::vvvvvvvvvv
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Proof. Exercise: do uniqueness first. q.e.d.

Corollary 3.1.1.6. Direct sums are characterized by the universal

property as follows: Define a sum of the familiy (Mi) to be a

bimodule P together with a familiy of morphisms (ιi : Mi → P ) . Given

two sums (ιi : Mi → P ) and (κi : Mi → Q) we say that a bimodule

homomorphism Φ : P → Q is a morphism of sums if for each j the

diagram

P
Φ // Q

Mj

κj

``@@@@@@@@ ιj

>>~~~~~~~~

commutes. A sum (ιi : Mi → P ) is called a direct sum if it satisfies

the following universal property: whenever (κi : Mi → Q) is another

sum, there is a unique morphism of sums P → Q.

Direct sums are unique up to unique product isomorphism

and the direct sum
⊕

iMi defined above is a direct sum.

Proof. Same as above. Details are left to you. q.e.d.

Exercise 3.1.1.7. Prove or disprove: Let (Mi → Ni →M∗
i )i∈I be a

family of sequences exact in the middle. Then the induced sequence

∏
i∈I

Mi →
∏
i∈I

Ni →
∏
i∈I

M∗
i

is exact in the middle.

Exercise 3.1.1.8. Prove or disprove: Let (Mi → Ni →M∗
i )i∈I be a

family of sequences in the middle. Then the induced sequence

⊕
i∈I

Mi →
⊕
i∈I

Ni →
⊕
i∈I

M∗
i

is exact in the middle.

Exercise 3.1.1.9. Let I = I1 ∪ I2 be a decomposition of the index set

into two disjoint subsets. Prove or disprove:
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1. The sequence ∏
i∈I1

Mi →
∏
i∈I

Mi →
∏
i∈I2

Mi

is a short exact sequence. If so, decide whether there is an

obvious splitting.

2. The sequence ⊕
i∈I1

Mi →
⊕
i∈I

Mi →
⊕
i∈I2

Mi

is a short exact sequence. If so, decide whether there is an

obvious splitting.

(The maps used in these statements should be obvious.)

3.1.2 Tensor Products

Definition 3.1.2.1. Let X be a set. The free abelian group over X,

is the additive group

ZX :=
⊕
i∈X

Z =
{
(mi)i∈X only finitely many mi 6= 0

}
.

We regard X as a subset of ZX by way of characteristic functions:

the element x ∈ X corresponds to the family that is everywhere 0

except at x, where the entry is 1.

Universal Property of Free Abelian Groups. Let X be a set and let A

be an abelian group. For any map f : X → A there exists a unique

homomorphism ϕf : ZX → A such that the diagram

ZX
ϕf // ϕ

X

OO

f

>>}}}}}}}}

commutes. q.e.d.
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Proposition 3.1.2.2 (Functoriality). Let X and Y be sets, and let

f : X → Y be a map. Then, there is a unique homomorphism

f∗ : ZX → ZY so that the diagram

ZX
f∗ // ZY

X
f

//

OO

Y

OO

commutes. Moreover, the star operation is compatible with

composition:

(f ◦ g)∗ = f∗ ◦ g∗

Proof. Straight forward computation: Let the uniqueness claim guide

you. q.e.d.

Exercise 3.1.2.3. Prove or disprove: Q is a free abelian group.

Exercise 3.1.2.4. Again the universal property characterizes free

abelian groups: Given a set X, let us define an abelian envelope of

X to be an abelian group A together with a map f : X → A. Given

two abelian envelopes f : X → A and g : X → ψ, a homomorphism

α : A→ B is an X-morphism if the diagram

A
α // B

X
f

``@@@@@@@ g

>>}}}}}}}

commutes.

An abelian envolpe f : X → A is called free if it satisfies

the following universal property: For any abelian envelope g : X → g,

there is a unique X-morphism α : A→ B.

Show that that free abelian envelope over X is unique up

to unique X-isomorphism and that the free abelian group over X is a

free abelian envelope. Consequently, we will drop the terminology

\envelope" and we shall just call them free abelian groups.
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Exercise 3.1.2.5. Let FX be the free group over X. Show that its

abelianization FX / [FX ,FX ] is a free abelian group over X.

Definition 3.1.2.6. Let M be an R-S-bimodule, and let N be an

S-T-bimodule. Let Q be an R-T-bimodule. A map

β : M ×N −→ Q

is called R-S-T-bilnear if the following axioms hold:

1. β is left-R-linear in the first argument:

β

(∑
i

aimi, n

)
=

∑
i

aiβ(mi, n) .

2. β is right-T-linear in the second argument:

β

(
m,

∑
j

njcj

)
=

∑
j

β(m,nj) cj.

3. β is balanced:

β(mb, n) = β(m, bn)

Remark 3.1.2.7. Note that the first two conditions can be combined

into:

β

(∑
i

aimi,
∑
j

njcj

)
=

∑
i,j

aiβ(mi, nj) cj.

Definition 3.1.2.8. Let M be an R-S-bimodule, let N be an

S-T-bimodule. An R-T-bimodule P together with a R-S-T-bilinear

map

µ : M ×N −→ P

is called an S-product. Given two S-products µ : M ×N −→ P and

ν : M ×N −→ Q, an R-T-bimodule homomorphism ϕ : P → Q is an

S-product morphism if the diagram

P
ϕ // Q

M ×N
µ

ccGGGGGGGGG ν

;;wwwwwwwww

133



commutes.

An S-product µ : M ×N −→ P is called a

tensor product of M and N over S if it is universal: for every

S-product ν : M ×N −→ Q, there exists a unique S-product morphism

Φ : P → Q.

Theorem 3.1.2.9. Tensor products exist and are unique up to unique

S-product isomorphism.

Remark 3.1.2.10. The tensor product is denoted by M ⊗S N and the

structure map is given by

M ×N −→ M ⊗S N
(m,n) 7→ m⊗ n

The elements m⊗ n are called elementary tensors.

Proof. Uniqueness is the usual trick and left as an excercise.

Existence is what requires proof.

Put:

A := ZM×N

U :=

〈




(mb, n)− (m, bn)

(m,n) + (m∗, n)− (m+m∗, n)

(m,n) + (m,n∗)− (m,n+ n∗)

b ∈ S
m,m∗ ∈M
n, n∗ ∈ N





〉

M ⊗S N := A/U

Let m⊗ n denote the image of the generator (m,n) in M ⊗S N.

For any a ∈ R, let λa : A→ A be the endomorphism induced

by the map (m,n) 7→ (am, n) . We check that λa(N) ⊆ N, which is easy

since we just have to see what λa does on the generators of U. We

find:

λa((mb, n)− (m, bn)) = (amb, n)− (am, bn) ∈ U
λa((m,n) + (m∗, n)− (m+m∗, n)) = (am, n) + (am∗, n)− (a(m+m∗), n)

= (am, n) + (am∗, n)− (am+ am∗, n) ∈ U
λa((m,n) + (m,n∗)− (m,n+ n∗)) = (am, n) + (am, n∗)− (am, n+ n∗) ∈ U
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It follows that λa descends to an endormorphism λa : M ⊗S N →M ⊗S N.
Analogously, we define ρc : M ⊗S N →M ⊗S N using the right

multiplication of T on N.

This way, we have equipped M ⊗S N with an R-T-bimodule

structure: the associative laws all can be proved using (3.1.2.2),

and the distributive laws follow from the definition of U by

computations similar to those above. E.g.:

(a+ b)(m⊗ n) = ((a+ b)m) ⊗ n
= (am+ bm) ⊗ n
= (am) ⊗ n+ (bm) ⊗ n
= a(m⊗ n) + b(m⊗ n)

The next item on the agenda is to check that the canonical

map

M ×N −→ M ⊗S N
(m,n) 7→ m⊗ n

R-S-T-bilinear. This, again, follows from the defininiton of U by

easy computations on elementary tensors.

It remains to check the universal property. Let P be an

R-T-bimodule and let β : M ×N → P be bilinear. Since M ⊗S N is

generated (as an abelian group) by elementary tensors, there is at

most one homomorphism of abelian groups Φ : M ⊗S N → P that makes

the diagram

M ⊗S N Φ // P

M ×N

OO

β

::uuuuuuuuuu

commute. Thus, it remains to show that the homomorphism

Φ̃ : A→ P

that makes

A
Φ // P

M ×N

OO

β

;;vvvvvvvvv
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commute, descends to an R-T-homomorphism Φ : M ⊗S N → P. The proof

of this requires two straight forward checks: first, you (not I)

have to see that the generators ofg U are in the kernel of µ̃;

finally you (again, not I) have to verify that Φ̃ is compatible with

the R-T-multiplication, which can also be checked on

generators. q.e.d.

Remark 3.1.2.11. It is aparent from the construction (and has been

used in the above proof) that the tensor product M ⊗S N is generated

as an abelian group by the set {m⊗ n m ∈M,n ∈ N} . However, we can

also easily deduce this just from the universal property: Put

P := 〈{m⊗ n m ∈M,n ∈ N}〉 ≤M ⊗S N

and let β : M ×N → P be a bilinear map. Then there exists a

homomorphism M ⊗S N → P which restricts to a homomorphism Φ : P → P

so that

P
Φ // P

M ×N

OO

β

;;vvvvvvvvv

commutes. On the other hand, the homomorphism Φ is determined

already by its values on the elementary tensors as they generate P.

It follows that P satisfies the universal property of the tensor

product. Consequently, the inclusion

P ↪→M ⊗S N

is an isomorphism of tensor products. In particular, it is onto,

whence P = M ⊗S N.

Properties

Proposition 3.1.2.12 (Functoriality). Let ϕ : M0 →M1 be an

R-S-homomorphism and let ψ : M0 → N1 be an S-T-homomorphism. Then

there is a unique homomorphism

ϕ⊗ ψ : M0 ⊗S N0 −→M1 ⊗S N1
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that makes the diagram

M0 ⊗S N0
ϕ⊗ψ // M1 ⊗S N1

M0 ×N0 ϕ×ψ
//

OO

M0 ×N0

OO

commute.

Morover, tensoring homomorphisms is compatible with

composition: Given sequences

M0
ϕ0 // M1

ϕ1 // M2

and

N0
ψ0 // N1

ψ1 // N2

the diagram

M0 ⊗S N0

ϕ0⊗ψ0 ''OOOOOOOOOOO

(ϕ1◦ϕ0)⊗(ψ1◦ψ0)
// M2 ⊗S N2

M1 ⊗S N1

ϕ1⊗ψ1

77ooooooooooo

commutes.

Proof. Straight forward consequence of the universal property: the

composition

M0 ×N0
ϕ×ψ−−→M1 ×N1 −→M1 ⊗S N1

is bilinear. The first claim follows.

The second statement follows from uniqueness and the

commutativity of

M0 ×N0

ϕ0×ψ0 &&NNNNNNNNNNN

(ϕ1◦ϕ0)×(ψ1◦ψ0)
// M2 ×N2

M1 ×N1

ϕ1×ψ1

88ppppppppppp

q.e.d.

Proposition 3.1.2.13 (Distributivity). Let (Mi) be a family of

R-S-bimodules and let N be an S-T-bimodule. Then

Φ :

(⊕
i

Mi

)
⊗S N −→

⊕
i

(Mi ⊗S N)

(mi)i ⊗ n 7→ (mi ⊗ n)i
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is a natural isomorphism. That means: given morphisms ϕi : Mi →M∗
i

and ψ : N → N∗, the diagram

(
⊕

iMi) ⊗S N

²²

(
L

i ϕi)⊗ψ
// (
⊕

iM
∗
i ) ⊗S N∗

²²⊕
i (Mi ⊗S N) L

i (ϕi⊗ψ)
//
⊕

i (M
∗
i ⊗S N∗)

commutes.

Proof. We shall first specify an inverse homomorphism. Let

ιj : Mj →
⊕

iMi be the canonical inclusion. We define

Ψ :
⊕
i

(Mi ⊗S N) −→
(⊕

i

Mi

)
⊗S N

(mi ⊗ ni)i 7→
∑
i

ιi(mi)⊗ ni

First note that the sum on the right hand side is finite since

ιi(mi)⊗ ni vanishes whenever mi ⊗ ni vanishes. Using the universal

property of the direct sum, we can describe Ψ alternatively as the

homomorphism that makes

⊕
i (Mi ⊗S N) Ψ // (

⊕
iMi) ⊗S N

Mj ⊗S N

OO

ιj⊗idN

55lllllllllllll

commute. Thus, the map before us is a well-defined homomorphism.

It is easy to check that Φ ◦Ψ takes generators back to

themselves, and so does Ψ ◦ Φ. Naturality can also be checked on

generators and is straight forward.

Alternatively, you could stare at the diagram

⊕
i (Mi ⊗S N) Ψ // (

⊕
iMi) ⊗S N Φ //

⊕
i (Mi ⊗S N)

Mj ⊗S N

iiRRRRRRRRRRRRR
ιj⊗idN

OO 55lllllllllllll

and deduce from universal properties (uniqueness strikes again) that

Φ ◦Ψ is the identity.
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Similarly, we get that Ψ ◦ Φ is the identity from the

diagram

(
⊕

iMi) ⊗S N Φ //
⊕

i (Mi ⊗S N) Ψ //
⊕

i (Mi ⊗S N)

(
⊕

iMi) ×N

hhRRRRRRRRRRRRR

66lllllllllllll

q.e.d.

Exercise 3.1.2.14. Disprove that tensor products distribute over

direct products (as opposed to direct sums).

Exercise 3.1.2.15 (Associativity). Let Ri be rings (i ∈ {1, 2, 3, 4}) and

let Mi be Ri-Ri+1-bimodules (i ∈ {1, 2, 3}). Show that there is a unique

R1-R4-isomorphism

Φ : (M1 ⊗R2 M2) ⊗R3 M3 −→M1 ⊗R2 (M2 ⊗R3 M3)

that makes

(M1 ⊗R2 M2) ⊗R3 M3
Φ // M1 ⊗R2 (M2 ⊗R3 M3)

(M1 ×M2) ×M3 obvious map
//

OO

M1 × (M2 ×M3)

OO

commute.

Moreover show that this morphism is natural, i.e., given

bimodule homomorphisms ϕi : Mi → Ni then the diagram

(M1 ⊗R2 M2) ⊗R3 M3
Φ //

(ϕ1⊗S2
ϕ2)⊗S3

ϕ3

²²

M1 ⊗R2 (M2 ⊗R3 M3)

ϕ1⊗S2(ϕ2⊗S3
ϕ3)

²²

(M1 ×M2) ×M3
//

jjTTTTTTTTTTTTTTTT

(ϕ1×ϕ2)×ϕ3

²²

M1 × (M2 ×M3)

44jjjjjjjjjjjjjjjj

ϕ1×(ϕ2×ϕ3)

²²
(N1 ×N2) ×N3

//

ttjjjjjjjjjjjjjjjj
N1 × (N2 ×N3)

**TTTTTTTTTTTTTTTT

(N1 ⊗R2 N2) ⊗R3 N3
Φ // N1 ⊗R2 (N2 ⊗R3 N3)

commutes.
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Motivated by the above, define a triple tensor product by

means of a universal property (involving tri-linear maps) and show

that (M1 ⊗R2 M2) ⊗R3 M3 and M1 ⊗R2 (M2 ⊗R3 M3) qualify as realizations

of the triple tensor product. (Hint: one way to go elegantly about

this problem is to do the last part first.)

Proposition 3.1.2.16 (Right Exactness). The functor −⊗S N is

right-exact: Let

0→M
′ ι−→M

π−→M∗ → 0

be a short exact sequence of R-S-bimodules, and let N be an

S-T-bimodule. Then the induced sequence

M
′ ⊗S N ι⊗idN−−−→M ⊗S N π⊗idN−−−−→M∗ ⊗S N → 0

is exact.

In the same way, the functor M ⊗S − is right-exact. (This

statement is left as an exercise.)

Proof. First note that π ⊗ idN is onto, since elementary tensors

generate M∗ ⊗S N. Moreover, it follows from naturality that

(π ⊗ idN) ◦ (ι⊗ idN) = (π ◦ ι) ⊗ idN = 0⊗ idN = 0

whence im(ι⊗ idN) ⊆ ker(π ⊗ idN) . It remains to show that

ker(π ⊗ idN) ⊆ im(ι⊗ idN) .

Put

I := im(ι⊗ idN) ≤M ⊗S N

and

CK := (M ⊗S N)
/
I .

Since im(ι⊗ idN) ⊆ ker(π ⊗ idN) , the homomorphism π ⊗ idN descends to a

homomorphism π∗ : CK →M∗ ⊗S N. We finish the proof by constructing a

section σ∗ : M∗ ⊗S N → CK, which demonstrates that π∗ is injective

and hence an isomorphism.
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For starters define

σ : M∗ ×N −→ CK
(π(m) , n) 7→ m⊗ n+ I

and note that this definition is well-put: if π(m1)⊗ n = π(m2)⊗ n
then m1 ⊗ n−m2 ⊗ n ∈ I. It is easy to check that σ is bilinear.

Hence it induces a homomorphism σ∗ : M∗ ⊗S N → CK so that

M∗ ⊗S N σ∗ // CK

M∗ ×N

OO 99ssssssssss

commutes. By construction, σ∗ ◦ π∗ = idCK . You can check this easily

on generators. q.e.d.

Free Modules

Definition 3.1.2.17. Let R and S be rings and let X be a set. A

free R-S-bimodule with basis X is an R-S-bimodule F together with

a map ι : X → F satisfying the following universal propert:

For any bimodule M and any map f : X →M, there exists a

unique R-S-homomorphism ϕ : F →M so that the diagram

F
ϕ // M

X

ι

OO

f

>>||||||||

commutes.

The cardinality of X is called the rank of the free module.

Warning 3.1.2.18. The rank of a free module is in general not a

well-defined notion, i.e., it is possible that free modules over

sets of different cardinality are isomorphic as R-S-bimodules. We

shall see, however, that in important cases the structure of a free

module determines the cardinality of its basis.
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Example 3.1.2.19 (Free Bimodules of Rank 1). Let R and S be two

rings. Then R is naturally an R-Z-bimodule and S is naturally a

Z-S-bimodule. We shall write out the universal property for the

R-S-bimodule

F := R⊗Z S.

We get: for any R-S-bimodule M and any bilinear map β : R× S →M

there exists a unique R-S-homomorphism ϕ : F →M so that

F
ϕ // M

R× S

OO

β

;;wwwwwwwww

commutes. Note, however, that the bilinear map is uniquely

determined by the value β(1, 1). Conversely, any value maybe

specified for this pair and we can always extend it to a bilinear

map. Thus, we may equivalently say: Let X be a one point set and

let ι : X → F send its element to 1⊗ 1. Then, for any map f : X →M

there exists a unique homomorphism ϕ : F →M so that

F
ϕ // M

X

ι

OO

f

>>||||||||

commutes.

Exercise 3.1.2.20 (Free Modules of rank 1). Let R be a ring.

1. Prove or disprove: R is a free R-R-bimodule of rank 1.

2. Prove or disprove: R is a free R-Z-bimodule of rank 1.

Exercise 3.1.2.21. Let X = X1 ∪X2 be a disjoint union of sets. Let

X1 → F1 and X2 → F2 be free R-S-bimodules over X1 and X2,

respectively. Show that

X → F1 ⊕ F2

is a free R-S-bimodule over X.
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Corollary 3.1.2.22. In particular, we note that RX :=
⊕

x∈X (R⊗Z S)

is a free R-S-bimodule over X.

Definition 3.1.2.23. Let R and S be rings and let X be a set. A

free left-R-module with basis X is an left-R-module F together

with a map ι : X → F satisfying the following universal propert:

For any left-R-module M and any map f : X →M, there

exists a unique R-homomorphism ϕ : F →M so that the

diagram

F
ϕ // M

X

ι

OO

f

>>||||||||

commutes.

The cardinality of X is called the rank of the free module.

Exercise 3.1.2.24. Show that every free left-R-module is a free

R-Z-bimodule and that every free R-Z-bimodule is a free

left-R-module.

Modules over Commutative Rings

Let us assume that R is commutative. We can define an R-R-bimodule

structure on any left-R-module M by ma := am. This works as

a(mb) = a(bm) = b(am) = (am)b. Let us call a R-R-bimodule M a

commutative R-module if am = ma for all a ∈ R and all m ∈M.

Thus, we have seen that we can define a commutative R-module

structure on any left-R-module.

Conversely, given a commutative R-module M, we can forget

the right multiplication and regard it as a left-R-module. However,

note that no information is lost: we can reconstruct the

right-multiplication from the left-multiplication. (This is why you

thaught your Linear Algebra teacher was overly picky when he took

points off for multplying from the wrong side, insisting that there

is no rule for how to do that.) In short:

143



Observation 3.1.2.25. The construction

{left-R-modules} −→ {commutative R-modules}

and

{commutative R-modules} −→ {left-R-modules}

described above are mutually inverse. They preseve commutative

diagrams. q.e.d.

Exercise 3.1.2.26. Give an example of a R-R-bimodule that is not

commutative.

Exercise 3.1.2.27. Define a free commutative R-module by means of a

universal property. Show that the correspondence from (3.1.2.25)

identifies free left-R-modules and free commutative R-modules.

Observation 3.1.2.28. It is much easier to construct free

commutative R-modules than it is to construct free bimodules: for

any set X, the module RX :=
⊕

x∈X R with the obvious map x 7→ χx is a

free commutative R-module. q.e.d.

Exercise 3.1.2.29. Let K be a field. Show that every commutative

K-module is a free commutative K-module: Let F be a commutative

K-module. Then there exists a set X and a map ι : X → F such that

for any commutative K-module M and any map f : X →M, there is a

unique homomorphism ϕ : F →M so that

F
ϕ // M

X

ι

OO

f

>>||||||||

commutes.

Observation 3.1.2.30. Tensor products of free commutative R-modules
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are easy:

RX ⊗R RY =

(⊕
x∈X

R

)
⊗R

(⊕
y∈Y

R

)

=
⊕
x∈X


R⊗R

(⊕
y∈Y

R

)


=
⊕
x∈X

(⊕
y∈Y

R⊗R R
)

= RX×Y

In particular, the tensor product is again a free commutative

R-module.

Corollary 3.1.2.31 (tensor product of vector spaces). Dimensions

multiply when you tensor vector spaces over the same field. q.e.d.

Example 3.1.2.32 (vector spaces of finite dimension). Note that the

universal property gives a 1-1 correspondence

BilK(V ×W ;K)←→ LinK(V ⊗K W ;K)

This correspondence is easily seen to be K-linear and natural.

Thus, there is a natural isomorphism of the dual of V ⊗K W and the

K-values bilinear forms on V ×W:

(V ⊗K W )∗ = BilK(V ×W ;K)

For vector spaces of finite dimension, we can do better

because finite dimensional vector spaces are canonically isomorphic

to their double-dual spaces. We obtain the interesting natural

isomorphsm

V ⊗K W = (V ⊗K W )∗∗ = BilK(V ×W ;K)∗

for vector spaces of finite dimension.

Proposition 3.1.2.33. Let M and N be two commutative R-modules.

Then M ⊗R N is a commutative R-module. (Note that M and N are

both R-R-bimodules. Thus, M ⊗R N is a R-R-bimodule.)
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Proof. For elementary tensors, we have

a(m⊗ n) = (am) ⊗ n = (ma) ⊗ n = m⊗ (an) = m⊗ (na) = (m⊗ n)a

and we can extend additively to all of M ⊗R N. q.e.d.

Proposition 3.1.2.34 (Commutativity of Tensor Products). Let M and

N be two commutative R-modules. Then

M ⊗R N −→ N ⊗RM
m⊗ n 7→ n⊗ m

defines a natural isomorphism.

Proof. Note that

M ×N −→ N ⊗RM
(m,n) 7→ n⊗ m

is R-R-R-bilinear. Thus, there is a unique R-R-homomorphism

M ⊗R N −→ N ⊗RM

that makes

M ⊗R N // N ⊗RM

M ×N

77ppppppppppp

OO

// N ×M

OO

commute.

From uniqueness, we also get that the obvious homomorphism

in the other direction has to be the inverse.

Naturallity is easily checked on elementary tensors. Let

ϕ : M1 →M2 and ψ : N1 → N2 be two homomorphisms. Then, for m ∈M1

and n ∈ N1, we have

m⊗ n //

ϕ⊗ψ
²²

n⊗ m
ψ⊗ϕ

²²
ϕ(m)⊗ ψ(n) // ψ(n)⊗ ϕ(m)

q.e.d.
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Extensions

Example 3.1.2.35 (Scalar Extension). Let R and T be rings, and let

M be an R-T-bimodule.

An R-algebra is ring S together with a ring homomorphism

σ : R→ S. Note that S is an S-R-bimodule in a natural way. Then

S ⊗RM is an S-T-bimodule, called the scalar extension of M over

S.

The universal property specializes to: For any

S-T-bimodule N and any R-Z-T-bilinear map β : S ×M → N there

exists a unique S-R-T-homomorphism ϕ∗ : S ⊗RM → N so that

S ⊗RM ϕ∗ // N

S ×M

OO

β

::uuuuuuuuuu

commutes. Now observe that S-R-T-bilinear maps from S ×M to N

determined by what they do on 1×M. Moreover, there is a

1-1-correspondence from those S-R-T-bilinear maps to

R-T-homomorphisms from M to N regarded as an R-Q via the

structure homomorphism σ : R→ S.

Thus, we obtain the following characterization of the

scalar extension by a universal property:

For any S-T-bimodule N and any R-T-homomorphism

ϕ : M → N there exists a unique S-T-homomorphism

ϕ∗ : S ⊗RM → N so that

S ⊗RM ϕ∗ // N

M

m7→1⊗m
OO

ϕ

::uuuuuuuuuu

commutes.

Exercise 3.1.2.36. Let K be a field and let R be an integral

domain. Recall that R[x] denotes the ring of polynomials in the

variable x whereas R[[x]] denotes the ring of power series in the
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variable x. Both are integral domains whose fields of fractions are

denoted by R(x) and R((x)) , respectively. We also fix the

multiplicative set L := {1, x, x2, . . .} . Prove or disprove:

1. (a) K((x)) ∼= K(x)⊗K[x] K[[x]]

(b) K((x)) ∼= K(x)⊗K K[[x]]

(c) K[x]⊗K K[y] = K[x, y]

2. (a) R((x)) ∼= R(x)⊗R[x] R[[x]]

(b) L−1R[[x]] ∼= R(x)⊗R[x] R[[x]]

(c) L−1R[[x]] ∼= L−1R[x]⊗R[x] R[[x]]

(d) R((x)) ∼= R(x)⊗R R[[x]]

(e) L−1R[[x]] ∼= R(x)⊗R R[[x]]

(f) L−1R[[x]] ∼= L−1R[x]⊗R R[[x]]

(g) R[x]⊗R R[y] = R[x, y]

Exercise 3.1.2.37 (Localization). Let R be a commutative ring and

L ⊂ R be a multiplicative set. Let M be a left R-module. Show

that

L−1R⊗RM −→ L−1M
a

r
⊗ m 7→ am

r

is an isomorphism of L−1R-left modules. Also show that this

isomorphism is natural in the module M.

Corollary 3.1.2.38. In particular, localization distributes over

direct sums and is right-exact. q.e.d.

Corollary 3.1.2.39. Let X be a set, let R be an integral domain and

let K be its field of fractions. Then we have a natural isomorphism

KX ∼= K ⊗R RX . Since KX is a vector space, dimension theory from

linear algebra tells us that the cardinality of X is determined by

the vector space. Thus, free modules over integral domains have

well-defined ranks.
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Exercise 3.1.2.40. Show that

C⊗RMn,m(R) ∼= Mn,m(C)

Exercise 3.1.2.41. Let R and S be rings. Prove or disprove the

following statements:

1. Every R-S-bimodule can be regarded as an R× Sop-left module.

2. Every R× Sop-left module can be regarded naturally as an

R-S-bimodule.

3. Every R-S-bimodule can be regarded as an R⊗Z Sop-left module.

4. Every R⊗Z Sop-left module can be regarded naturally as an

R-S-bimodule.

3.1.3 Algebras

Definition 3.1.3.1. An R-algebra is ring S together with a ring

homomorphism σ : R→ S. The homomorphism σ is called the structure

homomorphism.

An R-algebra σ : R→ S is called central if the image of σ

is contained in the center of S. Note that in this case, S is a

commutative R-R-bimodule.

Proposition 3.1.3.2 (Tensor Products of Algebras). Let R be a ring

and let S and T be central R-algebras. Show that the S-T-bimodule

S ⊗R T carries a unique ring structure satisfying

(b1 ⊗ c1)(b2 ⊗ c2) = (b1b2) ⊗ (c1c2)

Moreover, show that

a 7→ a⊗ 1 = 1⊗ a
defines a ring homomorophism turning S ⊗R T into a central

R-algebra.
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Proof. First of all let us see why the hypothesis of centrality is

forced upon us. We observe

(b⊗ 1)(1⊗ c) = b⊗ c = (1⊗ c)(b⊗ 1)

which implies that S and T commute inside S ⊗R T. Since the image

of σ sits inside S it commutes with all of T and since it sits

inside T it commutes with all of S.

The key problem in this statement is to see that the

definition of the multiplication is well-put. If it is, then it is

obvious that we defined a ring structure. So, how could the

definition fail? Well, for ai ∈ R, bi ∈ S, and ci ∈ T, we find right

away: biai ⊗ ci = bi ⊗ aibi whence, for instance,

b1a1b2a2 ⊗ c1c2 = (b1a1 ⊗ c1)(b2a2 ⊗ c2) = (b1 ⊗ a1c1)(b2 ⊗ a2c2) = b1b2 ⊗ a1c1a2c2

which just so happens to be fine, since we assumed centrality. We

could check all relations from the construction of the tensor

product and verify that the product rule from above extends to a

well defined multiplication.

A more structural approach is this. First observe that

multiplication S × S → S is bilinear and therefore induces a

homomorphism S ⊗R S → S that extends multiplication from elementary

tensors. Similarly, we get for T a homomorphism T ⊗R T → T. By

naturality, we can put these together and get:

S ⊗R S ⊗R T ⊗R T −→ S ⊗R T.

Here, we use associativity and commutativity (the algebras are

central!) of the tensor product, and obtain:

(S ⊗R T ) ⊗R (S ⊗R T ) −→ S ⊗R T

Finally, we write out the commutative diagram

(S ⊗R T ) ⊗R (S ⊗R T ) // S ⊗R T

(S ⊗R T ) × (S ⊗R T )

OO 55llllllllllllll
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and observe that the diagonal arrow is exactly the map we wanted to

extend. q.e.d.

Observation 3.1.3.3. Let R be a ring and let S be an R-R-bimodule

together with

• an R-R-homomorphism σ : R→ S and

• a R-R-homomorphism map µ : S ⊗R S → S

Then, µ defines a multiplication low on S via

S × S → S ⊗R S → S

so that σ : R→ S is an R-algebra provided the following diagrams

commute:

associativity

S ⊗R S ⊗R S
id⊗µ

²²

µ⊗id
// S ⊗R S

µ

²²
S ⊗R S µ

// S

structure homomorphism

R⊗R S
∼= //

σ⊗id
²²

S

S ⊗R S
µ

77nnnnnnnnnnnnnn

S ⊗R R
∼= //

id⊗σ
²²

S

S ⊗R S
µ

77nnnnnnnnnnnnnn

This says that σ(1) is a multiplicative identity element in S.

R⊗R R
σ⊗σ

²²

∼= // R

σ

²²
S ⊗R S µ

// S

This says that σ is multiplicative.

One nice thing is that distributivity just flows from bilinearity of

the multiplication law and does not need a diagram.
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Definition 3.1.3.4. Let σ1 : R→ S1 and σ2 : R→ S2 be two R-algebras.

A ring homomorphism ϕ : σ1 → σ2 is an R-algebra homomorphism if

S1
ϕ // S2

R

σ1

``@@@@@@@ σ2

>>~~~~~~~

commutes.

The Tensor Algebra

Definition 3.1.3.5 (The Tensor Algebra). Let R be a ring and let M

be an R-R-bimodule. We construct the tensor algebra of M over R

as follows: Put

M⊗m := M ⊗RM ⊗R · · · ⊗RM︸ ︷︷ ︸
m factors

and define a ring structure on

T := TR(M) := R⊕M⊗1 ⊕M⊗2 ⊕M⊗3 ⊕ · · ·

induced by

M⊗m ×M⊗n −→ M⊗(m+n)

(s, t) 7→ s⊗ t

The inclusion of R as the degree 0 summand in T endows this ring

with the structure of an R-algebra.

Note that TR(M) comes with a direct sum decomposition

TR(M) =
⊕∞

i=0 T iR(M) . The elements concentrated in one summand are

called homogeneous and the index of their summand is called the

degree of the element. Note that degrees add up when homogeneous

elements are multiplied. This makes TR(M) a graded algebra (with an

N-grading; other monoids could occur as well, the next important

being Z2: there are many Z2-graded algebras in physics).

Observation 3.1.3.6. If M is a commutative R-module over a

commutative ring R, the tensor algebra is a central

R-algebra. q.e.d.
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Exercise 3.1.3.7. Show that polynomial rings arise as tensor

algebras: TR(R) ∼= R[x] .

Example 3.1.3.8. Let K be a field, and let V be a K-vector space

with basis X ⊂ V . Then K[X∗] ∼= TR(V ) , where X∗ is the free monoid

over X. (Moreover, this morphism is natural in the category of

vector spaces with distinguished bases.)

The isomorphism is induced by

x1x2 · · · xu 7→ x1 ⊗ x2 ⊗ · · · ⊗ xu.

Proposition 3.1.3.9 (Universal Property of the Tensor Algebra). Let

R be a ring and let M be an R-R-bimodule. For any R-algebra S

and any R-R-bimodule homomorphism ϕ : M → S there exists a unique

R-algebra homomorphism ϕ∗ that makes

TR(M)
ϕ∗ // S

M

OO

ϕ

;;xxxxxxxxxx

commute.

Proof. First, we observe that ϕ∗ is nailed on elementary tensors.

We have to put: ϕ∗(m1 ⊗ · · · ⊗ mu) = ϕ(m1) · · ·ϕ(mu) . Moreover, if there

is an R-R-homomorphism satisfying this rule, it will clearly be

multiplicative by the way multiplication in TR(M) is defined.

As for existence of such an R-R-homomorphism, note that

M × · · · ×M −→ S

(m1, . . . ,mu) 7→ ϕ(m1) · · ·ϕ(mu)

is multilinear and therefore induces a bimodule homomorphism

M⊗u → S

The direct sum of all these homomorpihsms defines an

R-R-homomorphism ϕ∗ : TR(M)→ S which clearly does what we need on

elementary tensors. q.e.d.
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The Symmetric Algebra

Definition 3.1.3.10. Let R be a ring and let M be a R-R-bimodule.

The symmetric algebra over M is the quotient

SR(M) := TR(M) /I

where I is the two-sided ideal generated by all elements of the form

m⊗ n− n⊗ m ∈M⊗2 ≤ TR(M) . We denote the multiplication in the

symmetric algebra by ¯.

Observation 3.1.3.11. The elementary elements of the form

m1 ¯ · · · ¯mu with the empty product interpreted as 1 generate the

symmetric algebra as a module over R. q.e.d.

Observation 3.1.3.12. The Ideal I is generated by homogeneous

elements. It follows that the symmetric algebra inherits a grading

via

SmR (M) := im
(
M⊗m)

.

These R-R-submodules are called symmetric powers of M. The claim

here is that SmR (M) and SnR(M) intersect trivially for m 6= n so that

SR(M) =
⊕
m

SmR (M)

is an N-graded algebra.

Proof. Just observe that I =
⊕

m I
m where Im = I ∩M⊗m. This is to

say that the ideal I is closed with respect to taking homomgeneous

components. q.e.d.

Remark 3.1.3.13. Symmetric powers are functorial in M.

Exercise 3.1.3.14. Prove or disprove: SR(M) is commutative if and

only if R is commutative.

Exercise 3.1.3.15. Let K be a field and let V be a vector space of

dimension m. Show that SK(V ) ∼= K[x1, . . . , xm] but that the above

isomorphism is neither unique nor natural (in fact, it depends on

the choice of a basis for V ).
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The Exterior Algebra

Definition 3.1.3.16. Let R be a ring and let M be a R-R-bimodule.

The exterior algebra over M is the quotient

ΛR(M) := TR(M) /I

where I is the two-sided ideal generated by all elements of the form

m⊗ n+ n⊗ m ∈M⊗2 ≤ TR(M) . We denote the exterior product by ∧.

Observation 3.1.3.17. The elementary elements of the form

m1 ∧ · · · ∧mu with the empty product interpreted as 1 generate the

exterior algebra as a module over R. q.e.d.

Observation 3.1.3.18. The Ideal I is generated by homogeneous

elements. It follows that the exterior algebra inherits a grading

via

Λm
R (M) := im

(
M⊗m)

.

These R-R-submodules are called exterior powers of M. The claim

here is that Λm
R (M) and Λn

R(M) intersect trivially for

m 6= n. q.e.d.

Remark 3.1.3.19. Exterior powers are functorial in M.

Proposition 3.1.3.20. Let K be a field of characteristic 6= 2 and

left V be a vector space of dimension m ≤ ∞ over K.

Then for any sequence v1, . . . ,vu ∈ V, we have the

equivalence:

v1 ∧ · · · ∧ vu = 0 iff {v1, · · · ,vu} is linearly dependent

Fix a basis e1, . . . , em and put I := {1, . . . ,m} . For each subset

A = {i1 < i2 < · · · < iu} ⊆ I, put

eA := ei1 ∧ · · · ∧ eiu .

The set of all eA forms a basis of ΛK(V ).
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Proof. First we note that swapping the order of two factors within

an elementary element v1 ∧ · · · ∧ vu amounts to flipping the sign. Thus

even permutations of the factors leave the sign unchanged whereas

odd permutations of the factors introduce a minus sign. It follows

that if the same factor is repeated, the product evaluates to 0:

interchanging the two equal factors leaves the produc unchanged and

introduces a sign change.

Suppose now, the vectors vi are linearly dependent, say

v1 = a2v2 + · · ·+ auvu

Then:

v1 ∧ · · · ∧ vu = (a2v2 + · · ·+ auvu) ∧ v2 ∧ · · · ∧ vu =
u∑
i=2

aivi ∧ v2 ∧ · · · ∧ vu = 0

Since any vector is a linear combination of the basis vectors ei, any

elementary element of the exterior algebra is a linear combination

of elementary elements whose factors are basis vectors. The above

shows that repeated basis vectors may be dropped and that (up to

signs) we can insist on putting those factors in ascending order of

indices. That shows that the proclaimed basis vectors eA span

ΛK(V ).

To see linear independence, one defines an algebra

structure on the abstract vector space with basis {eA A ⊆ {1, . . . ,m}}
and shows that the obvious map is an isomorphism of algebras (I am

too lazy to think about the details right now). q.e.d.

Exercise 3.1.3.21. Finish the prove of (3.1.3.20):

1. Show that the basis vectors eA are linearly independent.

2. Show: if v1, . . . ,vu are linearly independent, then v1 ∧ · · · ∧ vu 6= 0.

Remark 3.1.3.22. It follows that Λm
K(V ) is a K-vector of dimension

1. Since exterior powers are functorial, this implies that any

K-endomorphism η : V → V induces a K-endomorphism η∗ : Λm
K(V )→ Λm

K(V )
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which of course, is just multiplication by a certain scalar.

Surprise: this scalar is the determinant of η. (Just in case you

ever wondered what the real reason is that determinants are

multiplicative.)

3.1.4 Appendix: Categories and Functors

Definition 3.1.4.1. A category is a class C (whose elements are

called objects) together with a family of sets (Mor(A;B))A,B∈C (whose

elements are called morphisms from A to B, i.e., A is the source

object and B is the target object of these morphisms) and a rule of

composition

Mor(A;B)×Mor(B;C) −→ Mor(A;C)

(f, g) 7→ g ◦ f

so that composition is associative. Also, we require that Mor(A;A)

always contains a multiplicatively neutral element idA.

Definition 3.1.4.2. Let C be a category. A diagram over C is a

directed graph whose vertices are labelled with objects from C and

whose arrows are labeled with morphisms from C (if A is the label of

the initial vertex of an arrow and B is the label of its terminal

vertex, then we want the arrow to be labelled by a morphism in

Mor(A;B), of course).

A diagram commutes if for any pair of vertices (source and

sink) the composition of the arrows along a directed edge path from

the source to the sink does not depend on the particular path

chosen.

Definition 3.1.4.3. Let C and D be categories. A functor F : C → D
assigns to each object A and morphism f in C and object F(A) and a

morphism F(f) in D so that commutative diagrams over C are taken to

commutative diagrams over D.
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Exercise 3.1.4.4. Let X be a topological space. For any two points

x, y ∈ X let Paths(x, y) be the set of homotopy classes of paths from x

to y. Let

Paths(x, y)× Paths(y, z) −→ Paths(x, z)

be the obvious concatenation operation. Show that these data define

a category. Show that any continuous function X → Y induces a

functor.

Exercise 3.1.4.5. Let G be a group. Let CG be a category with one

object A and one morphism from A to A for each group element.

Composition of morphisms shall obey the group law in G.

1. Show that any group homomorphism ϕ : G→ H induces a functor

from CG to CH.

2. Deduce that

G 7→ CG
defines a functor from the category of groups to the category of

categories (where categories are objects and where functors are

morphisms).

Limits and Colimits

Definition 3.1.4.6 (Cones and Limits). Let C be a category and let D

be a commutative diagram in C. A cone over D is an object C

together with a family of morphisms (gv : C → Av)v∈D where v runs

through the vertices of D. A morphism between cones C1 → C2 is a

C-morphism that makes the resulting diagram with base D commute.

A cone L over D is a limit if it is universal among all

cones, i.e., for every cone C there exists a unique cone-morphism

C → L.

Remark 3.1.4.7. As usual, limits are unique up to unique

cone-isomorphism. However, existence of limits is usually not

clear; and there are categories where limits do not necessarily

exist.
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Example 3.1.4.8. In the category of R-S-bimodules, let D be a just

a set of vertices without any arrows. Then the limit over D is just

the direct product of its labels.

The dual notion is obtained by reversing arrows:

Definition 3.1.4.9 (Cocones and Colimits). Let C be a category and

let D be a commutative diagram in C. A cocone over D is an object

C together with a family of morphisms (gv : Av → C)v∈D where v runs

through the vertices of D. A morphism between cocones C1 → C2 is a

C-morphism that makes the resulting diagram with base D commute.

A cocone L over D is a colimit if it is universal among

all cocones, i.e., for every cone C there exists a unique

cocone-morphism L→ C.

Remark 3.1.4.10. As usual, colimits are unique up to unique

cocone-isomorphism. However, existence of colimits is usually not

clear; and there are categories where colimits do not necessarily

exist.

Example 3.1.4.11. In the category of R-S-bimodules, let D be a just

a set of vertices without any arrows. Then the colimit over D is

just the direct sum of its labels.

Definition 3.1.4.12. A functor that commutes with limits is called

continuous. It is called co-continuous if it commutes with

colimits.

Exercise 3.1.4.13. Prove or disprove: −⊗S N is a co-continuous

functor.

Definition 3.1.4.14 (Diagram Categories). Let C be a category and

let Γ be a directed graph. Define a category CΓ of diagrams in C
over Γ whose objects are commutative diagrams over C whose

underlying directed graph is Γ. A morphism between two commutative

diagrams is a family (f : Av → Bv)v∈Γ (here v runs through all

vertices of Γ) so that the resulting prism is commutative.
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Exercise 3.1.4.15. Limits are functorial: Given a diagram morphism

δ : D1 → D2 and given two limits L1 := lim−→D1 and L2 := lim−→D2, there

exists a unique C-morphism f : L1 → L1 that makes the diagram

L1
f // L2

D1

OO

δ
// D2

OO

commute.

3.1.5 Appendix: Homotopy

This is a little bit of topology.

Definition 3.1.5.1. Let X and Y be topological spaces. Two

continuous maps f0, f1 : X → Y are called homotopic if there is a

continuous map H : X × [0, 1]→ Y so that f0 = H(−, 0) and f1 = H(−, 1) .

One puts ft := H(−, t) and thinks of this as a continuous family of

functions interpolating from f0 to f1.

Let A ⊂ X be a subset and assume that f0 and f1 agree on

A. We say that f0 and f1 are homotopic relative to A if there is a

homotopy from f0 to f1 such that all intermediate ft agree with f0 and

f1 on the subset A.

Definition 3.1.5.2. A path in X is a continuous map from the unit

interval [0, 1] into X. Two paths are homotopic relative endpoints it

they are homotopic as maps relative to the subset {0, 1} ⊂ [0, 1].

Exercise 3.1.5.3. Show that paths that only differ in

parametrization are homotopic: Let p : [0, 1]→ X be a path and let

g : [0, 1]→ [0, 1] be a continuous map with g(0) = 0 and g(1) = 1. Show that

p is homotopic to p ◦ g relative to {0, 1}.

Exercise 3.1.5.4. Show that homotopy of maps from X to Y relative

to a fixed subset of X is an equivalence relation.
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Definition 3.1.5.5. For any path p : [0, 1]→ X the reversed path −p is

given by −p(t) := p(1− t) . For two paths p, q : [0, 1]→ X, with q(1) = p(0)

the concatenation is defined as

pq : t 7→



q(2t) t ≤ 1

2

p(2t− 1) 1
2
≤ t

Exercise 3.1.5.6. Show that concatenating a path and its inverse

yields a path that is homotopic to a constant path.

Exercise 3.1.5.7. Show that homotopy and concatenation interact

nicely: if p and p′ are homotopic relative endpoints and q and q′ are

homotopic relative endpoints, then so are the concatenations pq and

p′q′.

3.1.6 Appendix: Dual Vector Spaces

In this seciton, K is a field.

Definition 3.1.6.1. Let V be a K-vector space. The dual of V is

the set of all K-valued linear forms on V :

V ∗ := LinK(V ;K)

This set is a K-vector space in the obvious way.

Proposition 3.1.6.2 (Functoriality). The dual construction is a

cofunctor, i.e., for any linear map ϕ : V → W we define:

ϕ∗ : W ∗ −→ V ∗

λ 7→ λ ◦ ϕ

This construction takes commutative diagrams to commutative diagrams

(reversing arrows), i.e.:

(ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗

Proof. Straight forward computation. q.e.d.
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Proposition 3.1.6.3. The map

ΦV : V −→ V ∗∗

v 7→ evv := (λ 7→ λ(v))

is a natural monomorphism. In particular, it is a natural

isomorphism for finite dimensional vector spaces.

Proof. First you (not I) check that evv : V ∗ → K is linear. Then,

another straight forward computation shows ΦV to be a linear map.

Moreover, it is easy to see that 0 is the only vector on which all

linear forms vanish. Injectivity follows.

As for naturality, let ϕ : V → W be linear. We have to

show that

V
ΦV //

ϕ

²²

V ∗∗

ϕ∗∗

²²
W

ΦW // W ∗∗

commutes. Thus, we have to show that ΦW (ϕ(v)) = evϕ(v) is the same

linear map on W ∗ as ϕ∗∗(ΦV (v)) = ϕ∗∗(evv) = evv ◦ϕ∗. To that these

function are the same, we evaluate on a random linear form λ ∈W ∗.

We get:

evϕ(v)(λ) = λ(ϕ(v))

and

(evv ◦ϕ∗)(λ) = evv(ϕ∗(λ))

= evv(λ ◦ ϕ)

= λ(ϕ(v))

This counts as success. q.e.d.

Exercise 3.1.6.4. Make sense of the following statement and prove

it: The only natural homomorphism from V to its dual V ∗ is the

trivial 0-homomorphism. (Beware of contravariance!)
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3.2 Modules over Group Rings (aka

Representation Theory)

3.2.1 Representations as Modules

Let G be a group, let K be a field, and let V be a K-vector space.

Definition 3.2.1.1. A representation of G in V is a group

homomorphism

ρ : G −→ AutK(V )

g 7→ ρg

The dimension of V is called the degree of the representation.

A subspace U ≤ V is ρ-invariant if for every g ∈ G, we

have ρg(U) ⊆ U. It follows that restriction induces a representation

of G on U.

A representation without invariant subspaces is called

irreducible.

Let ρ : G→ AutK(V ) and σ : G→ AutK(W ) be two

representations. A linear map ϕ : V → W is equivariant with respect

to ρ and σ if for any g ∈ G, the diagram

V
ϕ // W

V ϕ
//

ρg

OO

W

σg

OO

commutes.

Proposition 3.2.1.2. Let ρ : G→ V be a representation. Then

K[G]× V −→ V(∑
g∈G

ξgg,v

)
7→

∑
g∈G

ξgρg(v)

endows V with the structure of a left-K[G]-module.
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Under this construction, irreducible representations

correspond to simple left-K[G]-modules; and equivariant linear maps

turn into K[G]-homomorphisms.

Conversely, any left-K[G]-module M is already a K-vector

space and left-multiplication g 7→ λg is a representation of G on M.

The two constructions are inverse functors and realize an

equivalence of categories:

{representations of G over K-vector spaces} ←→ {left-K[G] -modules}

Proof. ... q.e.d.

Example 3.2.1.3. Representations of the infinite cyclic group Z are

exactly the modules over the Laruent polynomial ring K[x, x−1].

Recall that K[x, x−1] is a PID. We will study finitely generated

modules over PIDs extensively in the next chapter.

Exercise 3.2.1.4. Let G be a finite group acting on Rm by linear

automorphisms. Show that

〈−,−〉 : Rm ×Rm −→ R

(v,w) 7→
∑
g∈G

(gv) · (gw)

defines an inner product on Rm.

Also show that this inner product is G-invariant, i.e.,

for any g ∈ G, we have

〈gv, gw〉 = 〈v,w〉.

Deduce that every G-invariant subspace of Rm has a

G-invariant complementary direct summand.

3.2.2 Constructions

Functoriality of various constructions gives a way to create new

group representations from old ones.
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Direct Sum

Observation and Definition 3.2.2.1. Let ρi : G→ AutK(Vi) be a family

(i ∈ I) of representations. Then

ρ : G −→ AutK

(⊕
i∈I

Vi

)

g 7→
⊕
i∈I

ρi(g)

is a representation, called the direct sum of the ρi and denoted by⊕
i∈I ρi.

Definition 3.2.2.2. A representation is indecomposable if it does

not split non-trivially as a direct sum of two subrepresentations.

Observation 3.2.2.3. Irreducible representations are

indecomposable. q.e.d.

Remark 3.2.2.4. It is generally not true that indecomposable

representations are irreducible.

Exercise 3.2.2.5. Construct an indecomposable, non-irreducible

representation of the infinite cyclic group.

Proposition 3.2.2.6. Let V be a complex vector space of finite

dimension and let ρ : G→ AutC(V ) be a a representation of the finite

group G. Then ρ decomposes as a direct sum of irreducibles. In

particular, any finite dimensional indecomposable complex

representation of a finite group is irreducible.

Proof. It suffices to show that any proper subrepresentation has a

complementary summand. This, however, follows from

(3.2.1.4) q.e.d.

Definition 3.2.2.7. A representation that decomposes as a sum of

irreducibles is called completely reducible. The corresponding

notions for modules is semi-simplicity: A module is called

semi-simple if it is a direct sum of simple modules.
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Exercise 3.2.2.8. Let M be a semi-simple left-R-module. Let S ≤M

be a submodule.

1. Show S is a direct summand, i.e., show that there exists a

complementary direct summand inside M.

2. Show that S and M/S are semi-simple.

Exercise 3.2.2.9. Show that a left-R-module M is semi-simple if and

only if it is the sum (not direct!) of its minimal submodules.

Tensor Product

Observation and Definition 3.2.2.10. Let ρ : G→ AutK(V ) and

σ : G→ AutK(W ) be two representations. The tensor product of ρ and

σ is the representations

ρ⊗ σ : G −→ AutK(V ⊗K W )

g 7→ ρ(g)⊗ σ(g)

Exercise 3.2.2.11. Let ρi : G→ AutK(Vi) with i = 1, 2 and

σ : G→ AutK(W ) be representations. Show that (ρ1 ⊕ ρ2) ⊗ σ and

(ρ1 ⊗ σ) ⊕ (ρ2 ⊗ σ) are equivalent representations.

Exercise 3.2.2.12. Let

ρ : G −→ GLr(K)

and

σ : G −→ GLs(K)

be two representations. Describe their tensor product and their

direct sum as a homomorphisms

G→ GLrs(K) and G→ GLr+s(K)
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The Dual Representation

Observation and Definition 3.2.2.13. Let ρ : G→ AutK(V ) be a

representation. The dual representation is given via:

ρ∗ : G −→ AutK(V ∗)

g 7→ ρ
(
g−1

)∗

Remark 3.2.2.14. Taking inverses in the above formula is braught

upon us since taking dual is a contravariant functor. Naturally it

turns a left-action into a right-action, and we need to compensate

for that by composing with an anti-automorphism.

3.2.3 Example: The Regular Representation

Definition 3.2.3.1. Let G be a group and let K be a field. The

left-multiplication action of G on itself induces (by functoriality

of free constructions) an action of G on the K-vector space with

basis G by linear maps, i.e., we obtain a representation

ρ : G→ AutK
(
KG

)
. This representation is called the

regular representation of G over K.

Remark 3.2.3.2. From the module point of view, this representation

is particularly simple: it is just the group ring K[G] regarded as

a left-K[G]-module.

We shall work out what this means for finite groups. In this case,

KG = MapsG;K and the action is given by

G×MapsG;K −→ MapsG;K

(g, f) 7→ f ◦ λg−1

To prove this, check on characteristic functions for group elements:

they form the canonical basis for MapsG;K.

Proposition 3.2.3.3. Let G be a finite group. Any irreducible

representation of G arises as a subrepresentation of the regular
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representation. (I.e., every simple K[G]-module injects into K[G]).

More precisely, let G : G→ AutK(V ) be a representation. For any

linear form λ : V → K the map

ϕ : V −→ MapsG;K

v 7→ (
fv : g 7→ λ

(
g−1v

))

is a G-equivariant linear map, i.e., a homomorphism of

representations.

Note that the kernel of ϕ consists of exactly those v ∈ V
for which λ vanishes on the orbit Gv. In particular, ϕ is

injective provided that ρ is irreducible and λ is non-trivial.

Proof. First, check that ϕ is K-linear. This is easy.

Then check that ϕ is G-equivariant. This is easy, too:

(hfv)(g) = (fv ◦ λh−1)(g)

= λ
((
h−1g

)−1
v
)

= λ
(
g−1hv

)

= fhv(g)

The other statements are clear. q.e.d.

Corollary 3.2.3.4. Let G be a finite group. Let

CG = W1 ⊕ · · · ⊕Wu

be a decomposition of the regular representation into irreducible

representations (??). Then, any irreducible representation

ρ : G→ AutC(V ) is equivalent to one of the Wi.

Proof. This is most easily seen from the modules point of view. In

(??), we constructed an injective homomorphism

ϕ : V → CG.

Let πiC
G → Wi be the projection to the ith coordinate. Then the

composition πi ◦ ϕ is a morphism from a simple module to a simple
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module which, therefore, is either trivial or an isomorphism. Since

not all of the compositions can be trivial (this would imply that ϕ

is trivial), we find that one of those compositions is an

isomorphism. q.e.d.

Example 3.2.3.5. Z2 has exactly two irreducible representatitions:

the trivial representation and the flip representations.

Question: Let M =
⊕

iMi be a finite decomposition of a

C[Z2]-module (of finite complex dimension) into irreducibles. Are

the number of trivial and flip summands independent of the chosen

decomposition?

Answer: yes, you can use the traces of the two group

elements to work out the numbers.

3.2.4 Characters

In this section, we restrict ourselves to finite dimensional

representations over the field C of complex numbers. I.e., a

representation of G is given to us as a group homomorphism

ρ : G −→ GLr(C)

and r is the degree of ρ. The character associated to ρ is the map

χρ : G −→ C

g 7→ tr(ρg)

A function arising this way from a representation is called a

character.

Observation 3.2.4.1. The sum of two characters is a character

(arising from the direct sum of their underlying representations).

Definition 3.2.4.2. A character is irreducible if it cannot be

written as the sum of two characters.
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Exercise 3.2.4.3. The product of two characters is a character

(arising from the tensor product of their underlying

representations).

Corollary 3.2.4.4. The set of all characters on G forms a semi-ring.

Observation 3.2.4.5. The following follow from properties of the

trace. Let ρ : G→ GLr(C) be a representation with associated

character χ. Then the following hold:

1. Characters are constant on conjugacy classes, i.e.:

χ(g) = tr(ρg) = tr(ρhρgρh−1) = χ
(
hgh−1

)

2. We have:

χ(g) = χ(g−1)

To see this, note that g has finite order whence the eigenvalues

of ρg are roots of unity. Thus complex conjugation is taking

reciprocals. This way we get the eigenvalues for ρg−1 .

Observation 3.2.4.6. We can recover from a character the degree of

the underlying representation: Let ρ : G −→ GLr(C) be a

representation. Then χρ(1) = m. In particular χ(1) is always a

positive integer.

Corollary 3.2.4.7. Every character is a sum of irreducible

characters. q.e.d.

Schur's Lemma 3.2.4.8. Let V and W be two simple left-C[G]-modules

and let

ϕ : V −→W

be a module homomorphism.

1. If V and W are not isomorphic, then ϕ is trivial
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2. If V and W are isomorphic, then ϕ is a homothety, i.e., there

are C-bases for V and W relative to which ϕ is described as a

multiple of the identity matrix.

In particular, EndC[G](V ) is isomorphic, as a ring, to C.

Proof. The first statement is obvious: homomorphisms between simple

modules are either isomorphisms or trivial.

As for the second claim, we may assume without loss of

generality that V = W and that ϕ is an endomorphism. Since C is

algebraically closed, ϕ has an eigenvalue λ. Then

λ id−ϕ ∈ EndC[G](V )

is an endomorphism with non-trivial kernel. Hence, it is 0. q.e.d.

Observation 3.2.4.9 (Averaging Linear Maps). Let ρ : G→ AutC(V ) and

σ : G→ AutC(W ) be representations. Let ϕ : V → W be complex

linear. Then

µϕ :=
1

card(G)

∑
g∈G

σg−1 ◦ ϕ ◦ ρg

is a G-equivariant complex linear map, i.e., a morphism of

representations. Hence Schur's Lemma applies and tells us:

1. If ρ and σ are inequivalent, then µϕ vanishes.

2. If V = W and ρ = σ, then µϕ is a homothety of ratio
tr(ϕ)

dimC(V )
. q.e.d.

Corollary 3.2.4.10. Let R : G→ GLr(C) and S : G→ GLs(C) be two

inequivalent irrerducible representations. Then for any four

indices, i, i′, j, j′, we have:
∑
g∈G

Ri,i′
(
g−1

)
Sj,j′(g) = 0

and ∑
g∈G

tr
(
R

(
g−1

))
tr(S(g)) = 0
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Proof. For any r × s-matrix A, we have
∑
g

R
(
g−1

)
AS(g) = 0

for which we can work out the (i, j′)-entry:

0 =
∑
g∈G

∑

k′,k

Ri,k′
(
g−1

)
Ak′,kSk,j′(g)

For the matrix A that is everywhere 0 except for a 1 in the

(i′, j)-entry, we have:

0 =
∑
g∈G

Ri,i′
(
g−1

)
Sj,j′(g)

This proves the first claim. The second follows easily:

∑
g∈G

tr
(
R

(
g−1

))
tr(S(g)) =

∑
g∈G

(∑
i

Ri,i

(
g−1

)
)(∑

j

Sj,j(g)

)

=
∑
i,j

∑
g∈G

Ri,i

(
g−1

)
Sj,j(g)

= 0

q.e.d.

Corollary 3.2.4.11. Let R : G→ GLr(C) be an irreducible

representation. Then, for any four indices i, i′j, j′, we have

Proof. For any square matrix A we have
∑

k,k′

∑
g∈G

Ri,k′
(
g−1

)
Ak′,kRk,j′(g) =

tr(A)

r
δj
′
i

Thus: ∑
g∈G

Ri,i′
(
g−1

)
Rj,j′(g) =

1

r
δj
′
i δ

j
i′

Moreover:
∑
g∈G

tr
(
R

(
g−1

))
tr(R(g)) =

∑
g∈G

∑
i,j

Ri,i

(
g−1

)
Rj,j(g)

=
∑
g∈G

∑
i

1

r

= card(G)

q.e.d.
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Let us turn to equivalent representations:

Corollary 3.2.4.12. Let R : G→ GLr(C) and S : G→ GLr(C) be two

equivalent irrerducible representations. Then for any four indices,

i, i′, j, j′, we have: ∑
g∈G

Ri,i′
(
g−1

)
Sj,j′(g) = 0

and ∑
g∈G

tr
(
R

(
g−1

))
tr(S(g)) = 0

For the remaining discussion, we fix the following

hermitean inner product:

〈−,−〉 : Maps(G;C)×Maps(G;C) −→ C

(f, g) 7→ 1

card(G)

∑
g∈G

f(g) g(g)

Using this inner product, we can rephrase part of the previous

corollary as follows:

Corollary 3.2.4.13. Characters associated to inequivalent

irreducible representations are orthogonal: Let ρ : G→ AutC(V ) and

σ : G→ AutC(W ) be two irreducible representations. Then

〈χρ, χσ〉 =





0 ρ and σ are inequivalent

1 ρ and σ are equivalent

Proof. This is just a reformulation of the previous results. Just

recall that tr(ρg−1) = tr(ρg). q.e.d.

Observation 3.2.4.14. Let

ρ =
⊕
i

σki
i

be a direct sum decomposition of a representation ρ : G→ AutC(V )

into multiples of pairwise inequivalent irreducible representations

σi. Then, we have:

χρ =
∑
i

kiχσi

whence 〈χρ, χσi
〉 = ki. It follows that:
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1. The multiplicities of irreducible summands in ρ are

well-defined, i.e., decompositions of ρ into irrecucible

summands are unique up to reordering of summands.

2. Two representations are equivalent if and only if their

characters agree. q.e.d.

Theorem 3.2.4.15. The characters associated to the irreducible

representations for an orthonormal basis for the C-vector space of

class functions.

Proof. We have already seen that characters are class functions (??)

and that the characters associated to irreducible representations

form an orthonormal set. It remains to show that every class

function is a linear combination of irreducible characters.

Let L be the C-span of all complex conjugates of

irreducible characters inside the space of class functions. We

shall show that L has trivial orthogonal complement. Thus, assume

that c is a class function perpendicular to each complex conjugate of

an irreducible character. Let ρ : G→ AutC(V ) be an irreducible

representation. Check that

ϕ : V −→ V

v 7→
∑
g∈G

c(g) ρg(v)

is a G-equivariant linear endomorphism. By Schur's Lemma, it is a

homothety of so far unknown ratio α. Computing the trace yields:

dim(V )α = tr(ϕ) =
∑
g∈G

c(g) tr(ρg(v)) =
∑
g∈G

c(g)χρg(v) = card(G) 〈c, χρ〉

It follows that α = 0.

As the regular representation decomposes as a direct sum

of irreducible representations, it follows that

Maps(G,C) −→ Maps(G,C)

f 7→
∑
g∈G

c(g) f ◦ λg−1
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is the trivial map. Evaluation at characteristic functions shows

that c must vanish. q.e.d.

Corollary 3.2.4.16. There are as many irreducible representations as

conjugacy classes. q.e.d.

Remark 3.2.4.17. Note that we did not discover any natural

1-1-correspondence of irreducible representations and conjugacy

classes.

Corollary 3.2.4.18. Let ρ =
⊕

τ kτ be a direct sum decomposition of

the representation ρ into irreducibles. Then

〈χρ, χρ〉 =
∑

k2
τ

In particular, ρ is irreducible if and only if

〈χρ, χρ〉 = 1 q.e.d.

Corollary 3.2.4.19. An irreducible representation τ occurs in the

regular representation with multiplicity dim(τ).

Consequently:

card(G) =
∑

χ irred.

〈χ, χ〉 =
∑

[M ] simple

dimC(M)2

Proof. Let ρ =
⊕

τ∈Irr τ
kτ be the regular representation written as a

direct sum of irreducibles. Note:

χρ(g) =





card(G) g = 1

0 g 6= 1

Hence

kτ = 〈χρ, χτ 〉 =
1

card(G)

∑
g∈G

χρ(g)χτ
(
g−1

)
= χτ (1) = dim(τ)

Now:

card(G) =
∑
τ∈Irr

kτ dim(τ) =
∑
τ∈Irr

dim(τ)2

This completes the proof. q.e.d.
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So far, we have made little use of the full strength of

our result (i.e., we have not used that the irreducible characters

span the class functions). That shall change:

Corollary 3.2.4.20. For any g ∈ G, let gG denote the conjugacy class

of g. For any two group element g, h ∈ G,

∑
χ irred.

χ(g)χ(h) =





card(G)
card(gG)

g, h are conjugate

0 otherwise

Proof. Let fg be the characteristic function of gG. This is a class

function. Thus, it is a linear combination

fg =
∑

χ irred.

aχχ with aχ = 〈fg, χ〉 =
card

(
gG

)

card(G)
χ(g)

Thus,

∑
χ irred.

card
(
gG

)

card(G)
χ(g)χ(h) = fg(h) =





1 h ∈ gG

0 h 6∈ gG

The claim follows. q.e.d.

Exercise 3.2.4.21. Determine all irreducible characters for the

groups S3 and Z4.

Exercise 3.2.4.22. The symmetric group S4 acts tautlogically on the

set of four letters. As with the regular representation, this

action induces a linear representation (in this case, of degree 4).

Write this representation as a direct sum of irreducible

representations.

3.3 Modules over Principal Ideal Domains

In this section, R is always a principal ideal domain.
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3.3.1 The Smith Normal Form

Let A and B be two m× n-matrix with coefficients in R. We say

that A and B are equivalent if there are invertible matrices

M ∈ GLm(R) and N ∈ GLn(R) such that:

A = MBN

Theorem 3.3.1.1. Every m× n-matrix A over R is equivalent to a

matrix in Smith Normal Form, i.e., a block matrix of the form
(
B1,1 B1,2

B2,1 B2,2

)

where all but the upper left block vanish and we have

B1,1 =




a1 0 · · · 0

0
... ... ...

... ... ... 0

0 · · · 0 ar




with a1|a2| · · · |ar.
Moreover, the entries ... are uniquely determined up to

units by A. In fact, a1a2 · · · ak is the greatest common divisor of all

k-minors of A.

Proof. We break this up into a couple of claims. Hidden within this

proof is actually an algorithm that one can make effective.

Before we start, we note that elementary matrices are

invertible. Thus, we can swap rows and columns freely and we can

add multiples of a a row to another row (or multiples of a column to

another column) without changing the equivalence class of a matrix.

We can, however, not divide. To overcome this, we need one more

type of operation: secondary row/column operations. Those are

described as left- or right-multiplication by a block-matrix of the

following form: 

a b

c d
0

0 1
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where the determinant ad− bc = 1. Thus, secondary matrices are

invertible.

Claim A. A is equivalent to a matrix B whose first row and column

vanish everywhere except for the upper left corner, wihch also

divides all other entries.

Proof. Recall that any PID is a UFD. Define the rank of any element

to be the exponent-sum of in its prime-factor decomposition.

For units, let the length be 0; and we declare the length of 0

to be ∞.

Let B′ be a matrix equivalent to A so that its upper left entry

has minimum length. We claim that in this case, the upper left

entry a1,1 divides all other entries in the first row and first

column.

First assume that the first column contains another entry not a

multiple of a1,1. Since we can permute rows, we may assume that

a1,1 does not divide a2,1. Let d be a greatest common divisor of

a1,1 and a2,1 and write it as a combinator

d = a1,1a1,1 − a1,2a2,1

Moreover, write a1,1 = da2,1 and a2,1 = da2,2. Then

1 =

(
a1,1 a1,2

a2,1 a2,2

)

Thus, we found a secondary operation that will transform B into

a matrix that has upper left entry d. This contradicts

minimality of the length in that entry.

The same construction shows that a1,1 divides all other entries

in the first row.

Now we use elementary column and elementary row operations to

kill off all entries in the first row and in the first column
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apart from the upper left corner. We chose the resulting matrix

as B.

We claim that the upper left entry a1,1 divides all other

entries. Suppose not, then we could use an elementary row or

column operation to copy that entry into the first row or

column. It follows from the preceeeding considerations that a1,1

divides evenly into the copy. 2

Claim B. A is equivalent to a matrix in Smith Normal Form.

Proof. Use the previous claim to kill off the first row and column

and make all remaining entries multiples of the upper left

corner. Now, recurse into the submatrix obtained by choping off

the first row and the first column. By induction, we can put

that part into Smith Normal Form. 2

Now we shall turn to uniqueness. For any matrix A over R let

detk(A) denote the greatest common divisor of all k-minors, (recall

that a k-minor is the determinant of a k × k-submatrix of A).

Claim C. detk(A) divides detk(MAN) .

Proof. Determinants are linear forms in the columns. The columns of

AN are linear combinations of columns in A. It follows that

the determinant of any k × k-submatrix in AN is a linear

combination of r-minors in A. Thus, detk(A) divides detk(AN) .

Running the same argument for rows, we can take care of the

left-multiplication by M. 2

Consequently, detk(A) is an invariant (up to units) of the

equivalence class of A. To finish the proof, we just need to

observe that detk(A) = a1 · · · ak when A has Smith Normal Form. q.e.d.

Exercise 3.3.1.2. Let A :=

(
2 −1 2

5 0 −3

)
. Find M ∈M2,2(Z) and

N ∈M3,3(Z) so that MAN has Smith-Normal-Form.
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Exercise 3.3.1.3. Let A :=

(
x x− 1 x2 − 1

1 0 x+ 1

)
. Find M ∈M2,2(Q[x]) and

N ∈M3,3(Q[x]) so that MAN has Smith-Normal-Form.

Exercise 3.3.1.4. Let A :=

(
x x+ 1 x3 + 1

1 0 x+ 1

)
. Find M ∈M2,2(F2[x]) and

N ∈M3,3(F2[x]) so that MAN has Smith-Normal-Form.

3.3.2 Presentations of Finitely Generated Modules

Definition 3.3.2.1. Let M be a left-R-module. A presentation of M

is an exact sequence

F2 → F1 →M → 0

where F1 and M2 are both free left-R-modules. M is called

finitely presented if it admits a presentation where F1 and F2 are

of finite rank.

Proposition 3.3.2.2. Any submodule S of a free left-R-module Rr of

finite rank is free of rank at most r.

Proof. We induct on r. Note that the staments is trivial for r = 0

and amounts to the defintion of PID for r = 1.

For r > 1, consider the obvious short exact sequence

Rr−1 ↪→ Rr →→ R

Intersecting with S induces the short exact sequence

Rr−1 ∩ S ↪→ S →→ S
/
Rr−1 ∩ S

where
S
/
Rr−1 ∩ S = S +Rr−1/

Rr−1 ≤ Rr/
Rr−1

∼= R

is free of rank at most one. If follows that

Rr−1 ∩ S ↪→ S →→ S
/
Rr−1 ∩ S
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splits, i.e.:

S =
(
Rr−1 ∩ S) ⊕ (

S
/
Rr−1∩S

)

Moreover, Rr−1 ∩ S is a free module of rank at most r − 1 by

induction. Thus, M is free of rank at most r. q.e.d.

Exercise 3.3.2.3. Read up on transfinite induction and decide

whether the above argument can be twisted to show the analogous

statement for free modules of possibly infinite rank.

Corollary 3.3.2.4. Every finitely generated R-module M is finitely

presented. In fact, one can find a short exact sequence

F2 ↪→ F1 →→M

where F1 and F2 are free left-R-modules of finite rank.

Proof. Since M is finitely generated, it is the epimorphic image

F1 →→M. By the preceeding proposition, the kernel is a free

left-R-module F2. q.e.d.

Compatible Basis Theorem 3.3.2.5. Let R be a PID and let F ′ ≤ F be

an inclusion of finitely generated free R-modules. Then there are

bases

F ′ = 〈f ′1, f ′2, . . . , f ′u〉
F = 〈f1, f2, . . . , fu, fu+1, . . . , fv〉

and ring elements a1, a2, . . . , au satisfying

1. the identities f ′i = aifi, and

2. the divisibilty condition a1|a2| · · · |au.

Moreover, the invariant factors a1, a2, . . . , au are uniquely determined

up to units.
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Proof. Choose bases for F and S. Write the inclusion map as a

matrix. Put this matrix into Smith-Normal-Form. It follows that

there are bases for F and S for which the inclusion is represented

by a Smith-Normal-Form. Those bases are the ones called for.

As for uniqueness, note that given bases as in the

theorem, the matrix describing the inclusion has Smith-Normal-Form.

Since coefficients of the Smith-Normal-Form are unique, any other

choice of bases would give rise to the same invariant

factors. q.e.d.

Corollary 3.3.2.6. Every finitely generated module over a PID is a

finte direct sum of cyclic modules.

More precisely: Let M be a finitely generated

left-R-module over a PID. Then there exist a number r and elements

a1, . . . , at ∈ R satisfying

a1|a2| · · · |at
so that:

M ∼= Rr ⊕
t⊕
i=1

R/〈ai〉

Proof. Let

Rs ↪→ Rs′ →→M

be a finite presentation of M and assume that left arrow is

multiplication by a matrix in Smith-Normal-Form. q.e.d.

Remark 3.3.2.7. We shall see later that the decomposition given here

is essentially unique.

Exercise 3.3.2.8. Consider the free Z-module F := Z3 of rank 3 and

let S be the submodule defined by

S :=







a

b

c


 2a+ 3b− c = 0





Find compatible bases for F and S, i.e., bases such as given in the

Compatible Bases Theorem.
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3.3.3 Torsion and Annihilation

Definition 3.3.3.1. Let M be an R-module. An element m ∈M is

called a torsion element if there is a non-zero scalar a ∈ R− {0}
with am = 0.

The ring M is called torsion free if 0 is the only

torsion element in M.

The module M is called a torsion module if all elements

in M are torsion elements.

Observation 3.3.3.2. Every quotient and every submodule of a torsion

module is a torsion module.

Exercise 3.3.3.3. Show that all, over integral domains, all free

modules are torsion free.

Observation 3.3.3.4. Let M be a module over an integral domain.

The torsion elements in M form a sub-module T (M), called the

torsion part of M.

Proof. Let m1,m2 be torsion elements with annihilating scalars

a1, a2 6= 0. Then a1a2 6= 0 is an annihilating scalar for m1 +m2. It is

even easier to see that multiples of torsion elements are

torsion. q.e.d.

Corollary 3.3.3.5. Every finitely generated module M over a PID R

decomposes as

M = Rr ⊕ T
where T is the torsion part. Moreover, the free rank r of M is

uniquely determined by M.

Proof. We have

M = Rr ⊕
⊕
i

R
/
〈ai〉

and T =
⊕

i
R
/
〈ai〉. It follows that M

/
T is free whence r is

unique. q.e.d.
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Corollary 3.3.3.6. Every finitely generated torsion free module over

a PID is free.

Proof. The torsion part vanishes. q.e.d.

Chinese Remainder Theorem 3.3.3.7. Let a and b be elements in a PID

R. The left-R-module homomorphism

ϕ : R⊕R −→ R

(x, y) 7→ xb+ ya

is onto if and only if a and b are relatively prime. In this case,

we have:

ϕ−1(〈ab〉) = 〈a〉 ⊕ 〈b〉
Consequently, the induced homomorphism

R
/
〈a〉 ⊕ R

/
〈b〉 −→ R

/
〈ab〉

(x+ 〈a〉, y + 〈b〉) 7→ xb+ ya+ 〈ab〉

is an isomorphism of left-R-modules if and only if a and b are

relatively prime.

Proof. The elements a and b are relatively prime if and only if we

can combine 1 linearly from them. This is visibly equivalent to ϕ

being onto.

Now let a and b be relatively prime and assume that the

linear combination xb+ ya is a multiple of ab. Note that xb is

always a multiple of b. It follows that ya is a multiple of b, too.

Thus, y is a multiple of b since b and a are relatively prime.

Similarly, x ∈ 〈a〉. Hence, ϕ−1(〈ab〉) = 〈a〉 ⊕ 〈b〉 as claimed. q.e.d.

Corollary 3.3.3.8. Every finitely generated torsion module M over a

PID R is a finite direct sum

M =
⊕
i

R
/
〈pki
i 〉
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Proof. We have

M = T (M) =
⊕
j

R
/
〈aj〉

Now apply the Chinese Remainder Theorem to all the cyclic torsion

modules: each aj has a prime factor decomposition. q.e.d.

Exercise 3.3.3.9. Let I E R be a left ideal and let M be an

R-module. Show that

IM :=

{
u∑
i=1

iimi u ∈ N, ii ∈ I, mi ∈M
}
,

i.e., the set of all finite combinations of module elements with

coefficients from I, is a submodule of M. Moreover, show that M
/
IM

is an R
/
I-module.

Use the above to show that any R-module M can be regarded

as a module over R
/
Ann(M) via

(a+ Ann(M))m := am.

3.3.4 The Classification of Finitely Generated Modules

Lemma 3.3.4.1. Let R be a PID, let p ∈ R be a prime. For any

left-R-module M and any k ∈ N, put

Mk
p :=

{
m ∈M pkm = 0

}
.

Then Mk+1
p /Mk

p is a vector space over the field R/〈p〉.

Proof. Changing M, we may assume k = 0. Thus, it suffices to show

that M1
p = {m ∈M pm = 0} is a R/〈p〉-vector space. I.e., we have to

observe that p (and the ideal it generates) acts as 0

multiplicatively. That, however, holds by definition. q.e.d.

Now, we compute: (
R
/
〈ql〉

)k
p

=
{
a+ 〈ql〉 ql|pka}

If 〈q〉 6= 〈p〉, we have

ql|pka ⇐⇒ ql|a
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whence (
R
/
〈ql〉

)k
p

= {0} for 〈q〉 6= 〈p〉.
If 〈q〉 = 〈p〉, we have

ql|pka ⇐⇒ l ≤ k or pl−k|a

whence, in this case,

(
R
/
〈ql〉

)k
p

=




R/〈pl〉 l ≤ k
{
a+ 〈pl〉 pl−k|a} = 〈pl−k〉/〈pl〉 k ≤ l

We summarize:

Lemma 3.3.4.2.

(
R
/
〈ql〉

)k
p

=





{0} 〈q〉 6= 〈p〉
R/〈pl〉 〈q〉 = 〈p〉 and l ≤ k

〈pl−k〉/〈pl〉 〈q〉 = 〈p〉 and k ≤ l

Put

dkp(M) := dimR/〈p〉
(
Mk+1

p /Mk
p

)

Lemma 3.3.4.3.

dkp
(
R
/
〈ql〉

)
=





0 〈q〉 6= 〈p〉
0 〈q〉 = 〈p〉 and l ≤ k

1 〈q〉 = 〈p〉 and k < l

Observation 3.3.4.4. Since

(M ⊕N)kp = Mk
p ⊕N l

p

we have

dkp(M ⊕N) = dkp(M) + dkp(N)

Structure Theorem 3.3.4.5. Let M be a finitely generated

left-R-module over a PID. Then there exist a number r and elements

a1, . . . , at ∈ R satisfying

a1|a2| · · · |at
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so that:

M ∼= Rr ⊕
t⊕
i=1

R/〈ai〉

Moreover, r, t, and the invariant factors are uniquely determined (up

to units, that is).

Equivalently, there exist prime elements pj and exponents

kj so that

M ∼= Rr ⊕
⊕
j

R
/
〈pkj

j 〉

where the elementary divisors p
kj

j are unique up to order and units.

Proof. The free rank r is uniquely determined by (??).

The two versions are equivalent by the Chinese Remainder

Theorem and uniqueness of prime factor decompositions in PIDs.

It remains to prove uniqueness of elementary divisors.

That, however, follows since the numbers dkp(T (M)) determine how many

terms of the form R
/
〈ql〉 occur in the torsion part. q.e.d.

3.3.5 Advanced Linear Algebra

The crucial observation of advanced linear algebra is the following

Example 3.3.5.1. Let K be a field and let V be a finite dimensional

vector space over K. Fix an endomorphism ϕ : V → V. Then, V can be

given the structure of a K[x]-module as follows via

pv := p(ϕ)(v) ,

where p(ϕ) : V → V ∈ EndK(V ) is the endomorphism obtained by

evaluating p(x) at x = ϕ. We denote the K[x]-module defined this way

by Vϕ.

Definition 3.3.5.2. Let ϕ : V → V and ψ : W → W be two endomorphisms

of K-vector spaces V and W. We call ϕ and ψ similar if there is a
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K-isomorphism µ : V → W such that

V
ϕ //

µ

²²

V

µ

²²
W

ψ
// W

commutes.

Exercise 3.3.5.3. Fix a pair of bases for V and W. Show that two

endomorphisms ϕ : V → V and ψ : W → W are similar if and only they

are represented by similar matrices (with respect to the fixed bases

for V and W, respectively).

Exercise 3.3.5.4. Show that two endomorphisms ϕ : V → V and

ψ : W → W are similar if and only if the associated K[x]-modules Vϕ

and Wψ are K[x]-ismorphic.

Observation 3.3.5.5. The module Vϕ is a torsion module. q.e.d.

Observation 3.3.5.6. Since V has finite dimension over K and since

any K-basis of K is a generating set of Vϕ, it follows that Vϕ is

finitely generated torsion module. Thus,

Vϕ =
⊕
i

K[x]
/
〈qi(x)〉

where the polynomials qi(x) form a divisor chain q1|q2| · · · |qu. Since this

condition determines the qi up to units, we can eliminate all

remaining freedom of choice by requirering that each qi be monic

(i.e., has leading coefficient 1). q.e.d.

Definition 3.3.5.7. The polynomial qu is called the

minimal polynomial of ϕ. Usually, it is denoted by µϕ(x).

Exercise 3.3.5.8. Show that the minimal polynomial generates the

annihilator ideal of Vϕ, i.e.:

〈µϕ(x)〉 = {p ∈ K[x] pv = 0 for all v ∈ Vϕ}

188



Example 3.3.5.9 (Cyclic Endomorphisms). Consider the cyclic torsion

module M := K[x]
/
〈q(x)〉 where

q(x) = xm + am−1x
m−1 + · · · a1x+ a0

is a monic polynomial of degree m. Note that M is is is a

K-vector space with ordered basis B := (1, x, x2, . . . , xm−1) .

Left-multiplication by x is a K-linear map. It is easy to work out

the matrix representing this map relative to the basis B. We find:




0 · · · · · · 0 −a0

1 0 · · · 0 −a1

0
... ... ...

...
... ... ... 0 −am−2

0 · · · 0 1 −am−1




We call a matrix of this form an RCF-block.

Corollary 3.3.5.10. Every square matrix is similar to one and only

one matrix in rational canonical form, i.e., in block diagonal form

where the blocks along the diagonal are RCF-blocks and the

corresponding minimal polynomials form a divisor chain.

Consequently, two matrices are similar if and only if they

have the same rational canonical form.

Corollary 3.3.5.11. Let K be a subfield of the field M. Two

matrices A,B ∈Mr(K) are similar over K if and only they are

similar over M. In particular, two matrices in GLr(K) are

conjugate in GLr(M) if they are conjugate in GLr(M).

Proof. Note that the rational canonical form RCFK(A) also qualifies

as a rational canonical form over M. Uniqueness of rational

canonical forms implies RCFK(A) = RCFM(A) . Thus, we have the
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following chain of equivalences:

A and B are similar orver K

⇐⇒ RCFK(A) = RCFK(B)

⇐⇒ RCFM(A) = RCFM(B)

⇐⇒ A and B are similar orver M

q.e.d.

Cayley-Hamilton Theorem 3.3.5.12. For any endomorphism ϕ : V → V of a

finite dimensional K-vector space, the characteristic polynomial

χϕ(x) = det(x id−ϕ) is the product of the invariant factors. I.e.,

let

Vϕ =
⊕
i

K[x]
/
〈qi(x)〉

be the canonical decomposition of Vϕ with invariant factors qi(x) .

Then

χϕ(x) =
∏
i

qi(x) .

In particular, the minimal polynomial divides the characteristic

polynomial: µϕ|χϕ. Consequently, χϕ(ϕ) = 0 ∈ EndK(V ) .

Proof. We just compute the characteristic polynomial using a basis

of V relative to which ϕ has rational canonical form.

Relative to such basis, x id−ϕ has block diagonal form.

Thus, it suffices to show that for an individual RFC-block, we have

xm + am−1x
m−1 + · · · a1x+ a0 = det




x 0 · · · 0 a0

−1 x
... ... a1

0
... ... 0

...
... ... ... x am−2

0 · · · 0 −1 x+ am−1




190



This is an easy induction. The induction hypothesis yields

xm−1 + am−1x
m−1 + · · · a2x+ a1 = det




x 0 · · · 0 a1

−1 x
... ... a2

0
... ... 0

...
... ... ... x am−2

0 · · · 0 −1 x+ am−1




Then, developing along the first row yields:

det




x 0 · · · 0 a0

−1 x
... ... a1

0
... ... 0

...
... ... ... x am−2

0 · · · 0 −1 x+ am−1




= x det




x 0 · · · 0 a1

−1 x
... ... a2

0
... ... 0

...
... ... ... x am−2

0 · · · 0 −1 x+ am−1




±a0 det




−1 x 0 · · · 0

0
... ... ... ...

... ... ... ... 0

... ... ... ... x

0 · · · · · · 0 −1




This proves the claim. q.e.d.

Remark 3.3.5.13. Often, knowing the minimal polynomial and the

characteristic is enough to deduce the invariant factors.

Example 3.3.5.14. We classify the matrices of order 3 in GL5(Q) up

to similarity. Then, all invariant factors divide the polynomial

x3 − 1 which decomposes into irreducibles (over Q[x]) as follows:

x3 − 1 = (x− 1)
(
x2 + x+ 1

)

Since the degrees of the invariant factors add up to 5, we have only

the following choices for the invariant divisors:

x− 1|x− 1|x3 − 1

and

x2 + x+ 1|x3 − 1

Note: x− 1 cannot be the minimal polynomial since in this case, the

order would be 1.
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Exercise 3.3.5.15. A matrix A is nilpotent if Ak = 0 for some

exponent k. Classify, up to similarity, all nilpotent matrices in

M5,5(Q). Does the classification change when you replace Q by the

field F3 of three elements? What happens for F2?

Exercise 3.3.5.16. This is a fall back method for computing the

rational canonical form. Let A be an n× n-matrix over K. Show

that the non-unit entries in the Smith Normal Form of

x idn−A ∈Mn,n(K[x]) are the invariant factors for A. Hint: The

evaluation K[x]-homomorphism can be extended to a finite presentation

of the K[x]-module Kn
A. It is given as

K[x]n −→ Kn
A∑

i

pi(x) ei 7→
∑
i

pi(A) ei

where ei denotes the ith standard basis vector (in both modules!).

Observation 3.3.5.17. If µη(x) splits into linear factors, it is very

convenient to use elementary divisors instead of invariant factors.

We obtain the decompostion

Vη ∼=
⊕
i

K[x]
/
〈(x− λi)ki〉

where λi ∈ K. The decomposition is unique up to order of summands.

Example 3.3.5.18. We can describe a single summand of the

decomposition. Let M := K[x]
/
〈(x−λ)k〉. We describe multiplication by x

relative to the ordered basis
(
(x− λ)0, (x− λ)1, . . . , (x− λ)k−1

)

The corresponding matrix is



λ 0 0 · · · 0

1 λ 0
... ...

0 1
... ... ...

... ... ... λ 0

0 · · · 0 1 λ




Such a matrix is called a Jordan block.
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Corollary 3.3.5.19. If µϕ(x) splits into linear factors over K, then

ϕ is representable in Jordan canonical form, i.e., block diagonal

form where all block are Jordan blocks. The Jordan canonical form,

when it exists, is unique up to order of Jordan blocks.

Remark 3.3.5.20. Note that µϕ(x) splits over any algebraically closed

field. Consequently, if K is algebraically closed, every

K-endomorphism has a Jordan canonical form.

Here is a sample application of Jordan canonical forms:

Proposition 3.3.5.21. Every matrix is similar to its transpose.

Proof. First note that by (3.3.5.11), we can assume that we work

over an algebraically closed field: every field is a subfield of an

algebraically closed field. Thus, it suffices to show that Jordan

blocks are similar to their transpose. This is seen through a

simple matrix multiplcication:




1

�
1







λ 0 0 · · · 0

1 λ 0
... ...

0 1
... ... ...

... ... ... λ 0

0 · · · 0 1 λ







1

�
1


 =




λ 1 0 · · · 0

0 λ
... ... ...

0 0
... 1

...
... ... ... λ 1

0 · · · 0 0 λ




Note that the matrix




1

�
1


 has order two so that the above

equation truly proves similarity. q.e.d.
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Chapter 4

Fields

4.1 Field Extensions

4.1.1 Basic Definitions

Definition 4.1.1.1. A field is a commutative division ring.

Observation 4.1.1.2. A domain is a field if and only if it has

exactly two ideals. q.e.d.

Corollary 4.1.1.3. Any ring homomorphism from a field to any ring is

1-1 since its kernel is proper ideal (the kernel cannot contain 1).

Since morphisms between fields are always injective, most of the

time, we shall just pretend that one field is actually a subfield of

another.

Definition 4.1.1.4. A extension of a field K is a field M together

with a field morphism K ↪→M. We shall regularly pretend that K is

contained as a subset in M and that the inclusion is the specified

field morphism.

Definition 4.1.1.5. If M/K is a field extension, then M is a

K-vector space. We define the degree of the field extension to be

the dimension [M : K] := dimK(M) . An extension is called finite if it

has finite degree.
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Exercise 4.1.1.6. Let M/K/F be a tower of fields; and let BK
F be a

basis of K as an F-vector space and let BM
K be a basis of M as an

K-vector space. Then the set

CF
M :=

{
ζξ ξ ∈ BK

F , ζ ∈ BM
K

}

is a basis of M as an F-vector space. In particular:

[M : F ] = [M : K] [K : F ] .

Definition 4.1.1.7. Let M/K and N/K be two field extensions of the

same base field. A K-morphism from M to N is a field morphism

ϕ : M −→ N

that fixes K element-wise, i.e., the following diagram commutes:

M
ϕ // N

K

``BBBBBBBB

>>}}}}}}}}

4.1.2 Algebraic and Transcendent Elements

Observation and Definition 4.1.2.1. Let M/K be a field extension

and fix an element ζ ∈M. Evaluation x 7→ ζ induces a ring

homomorphism

evζ : K[x] −→ M

p(x) 7→ p(ζ)

We denote the image of the evaluation homomorphism by K[ζ]. This

is the smallest intermediate ring between K and M that contains ζ.

Its field of fractions canonically embeds into M; and this way, we

obtain K(ζ), which is the smallest intermediate field between K

and M that contains ζ.

Let

Kζ := {p(x) ∈ K[x] p(ζ) = 0}
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be the kernel of the evaluation homomorphism. Then

K[ζ] ∼= K[x]
/
Kζ .

Note that Kζ is an ideal, and as K[x] is a PID, the ideal

Kζ is generated by one element. There are two cases:

Kζ = {0}: In this case, the evaluation homomorphism is injective and

the ring K[ζ] is isomorphic to the polynomial ring. Thus, it

has infinite dimension over K (which implies that this cannot

happen if M/K is finite). Also, K(ζ) is isomorphic to the

field of rational functions in one variable.

We say that ζ is transcendent over K.

Kζ 6= {0}: In this case, the Kζ is generated by a single non-zero

polynomial. This polynomial is unique up to units. Thus, we

can make it unique by normalizing the leading coefficient. The

unique monic generator of Kζ = 〈µζ(x)〉 is called the

minimal polynomial of ζ. Its degree equals the (finite!)

dimension dimK(K[ζ]) .

As the image K[ζ] ≤M has no zero-divisors, the polynomial µζ(x)

is irreducible, hence the image K[ζ] ∼= K[x]
/
〈µζ(x)〉 is, in fact,

a field and we have

K[ζ] = K(ζ) .

We say that ζ is algebraic over K.

Note that multiplication by ζ induces a K-linear vector space

endomorphism

λζ : M −→M

and it turns out that µζ is also the minimal polynomial of the

endomorphism λζ .

Definition 4.1.2.2. An extension M/K is called algebraic if each

element of M is algebraic over K.

An extension M/K is called simple if there is an element

ζ ∈M such that M = K(ζ).
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Corollary 4.1.2.3. A simple extension is finite if and only if it is

algebraic. q.e.d.

Exercise 4.1.2.4. Let M = K(ξ) /K be a finite simple field

extension. Let ϕ : M →M be left-multiplication by ξ and regard ϕ

as a K-linear endomorphism of the K-vector space M. Show that the

minimal polynomial of ξ and the minimal polynomial of ϕ coincide.

Example 4.1.2.5. Any finite extension of a finite field is simple.

Proof. Finite subgroups of multiplicative groups in fields are

cyclic. Thus, any finite field is generated by a single

element. q.e.d.

Exercise 4.1.2.6. Let M/K/F be a tower of fields and fix α ∈M.

Show that the minimal polynomial µα,K divides the minimal polynomial

µα,F.

Exercise 4.1.2.7. Let M/K/F be a tower of fields with M/F finite

and fix α ∈M. Show that there is no proper subfield of K

containing F that contains all coefficients of µα,K.

Exercise 4.1.2.8. Show that a simple extension M/F has only

finitely many intermediate fields.

Observation 4.1.2.9. Let ξ, ζ, ζ, ξ ∈ F with ζ 6= ξ and assume

F (ξ + ζζ) = F (ξ + ξζ) . Then F (ξ, ζ) = F (ξ + ζζ) .

Proof. First note that ζ =
(ξ+ζζ)−(ξ+ξζ)

ζ−ξ ∈ F (ξ + ζζ) . It follows that

ξ ∈ F (ξ + ζζ) . q.e.d.

Exercise 4.1.2.10. Show that a finite extension M/F is simple if it

has only finitely many intermediate fields.

Observation 4.1.2.11. An extension M/K is algebraic if and only if

M is the union of intermediate fields of finite degree over K. In

particular, every finite extension is algebraic. q.e.d.
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Proposition 4.1.2.12. Let M/K be a field extension and fix finitely

many elements ζ1, . . . , ζu ∈M. Then the following are equivalent:

1. Each ζi is algebraic over K.

2. The extension K(ζ1, . . . , ζu) /K is finite.

3. The extension K(ζ1, . . . , ζu) /K is algebraic.

Proof. We show that the first condition implies the second. The

other implications are obvious.

A simple algebraic extension is finite. Since

K(ζ1, . . . , ζi) /K(ζ1, . . . , ζi−1) is a simple algebraic extension, a simple

induction finishes the proof. q.e.d.

Corollary and Definition 4.1.2.13. Let M/K be an extension. The

set

Kalg := {ζ ∈M ζ is algebraic over K}

is a subfield of M containing K. It is called the

relative algebraic closure of K in M.

Proof. We have to show that Kalg is closed with respect to arithmetic

operations.

If two elements in M are algebraic over K, they generate

a finite, hence algebraic, extension of K. This proves that their

sum, difference, product, and quotient are again algebraic over

K. q.e.d.

Corollary 4.1.2.14. If M/K and K/F are both algebraic, then so is

M/F.

Proof. Any element ζ is algebraic over K, i.e., has a minimal

polynomial with coefficients ξ0, . . . , ξu ∈ K. Hence, ζ is already

algebraic over F (ξ0, . . . , ξu) which is a finite extension of F. Hence

F (ξ0, . . . , ξu, ζ) is a finite extension of F. q.e.d.
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4.1.3 Splitting Fields

Definition 4.1.3.1. Let p(x) ∈ K[x] a polynomial with coefficients in

the field K. A splitting field for p is a field extension Kp/K

that satisfies:

1. The polynomial splits into linear factors as an element of

Kp[x].

2. The field Kp is minimal among those satisfying (1), i.e., the

polynomial p(x) does not split into linear factors over any

proper subfield of Kp.

We shall show that every polynomial has a splitting field and that

such splitting field is essentially unique. We will tackle

uniqueness first.

Observation 4.1.3.2. Let p(x) ∈ K[x] a polynomial with coefficients in

the field K. Then Kp is generated as a field extension by the

finitely many roots of p. Since all these roots are algebraic,

Kp/K is a finite field extension. Now it follows that Kp is

generated by the roots of p as an K-algebra. q.e.d.

Proposition 4.1.3.3. For i ∈ {0, 1}, let Mi/Ki be a field extension

and let ζi ∈Mi be an algebraic element with minimal polynomial

µi(x) ∈ Ki[x] . Let ϕ : K0 → K1 be an isomorphism of fields. Then ϕ

induces an isomorphism of polynomial rings, which we also denote by

ϕ. If ϕ(µ0(x)) = µ1(x) then there exists a unique field isomorphism

K0[ζ0]→ K1[ζ1] extending ϕ and sending ζ0 to ζ1.

Proof. Since ϕ : K0[x]→ K1[x] is an isomorphism sending µ0(x) to µ1(x),

we have induced isomorphisms

K0[ζ0] = K0[x] /〈µ0(x)〉 ∼= K1[x] /〈µ1(x)〉 = K1[ζ1] .

Uniqueness follows as K0[ζ0] is generated by ζ0 as an

K0-algebra. q.e.d.
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Proposition 4.1.3.4. Let p(x) ∈ K[x] a polynomial with coefficients in

the field K, and let Kp/K be a splitting field for p. Let M/K be

a field extension such that p splits into linear factors over M.

Then there is an K-homomorphism Kp →M.

Proof. We induct on [Kp : K] . The start [Kp : K] = 1 is trivial as

Kp = K.

So assume Kp 6= K. Then p has a root α ∈ Kp −K. Since

the minimal polynomial µα divides p, there are linear factors

x− ζi ∈M [x] such that µα = (x− ζ1) · · · (x− ζu) and µα is the minimal

polynomial of each of the ζi over K. Thus, there is an

K-isomorphism from K(α) ≤ Kp to some subfield of M. Since

[Kp : K(α)] < [Kp : K] we can apply induction replacing K with K(α) and

regarding M as an extension of K(α) via the constructed

K-homomorphism. q.e.d.

Corollary 4.1.3.5 (Uniqueness of Splitting Fields). Let p(x) ∈ K[x] a

polynomial with coefficients in the field K. Any two splitting

fields K0 and K1 for p are K-isomorphic. q.e.d.

Proposition 4.1.3.6 (Vieta, Existence of Splitting Fields). Let K be

a field and fix a monic polynomial

p(x) = a0 + a1x+ · · ·+ am−1x
m−1 + xm ∈ K[x] . Consider the K-algebra

Rp := K[y1, . . . , ym] /I

where I is the ideal modelling the relations

σ1(y1, . . . , ym) = y1 + · · ·+ ym = −am−1

σ2(y1, . . . , ym) =
∑
i<j

yiyj = am−2

σ3(y1, . . . , ym) =
∑

i<j<k

yiyjyk = −am−3

...

σm(y1, . . . , ym) = yiyj · · · ym = (−1)ma0
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Then, p(x) splits in R as

p(x) = (x− y1)(x− y2) · · · (x− ym).

Moreover, if M is a maximal ideal containing I, the field

Kp := K[y1, . . . , ym] /M is a splitting field for p(x).

Proof. Straight forward computation. q.e.d.

Corollary 4.1.3.7. Every polynomial has a splitting field and such

field is unique up to isomorphism. It has finite degree over the

base field.

4.1.4 The Algebraic Closure

Proposition and Definition 4.1.4.1. A field K is called

algebraically closed if it satisfies the following equivalent

conditions:

1. The field K does not admit proper finite extensions.

2. The field K does not admit any proper algebraic extension.

3. All irreducible polynomials in K[x] have degree 1.

4. Every polynomial in K[x] splits into linear factors.

Proof. We show that adjacent conditions are equivalent.

Suppose there is a proper finite extension. Then there is

a proper algebraic extension. Suppose there is a proper algebraic

extension. Since an algebraic extensions is the union of the

intermediate finite extensions, there is a proper finite extension.

Suppose there is a proper algebraic extension M/K. Then

there is an algebraic element ζ ∈M not in K. The minimal

polynomial of ζ is not linear and irreducible. Conversely suppose

there is a non-linear irreducible polynomial. Then this polynomial

generates a maximal ideal in K[x]. Quotienting out the maximal ideal

defines a proper algebraic extension of K.
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Suppose all irreducible polynomials are linear. Since

every polynomial splits into irreducibles, every polynomial splits

into linear factors. Suppose every polynomial splits into linear

factors. It is immediate that irreducibles must be linear. q.e.d.

Lemma 4.1.4.2. Let K/F be an algebraic field extension. Then the

following are equivalent:

1. The field K is algebraically closed.

2. All (irreducible) polynomials in F [x] split into linear factors

in K[x].

Proof. Suppose there is a proper algebraic extension M/K. Then

there is an algebraic element ζ ∈M not in K. The minimal

polynomial µF ζ is irreducible over F and does not split into linear

factors over K as one of its irreducible factors over K is the

minimial polynomial µKζ.

Conversely, suppose there is an irreducible polynomial

over F that does not split into linear factors over K. Then, we

can construct an algebraic element over K that has this minimal

polynomial over F. q.e.d.

Theorem and Definition 4.1.4.3. Every field F admits an

algebraically closed algebraic extension. Such extension is unique

up to F-isomorphism. It is called an algebraic closure of F.

Proof. Existence: well order the polynomials in F [x] and form the

transfinite limit of the associate sequence of splitting fields.

Let M1/F and M2/F be two algebraic closures. Consider

the partially ordered set of pairs

{(K,ϕ : K →M2, ) M1/K/F is a tower and ϕ is a F-hom}

Note that it satisfies the hypotheses of Zorn's lemma. Note that

(4.1.3.3) implies that any maximal element has first coordinate M1.

Thus, there is a F-homomorphism ϕ : M1 →M2. It has to be onto since

its image will be an algebraic closure for F inside M2. q.e.d.
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4.2 Galois Theory

4.2.1 The Galois Group

Definition 4.2.1.1. Let M/F be a field extension. The set of

F-automorphisms of M is a group with respect to composition. It is

called the Galois group of the extension and denoted by AutF (M) . Let

M/K/F be a tower of fields. The relative Galois group is defined

as AutF (M/K) := {ϕ ∈ AutF (M) ϕ(K) = K} .

Observation 4.2.1.2. Restriction defines a group homomorphism

AutF (M/K) −→ AutF (K)

with kernel AutK(M) .

Exercise 4.2.1.3. Prove or disprove: Let M/K/F be a tower of

fields with M/F algebraic. Then

AutK(M) ↪→ AutF (M/K)→→ AutF (K)

is a short exact sequence of groups.

Observation 4.2.1.4. Let M/F be a field extension. For any

F-automorphism ϕ ∈ AutF (M) the fix point set

Fix(ϕ) := {ζ ∈M ϕ(ζ) = ζ} is closed with respect to arithmetic

operation and hence a subfield of M containing F. Consequently,

for any subgroup G ≤ AutF (M), the fix point set

Fix(G) := {ζ ∈M ϕ(ζ) = ζ for all ϕ ∈ G} is an intermediate

field. q.e.d.

Observation 4.2.1.5. Consider a simple algebraic extension K(α) /K

with minimal polynomial µα(x). Since any K-automorphism of K(α) is

determined by where it sends α and since it has to send α to some

root of µα(x), we find that card(AutK(K(α))) ≤ deg(µα) = [K(α) : K] .

We can strengthen this result by recalling (4.1.3.3). It

follows that AutK(K(α)) acts simply transitively on the set of roots

of µα(x) in K(α). q.e.d.
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Theorem 4.2.1.6. Let M/F be a field extension and fix a subgroup

G ≤ AutF (M) and put K := Fix(G) . If M/K is finite, then

card(G) ≤ [M : K] .

In particular, for any finite field extension M/F, we

have card(AutF (M)) ≤ [M : F ] .

Proof. We induct on [M : K]. If M = K, there is nothing to prove.

Otherwise, consider α ∈M, the simple extension K(α) /K, and the

subgroup H := G ∩ AutK(α)(M) ≤ G. By induction, card(H) ≤ [M : K(α)] .

On the other hand, cosets in G/H correspond to

restrictions ϕ|K(α). Since such a restriction is determined by the

image of α and field homomorphisms have to send α to another root of

its minimal polynomial, we find card(G/H) ≤ [K(α) : K] . Now the claim

follows from (4.1.1.6). q.e.d.

Definition 4.2.1.7. An algebraic extension M/F is called a

Galois extension if F = Fix(AutF (M)) .

Example 4.2.1.8. Let M/F be a field extension. Put

K := Fix(AutF (M)) . Then M/K is a Galois extension.

Proof. We have to show that K = Fix(AutK(M)) . This follows from

AutK(M) = AutF (M) , which we just observe: every K-automorphism of

M clearly fixes F ≤ K, and any F-automorphism of M is a

K-automorphism since it fixes K = Fix(AutF (M)) . q.e.d.

Fundamental Observation 4.2.1.9. Let M/F be an algebraic extension

and fix G ≤ AutF (M) with F = Fix(G). (In particular, M/F is

Galois.)

For any α ∈M, the minimal polynomial µα splits into

pairwise different linear factors, and G acts transitively on the

roots of µα. (In particular, so does AutF (M).)

Proof. Let O be the G-orbit of α. Then p(x) :=
∏

α′∈O x− α′ ∈M [x] is

a polynomial fixed by G. Since F = Fix(G) its coefficients lie in

F. Thus µα divides p. On the other hand, each root of p also is a

root of µα since the action of G fixes µα. Thus µα = p. q.e.d.
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4.2.2 Normal Field Extensions

Definition 4.2.2.1. An algebraic extension M/K is normal if every

irreducible polynomial p ∈ K[x] that has a root in M splits

completely into linear factors over M. Equivalently, any minimal

polynomial µα(x) ∈ K[x] for α ∈M splits into linear factors over M.

Observation 4.2.2.2. It follows immediately from (4.2.1.9) that

every Galois extension is normal. q.e.d.

Lemma 4.2.2.3. Let M/K/F be a tower of field so that M/F is

normal. Then, any F-homomorphism ϕ : K ↪→M extends to an

F-automorphism of M.

Proof. Consider the set of extensions

{ψ : K ↪→M F ≤ K ≤M, ψ extends ϕ}

ordered by restriction. By Zorn's lemma, there is a maximal element

ψ : Kmax ↪→M. We claim that in this case, Kmax = M and that ψ is

onto.

Assume that Kmax is a proper subfield of M. Fix

ξ ∈M −Kmax and let µKmax be its minimal polynomial over Kmax and

let µF be its minimal polynomial over F. Since µKmax divides µF, we

infer that ψ(µKmax) divides ψ(µF ) = µF. Hence ψ(µKmax) has a root

ζ ∈M of which it is the minimal polynomial over ψ(Kmax). By

(4.1.3.3), the field-isomorphism ψ : Kmax → ψ(Kmax) extends to an

isomorphism K(ξ)→ ψ(Kmax)(ζ) . This contradicts maximality.

Assume that ψ is not onto. Since ψ is an F-homomorphism,

every irreducible polynomial that splits over M already splits over

ψ(M). This implies that elements in M − ψ(M) cannot be algebraic

over F. q.e.d.

Corollary 4.2.2.4. Let M/F be a normal extension. For each

irreducible polynomial p ∈ F [x], the Galois group AutF (M) acts

transitively on the set {α ∈M p(α) = 0} of M-roots of p.
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Proof. If p has no roots in M, there is nothing to prove.

Let p ∈ F [x] be an irreducible polynomial that has one and

hence all its roots in M. Let α and α′ be two roots of p. By

(4.1.3.3), there exists an F-isomorphism ϕ : F (α)→ F (α′) . By

(4.2.2.3), the homomorphism ϕ extends to an F-automorphism of

M. q.e.d.

Theorem 4.2.2.5 (Characterization of Normal Extensions). An

algebraic extension K/F is normal if and only if, for each

algebraic extension M/K, every F-automorphism ϕ : M →M stabilizes

K, i.e., satisfies ϕ(K) = K. In fact, if K/F is not normal, for

M/K for which M/F is normal admits an automorphism that moves K

off itself.

Proof. First assume that K/F is normal. Consider α ∈ K with

minimal polynomial µα. Since ϕ fixed the µα, it has to send α to a

root of µα, when ϕ(α) ∈ K. The inclusion ϕ(K) ⊆ K follows. The

reverse inclusion follows since the same argument can be applied to

the inverse automorphism. ϕ−1.

Conversely, assume that K/F is not normal. Let α be an

element of K whose minimal polynomial µα does not split into linear

factors in K. Let M/K be any extension normal over F, e.g., the

algebraic closure will do. By (4.2.2.4), the Galois group AutF (M)

acts transitively on the roots of µα, there is an F-automorphism of

M moving α out of K. q.e.d.

Corollary 4.2.2.6. Let M/K/F be a tower of fields so that M/F is

normal. Then, M/K is normal. q.e.d.

Remark 4.2.2.7. Here is a direct proof of the corollary: An

irreducible polynomial p ∈ K[x] that has a root α in M is the

minimal polynomial over K of this root. Consider the minimal

polynomial µ of α over F. We know that p divides µ. Since M/F is

normal, µ splits into linear factors over M and hence so does the
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divisor p. Note, how this argument already appeared in the proof of

(4.2.2.4).

Corollary 4.2.2.8 (Characterization of Finite Normal Extensions). A

finite field extension K/F is normal if and only if K is the

splitting field for some polynomial p ∈ K[x].

Proof. Splitting fields are stabilized by all ambient

F-automorphisms since they fix the underlying polynomial and can

only permute its root. Thus, splitting fields are normal.

Conversely, a finite normal extension is finitely

generated and the splitting field of the product of the minimal

polynomials of its generators. q.e.d.

4.2.3 Separable Field Extensions

Definition 4.2.3.1. An irreducible polynomial p(x) ∈ K[x] is separable

if it does not have multiple roots in any field extension of K.

An algebraic extension M/K is separable if all elements

of M have separable minimal polynomials over K. (Recall that

minimal polynomials are always irreducible.)

Observation 4.2.3.2. It follows immediately from (4.2.1.9) that

every Galois extension is separable. q.e.d.

Observation 4.2.3.3. Let M/K/F be a tower of fields with M/F

separable. Then M/K is separable.

Proof. Minimal polynomials over K divide minimal polynomials over

F. q.e.d.

4.2.4 Characterizations of Galois Extensions

Theorem 4.2.4.1. A field extension M/F is a Galois extension, i.e.,

Fix(AutF (M)) = F, if and only if it is normal and separable.
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Proof. We have already seen that Galois extensions are normal

(4.2.2.2) and separable (4.2.3.2).

Put K := Fix(AutF (M)) and assume that M/F is normal and

separable. Also assume, for contradiction, that K 6= F. Then there

is an element α ∈ K − F. Since the minimal polynomial µα splits

into linear factors over M, we can find a splitting field Fµ for µα

inside M and within this splitting field, we can move α to another

root (the roots are distinct because of separability). Thus, there

is an element in AutF (Fµ) not fixing α. This automorphism can be

extended to all of M. Contradiction. q.e.d.

Corollary 4.2.4.2. Let M/K/F be a tower of fields with M/F

Galois. Then M/K is Galois, i.e.,

Fix(AutK(M)) = K.

Proof. The preceeding characterization together with (4.2.2.6) and

(4.2.3.3) does the trick. q.e.d.

Proposition 4.2.4.3. Let M/F be a Galois extension. Then the

following are equivalent:

1. M/F is finite.

2. AutF (M) is finite.

3. M/F is simple.

In particular, every finite Galois extension is simple.

Proof. We have argued (1) =⇒ (2) in (4.2.1.6). The implication

(3) =⇒ (1) follows since a finitely generated algebraic extension

is finite.

Now we argue (2) =⇒ (3) By (4.1.2.10), it suffices to

show that M/F admits only finitely many intermediate fields. By

(4.2.4.2), such intermediate fields K are uniquely determined by the

subgroup AutK(M) ≤ AutF (M) . Since the finite group AutF (M) has only

finitely many subgroups, the claim follows. q.e.d.
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Corollary 4.2.4.4. Let M/F be a finite Galois extension. Then M

is the splitting field of a separable polynomial in F [x] and

card(AutF (M)) = [M : F ] .

Proof. We have argued card(AutF (M)) ≤ [M : F ] in (4.2.1.5).

By (4.2.4.3), M = F (α) for some α ∈M. Since M/F is

normal, and α is a root of µα, we find that µα splits into linear

factors, which are pairwise distinct since α is separable over F.

By (4.2.1.9), the Galois group acts transitively on the set of roots

of µα. This implies card(AutF (M)) ≥ [M : F ] . Also, M is the

splitting field for µα since no proper subfield does contain

α. q.e.d.

Corollary 4.2.4.5. Let M/F be a finite field extension and put

K := Fix(AutF (M)) . Then [M : F ] = card(AutF (M)) [K : F ] . In particular,

if M/F is not Galois, then card(AutF (M)) 6= [M : F ] .

Proof. M/K is Galois and AutF (M) = AutK(M). q.e.d.

Corollary 4.2.4.6. Let M/F be a finite Galois extension and let G

be a subgroup of the Galois group AutF (M). Put K := Fix(G). Then

G = AutK(M) .

Proof. Since M/K is Galois, it is simple. Let α be a generator.

By (4.2.1.9), the minimal polynomial splits into different linear

factors and G acts transitively on these. Since a proper subgroup

of AutK(M) has not enough elements to do this, the claim

follows. q.e.d.

Theorem 4.2.4.7. For a finite extension M/F, the following are

equivalent:

1. The extension is a Galois extension.

2. [M : F ] = card(AutF (M)) .

3. M is the splitting field for a separable polynomial in F [x].
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4. M is the splitting field for a polynomial in F [x] whose

irreducible factors are separable.

Proof. It suffices to show that the last condition implies the

first. So let p(x) be a polynomial with separable irreducible

factors. If all roots of p(x) are in F, there is nothing to prove.

Otherwise, let α be a root in M − F. Let K := F (α). Then, the

irreducible factors of p(x) in K[x] divide the factors in F [x]. We

conclude the no multiple roots crop up. Thus, p(x) has separable

irreducible factors in K[x].

Now, we are in a position to use induction since M/K has

smaller degree than M/F. Thus, M/K is Galois.

Let µ(x) be the minimal polynomial of α. Observe that µ(x)

divides p(x). Hence, µ(x) splits over M. Let

Z := {α′ ∈M µ(α′) = 0} . Since µ(x) is an irreducible factor of p(x),

it is separable and card(Z) = deg(µ) . Since M is normal by (4.2.2.8),

the Galois group AutF (M) acts transitively on Z by (4.2.2.4).

Put L := Fix(AutF (M)), and let q(x) be the minimal

polynomial of α over L. By (4.2.1.9), the AutL(M)-orbit of α

consists of precisely of the roots of q in M. Since

AutL(M) = AutF (M) we have that this orbit it Z. In particular,

deg(q) ≥ card(Z) = deg(µ). Hence [L(α) : L] ≥ [F (α) : F ] . Since M is

Galois over F (α), we have F ≤ L ≤ F (α) whence F (α) = L(α) . Hence, our

degree inequality implies L = F, i.e., M/F is Galois. q.e.d.

4.2.5 Galois Correspondence

Main Theorem of Galois Theory 4.2.5.1. Let M/F be a finite Galois

extension. The map

{K M/K/F} −→ {G G ≤ AutF (M)}
K 7→ AutK(M)

is an inclusion-reversing bijection whose inverse is given by

G 7→ Fix(G) .
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Moreover, K/F is normal if and only if AutK(M) is normal in

AutF (M) .

Proof. That K 7→ AutK(M) and G 7→ Fix(G) are inverse operations is

the contents of (4.2.4.2) and (4.2.4.4). It is easy to see that

they reverse inclusions.

It remains to show that the correspondence preserves

normality. This follows from (4.2.2.5). q.e.d.

4.2.6 Finite Fields

Theorem 4.2.6.1. There exists up to isomorphism a unique finite

field Fpk of size pk for each prime number p and each exponent k ≥ 1.

Such finite field is the splitting field of the polynomial xp
k − x

whose roots are exactly the elements of Fpk.

Proof. Uniqueness: let K/Fp be a field extension of degree k. The

multiplicative group of K has order pk − 1. Hence the elements of K

are exactly the roots of xp
k − x and K is the splitting field of this

polynomial.

Existence: it suffices to show that Fp[x] has irreducible

polynomials of every degree. This is left as an exercise. q.e.d.

Exercise and Definition 4.2.6.2. Let K be a field of characteristic

p > 0. Then, the Frobenius homomorphism

K −→ K

ξ 7→ ξp

is a field homomorphism.

Theorem 4.2.6.3. Let q := pk. The Frobenius automorphism ϕ : Fq → Fq

is an element of AutFp(Fq) of order k. Consequently, AutFp(Fq) is

cyclic of order k, and Fq/Fp is a Galois extension.

212



Proof. Let l be the order of the Frobenius automorphism. Then xp
l − x

vanishes identically on Fq. Since it cannot have more than pl roots,

we find l ≥ k. q.e.d.

Corollary 4.2.6.4. The field Fpk contains exactly one subfield of

size pl for every l dividing k. Such subfield consists precisely of

the roots of the polynomial xp
l − x. In particular, the subfields of

any finite field are totally ordered with respect to

inclusion. q.e.d.

4.3 Separability

4.3.1 Perfect Fields

Definition 4.3.1.1. A field K is perfect if every algebraic

extension of K is separable. Equivalently, K is perfect if every

irreducible polynomial in K[x] is separable.

Exercise 4.3.1.2. Show that for any irreducible polynomial

p(x) ∈ K[x], the following are equivalent:

1. The polynomial p(x) is separable.

2. The polynomial p(x) does not share roots with its derivative

p
′
(x).

3. The polynomial p(x) and its derivative p
′
(x) are relatively

prime, i.e.,

gcd
(
p(x) , p

′
(x)

)
= 1.

Corollary 4.3.1.3. In characteristic 0, every irreducible polynomial

is separable. Consequently all fields of characteristic 0 are

perfect. q.e.d.

Corollary 4.3.1.4. In characteristic p, an irreducible polynomial

p(x) is not separable if and only if it can be regarded as a

polynomial in xp, i.e., if there exists a polynomial q(x) with

p(x) = q(xp) . q.e.d.
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Exercise 4.3.1.5. Let K be a field of prime characteristic p. If

ξ ∈ K is not a pth power, then the polynomial xp − ξ is irreducible.

In particular, if the Frobenius endomorphism for K is not onto, then

K is not perfect.

Exercise 4.3.1.6. Let K be a field of prime characteristic p. Every

polynomial of the form p(xp) is a pth power of another polynomial.

In particular, no polynomial of the form p(xp) is irreducible. It

follows that a K is perfect.

From (4.3.1.5) and (4.3.1.6) we infer:

Corollary 4.3.1.7. A field of positive characteristic is perfect, if

and only if the Frobenius homomorphism is onto. q.e.d.

Corollary 4.3.1.8. Finite fields are perfect. q.e.d.

Exercise 4.3.1.9. Construct a non-perfect field.

4.3.2 xx

Theorem 4.3.2.1. Let K/F be a field extension.

1. If ξ1, ξ2, . . . , ξu ∈ K are all separable over F, then F (ξ1, ξ2, . . . , ξu)

is a separable extension of F. This says: rational

expressions in separable arguments are separable.

2. The set

Fsep := {ξ ∈ K ξ is separable over F}
is a subfield of K. It is called the separable closure of F

in K.

Proof. Clearly, the first statement implies the second. To see that

F (ξ1, ξ2, . . . , ξu) /F is a separable extension, consider the minimal

polynomials µξi. All of these are separable. Hence, the splitting

field M of their product is a Galois extension of F. Clearly,

F (ξ1, ξ2, . . . , ξu) ⊂ K ∩M whence all elements of F (ξ1, ξ2, . . . , ξu) are

separable over F. q.e.d.
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4.3.3 Primitive Elements

Theorem 4.3.3.1 (The Primitive Element). Let K/F be an algebraic

field extension and let ξ, ξ1, ξ2, . . . , ξu ∈ K be chosen so that ξi is

separable over F for all i. Then there is an element β ∈ K (called

a primitive element) such that

F (ξ, ξ1, ξ2, . . . , ξu) = F (β)

In particular, every finite separable extension is simple.

Proof. Induction easily reduces us to the case u = 1. Also, we may

assume that F is infinite as finite fields always have primitive

elements. ... q.e.d.

4.4 Determinants

4.4.1 Norms

Let us fix a finite field extension K/F of degree m. Then, K is a

vector space of finite dimension over F. For every element ξ ∈ K,

left-multiplication induces a F-vector space endomorphism λξ : K → K.

If we fix a basis B of K over F, we can represent each element ξ by

the matrix representing λξ. This way, we can realize the field K as

a subfield in the matrix ring Mm(F ) .

Observation 4.4.1.1. Note that norm(ξ) = 0 if and only if K = 0.

Also,

norm(ξξ) = norm(ξ) norm(ξ) q.e.d.

Observation 4.4.1.2. The norm map is AutF (K)-invariant.

Proof. Let B be a basis of K as a F vector space and let ϕ : K → K

be an F-automorphism of K. Then, ϕ(B) is another basis for K.

Let ξ ∈ K and consider the matrix representing λξ relative to B. It

is the same matrix that represents λϕ(ζ) relative to ϕ(B).

Consequently, norm(ξ) = norm(ϕ(K)) . q.e.d.
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Corollary 4.4.1.3. The set {ξ ∈ K norm(ξ) = 1} is a subgroup of K∗

on which AutF (K) acts by group automorphisms. q.e.d.

4.4.2 Normal Bases

Exercise 4.4.2.1. Let K/F be a field extension. Let G be a

subgroup of AutF (K) and put F := Fix(G). Show that there is an

element ξ ∈ K such that the familiy (ϕ(ξ))ϕ∈G is linearly independent

over F.

4.5 Examples

4.5.1 Symmetric Functions

Let F be a field. Let M := K(ζ1, ζ2, . . . , ζu) denote the rational

function field in u variables over K. Observe that the symmetric

group Su acts on M by F-automorphisms defined by permuting the

variables.

Definition 4.5.1.1. A function f ∈ K(ζ1, ζ2, . . . , ζu) is called symmetric

if it is fixed under all permutations of the variables.

Observation 4.5.1.2. The elementary symmetric functions

σ1 := ζ1 + · · ·+ ζu

σ2 :=
∑
i<j

ζiζj

σ3 :=
∑

i<j<k

ζiζjζk

...

σu := ζiζj · · · ζu
are symmetric functions. q.e.d.

Let K := F (σ1, σ2, . . . , σu) be the subfield of M generated by the

elementary symmetric functions. We consider the polynomial

p(x) := (x− ζ1)(x− ζ2) · · · (x− ζu) = xu − σ1x
u−1 + σ2x

u−2 − · · · ± σu ∈ K[x]
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whose separability is obvious from the factorization.

Observation 4.5.1.3. M is the splitting field for p over K. In

particular, M/K is Galois. Also, since any K-automorphism is

uniquely determined by its induced permutation on the roots of p, we

see that AutK(M) embeds into the symmetric group Su. q.e.d.

Observation 4.5.1.4. The symmetric group Su embeds into the Galois

group AutK(M) as the group of those automorphisms defined by

permuting the variables ζi. (Note that such F-automorphisms leave

all elementary symmetric functions fixed and therefore fix K

elementwise.) q.e.d.

Thus, we have shown:

Proposition 4.5.1.5. The extension M/K is Galois with Galois group

Su permuting the variables ζi.

In particular, K = Fix(Su) , i.e., any symmetric function is

a rational expression of elementary symmetric functions.

4.5.2 The General Polynomial

Let F be a field and let K := F (a1, a2, . . . , au) be the rational function

field. We consider the polynomial:

p(x) := xu − a1x
u−1 + a2x

u−2 − · · · ± au ∈ K[x] .

This is the general polynomial of degree u over F. Note that it is

not a polynomial in F [x]. We aim to show:

Proposition 4.5.2.1. Let M be the splitting field of the general

polynomial p(x) as defined above. Then M/K is a Galois extension

with Galois group AutK(M) = Su.

Proof. We will compare the situation to the previous example. Let

M ′ := F (ζ1, ζ2, . . . , ζu) be a rational function field on a different set

of indeterminates, and put K ′ := F (σ1, σ2, . . . , σu) where the σi are the
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elementary symmetric functions in the new indeterminates ζj. Put

q(x) := (x− ζ1)(x− ζ2) · · · (x− ζu).
Consider the evaluation homomorphism

ϕ : F [a1, a2, . . . , au] −→ F [σ1, σ2, . . . , σu]

ζi 7→ σi

We claim that ϕ is an isomorphism. Note that ϕ is onto since the σi

generate the right hand. To see that ϕ is 1-1, assume that

r(a1, a2, . . . , au) ∈ ker(ϕ) , i.e., r(σ1, σ2, . . . , σu) = 0. Let α1, . . . , αu ∈M be

the roots of p(x). Recall that the σi really are polynomials in the

ζj. Thus, further evaluating at ζi = αi, we find:

r(α1 + · · ·+ αu, . . . , α1 · · ·αu) = 0

Remebering that a1 = α1 + · · ·+ αu, . . . , au = α1 · · ·αu. Consequently,

r(a1, a2, . . . , au) = 0,

which proves injectivity.

Since K is the field of fractions for F [ζ1, ζ2, . . . , ζu] and K ′

is the field of fractions for F [σ1, σ2, . . . , σu] , the homomorphism ϕ

extends to a field isomorphism ϕ : K → K ′. Observe that q = ϕ(p)

whence (by uniqueness of splitting fields) we have M ∼= M ′ and

AutK(M) ∼= AutK′(M
′) = Su. q.e.d.

4.5.3 Roots of Unity

Let Qr be the splitting field of xr − 1 over Q. Note that Q is

perfect. Hence Qr/Q is Galois.

Note that the roots of xr − 1 form a finite group under

multiplication. Thus, this is a cyclic group. Any generator is

called a primitive rth root of unity.

Definition 4.5.3.1. The polynomial Φm(x) :=
∏

ω x− ω where ω ranges

over all primitive roots of order m is called the mth

cyclotomic polynomial.
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Observation 4.5.3.2. The mth cyclotomic polynomial has degree

deg(Φm(x)) = φ(m) . q.e.d.

Observation 4.5.3.3. For any r, we have xr − 1 =
∏

m|r Φm(x) . q.e.d.

Corollary 4.5.3.4. The cyclotomic polynomials are primitive integer

polynomials.

Proof. We use induction. Assume that for any m < r, the mth

cyclotomic polynomial has integer coefficients.

Since cyclotomic polynomials are monic, we can perform

division with remainder in Z[x]. Thus, there exist unique

polynomials p(x) , q(x) ∈ Z[x] with:

xr − 1 = p(x)
∏

m|r,m<r
Φm(x) + q(x) and deg(q(x)) < deg


 ∏

m|r,m<r
Φm(x)




Since the same constraints define the same polynomials in C[x], we

find that p(x) = Φr(x) and q(x) = 0.

Since xr − 1 is primitive, so must be all its integer

factors. q.e.d.

Lemma 4.5.3.5 (Gauss). The cyclotomic polynomials are irreducible

over Q.

Proof. Since cyclotomic polynomials are primitive integer

polynomials, it suffices to show that they don't factor over the

integers.

Suppose Φm(x) = p(x) q(x) in Z[x], where we assume that p(x)

is monic and irreducible. Let α be a root of p and let p be a prime

not dividing m. Note that αp is another primitive root of unity of

degree m. Hence Φm(αp) = 0.

Assume p(αp) 6= 0. Then q(αp) = 0. Note that p(x) is the

minimal polynomial of α over Q. It follows that p(x) |q(xp) over Q.

However, since p(x) is monic, the same division with remainder trick

as above yields p(x) |q(xp) in Z[x]. Now, we reduce this mod p, i.e.,
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we regard this as a statement in Zp[x]. Since q(xp) = q(x)p, we find

that any root of p(x) is also a root of q(x). This, however, is a

contradiction since xm − 1 has no multiple roots over Zp unless p|m.

It follows that p(αp) = 0.

From this, we deduce that all primitive roots of degree m

are roots of p(x). Thus, by degree, Φm(x) = p(x) . q.e.d.

Corollary 4.5.3.6. The extension Qr/Q is Galois with Galois group

AutQ(Qr) = Aut(Cr) .

Proof. Any element has to permute the primitive roots. Also,

Qr = Q(ω), whence we have a monomorphism

AutQ(Qr) ↪→ Aut(Cr)

which is onto by observing that both groups have φ(r)

elements. q.e.d.

Corollary 4.5.3.7. GLn(Q) has only finitely many conjugacy classes

of torsion elements.

Proof. Let A be a matrix of order k. Then, all invariant factors

divide xk − 1 and are therefore products of cyclotomic polynomials

Φm(x).

Note that φ(m) = deg(Φm) exceeds the number of primes less

than r. It follows that only finitely many different cyclotomic

polynomials can occur since the degrees of the invariant factors are

bounded from above by n. It follows that only finitely many

different polynomials can occur as invariant factors and the claim

follows. q.e.d.
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Chapter 5

Appendix: Sets

5.1 Zorn's Lemma and the Well-Ordering Theorem

5.1.1 Ordered Sets

Definition 5.1.1.1. A partially ordered set is a set X together with

a relation ¹ that satsifies:

x1 ¹ x2 ¹ x3 =⇒ x1 ¹ x3

x1 ¹ x2 ¹ x1 ⇐⇒ x1 = x2

An element x is called minimal if y ¹ x only holds for y = x.

Similarly, x is called maximal if x ¹ y only holds for y = x.

A subset A of a partially ordered set X is closed if it

satisfies:

x ∈ A and y ¹ x =⇒ y ∈ A

If X and Y are partially ordered sets, we say that Y is an

initial segment of X if Y is a closed subset of X and the partial

order of Y is induced by the partial order on X. In this case, we

write Y ≤ X.

A partially ordered set is totally ordered if we always

have:

x1 ¹ x2 or x1 ¹ x2
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A totally ordered set is well-ordered if any non-empty subset has a

minimal element.

Observation 5.1.1.2. For any set of partially ordered sets, the

relation \is an initial segment of" defines a partial order. q.e.d.

Observation 5.1.1.3. Let F be a ≤-nested collection of well-ordered

sets, i.e., for any two X, Y ∈ F, we have X ≤ Y or Y ≤ X. Then

there is a unique partial order on
⋃
X∈F X that induces the order

relations on each X ∈ F, and this order is a well-ordering. q.e.d.

5.1.2 The Theorems

Well-Ordering Theorem 5.1.2.1. Any set X can be well-ordered.

Zorn's Lemma 5.1.2.2. A partially ordered set wherein each

well-ordered subset has an upper bound has a maximal element.

Lemma 5.1.2.3. Let X be a set and let P− be the collection of

proper subsets of X. Let ch : P− → X be a function satisfying

ch(A) ∈ X − A for each proper subset A ⊂ X. Note that such a

function always exists by the axiom of choice.

Call a subset A ⊆ X with a total order ¹ a ch-set if

x = ch({y ∈ A y ¹ x and y 6= x})

for all x ∈ A.
Then, for any ch-set A properly contained in X, the set

A ∪ {ch(A)} is a ch-set containing A as a proper initial segment.

Moreover, the collection of all ch-sets is ≤-nested, i.e.,

for any two ch-sets A and B, we have A ≤ B or B ≤ A.

Proof. Let F be the collection of those partially ordered sets that

are initial segments as well of A as of B. Note that their union C

is the unique maximal common initial segment of A and B.

We claim C = A or C = B. Suppose neither equality

obtains. Then ch(C) ∈ A ∩ B and C ∪ ch(C) would be a larger common

initial segment for A and B, contradicting maximality. q.e.d.
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Proof of the Well-Order Theorem. Let ch be a function as in

Lemma 5.1.2.3, and let A be the union of all ch-sets. Since the

ch-sets form a nested family, we know that A is a well-ordered.

Observe that A is a ch-set. Indeed, it is maximal among all

ch-sets.

Suppose A is a proper subset of X. Then, A ∪ {ch(A)} is a

larger ch-set. This contradiction implies that A = X. q.e.d.

Proof of Zorn's Lemma. Suppose that X does not have maximal

elements. Then we can choose ch in Lemma 5.1.2.3 so that it assigns

to each well-ordered A ⊂ X an upper bound outside A.

The union Y , of all well-ordered ch-sets is a well-ordered

ch-set. Indeed, it is the maximal one. Considering Y ∪ {ch(Y )}, we

deduce that Y cannot be a proper subset of X, whence X is

well-ordered and hence has an upper bound which must be a maximal

element. q.e.d.
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Appendix: Solutions to Selected

Exercises

(1.1.6.16) The group Perm(X5) acts naturally from the left on the set of

all graphs with vertex set X5: just move edges according to

where their endpoints move. This action preserves the

isomorphism type of a graph. In particular, the group Perm(X5)

acts on the cycles (graphs isomorphic to a pentagon-graph) with

vertex set X5. With respect to this action, the dihedral group

D10 is the stabilizer of the pentagon-graph. Moreover, two

elements of Perm(X5) take the pentagon-graph to the same picture

if and only if they belong to the same left-coset of D10.

[You should argue this point a little. It isn't hard. Draw a

picture. I allow myself to be brief here!] Thus, the pictures

represent left-cosets.

In terms of Section 1.1.7 there is another way of seeing this:

there is a natural Perm(X5)-equivariant bijection:

{cycles with vertex set X5} ←→ Perm(X5)
/
D10

Both sets carry a left-action of Perm(X5).

(1.1.7.21) To count the elements in G and H, we use the Orbit-Stabilizer

Theorem. For G, note that this group acts transitively on the

set of all twelve edges of the graph Γ. The stabilizer of a

given edge preserves its end-points as one of them has degree 4

(degree=number of edges containing a given vertex) and the other
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has degree 2. Since symmetries of Γ preserve degrees, an

element stabilizing an edge cannot swap its end-points. It

follows that the stabilizer of an edge has order 4: it consists

of the identity, two independent swaps, and the simultaneous

swapping. Thus the order of the group is 4× 12 = 48.

For H consider the transitive action on the eight vertices of

the cube. The stabilizer of any such vertex is a symmetric

group on the three edges adjacent to the vertex. Thus, the

order of H is 8× 6 = 48.

It turns out that the two groups are isomorphic. We will

interpret the graph Γ geometrically in the cube. The three

degree 4 vertices of Γ corresponds to the three coordinate

planes, and the six degree 2 vertices of Γ correspond to the six

face midpoints of the cube. An edge in Γ is drawn if and only

if the face midpoint lies within the coordinate plane. Here is

a picture:
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And here is the corresponding reading of Γ:

xy − plane
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Every symmetry of the cube sends coordinate planes to coordinate

planes and face midpoints to face midpoints. Also, if a point

lies within a plane before applying the symmetry then its image

will lie in the image of the plane afterward. Thus, the group

H acts on Γ by graph automorphisms. Therefore, we obtain a

group homomorphism

H −→ G

and all that remains to argue is injectivity: surjectivity will

then follow since we establishes already that H and G have the

same number of elements.

However, injectivity amounts to nothing more than the statement

that the only cube symmetry that acts as the identity on Γ is,
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indeed, the identity of the cube. Now, we see this by looking

at the six face midpoints: any non-trivial symmetry of the cube

has to move at least some of them. This movement, however, will

move some of the degree 2 vertices in Γ.

(1.1.8.12) We use induction on n. The claim is obvious for n = 1. So let

A = (aij) be a matrix in GLn(Z). We devise the following

strategy: form:

1. Multiply all rows with negative first-column entry by −1.

2. If there is just one row whose first-column entry is

non-zero, then this entry is 1 as seen by developing det(A)

along the first column. Swap, if necessary, to put this 1

in the top row. Now focus on the lower-right

(n− 1) × (n− 1)-submatrix. Its determinant has to be ±1 by

the same argument. Thus, we can apply the induction

hypothesis. Since the necessary row-operations never

involve the top-row, the leading zeros in the first column

will be preserved. Thus, we can obtain a matrix of the form



1 ∗ ∗ · · · ∗
0 1 0 · · · 0
... ... ... ... ...

0 · · · 0 1 0

0 · · · 0 0 1




And it is clear that we can kill the entries in the top-row.

3. If there is more than one non-zero entry in the first

column, swap so that the smallest non-zero entry is in the

first row. Now subtract the first row from all other rows

as many times as possible without making the first-column

entry negative. At the end of this step, all rows below the

first will have non-negative first-column entries strictly

smaller than the top-left entry.

Now go back to the previous step.
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The apparent loop in this algorithm is traversed only finitely

many times since the top-left entry strictly decreases but stays

positive in each iteration. This settles the first part.

Recall that elementary row operations can be realized as

left-multiplication by elementary matrices. Let E be the set

of those elementary n× n-matrices that we need to realize the

\very elementary row-operations" from the first part of the

problem. Note that all such matrices lie in GLn(Z) and that E
is a finite set.

Now, we argue that GLn(Z) is a group. Clearly, this set

contains the identity matrix. Also, GLn(Z) is closed with

respect to matrix multiplication since determinants multiply.

As for inverses, we note that the reduction algorithm above

constructs the inverse of any matrix A ∈ GLn(Z) as a product of

matrices from E. Thus multiplicative closure implies closure

with respect to inverses.

The same observation shows that E generates GLn(Z).

(??) The first claim is obvious: automorphisms are invertible, hence

every automorphism is a bijection; now the statement follows

since composition of maps defines the group law in both sets.

The second claim just says, in a wordy way, that the conjugation

adg : G −→ G

h 7→ ghḡ

is a homomorphism, which follows from straight forward

computations. We just verify that it is multiplicative:

adg(h1h2) = gh1h2ḡ = gh1ḡgh2ḡ = adg(h1) adg(h2) .

To show that Inn(G) is normal in Aut(G), let ξ : G→ G be an

automorphism. We claim that the conjugate ξ ◦ adg ◦ξ̄ = adξ(g), which
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again is a straight forward computation:

ξ ◦ adg ◦ξ̄(h) = ξ
(
adg

(
ξ̄(h)

))

= ξ
(
gξ̄(h) ḡ

)

= ξ(g) ξ
(
ξ̄(h)

)
ξ(ḡ)

= ξ(g)h inf ξ(g)

= adξ(g)(h)

It follows that the conjugate of a conjugation automorphism by

an automorphism is again given by a conjugation. Thus

conjugation automorphisms for a subgroup closed under

conjugation.

The last claim is the most difficult, because we have to apply

the same trick twice. Fix h ∈ G so that adh generates Inn(G).

That means, for every g ∈ G, we have adg = adhk for some exponent

k. Now, we compute an arbitrary commutator:

[g1, g2] = adg1(g2) ḡ2

= adhi(g2) ḡ2

=
[
hi, g2

]

= hi adg2
(
h−i

)

= hi adhj

(
h−i

)

=
[
hi, hj

]

= 1

(1.1.12.7) First, we show that nilpotent groups are closed with respect to

central extensions. So let

N ↪→ G→→ Q

be a short exact sequence, where N and Q are both nilpotent

and where N is a central subgroup in G. Then N is

automatically Abelian. Let

1 = Q0 ≤ Q1 ≤ · · · ≤ Qu = Q
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be a subgroup chain in Q satisfying [Q,Qi+1] ≤ Qi for each i.

Let Gi+1 be the preimage of Qi in G. Put G0 := 1. Note that by

exactness, G1 = N. Also note that since G1 is central, we have

[G,G1] ≤ G0. For higher indices i, we find that the condition

[G,Gi+1] ≤ Gi is equivalent to [Q,Qi] ≤ Qi−1 by direct computation

with coset representatives.

Conversely let G be nilpotent, i.e., suppose there is a

subgroup chain

1 = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gu = G

satisfying [G,Gi+1] ≤ Gi. We want to show that G can be obtained

from Abelian groups within finitely many steps of taking central

extensions. Note that [G,G1] ≤ G0 = 1 implies that G1 is central

(and hence normal) in G. Thus, G is a central extension:

G1 ↪→ G→→ G
/
G1

If we can show that G
/
G1 has a subgroup chain testifying to its

nilpotency that is shorter than the one for G, we can iterate

this procedure consistently reducing the length of the subgroup

chain whence the process will terminate.

However, the chain

1 = G1

/
G1
≤ G2

/
G1
≤ G3

/
G1
≤ · · · ≤ Gu

/
G1

= G
/
G1

fits the bill.

(1.2.5.6) For D8, we first classify the seven non-trivial elements:

there are four reflections about axes and three rotations. Of

these, five have order 2 namely the rotation by π and the four

reflections. This immediately yields a complete list of the

five subgroups of order 2.

The two rotations by π
2
both generate the same cyclic group of

order 4. Any other group of order 4 cannot contain either of
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the two order 4 elements. Thus the other subgroups of order 4

consist of involutions only. Moreover, order four subgroups in

D8 are normal. Thus, we will find them by looking at the

orbits of order two elements under conjugation: it turns out

that the two reflections about diagonals are conjugate and the

two reflections about lines through opposite edge midpoints are

another pair of conjugate reflections. The order two rotation

is central. Thus, to form a union of conjugacy classes with

three non-trivial order two elements, there are exactly two

possibilities. Both of these actually yield subgroups: one

generated by the first pair of conjugate reflections (also

containing the rotation as their product) and the other one

generated by the other pair of conjugate reflections.

Note, how in the classification, we also established the

inclusion relations. Here is the resulting diagram:

PICTURE

Now for S4. We have seen in class that Sr has exactly one index

2 subgroup, namely Ar. This leaves the following orders: 2,

3, 4, 6, and 8. Subgroups of order 8 are 2-Sylow subgroups, of

which there are either 1 or 3. Note that any way of assigning

the numbers 1 through 4 to the four corners of a square yields

an embedding of D8 into S4. We find that up to conjugation in

D8 there are three possible arrangements: the corner labeled 1

can be moved anywhere and then we have three choices to label

the opposite corner. The remaining choice can be undone by a

reflection and thus does not yield a different subgroup. These

three 2-Sylows also contain all subgroups of order 4 and 2.

Thus, these considerations determined the 2-power subgroups

since we know the subgroup lattice of D8.

We can see four subgroups of order 6 immediately: the

stabilizer of any number 1, 2, 3, or 4 is a symmetric group
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permuting the remaining numbers. These are all isomorphic to

S3. We shall show, that these are indeed all subgroups of order

6: note that by Cauchys theorem any subgroup of order 6 has an

element of order 3. In S4 such an element must be a 3-cycle.

This cycle leave a certain number fixed. Note that any other

element of the subgroup must also fix that number for otherwise

it would conjugate the given 3-cycle to a 3-cycle moving the

fourth number. Then the two cycles would generate A4. This

consideration rules out that our subgroup contains a product of

two disjoint transpositions. Hence, its order two elements are

transpositions (of which there is at least one in the subgroup).

Now, a transposition together with a 3-cycle generates S3.

Inside our four subgroups of order 6, we also see four subgroups

of order 3. By Sylow theorems, there cannot be more than four

3-Sylow subgroups in S4, which completes our list.

(1.3.1.11) Existence of a reduced word is clear: just delete offending

subwords as long as necessary.

For uniqueness, suppose r and s are two equivalent reduced

words. Let

r = w0 ∼ w1 ∼ · · · ∼ wu = s

be a chain witnessing for the equivalence. Chose the chain so

that the sum of lengths
∑u

i=0 |wi| is minimal. We claim that in

this case, u = 0.

Suppose otherwise and let i be an index where |wi| is maximal.

Then the two neighors wi−1 and wi+1 are obtained from wi by

deleting offending subwords. If those subwords do not overlap,

we can replace wi by the word where both subwords are deleted

and replace the deletions by insertions. The total lengthof the

chain decreases by 4. The cases where the subwords overlap are

even easier since under these circumstances wi−1 = wi+1.
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(1.3.1.14) It is clear that every vertex v in the Cayley graph Γ has two

neighbors for each generator x ∈ X, namely the vertices vx and

vx−1 which are different since a one letter word is not

equivalent to its inverse (any two reduced words are

inequivalent if they are different). This proves the claim

about the degree.

To see that Γ does not contain non-trvial cycles, assume that

v →−vxε11 →−vxε11 xε22 →−vxε11 xε22 xε33 →−· · · →−vxε11 xε22 xε33 · · ·xεu
u →−v

is such a non-trival cycle of minimum length. Then, clearly, no

vertex can occur twice (otherwise, we could decompose the cycle

into two shorter cycles one of which has to be non-trival). In

particular, all the words xε11 x
ε2
2 x

ε3
3 · · ·xεi

i are pairwise different.

(??) ince any basis can be taken to any other basis, any non-zero

vector can be taken to any vector by a matrix. Thus, every

non-zero vector generated Dm as an left-Mm×m(D)-module.

(3.1.3.14) The statement is true. By distributivity, it suffices to show

that elementary elements commute. Note that

m1¯· · ·¯mi¯n¯n′¯mi+1¯· · ·¯mu = m1¯· · ·¯mi¯n′¯n¯mi+1¯· · ·¯mu

which implies that we can reorder factors in an elementary

element at will (neighbor transpositions generate the symmetric

group). In particular, we have

(m1 ¯ · · · ¯mi) ¯ (n1 ¯ · · · ¯ nj) = (n1 ¯ · · · ¯ nj) ¯ (m1 ¯ · · · ¯mi)

which proves the claim.

(4.1.1.6) First, we show that BM
F is a spanning set. Fix ξ ∈M. We can

write ξ as a finite linear combination

ξ = ζ1ζ1 + · · ·+ ζuζu
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and then, we can write each ζi ∈ K as a linear combination of

finitely many elements of BK
F with F-coefficients.

Substitution yields a finite combination for ξ of elements in

BM
F with F-coefficients.

Now we argue that BM
F is a linearly independent set. Any linear

combination of 0 with F-coefficients of elements in BM
F can be

rearranged as a combination of elements of BM
K with

K-coefficients (which are linear combinations of BK
F -elements

with F-coefficients). Linear independence of BM
K implies that

all K-coefficients have to be 0. Now linear independence of

BK
F implies that all F-coefficients are 0.

(4.1.2.7) K∗ ≤ K be the field generated over F by the coefficients of

µξ/K. Since µξ/K(ξ) = 0 and µξ/K ∈ K∗[x], the minmal polynomial

µξ/K∗ divides µξ/K. This implies

[M/K] = deg
(
µξ/K

) ≥ deg
(
µξ/K∗

)
= [M/K∗].

On the other hand K∗ ≤ K. It follows that K = K∗.

(4.1.2.8) First suppose that M = F (ξ) is a simple extension. For any

intermediate field K, the minimal polynomial µξ,K divides µξ,F.

Moreover, by 4.1.2.7, the field K is generated by the

coefficients of µξ,K Since there are only finitely many monic

divisors of µξ,F in M [x], there can be only finitely many

intermediate fields.

(4.1.2.10) If F is finite, then so is M. By (4.1.2.5), M/F is simple.

Thus, we assume that F is infinite. By induction, it suffices

to argue that F (ξ, ζ) is a simple extension. However, since

there are only finitely many intermediate fields, by pigeon hole

principle, there are ζ 6= ξ with F (ξ + ζζ) = F (ξ + ξζ) whence

(4.1.2.9) applies.

(??) IXME: [totatlly bogus] Only surjectivity requires proof. Zorn's

lemma and (4.1.3.3).
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(4.3.1.2) ...

(4.3.1.5) Let α be a solution of xp − ξ (in some extension of K). Then

xp − ξ = (x− α)p

and the factors of xp − ξ are all of the form (x− α)k. Since

kα 6∈ K is a coefficient of (x− α)k we find that there is no

non-trivial divisor of xp − ξ in K[x].

(4.3.1.6) Just take the pth roots of all coefficients.
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