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Preface

This set of notes is based on my lectures “Important Groups” and “My Favorite
Groups” which I taught at Cornell University in Spring 2002 and Spring 2003. The
goal was to discuss the most important examples of infinite discrete groups in con-
siderable depth and detail.

Being “important” is rather a sociological concept than a mathematical one. A
group is important if Mathmaticians are interested in it: Important groups are those,
we talk about on dinner parties; and if you fail to know them, you will become a
social outcast. Of course, any list of those groups is open to debate, and the one to
follow reflects many of my personal idiosyncrasies.

What is in and what is not

The focus of this lecture is on particular groups. So you will not find a lot of general
theorems like the following miracle.

A finitely generated group has a solvable word problem if and only if it
embeds into a simple subgroup of a finitely presented group.

Those gadgets are sometimes mentioned, sometimes even used, but we will not bother
to prove many of these results.

Instead you will find results like these:

• The infinite cyclic group is amenable, whereas the other finitely generated free
groups are not.

• Arithmetic groups are residually finite.

• The group Out(Fn) has only finitely many finite subgroups up to conjugacy.

The groups dicussed in this lecture can be aranged in two main blocks: On the one
hand we discus free groups, Thompson’s groups, and Grigorchuk’s groups. Here the
focus of the discussion is about growth and amenability. On the other hand, we will
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meet arithmetic groups, mapping class groups of surfaces and the groups Out(Fn).
Here the discussion will be centered around the construction of nice spaces, upon
which these groups act.

Thanks . . .

. . . to David Revelle for proofreading my crappy notes.

. . . to Jim Belk for helping me considerably in understanding amenability and
Thompson’s group F .

. . . to David Benbennick for debugging the exercises and problems.

. . . to Ference Gerlitz for teaching me about the subgroup conjugacy problem in
free groups.

. . . to Rotislav Grigorchuk for explaining to me the solution of the conjugacy prob-
lem in his first group.

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2002]
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Free Groups
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Chapter 1

The Infinite Cyclic Group

The infinite cyclic group C∞ = Z is the most simple infinite discrete group. It can
be given in various ways:

• by a presentation C∞ = 〈x〉.
• as the fundamental group of the circle C∞ = π1(S

1).

• as a group of matrices C∞ =

{(
1 s
0 1

)
s ∈ Z

}
.

So we can read off that C∞ is finitely presented. It acts freely and cocompactly on
the real line, the universal cover of S1. The real line is contractible and has dimension
1. Thus, we infer:

• C∞ is of type F.

• C∞ has geometric dimension 1.

• C∞ is linear.

• C∞ is torsion free.

Moreover, we will see:

[1.1.2] C∞ is residually finite.

[1.2.30] C∞ is amenable.

[1.3.3] C∞ does not have Kazhdan’s property (T).

[1.4.13] C∞ has two ends and, up to commensurability, it is characterized by this prop-
erty.
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1.1. RESIDUAL FINITENESS 3

[1.4.26] C∞ has linear growth and, up to commensurability, it is characterized by this
property.

1.1 Residual Finiteness

Definition 1.1.1. A group G is residually blah if for every non-trivial element g,
there is a blah quotient of G wherein g does not become trivial.

Theorem 1.1.2. C∞ is residually finite.

Proof. The infinite cyclic group has factors of any order. An element will not be
trivial in any factor whose order is relatively prime to the order of the given element.

q.e.d.

1.2 Amenability

Definition 1.2.1. Let G be a group acting on a set X. The set X is called
G-amenable if there is a G-invariant finitely additive probability measure on the
system of all subsets of X.

A group G is called amenable if the left-action of G on itself by multiplication
turns G into a G-amenable set.

Example 1.2.2. The counting measure shows that finite groups are amenable.

Remark 1.2.3. Given a finitely additive G-invariant probability measure µ on the
set X, we can define a left invariant mean on the set of bounded real-valued functions
L(X,R). A mean on L(X,R) is a linear map L(X,R)→ R taking constant functions
to their unique value. Such a mean is left-invariant, if it is invariant with respect to
the canonical left-action of G on L(X,R) given by

(gf) (x) := f
(
g−1x

)

for g ∈ G and f ∈ L(X,R).
The left invariant mean associated to a finite probability measure is constructed

as follows:

1. For characteristic functions χY , define

∫

x∈X
χY dµ x := µ(Y ) .

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2002]



4 CHAPTER 1. THE INFINITE CYCLIC GROUP

2. Extend this definition to finite linear combinations of characteristic functions.

3. For an arbitrary bounded function f , put

∫

x∈X
f dµ x := lim

ε→+0

∫

x∈X
fε dµ x

where fε is any linear combination of characteristic functions that is everywhere
ε-close to f . Using µ(X) = 1, it is easy to see that the limit on the right hand
side does not depend on the chosen ε-approximations fε.

Invariance of the mean follows from the invariance of µ. Beware that this mean,
although we denote it by the

∫
-sign behaves not always as an analyst might expect.

Conversely, every left-invariant mean on L(X,R) induces a left-invariant finitely
additive probability measure on G: just assign to each subset the mean of its charac-
teristic function. We have thus proved one of the many characterizations of amenabil-
ity:

A G-set X is amenable if and only if there is a G-invariant mean on
L(X,R).

A group acts on itself by multiplication from the left and from the right. We can use
invariant means to improve upon the invariance of a measure:

Proposition 1.2.4. An amenable group G has a bi-invariant finitely additive prob-
ability measure µ̃.

Proof. Let µ be a left-invariant finitely additive probability measure on G. Observe
that

µ−(S) := µ
(
S−1

)

defines a right-invariant measure on G. It is easy to check that

µ̃(S) :=

∫

g∈G
µ
(
Sg−1

)
dµ− g

is bi-invariant: We have

µ̃(hS) =

∫

g∈G
µ
(
hSg−1

)
dµ− g

=

∫

g∈G
µ
(
Sg−1

)
dµ− g

= µ̃(S)

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2002]



1.2. AMENABILITY 5

and

µ̃(Sh) =

∫

g∈G
µ
(
Shg−1

)
dµ− g

=

∫

g∈G
µ
(
Shg−1

)
dµ− gh

−1

=

∫

g∈G
µ
(
S

(
gh−1

)−1
)

dµ− gh
−1

= µ̃(S) .

q.e.d.

The main goal of this section is to show

Theorem 1.2.5. The infinite cyclic group is amenable.

which will be proved as Corollary (1.2.30).

1.2.1 Følner Sequences

Definition 1.2.6. A Følner sequence for a G-setX is a sequence (Fi) of finite subsets
Fi ⊆ X such that

lim
i→∞
|gFi4 Fi|
|Fi| = 0 for all g ∈ G.

Here M 4N denotes the symmetric difference of two sets:

M 4N := (M ∪N)− (M ∩ N)

Remark 1.2.7. It is very easy to see that, for any sequence (Fi) of finite subset sets
in the G-set X and any group element g ∈ G,

lim
i→∞
|gFi4 Fi|
|Fi| = 0 if and only if lim

i→∞
|gFi ∩ Fi|
|Fi| = 1.

So either condition can be used to define Følner sequences.

Exercise 1.2.8. For any sequence (Fi) of finite subsets in X, the set

{
g ∈ G lim

i→∞
|gFi4 Fi|
|Fi| = 0

}

is a subgroup of G.

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2002]



6 CHAPTER 1. THE INFINITE CYCLIC GROUP

Lemma 1.2.9. The “balls of radius i” form a Følner sequence for the infinite cyclic
group.

Proof. The ball of radius i is the subset {−i,−i+ 1, . . . , i− 1, i}. It is obvious
that for a fixed group element g, very large balls will have large overlaps with their
g-translate. q.e.d.

We will show below that a group is amenable if it has a Følner sequence. This will
complete the proof that the infinite cyclic group is amenable.

1.2.2 Ultralimits

Definition 1.2.10. Let M be a set. A filter on M is a set F of subsets of M
satisfying:

1. ∅ 6∈ F .

2. If F ∈ F and M ⊇ H ⊇ F , then H ∈ F .

3. If F ∈ F and H ∈ F , then (F ∩H) ∈ F .

Observation 1.2.11. Since a filter does not contain the empty set but is closed with
respect to forming intersections, no two sets in a filter are disjoint. q.e.d.

Example 1.2.12. For any non-empty subset S ⊆M , the system

{F ⊆M F ⊇ S}

is a filter. It is called the principal filter induced by S.

Example 1.2.13. If M is infinite, the set of cofinite sets (complements of finite sets)
is a filter CFM .

Example 1.2.14. A directed set is a partially ordered set D such that any two
elements have a common upper bound. A coinitial segment is a subset F ⊆ D
satisfying:

if α ∈ F and α < β, then β ∈ F .

The set of supersets of non-empty coinitial segments is a filter CIT .

Exercise 1.2.15. Show that CFN = CIN.

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2002]



1.2. AMENABILITY 7

All filters on M are comparable with respect to inclusion: a filter F is called finer
that a filter H if every subset of M that belongs to H also belongs to F . Obviously,
this just means H ⊆ F . A filter that cannot be refined (a finest filter) is called an
ultrafilter.

Example 1.2.16. Fix a subset S ⊂ M and a filter F that contains neither S nor
M − S. Then

FS := {T M ⊇ T ⊇ (S ∩ F ) for some F ∈ F}
is a filter finer than F .

From this example, we immediately infer:

Corollary 1.2.17. Let U be an ultrafilter on M . For every subset S ⊆ M either
S ∈ U or (M − S) ∈ U . q.e.d.

Since ascending unions of filters are filters, Zorn’s Lemma immediately implies:

Lemma 1.2.18. Every filter is contained in an ultrafilter. q.e.d.

Definition 1.2.19. Let M be a set, F a filter on M , and X a topological space.
A family (xm)m∈M of points in X F -converges to a point x ∈ X if, for every open
neighbourhood U of x,

{m ∈M xm ∈ U} ∈ F .
In this case, we say x = F - limm∈M xm is an F -limit of (xm)m∈M .

Example 1.2.20. Ordinary convergence of sequences is the same as CFN-
convergence.

Example 1.2.21. A net in X over D is a family of points in X indexed by a directed
set D. Convergence for nets is defined as CID-convergence.

Observation 1.2.22. If H is finer than F then any F-limit of a net is also an
H-limit.

Proposition 1.2.23. If X is Hausdorff, then F-limits are unique.

Proof. This is done by contradiction. Suppose there were two points a1 and a2 such
that, for each open neighborhood Uj of aj,

{m ∈M xm ∈ Uj} ∈ F .
Since X is Hausdorff, we can choose these two neighborhoods to be disjoint. But
then, both sets

{m ∈M xm ∈ Uj}
are disjoint. As F is a filter, this cannot happen. q.e.d.

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2002]



8 CHAPTER 1. THE INFINITE CYCLIC GROUP

Theorem 1.2.24. Fix an ultrafilter U on the set M . Let C be a compact topological
space. Then any family of points (xm)m∈M has a U-limit.

Proof. Assume by contradiction that each a ∈ C has an open neighbourhood U such
that

{m ∈M xm ∈ U} 6∈ U .
Then we can, by compactness, cover C with finitely many open sets Uj such that for
each j

{m ∈M xm ∈ Uj} 6∈ U .
However,

M =
⋃
j

{m ∈M xm ∈ Uj}

is a cover of M by finitely many subsets. Hence one of them must be in U by the
following Lemma 1.2.25 q.e.d.

Lemma 1.2.25. Let U be an ultrafilter. If a finite union S1 ∪ · · ·Sn belongs to U ,
then, for at least one index i, we have Si ∈ U .

Proof. Suppose Si 6∈ U for all i. Then

M − Si ∈ U for all i

Hence ⋂
i

M − Si = M −
⋃
i

Si ∈ U

which contradicts the assumption
⋃
i Si ∈ U . q.e.d.

Anything called a “limit” should commute with continuous functions and cross-
products. The following statements just say that F -limits behave as you would expect.

Lemma 1.2.26. Let f : X → Y be a continuous map between compact spaces. Then
for any F-convergent family (xm)m∈M in X,

F- lim fxm = fF- lim xm .

Proof. Consider an open neighbourhood U of fF- lim xm . Its preimage under f is an
open neighbourhood V of U - lim xm. Hence

{m ∈M fxm ∈ U} = {m ∈M xm ∈ V } ∈ U .
Since U was arbitrary, the statement follows. q.e.d.
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Remark 1.2.27. Let C and D be compact. For any family of pairs ((xα, yα)) in
C ×D, we have:

U - lim(xα, yα) = (U - limxα,U - lim yα)

Since arithmetic operations, like + : R × R → R, are continous, and since bounded
sequences only use compact subsets of R, we immediatetly conclude:

Corollary 1.2.28. Bounded sequences of real numbers have unique ultralimits and
these limits are compatible with the arithmetic operations of addition, subtraction and
multiplication.

1.2.3 From Følner Sequences to Amenability

Proposition 1.2.29. A G-set X is G-amenable if it admits a Følner sequence.

Proof. Suppose we have a Følner sequence (Fi). Fix an ultrafilter U on N refining the
coinitial filter so that we can form ultralimits of bounded sequences of real numbers.
Let Y be any subset of X. Then

|Y ∩ Fi|
|Fi|

is a sequence in [0, 1]. We define the finitely additive measure µ by:

µ(Y ) := U - lim
|Y ∩ Fi|
|Fi|

Obviously µ(G) = 1.
To see that this measure is additive, consider two disjoint subsets Y and Z and

observe that
|(Y ∪ Z) ∩ Fi| = |Y ∩ Fi|+ |Z ∩ Fi|

From this additivity follows because ultralimits commute with addition (1.2.28).
To see that the measure is left-invariant, we write

∣∣∣∣
|gY ∩ Fi|
|Fi| − |Y ∩ Fi||Fi|

∣∣∣∣ =

∣∣∣∣
|Y ∩ g−1Fi|
|Fi| − |Y ∩ Fi||Fi|

∣∣∣∣ ≤
|Y ∩ (g−1Fi4 Fi)|

|Fi| −−−→
i→∞

0

Now the claim follows since our ultrafilter refines the cofinite filter on N whence
ordinary limits are ultralimits for U . q.e.d.

Corollary 1.2.30. The infinite cyclic group is amenable. q.e.d.

Exercise 1.2.31. Show that every abelian group is amenable:
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1. Show that the direct product of two amenable groups is amenable.

2. Show that a group is amenable if all its finitely generated subgroups are
amenable (i.e., locally amenable groups are amenable). Hint: The system of
finitely generated subgroups inside G is a directed set. Use an ultralimit con-
struction to obtain a measure on G from the measures on the finitely generated
subgroups of G.

From (1) infer that finitely generated abelian groups are amenable. Then (2) implies
that abelian groups are amenable.

Exercise 1.2.32. Add a little twist to what you did on direct products and show that
a group is amenable if it has an amenable normal subgroup such that the quotient is
also amenable. I.e., amenable-by-amenable groups are amenable. Infer that solvable
groups are amenable.

Definition 1.2.33. A group G is foo–by–bar if there is a short exact sequence

1→ H → G→ F → 1

where H is foo and F is bar. The particle “by” implies left parentheses. So “foo–by–
bar–by–blah” means (foo-by–bar)–by–blah.

Exercise 1.2.34. Show that subgroups of amenable groups are amenable.

Lemma 1.2.35. If a group G has an amenable subgroup H of finite index, it is
amenable.

Proof. Let K be the kernel of the action of G on the finite set of cosets G/H.
Obviously, K ≤ H. Hence K is amenable. Since we have the short exact sequence

K ↪→ G→→ G/K

wherein K is amenable and G/K is finite, G is amenable-by-amenable and therefore
amenable. q.e.d.

Corollary 1.2.36. Virtually solvable groups (i.e., groups that have a solvable sub-
group of finite index) are amenable. q.e.d.
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1.3. KAZHDAN’S PROPERTY (T) 11

1.3 Kazhdan’s Property (T)

Definition 1.3.1. A unitary representation of a topological group G on a Hilbert
space H is a continous homomorphism ρ : G→ UH from G to the group of bounded
unitary isomorphisms of H. If no confusion can arise, we suppress ρ in the notation
and think of it as a left-action of G on H.

Such a unitray representation is said to have almost invariant vectors, if, for any
compact subset K ⊆ G and any ε > 0, there is a unit vector u ∈ H satisfying

|gu− u| < ε for all g ∈ K.

The group G has Property (T) if every unitary representation that has almost
invariant vectors has an invariant vector.

Theorem 1.3.2. If an infinite discrete group G has a Følner sequence, then G does
not have Kazhdan’s property (T).

Proof. Let Fi form a Følner sequence. Consider the action of G on the Hilbert space
L2 (G) of square summable function on G. The action is given by a shift. This action
has no invariant vectors. But the sequence of vectors

ui : g 7→
{

1√
|Fi|

g ∈ Fi
0 g 6∈ Fi

satisfies
lim
i→∞
|gui − ui| = 0 for all g ∈ G

From this, the claim follows since compact subsets of discrete groups are fi-
nite. q.e.d.

Corollary 1.3.3. The infinite cyclic group does not have Kazhdan’s property (T).
q.e.d.

Definition 1.3.4. A group is indicable if it admits an epimorphism onto the infinite
cyclic group.

Observation 1.3.5. Every image Q of a Kazhdan (T) group G under a continous
homomorphism is (T) because any representation of the quotient Q lifts to a repre-
sentation of G.

In particular, every quotient of a discrete Kazhdan (T) group has property (T).
q.e.d.
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Corollary 1.3.6. Indicable groups do not have Kazhdan’s property (T).

Corollary 1.3.7. The free groups and the pure braid groups do not have Kazhdan’s
property (T).

Lemma 1.3.8. A virtually finitely generated group G is finitely generated.

Proof. Let H = 〈h1, . . . , hr〉 be a finitely generated subgroup of G and let g1, . . . , gs
be a complete set of representatives for the finitely many cosets in G/H. Then

G = 〈H, g1, . . . , gs〉 = 〈h1, . . . , hr, g1, . . . , gs〉 .
q.e.d.

Proposition 1.3.9. A (discrete) group G that has Kazhdan’s property (T) is finitely
generated.

Proof. We consider the unitary representation
⊕
H≤G

L2 (G/H)

where H runs through all finitely generated subgroups of G. Since any compact
(finite) subset of G is contained in one of these subgroups, this representation has
almost invariant vectors – just consider the action of the finite subset on an appro-
priate summand where it fixes the coset of the identity. Since G is supposed to be
Kazhdan, we conclude that the representation has an invariant vector.

Hence one of the summands has an invariant vector. Such a vector corresponds to
a constant function on G/H. Hence this quotient is finite. Therefore, G is virtually
finitely generated and hence finitely generated. q.e.d.

Corollary 1.3.10. Locally indicable groups do not have Kazhdan’s property (T).

Proof. Being discrete and Kazhdan, the group is finitely generated. Being finitely
generated and locally indicable, it is indicable. q.e.d.

1.4 The Geometry of the Cayley Graph

Definition 1.4.1. Let G be a group with a finite generating system Σ. The (left)
Cayley graph ΓGΣ is a (directed and labeled) graph. Its set of vertices is G, and for
each vertex g ∈ G and each generator x ∈ Σ, there is an edge (labeled by x) from g
to gx. Note that G acts from the left on ΓGΣ.

There is a corresponding notion of a right Cayley graph upon which G acts from
the right.
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Remark 1.4.2. We usually do not care about the direction of edges or the labeling.
Thus we regard the Cayley graph as a metric space: every edge has length 1 and
the distance between any two points is the length of the shortest path connecting
them. This length is finite since the Cayley graph is connected – this follows from
the assumption that Σ generates G: any element of G can be written as a word in
the generators (and their inverses) and this determines a path connecting the group
element to the identity element.

Example 1.4.3. Here is the Cayley graph ΓC∞{1} :

And here this is what ΓC∞{2,3} looks like:

Let us provide one example of how to make use of the Cayley graph. We already know
by (1.3.8) that a group is finitely generated if it has a finitely generated subgroup
of finite index. As we shall see, the converse holds true, as well. This follows from
applying the following lemma to actions on Cayley graphs.

Lemma 1.4.4. Let the group G act on the connected topological space X, and suppose
that there is an open subset U such that X =

⋃
g∈G gU. Then G is generated by

S := {g ∈ G gU ∩ U 6= ∅} .

Proof. Let H := 〈S〉. Then the two sets HU and (G−H)U are both open. In
addition, they are disjoint: Suppose we had hU ∩ fU 6= ∅ for some h ∈ H and
f ∈ G−H. Then f−1h ∈ H and therefore f ∈ H, which contradicts our assumption.

As X is connected, the set (G−H)U is empty as the other one cannot be empty.
Hence G−H = ∅. q.e.d.

There are variations of this lemma, e.g., on group presentations. We will encounter
them later.

Corollary 1.4.5. A finite index subgroup of a finitely generated group is finitely gen-
erated.

Proof. Let G be a group with a finite generating set Σ and let H be a subgroup of
finite index. Let r1, . . . , rr be a list containing a representative for each H-coset in G.
Hence every vertex of the Cayley graph ΓGΣ lies in the orbit of one of the ri. Let U be
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the union of open stars of the ri. The hypotheses of (1.4.4) are obviously satisfied.
Hence

{h ∈ H hU ∩ U 6= ∅} = {h ∈ H hri = grj for some g ∈ Σ ∪ {1}}

generates H. But that set is finite. q.e.d.

Exercise 1.4.6. Let Γ = ΓGΣ be a Cayley graph for the infinite, finitely generated
group G with respect to the finite generating system Σ. Show that Γ contains a
bi-infinite short-lex geodesic (defined below).

Any edge path in Γ reads a word in Σ ] Σ−1: while you are moving along the
path, you pick up the labels of the edges you are going along, when you move with
the direction of the edge you read the label, when you are going against the directed
edge in Γ you read its inverse.

Fix an order on the set Σ. This induces an ordering on the set of word with letters
from Σ: shorter words precede longer words and you use the lexicographic order to
break ties. Regarding inverses as lower case variants of the capital letters in Σ, we
actually have an order on words in Σ ] Σ−1. Every group element is represented by
a unique short-lex minimal word. Hence any two vertices in Γ are joined by a unique
short-lex minimal edge path. We call those paths short-lex geodesic segments. Note
that they are, in fact, geodesic segments.

Now a (bi-infinite) short-lex geodesic is a (bi-infinite) edge path such that every
finite sub path is a short-lex geodesic.

Hint: First prove that Γ contains a bi-infinite geodesic.

1.4.1 Ends

Definition 1.4.7. A diagram (of sets and maps) is a directed graph D whose vertices
v are labeled by sets Mv and whose edges ~e are labeled by maps f~e : Mι(~e) → Mτ(~e).
The inverse limit of D is the set

lim←−D :=
{
(mv ∈Mv)v∈VD

f
mι(~e)

~e = mτ(~e) for all ~e ∈ E(D)
}

Note that there are natural maps lim←−D →Mv for all vertices v ∈ D and all triangles

lim←−D → Mτ(~e)

↓ ↗ f~e
Mι(~e)

commute.
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Definition 1.4.8. LetX be a topological space. For any two nested compact subsets,
C ⊆ D ⊆ X, we have a natural map

π0(X −D)→ π0(X − C) .

As compact subsets in X form a directed set, we can write the inverse limit

∂∞X := lim←−
C⊆X

π0(X − C)

The elements of the set ∂∞X are called the ends of X.

Example 1.4.9. The two Cayley graphs of C∞ both have precisely two ends.

Observation 1.4.10. This construction is functorial, so homeomorphisms of X in-
duce bijections of ∂∞X and we have a group homomorphism

Homeo(X)→ Perm(∂∞X) .

In particular, if X = ΓGΣ is a (left) Cayley graph for a group G, there is a natural
action of G on ∂∞ΓΣ turning the set of ends into a G-set.

Exercise 1.4.11. The number of ends in a Cayley graph is 0, 1, 2, or∞: Let Γ := ΓGΣ
be the Cayley graph for the group G with with respect to the finite generating set Σ.
Show that if Γ has finitely many ends, then the number of ends is ≤ 2. Hint: Assume
Γ has three ends. Then there should be a central region where these ends get tied up.
But a Cayley graph looks homogeneous as there is a vertex transitive group action,
hence there cannot be a distinguished region.

Exercise 1.4.12. Given the same setup as in (1.4.11), show that the number of ends
(0, 1, 2, or ∞) is independent of the choice of the finite generating system Σ.

The following theorem relates the geometry of a Cayley graph to a purely algebraic
property of a group. In this respect it is like Gromov’s theorem 1.4.25. But it is way
simpler, and it is about C∞.

Theorem 1.4.13. A group has two ends if and only if it is virtually C∞.

Proof. That a group which is virtually C∞ has two ends is easy. We only prove the
converse. So let Σ be a generating set for G such that the corresponding Cayley graph
Γ has two ends.

Our group G acts on ∂∞Γ and the kernel of this action has index ≤ 2 in G.
Therefore, by passing to a subgroup of index 2 if necessary, we may assume without
loss of generality that G fixes both ends of Γ.
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Since Γ has two ends, there is a compact subset C such that Γ − C has exactly
two infinite components W− and W+. We add all finite components of Γ − C and
can henceforth assume that the two infinite components are all there is in Γ − C.
Since our space is infinite and C is contained in a ball of finite radius, there is an
element g ∈ G that moves C into one of the two infinite components. Let us assume
gC ⊆ W+.

First, we show that g has infinite order. Note that gW+ ( W+ for otherwise g
would swap the ends of Γ.

C gC

. . .

W+

. . .

W−

. . .

gW+

Hence we find
W+ ) gW+ ) g2W+ ) · · ·

and it follows that g has infinite order.
Let D be a compact subset containing C and its translate gC such that Γ − D

has exactly two components both of which are infinite. It follows that

Γ = W− ∪D ∪ gW+.

We infer that Γ =
⋃
i≥0 g

iW− whence
⋂
i≥0 g

iW+ = ∅. Similarly,
⋂
i≤0 g

iW− = ∅.
Moreover, for any i > 0,

Γ = g−iW− ∪
⋃

−i≤j<i
gjD ∪ giW+

whence
Γ =

⋃
s∈Z

gsD.

This, however, implies that D contains a representative for each coset in 〈g〉 \G.
Hence 〈g〉 has finite index in G. q.e.d.
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1.4.2 Growth

Definition 1.4.14. The growth function βΣ of G relative to Σ is defined by

βΣ(n) := vol
(
B1G
n

)

where B1G
n is the ball of radius n in the Cayley graph centered at 1G ∈ G and volume

is measured by counting vertices.

Example 1.4.15. For the two Cayley graphs of C∞, we find:

β{1}(n) = 2n+ 1

and

β{2,3}(n) =





1 n = 0

5 n = 1

6n+ 1 n ≥ 2.

Note that any generating set for C∞ will yield an ultimately linear growth function.

Definition 1.4.16. Let β and β′ be two functions defined on N. We say β′ weakly
dominates β if there are constants L and K such that

β(n) ≤ Lβ′(Ln+K) +K.

We write β ¹ β′. We say that β and β′ are weakly equivalent if they weakly dominate
one another:

β ∼ β′ :⇐⇒ β ¹ β′ & β′ ¹ β.

Remark 1.4.17. Weak domination is transitive, and weak equivalence is an equiv-
alence relation.

Observation 1.4.18. If Σ and Ξ are two finite generating sets for G, then the growth
functions βΣ and βΞ are weakly equivalent. To see this, write the elements of Ξ as
words in Σ. Let l be the maximum length that occurs in this list of words. Then any
n-ball in ΓΞ is contained in the ln-ball in ΓΣ which proves βΞ ¹ βΣ. q.e.d.

Exercise 1.4.19. Let G be finitely generated and H be a subgroup of finite index.
By (1.4.5), H is finitely generated, too. Show that the growth functions for these two
groups are weakly equivalent.
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Observation 1.4.20. For an infinite group with generating set Σ, we have

n ≤ βΣ(n) ≤
n∑
i=0

(2 |Σ|)i.

Since there are at most as many elements in the n-ball as there are words of length
≤ n in the generators (and their inverses!). The lower bound follows from the fact
that the Cayley graph is connected and infinite. q.e.d.

So growth in groups is somewhere between linear and exponential. Accordingly, one
distinguishes three cases:

Definition 1.4.21. A finitely generated group is of polynomial growth if its growth
function is weakly dominated by a polynomial. It is of exponential growth if it weakly
dominates an exponential function. Otherwise it is of intermediate growth.

Exercise 1.4.22. Show that a finitely generated group with infinitely many ends has
exponential growth.

Proposition 1.4.23. Groups of subexponential growth are amenable.

Proof. We will show that a group G of subexponential growth has a Følner sequence
consisting of balls B1G

n . For if this is not the case, then there is an ε > 0 such that
for any ball Bn we have

|xBn4Bn|
|Bn| > ε

for someelement x ∈ Σ. Since Bn+1 contains Bn as well as xBn, we find:

βΣ(n+ 1) = |Bn+1| ≥ |xBn ∪Bn| ≥
(
1 +

ε

2

)
|Bn| =

(
1 +

ε

2

)
βΣ(n) .

From this, it is obvious that G has exponential growth. q.e.d.

Exercise 1.4.24. Show: If a finitely generated group G has exponential growth, then
the sequence of balls does not form a Følner sequence.

By (1.4.23), groups of polynomial growth are amenable. However, a very deep
theorem says that we already knew that:

Theorem 1.4.25 (Gromov [Grom81]). A finitely generated group has polynomial
growth if and only if it is virtually nilpotent.
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This is way too deep for this exposition, and fortunately it is not a statement about
the infinite cyclic group. However, there is a characterization of C∞ by means of its
growth:

Theorem 1.4.26. A group has linear growth if and only if it is virtually C∞.

Before we prove this, we need a geometric lemma on growth rates.

Lemma 1.4.27. Let H be an ∞-index subgroup of G. Let Σ be a finite generating
system for H and Ξ a finite generating set for G that contains Σ. Then:

βΞ(2n) ≥ (n+ 1) βΣ(n) for all n ∈ N

In particular, if H has polynomial growth of degree d, then G has at least polynomial
growth of degree d+ 1.

Proof. Let X := H\ΓGΞ be the space of orbits of vertices in ΓGΞ under the action of
H. We turn this into a metric space by defining the distance between two orbits to
be the minimum distance between two representatives. Note that we can choose one
of them freely. Choosing a pair of representatives realizing the distance shows that
two points of distance n in X are joined by a path of length n. It follows that the
ball BHn ⊂ X contains at least n + 1 points x0, . . . , xn. Each of these vertices has a
representative gi ∈ B1G

n ⊆ ΓΞ. Now we consider translates of the balls in ΓHΣ . We find

B
1G
2n ⊇

n⋃
i=0

B1H
n gi

and the inequality follows from the fact that the union is disjoint. q.e.d.

Proof of Theorem 1.4.26. Since finite groups have “constant growth” which is
not linear, we only have to consider infinite groups. One direction is obvious: If a
group has an infinite cyclic subgroup of finite index, it has linear growth. So we have
to show the converse: Any infinite group G of linear growth contains an infinite cyclic
subgroup of finite index. By the preceding lemma, it suffices to show that there is an
element of infinite order in G since the infinite cyclic subgroup it generates cannot
have infinite index in G.

Let us fix a finite generating set Σ for G. We know by (1.4.6) that there is a
bi-infinite short-lex geodesic inside the Cayley graph Γ := ΓGΣ.

First we prove that this geodesic is ultimately periodic at its “right end”: By
linear growth, there is a constant L such that, for infinitely many n, we have:

vol(Bn)− vol(Bn−1) ≤ L (1.1)
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Consider a finite subset of vertices W = {v1, v2, . . . , vr} on the geodesic with r > L.
For any n that satisfies (1.1), there is a pair of distinct vertices v, w ∈ W such that
the geodesic segments of length n starting at these vertices and extending to the right
both read the same word – this is the box principle: First observe that there are only
vol(Bn)− vol(Bn−1) ≤ L many different group elements that these geodesic elements
could read. Then note that the short-lex order implies that these group elements
have unique words representing them. Hence there are at most L different words we
are reading along these segments. Hence two of them agree.

Since there are infinitely many n satisfying (1.1), there is a pair of vertices for
which this happens infinitely many times – this, again, is the box principle. Hence
there are two vertices in W such that the corresponding infinite segments extending
to the right read identical infinite words. It follows that the geodesic is ultimately
right periodic.

The group element represented by the period obviously has infinite order. So we
have our desired cyclic subgroup of finite index. q.e.d.

Exercise 1.4.28. Show that a torsion free group G that contains an infinite cyclic
subgroup of finite index is infinite cyclic. Remark: There is no hint for this problem
because I want you to find a short, elegant (and probably new) solution.
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Chapter 2

Free Groups of Finite Rank

Let M be a set. The free group FM generated by M is a group that contains M as
a subset and that is uniquely determined up to unique isomorphism by the universal
property that any map f : M → G from M to any group G extends to a unique
group homomorphism ϕf : FM → G.

The elements of FM are reduced words in the alphabet M ]M−1. Multiplication
is concatenation of words followed by reduction, i.e., cancellation of subwords mm−1

until no longer possible. The empty word serves as the trivial element. Of course
there are some claims here to be proved, but you are supposed to have done this
already in some other class.

Let F be a non-abelian, finitely generated free group. We will show:

[2.2.6] F is linear.

[2.2.6] F is residually finite.

[2.2.10] F is Hopfian.

[2.3.1] F is not amenable.

[2.4.1] A non-trivial finitely generated group is free if and only if its cohomological
dimension is 1.

[2.5.2] F has the finite intersection property.

[2.6.1] F has a solvable word problem.

[2.6.3] F has a solvable conjugacy problem.
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2.1 Free Constructions

Definition 2.1.1. LetD be a diagram of groupsGv and homomorphisms ϕ~e : Gι(~e) →
Gτ(~e). The direct limit of D is a group lim−→D together with homomorphisms ιv : Gv →
lim−→D such that

1. all triangles
lim−→D ← Gτ(~e)

↑ ↗ f~e
Gι(~e)

commute.

2. Given any other groupH together with a family of homomorphism ϕv : Gv → H
making the corresponding triangles (as in 1) commutative, there is a unique
homomorphism π : lim−→D → H such that all triangles

Gv
ϕv−→ H

↓ ιv ↗ π
lim−→D

commute.

Exercise 2.1.2. The usual category theoretic nonsense proves uniqueness of direct
limits for free. Show that direct limits exist in the category of groups and homomor-
phisms.

Definition 2.1.3. Let C ↪→ A and C ↪→ B be two monomorphisms. The
amalgamated product A ∗C B is the direct limit of the diagram

A← C → B

The free product G ∗ H of two groups is their amalgamated product along the
trivial group:

G ∗H := lim−→ (G← 1→ H)

These cases arise naturally in topology.

Example 2.1.4 (van Kampen). Let X be a path connected topological space with
base point. Assume we are given a open cover X = U ∪V such that U , V , and X ∩ V
are path connected subsets of X that contain the base point. Then

π1(X) = π1(U) ∗π1(U∩V ) π1(V )
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Example 2.1.5. The free group on n generators is the free product of n copies of
C∞:

Fn :=
nA
i=1

C∞

In general, the free group generated by the set M is

FM :=
A
m∈M

C∞

Observation 2.1.6. As a consequence of van Kampen’s theorem, we see that a group
is free if and only if it is the fundamental group of a graph.

Corollary 2.1.7. Subgroups of free groups are free.

Proof. Let F be a free group. Then F is the fundamental group of a graph. Its
subgroups occur as fundamental groups of covers. However, any cover of a graph is a
graph. Hence any subgroup of F is the fundamental group of a graph and, therefore,
free. q.e.d.

Observation 2.1.8. Obviously, we can construct very large covers. In particular, F2

contains a copy of FN.

Observation 2.1.9. From their geometric realization, we can read off a presentation
for free groups:

Fn = 〈x1, . . . , xn〉
Each generator corresponds to a loop in a wedge of n circles. The Cayley graph of Fn
corresponding to this system of free generators is the universal cover of the wedge of
circles. It is a tree.

Corollary 2.1.10. Non-abelian free groups have exponential growth. q.e.d.

Exercise 2.1.11 (Schreier’s Index Formula). Let G be a subgroup of Fn of finite
index s. Prove that G is isomorphic to Fs(n−1)+1.

2.2 How to Detect Free Groups

Lemma 2.2.1 (Ping Pong Lemma). Let G be a group acting on a set X. Suppose
H1 and H2 are two subgroups of G with cardinalities at least 3 and 2, respectively.
Let H be the subgroup generated by H1 and H2.

Assume that there are two non-empty subsets Y1 and Y2 in X such that
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Y2 6⊆ Y1

gY2 ⊆ Y1 for all g ∈ H1, g 6= 1

gY1 ⊆ Y2 for all g ∈ H2, g 6= 1

Then H is isomorphic to the free product H1 ∗H2.

Proof. We have to show that a product whose factors are all non-trivial and alter-
nately taken from the groups H1 and H2 is non-trivial. We start by considering a
product of odd length

w = a1b1a2b2 · · · br−1ar

wherein ai ∈ H1 − {1} and bi ∈ H2 − {1}. We have

wY2 = a1b1a2b2 · · · br−1arY2 ⊆ a1b1a2b2 · · · br−1Y1 · · · ⊆ a1Y2 ⊆ Y1

whence w acts non-trivially as Y2 6⊆ Y1.
For a word that starts and ends with a letter from H2, we conjugate it by a non-

trivial element from H1. As conjugation preserves being trivial or non-trivial, we are
reduced to the first case.

For a word of even length, only one boundary letter is in H1. Let this letter be
a ∈ H1. Conjugation by an element of H − {1, a} reduces us to the first case. Here,
we need that H1 has at least three elements. q.e.d.

Example 2.2.2. Let T be a tree. An automorphism of T is called hyperbolic if it
stabilizes a bi-infinite geodesic in T upon which it acts as a non-trivial shift. Then,
this geodesic Cϕ is unique and called the axis of the automorphism.

Let ϕ and ψ be two hyperbolic automorphisms of T with disjoint axes. Then
〈ϕ, ψ〉 is free.

Proof. We will study the action on the set of ends ∂∞T . Note that each oriented
edge ~e defines a decomposition ∂∞T = ∂+

∞(~e) ] ∂−∞(~e) as in the picture:

∂+
∞(~e)

∂−∞(~e)

~e

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2002]



2.2. HOW TO DETECT FREE GROUPS 25

Let ~e be an edge on the geodesic joining Cϕ and Cψ.

∂−∞(~e) ∂+
∞(~e)~e

CϕCψ

Then any non-trivial power of ϕ will suck all of ∂−∞(~e) into ∂+
∞(~e) and any non-trivial

power of ψ will take ∂+
∞(~e) into ∂−∞(~e). Hence

〈ϕ, ψ〉 = 〈ϕ〉 ∗ 〈ψ〉

which is a non-abelian free group. q.e.d.

Exercise 2.2.3. Suppose ϕ and ψ are two hyperbolic automorphisms of a tree T
whose axes have a finite intersection. Show that sufficiently high powers ϕk and ψl

generate a free group.

Exercise 2.2.4. Show that F2 embeds into C2 ∗ C3. Here, Cn is the cyclic group of
order n.

Example 2.2.5. The two matrices

(
1 2
0 1

)
and

(
1 0
2 1

)
generate a free group inside

SL2(Z).

Proof. Each of the two matrices generates an infinite cyclic subgroup inside SL2(Z).
So we have to consider the group generated by the subgroups

H1 :=

{(
1 2s
0 1

)
s ∈ Z

}

and

H2 :=

{(
1 0
2s 1

)
s ∈ Z

}
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Put

Y1 :=

{(
x
y

)
|x| > |y|

}

and

Y2 :=

{(
x
y

)
|x| < |y|

}

To verify the hypotheses of the Ping Pong Lemma, we compute
(

1 2s
0 1

)(
x
y

)
=

(
x+ 2sy

y

)

whence we have to show that for |x| < |y| it follows that |x+ 2sy| > |y|. This is
obvious from the triangle inequality:

|x+ 2sy| > |2sy| − |x| = |y|+ ((2s− 1) |y| − |x|)
The other hypothesis is checked analogously. q.e.d.

Corollary 2.2.6. Finitely generated free groups are linear and residually finite.

Proof. As we have seen, F2 embeds into SL2(Z), which is residually finite as every
non-trivial element survives in a factor SL2(Z/pZ) where p is a sufficiently large prime
number. q.e.d.

Exercise 2.2.7. Prove that any finitely generated group

(a) has only finitely many normal subgroups of index 2007.

(b) has only finitely many subgroups of index 2007.

Definition 2.2.8. A group G is Hopfian if every surjective endomorphism G →→ G
is an automorphism.

Exercise 2.2.9. Show that any finitely generated residually finite group is Hopfian.

Corollary 2.2.10. Finitely generated free groups are Hopfian. q.e.d.

The following celebrated theorems, due to J. Tits, are way more sophisticated
application of the Ping Pong Lemma (or more precisely: a slight variation of it).

Theorem 2.2.11 (Tits [Tits72]). Over a field of characteristic 0, a linear group
either is virtually solvable (i.e., it is small) or has a non-abelian free subgroup (i.e.,
it is big).
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Theorem 2.2.12 (Tits [Tits72]). A finitely generated linear group either is virtu-
ally solvable or has a non-abelian free group.

These results (and many others that followed) motivate:

Definition 2.2.13. A group G satisfies the Tits Alternative if each finitely generated
subgroups either is virtually solvable or contains a non-abelian free group.

Remark 2.2.14. Tits’ result states that linear groups satisfy the Tits-Alternative.
Another example would be Out(Fn).

Exercise 2.2.15. Show that a virtually solvable group cannot contain a non-abelian
free group.

Exercise 2.2.16. By Tits’ theorem, the group SO3(R) has a non-abelian free sub-
group. Find an embedding of F2 ↪→ SO3(R).

2.3 Kazhdan’s Property (T) and Amenability

We already observed (1.3.7) that non-abelian free groups do not have Kazhdan’s
property (T). However, although property (T) and amenabilty are mutually exclusive
for infinite groups, they are not complementary.

Theorem 2.3.1. Non-abelian free groups are not amenable.

Proof. We only do the argument for F2 = 〈x, y〉 Consider the following bounded
functions on F2:

f1 : w 7→
{

1 if w = 1

0 otherwise

fx : w 7→
{

1 if w starts with x

0 otherwise

fx̄ : w 7→
{

1 if w starts with x̄

0 otherwise

fy : w 7→
{

1 if w starts with y

0 otherwise

fȳ : w 7→
{

1 if w starts with ȳ

0 otherwise
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Obviously,
1 = f1 + fx + fx̄ + fy + fȳ.

Now we form
h := f1 + x̄fx + xfx̄ + ȳfy + yfȳ

We have

hw =

{
5 if w = 1

3 otherwise

This clearly rules out the possibility of an invariant measure on this group. q.e.d.

The trick in this proof motivates

Definition 2.3.2. A paradoxical partition of unity is a finite partition of unity

1 = f1 + · · ·+ fr

together with an r-tupel of group elements g1, . . . , gr such that:

• Each f is a bounded function.

• There is an ε > 0 satisfying

g1f1 + · · ·+ grfr ≥ 1 + ε

Observation 2.3.3. No amenable group admits a paradoxical partition of unity.

2.3.1 Equivalent Formulations for Amenability

We have been using graphs for quite a while. Maybe, it would be good to provide a
definition. What we call a graph will be an unoriented multi-graph.

Definition 2.3.4. A graph Γ is a map τ :
−→E Γ → VΓ where VΓ is a set (its elements

are called vertices) and
−→E Γ is a free Z2-set, i.e., a set together with a fixpoint free

involution op :
−→E Γ → −→E Γ. The elements of

−→E are (oriented) edges. The elements of

EΓ :=
−→E Γ/op are called (geometric) edges.

An orientation on Γ is a section o : E → −→E .

We define another map ι :
−→E Γ → VΓ by ι(~e) := τ(op(~e)). The map τ assigns to

each edge its terminal vertex whereas ι provides the initial vertex of the edge.
A graph is called locally finite if every vertex has only finitely many edges attached

to it.
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Definition 2.3.5. Let Γ be a locally finite graph. A flow on Γ is a map Φ :
−→E Γ→ R

on the oriented edges satisfying

Φ(op(~e)) = −Φ(~e)

For any vertex v of Γ, the net production is

PΦ(v) :=
∑

v=ι(~e)

Φ(~e)

A vertex is called a source if its net production is > 0, a sink if its net production is
< 0 and it is called balanced if its net production is 0. A flow Φ is called ε-productive
if every vertex has net production ≥ ε.

A capacity on Γ is a map C :
−→E Γ→ R satisfying

−C~e ≤ Cop(~e).

Note that every non-negative real number defines a capacity by assigning this number
to each oriented edge. When using a real number where a capacity should be expected,
we silently make this identification. The flow Φ is bounded by the capacity C if
Φ(~e) ≤ C~e for each oriented edge ~e. Note that a geometric edge can have different
capacities in its two directions.

Let v and w be two vertices in Γ. A cut is a set of oriented edges in Γ such
that any path from v to w has to pass through at least one edge in the cut thereby
respecting the given orientation of that edge. (It may pass through other edges in
the cut in any representation, but at least one edge has to be crossed “in the right
direction”.)

For any set of vertices W ⊆ Γ, its boundary ∂W is the set of edges with one
endpoint inside W and the other endpoint outside W .

For a finite set W of vertices, we define the net production by

PΦ(W ) :=
∑
v∈W

PΦ(v) =
∑

ι(~e)∈W
Φ~e.

For any set of oriented edges
−→E 0, we define the total capacity by

C−→E 0
:=

∑

~e∈−→E 0

C~e.

Theorem 2.3.6 (Max-Flow-Min-Cut Theorem). Let Γ be a finite graph, C a
capacity and P : VΓ → R an arbitrary function. Then there is a flow bounded by the
capacity C and satisfying PΦ = P if and only if for every finite set of vertices W we
have

P (W ) ≤ C∂(W ).
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Proof. The condidition is clearly necessary.
The space of all flows Φ obeying C is compact. Define the defect of a flow to be

∑
v∈Γ

|P (v)− PΦ(v)| .

The defect is obviously continuous. The let Φ be a flow with minimal defect. We
have to show that this defect is 0.

So assume by contradiction, the defect is > 0. Then there is a vertex v that does
not produce what is prescribed by P . Assume it does not produce enough. Consider
the set W of all vertices that can be reached from v by a non-saturated path. The
boundary of this set consists of saturated edges. Hence

PΦ(W ) = C∂(W ) ≥ P (W ) .

Since v produces strictly less than prescribed by P , this inequality implies that an-
other vertex w, also in W , does produce to much (or does not consume enough).
Since both vertices are in W we can use the path connecting them to improve the
defect of Φ.

The case, where the vertex v produces too much if handled analogously. q.e.d.

Remark 2.3.7. In a finite graph, the condition P (W ) ≤ C∂(W ) applied to the com-
plement of a set of vertices implies

−C∂((Γ−W )) ≤ P (W ) .

The above version of the max-flow-min-cut theorem has the advantage that it gener-
alizes nicely to infinite graphs:

Theorem 2.3.8 (Max-Flow-Min-Cut for Infinite Graphs). Let Γ be a locally
finite graph, C a capacity and P : VΓ → R an arbitrary function. Then there is a
flow bounded by the capacity C and satisfying PΦ = P if and only if

−C∂(Γ−W ) ≤ P (W ) ≤ C∂(W )

for any finite set of vertices W .

Proof. Again, it is clear that the condition is necessary. To prove the other direction,
we employ the following strategy: First we use the min-flow-max-cut theorem for
finite graphs to prove that for any finite set of vertices W , we can find flow ΦW that
is bounded by 1 yet “looks” ε-productive on W . In a second step, we use an ultrafilter
construction, to patch these flows together.
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Let W be a finite set of vertices. We collapse the complement to one vertex, i.e.,
we pretend all edges in ∂(W ) are connected to one vertex v∗. This way, we obtain
a finite graph ΓW . The function P induces a production function on ΓW by setting
P (v∗) := −P (W ).

We claim that there is a flow ΦW on ΓW that realizes P . To apply the max-flow-
min-cut theorem for finite graphs, we have to check the inequality. So let U be a set
of vertices in ΓW . If it does not contain the new vertex v∗, then we have

P (U) ≤ C∂(U)

by our hypotheses – we only have to reinterpret these inequalities in Γ and in ΓW . If
v∗ ∈ U , we use

−C∂(Γ−U) ≤ P (U)

to get

−C∂(ΓW−U) ≤ P (U)

and then

P (U) ≤ C∂(U).

Hence (2.3.6) applies.
The second step is to construct a flow that has net production P everywhere. To

do this, pick your favorite ultrafilter U refining the coinitial filter on the directed set
D of finite vertex sets in Γ. For each element W in this index set D, already have a
flow ΦW . So if we want to define the global flow Φ on an oriented edge ~e, we put

Φ(~e) := U - lim ΦW (~e)

It is a routine matter to check that this does the job. q.e.d.

Corollary and Definition 2.3.9. Let Γ be a graph and ε ≥ 0. Then the following
are equivalent:

1. For any finite set of vertices W ⊆ Γ,

|∂W |
|W | ≥ ε.

2. There is an ε-productive flow Φ bounded by capacity 1.

If Γ satisfies the condition 1 above for an ε > 0, we say Γ satisfies a strong
isoperimetric inequality. q.e.d.
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Definition 2.3.10. A generating set Σ for a group G is symmetric if Σ = Σ−1.
For symmetric generating sets, one usually uses the reduced (right) Cayley graph

wherein the edges g
x−→ xg and xg

x−1−−→ g are considered as opposite orientations of
one underlying geometric edge.

Corollary 2.3.11. Let G be a finitely generated group with finite symmetric gener-
ating set Σ 63 1. Then the following are equivalent:

1. G is amenable.

2. G has a Følner sequence.

3. The reduced Cayley graph Γ does not satisfy a strong isoperimetric inequality.

4. There is no productive bounded flow on the reduced (right) Cayley graph.

5. G does not have a paradoxical partition of unity.

In fact, one could use ordinary (unreduced, left) Cayley graphs instead. We confine
ourselves to reduced right Cayley graphs only to avoid technical issues.

Proof. We already proved (2)=⇒(1) and (1)=⇒(5). The implication (3)=⇒(2) is
immediate, and (4)=⇒(3) follows from (2.3.9).

The remaining implication (5)=⇒(4) is done by re-interpreting a flow as a para-
doxical partition: Let Φ be an ε-productive flow bounded by 1 on Γ. Define

f gσ :=

{
−Φ

(
g

x−→ xg
)

if Φ
(
g

x−→ xg
)
< 0

0 otherwise

be the outbound flow from g to σg. Moreover, put

f g1 := |Σ| −
∑
σ∈Σ

f gσ .

Obviously, we have a partition of the constant function |Σ|.
Now compute

f g1 +
∑
σ∈Σ

σ−1f gσ−1 = |Σ|+
∑
σ∈Σ

fσgσ−1 − f gσ

= |Σ|+
∑
σ∈Σ

Φ
(
g

σ−→ Σg
)

≥ |Σ|+ ε

Division by |Σ| yields a paradoxical partition of unity. q.e.d.
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Remark 2.3.12. The usual way of proving these equivalences establishes separately

(1) ⇐⇒ (5) ⇐⇒ (4)

and

(1) ⇐⇒ (2) ⇐⇒ (3)

This way, however, no relation in the numerical constants of the isoperimetric in-
equality and the productivity of the flow is established. Moreover, the implication
(1) =⇒ (2) involves functional analysis.

Exercise 2.3.13. A paradoxical decomposition of a group G is a partition

G = S1 ] · · · ] Sr ] T1 ] · · · ] Ts
such that there are group elements g1, . . . , gr and h1, . . . , hs such that

G = g1S1 ] · · · ] grSr
and

G = h1T1 ] · · · ] hsTs.
Prove that F2 has a paradoxical decomposition.

Remark 2.3.14. As a matter of fact, a group has a paradoxical decomposition if
and only if it is not amenable. As a criterion to check this, however, using flows or a
paradoxical partition of unity is easier.

2.4 Stallings’ Theorem

The goal of this section is the following characterization of free groups

Theorem 2.4.1 (Stallings [Stal68]). A finitely generated group G is free if and
only if it has cohomological dimension 1.

The cohomological dimension cdG of a group G is an element of N∪{∞}, and we will
define this number in (2.4.1). But we shall outline the proof right away to motivate
the exposition. We will argue by induction on the size of a minimal generating set.

Definition 2.4.2. The rank of a finitely generated group G is the size rk(G) of a
generating set of minimal size.

We need the following facts:
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1. [2.4.21] cdG = 0 if and only if G = 1.

2. [2.4.20] If cdG <∞, then G is torsion free.

3. [2.4.19] If H ≤ G, then cdH ≤ cdG.

4. [2.4.22] If cdG = 1, then e(G) ≥ 2.

5. [1.4.28] If e(G) = 2 and G is torsion free, the G is the infinite cyclic group.

6. [2.4.27] If e(G) = ∞ and G is torsion free, then G = A ∗ B for two non-trivial
subgroups A and B.

7. [2.4.34] For finitely generated groups A and B,

rk(A ∗B) = rk(A) + rk(B)

This is known as Grushko’s Theorem.

Proof of Stallings’ Theorem. First observe that the group G is torsion free
because of (2). We induct on rk(G). If rk(G) = 1, we have a cyclic group which must
be C∞ since this is the only torsion free cyclic group.

So assume rk(G) > 1. From (4) we know that G has at least two ends. If it had
two ends, it would be virtually cyclic by (1.4.13). Since G is torsion free, by (5), it
had to be C∞ which has rank 1. Hence G has infinitely many ends. Now, (6) implies
that

G = A ∗B
for some finitely generated, non-trivial subgroups A and B.

By (3), cdA ≤ 1, and by (1), cdA = 1. Finally Grushko’s Theorem implies
rk(A) < rk(G) whence we can infer by induction that A is a free group.

Analogously, B is free. Hence G is a free product of free groups and, therefore,
free. q.e.d.

Exercise 2.4.3. Prove that rk(Fn) = n.

Corollary 2.4.4. Every minimal set of generators for Fn is a set of free generators.

Proof. Let Σ be a minimal generating set for Fn. The inclusion Σ ↪→ Fn extends
to a group homomorphism FΣ → Fn which is onto because Σ generates Fn. On the
other hand, by exercise (2.4.3), |Σ| = rk(Fn) = n. Hence we have a surjection of free
groups of the same rank. Since these groups are Hopfian (2.2.10), the map FΣ → Fn
is an isomorphism. q.e.d.
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2.4.1 Cohomology of Groups and the Eilenberg-Ganea Prob-
lem

Fact and Definition 2.4.5. Let G be a group, R a commutative ring with unity
1 6= 0, and M a (left) RG-module – note that the involution g 7→ g−1 allows us
to regard any left RG-module as a right module and vice versa. For any projective
resolution

· · · → P2 → P1 → P0 → R→ 0

the homology groups

H∗(G;M) := H∗(P∗ ⊗RGM)

and cohomology groups

H∗(G;M) := H∗(HomRG(P∗,M))

are independent of the chosen projective resolution.

It is, of course, crucial to find nice resolutions.

Example 2.4.6. For the finite cyclic group, we can cook up a very nice periodic
resolution. Observe that

RCn = R [t] / 〈tn〉 .
With this identification, we can write down the following resolution:

· · · ×(tn−1+···+1)−−−−−−−−→ RG
×(t−1)−−−−→ RG

×(tn−1+···+1)−−−−−−−−→ RG
×(t−1)−−−−→ RG

ε−→ R→ 0

From this resolution, we get:

Hi(Cn;Z) =





Z i = 0

Zn i is odd

0 i is even and > 0

Hi(Cn;Z) =

{
Zn i is even

0 i is odd

Example 2.4.7. Let K be a contractible simplicial complex upon which G acts
freely. That is, no simplex is fixed by any group element. Then the action induces an
action of G on the simplicial chain complex C∗(K;R) which thereby turns into a chain
complex of RG-modules. Theses modules are free since G acts freely on K. Since K

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2002]



36 CHAPTER 2. FREE GROUPS OF FINITE RANK

is contractible, the simplicial chain complex is exact. Appending the augmentation
map (sum up the coefficients on vertices) yields a free resolution

· · ·C2(K;R)
∂−→ C1(K;R)

∂−→ C0(K;R)
ε−→ R

which can be used to compute the (co)homology of G.
How to come up with a good candidate for K? A generic choice would be the

infinite join
K :=

A
N

G

with the diagonal group action. In particular, we can always find a resolution of the
trivial RG-module R by free modules.

Example 2.4.8. Instead of a simplicial complex, one could use a cell complex pro-
vided the group acts freely on cells. One way to construct a contractible, free G-
complex is to start with a Cayley graph for G. Glue in free G-sets of 2-cells to kill
loops. This might introduce non-trivial π2. Glue in free G-sets of 3-cells to get rid of
this, and continue to kill all fundamental groups.

The result is a contractible CW-complex with a free G-action. The advantage is
that the 1-skeleton still looks like the Cayley graph.

Definition 2.4.9. The cohomological dimension over R of a group G is is the last
dimension for which the cohomology functor is non-trivial, i.e, it is the least element
cdG ∈ N ∪ {∞} satisfying

Hi(G;−) = 0 for all i > cdRG.

Definition 2.4.10. The geometric dimension of a group G is the smallest dimension
gdG of a contractible simplicial complex upon which G can act freely.

Observation 2.4.11. Using the resolution of (2.4.7), we see

cdRG ≤ gdG

Observation 2.4.12. For H ≤ G, we have gdH ≤ gdG.

Observation 2.4.13. Only the trivial group has geometric dimension 0. A group is
free if and only if it has geometric dimension 1.

Hence, we can restate Stallings’ Theorem as follows.

Theorem 2.4.14. Any finitely generated group G of cohomological dimension 1 has
geometric dimension 1.
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This is more in line with the following:

Fact 2.4.15 (Eilenberg-Ganea [EiGa57]). For any group G,

gdG ≤ max (cdG, 3) .

Remark 2.4.16. Settling the case cdG = 2 is the Eilenberg-Ganea Problem. It is
generally believed that there are groups of cohomological dimension 2 with geometric
dimension 3. In fact, some particular groups are conjectured to have this property.
However, as of now, all methods of estimating the geometric dimension of groups
are based on homological machinery. Hence, we do not have a proof that one of the
alleged examples actually does the trick.

Fact 2.4.17. If m = cdRG <∞, and

Pm−1 → · · · → P1 → P0 → R→ 0

is a partial projective resolution, then the kernel

Pm := ker(Pm−1 → Pm−2)

is projective. In particular, there is a finite projective resolution

0→ Pm → · · · → P1 → P0 → R→ 0

for R.

Observation 2.4.18. Let H be a subgroup of G. Any free RG-module is a free
RH-module. Hence any projective RG-module, begin a direct summand of a free
RG-module, is a fortiori a projective RH-module.

Corollary 2.4.19. For H ≤ G, we have cdRH ≤ cdRG. q.e.d.

Since a group with torsion has a finite cyclic subgroup, we can infer from (2.4.6):

Corollary 2.4.20. If cdG <∞, the group G is torsion free. q.e.d.

Proposition 2.4.21. If cdG = 0, then G is trivial.

Proof. By (2.4.17), Z is a projective ZG-module. Hence the augmentation map
ZG→ Z splits. The image of 1 ∈ Z under the split must be a G-invariant non-trivial
element of ZG. Hence it has constant coefficients for all group elements. This can
only happen for finite G as only finitely many coefficients can be non-zero. Hence G
is finite. On the other hand, G is torsion free. q.e.d.

Exercise 2.4.22. Let G be finitely generated. Show that cdG = 1 implies that G
has at least two ends. Hint: Let Γ be a Cayley graph for G. Relate several cohomology
theories of Γ and G with coefficients in Z2 and Z2G.
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2.4.2 Tree Actions and Free Products

We want to detect a non-trivial splitting of a group as a free product. For this purpose
the following geometric criterion comes in handy.

Proposition 2.4.23. Let G be a group acting on a tree T without terminal vertices
and at least some branch points. Assume that the induced action on the set of geo-
metric edges is free and transitive. Then G splits non-trivially as a free product.

Proof. Since the group acts transitively on the edges, there are either two orbits of
vertices or the action on the vertices is transitive, too. The first case is dealt with in
(2.4.25) and the second case is done in (2.4.24). q.e.d.

Lemma 2.4.24. Let G act on a tree T such that the following conditions are satisfied:

1. G acts freely and transitively on the set of geometric (unoriented) edges.

2. G does act transitively on the set of vertices.

3. T has no terminal vertices and is not isomorphic to a line.

Let e be an edge in T that connects the vertices v and w. Let Gv denote the stabilizer
of v and let g be an element in G such that gv = w. Then G = Gv ∗ 〈g〉.

Proof. Let Gw denote the stabilizer of w. Let U be an open neighborhood of e. The
tree T is connected and covered by the G translates of U . Hence G is generated by

{g ∈ G gU ∩ U 6= ∅} = Gvg
−1 ∪Gv ∪ {g} ∪Gw ∪Gwg

On the other hand Gw = gGvg
−1. Hence

G = 〈Gv, g〉
Note that g has infinite order and shifts e to a neighboring edge. Hence we can

construct a bi-infinite geodesic C upon which g acts as a unit shift.
Now, consider the action of G on ∂∞T . We define two subsets. Let Ev be the

set of ends represented by geodesic paths starting at v avoiding C, and let Ee be the
complement of Ev. Obviously, every non-trivial power of g moves Ev into Ee.

On the other hand, a non-trivial element of Gv cannot move e to g−1e since
otherwise G would flip the orientation of an edge and therefore act with non-trivial
edge stabilizers. Hence non-trivial elements of Gv take Ee into Ev.

Since G acts transitively on the set of edges and every vertex has degree ≥ 3, the
stabilizer Gv is non-trivial. On the other hand 〈g〉 is infinite cyclic. Thus, the Ping
Pong Lemma (2.2.1) applies. Hence G = 〈Gv, g〉 = Gv ∗ 〈g〉 . q.e.d.
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Exercise 2.4.25. Let G act on a tree T such that the following conditions are sat-
isfied:

1. G acts freely and transitively on the set of geometric (unoriented) edges.

2. G does not act transitively on the set of vertices.

3. T has no terminal vertices and is not isomorphic to a line.

Let e be an edge in T that connects the vertices v and w. Let Gv and Gw denote the
stabilizers of these vertices. Then G = Gv ∗Gw.

2.4.3 Stallings’ Structure Theorem

This section is devoted to the proof of the following

Theorem 2.4.26 (Stallings’ Structure Theorem). Let G be a finitely generated
group with infinitely many ends. Then there is a tree T upon which G acts edge-
transitively without inversions and such that all edge stabilizers are finite.

Before we emabark on this big theorem, let us note the following consequence which
is of immediate concern to us in our disscussion of torsion free groups:

Corollary 2.4.27. Let G be a finitely generated torsion free group with infinitely
many ends. Then G = A ∗B for some non-trivial subgroups A and B.

Proof. By the Structure Theorem there is a tree upon which G acts with finite edge
stabilizers and one edge-orbit. Since G is torsion free, the stabilizers are actually
trivial. q.e.d.

The idea of the proof is to replace a Cayley graph for G by a tree that somewhat
interpolates between the ends of the Cayley graph. The group G will act on this tree,
and then we can use (2.4.23) to ensure a splitting. The argument is based on the
proof in [DiDu89].

So our goal is to find a nice tree for G to act on. We will actually find the set of
edges first (they correspond to splittings of the Cayley graph) – more precisely, we
will find the oriented edges of the tree. Then we will have to make up the vertices.
This process is completely formal and motivates the definition of tree sets.

Definition 2.4.28. A tree set is a set T together with a fixpoint free involution
(−) : T → T and a binary relation →− satisfying the following axioms:

1. The relation →− is a partial ordering.
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2. t→− t′ ⇐⇒ t′ →− t.

3. For any two elements t, t′ ∈ T exactly one of the following six cases occurs:

t = t′, t = t′, t→− t′, t→− t′, t→− t′, t→− t′.

4. For any element t ∈ T , the set Tt := {t′ ∈ T t′ →− t} contains no infinite chain
t′1 →− t′2 →− t′3 →− · · · .

Remark 2.4.29. It follows from the axioms (1)–(3) alone that, for any two elements
t1, t2 ∈ T , the interval

[t1, t2] := {t′ ∈ T t1 →− t′ →− t2}
is totally ordered. Hence axiom (4) just states that intervals are finite.

Exercise 2.4.30. Show that intervals in tree sets are totally ordered.

Exercise 2.4.31. Given a tree set T , we construct a graph as follows: the set of
oriented edges is T , the vertex set is V := T/ ∼ where

t ∼ t′ :⇐⇒ t→− t′ and
[
t, t′

]
= ∅,

the endpoint map τ : T → V is the canonical projection T → T/ ∼, and the initial
vertex map ι : T → V is given by ι(t) := τ

(
t
)
. Show that this graph is a tree – here

we use the convention that two opposite oriented edges form one geometric edge, thus
avoiding bigons.

Given this equivalence of trees and tree-sets, we can restate the Structure Theorem
in the form suitable for proof:

Theorem 2.4.32 (Structure Theorem, Tree-set Version). Let G be a finitely
generated group with infinitely many ends. Then there is a tree set T upon which G
acts with finite stabilizers and at most two orbits.

Lemma 2.4.33. Let Γ be a Cayley graph for G with respect to a finite generating
system. If Γ has more than three ends, any infinite connected subgraph ∆ with finite
boundary comprises at least two ends of Γ.

Proof. Let C be a finite connected subgraph containing ∂(∆) with at least three
infinite complementary components. Chose a translate gC inside ∆ – this exists as ∆
is infinite: pick a translate as far away as to make sure it does not intersect C nor the
finite complementary regions (of which there are only finitely many as C has finite
boundary).

As the Cayley graph is homogeneous, gC will split the space of ends into at least
three non-empty subsets. As ∂(∆) ⊆ C and C is connected, at least two of these are
covered by ∆. q.e.d.
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Proof of the Structure Theorem (2.4.32). Let Γ be a Cayley graph for G over
a finite generating set, and define

Hi :=
{
U ⊂ Γ |U | =∞ =

∣∣U
∣∣ and |∂(U)| < i

}
.

Since Γ has more than one end, these sets are non-empty for sufficiently large i. Let
m be the least index for which H := Hm 6= ∅. Note that, because of minimality, the
vertex collections in H are “connected”, i.e., for each U ∈ H, any two points in U
can be joined by a path that passes through vertices in U only.

Claim A. Every infinite descending chain U1 ) U2 ) · · · in H has empty intersec-
tion.

Proof. Assume the chain had non-empty intersection U∞. Pick an index i1. As Ui1
is connected, there is an edge ei1 connecting U∞ to Ui1 −U∞. Hence there is an
index i2 such that, for any j ≥ i2, the edge e actually bridges between Uj and
Ui1 − Uj. In particular, e ∈ ∂(Uj).

Now replace i1 by i2 and argue in exactly the same way, to find a new edge ei2
and an index i3 as above. Observe that ei2 6= ei1 . Once you constructed eim+1 ,
observe that ∂

(
Uim+2

)
has more than m edges. This contradicts or definition of

H. 2

Let U0 ∈ H be minimal with 1 ∈ U0.

Claim B. For any group element V ∈ H, at least one of the following set is finite:

U0 ∩ V, U0 ∩ V, U0 ∩ V , U0 ∩ V . (2.1)

Proof. Assume by contradiction, all of these intersections are infinite. First, we
claim

4m ≤ ∂(U0 ∩ V )+∂
(
U0 ∩ V

)
+∂

(
U0 ∩ V

)
+∂

(
U0 ∩ V

) ≤ 2 |∂(U0)|+2 |∂(V )| = 4m.

The first inequality follows from the definition of m. The second one follows
from this picture:
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V

V

V

V

U U

U U

Consider the intersection that contains 1, say U0 ∩ V . Obviously, 1 ∈ U0 ∩ V ⊆
U0. But on the other hand, U0 ∩ V ∈ H. By minimality of U0, we have
U0 ∩ V = U0, whence V ∩ U0 = ∅. Thus, not all intersections are infinite. 2

Claim C. If two of the intersections in (2.1) are finite, it is either the pair

U0 ∩ V U0 ∩ V
or the pair

U0 ∩ V U0 ∩ V .
Proof. Consider the diagram

(U0 ∩ V ) ∪ (
U0 ∩ V

)
= U0

∪ ∪(
U0 ∩ V

) ∪ (
U0 ∩ V

)
= U0

q q
V V

Since U0, U0, V , and V are all infinite, the claim follows. 2

Claim D. Let U, V ∈ H such that U ∩U0 is finite, then there are only finitely many
g ∈ G such that

U ∩ V and V ∩ U0 are finite.

Proof. Because of (2.4.33), there is a compact subset C in the Cayley graph Γ of G
such that the intersections

U ∩ C
and

U0 ∩ C
contain at least two infinite components.
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C

. . .

U

∂(U)

. . .

U0

∂(U0)

g∂(V )

Choose a finite connected subgraph ∆ containing ∂(V ). Then for all but finitely
many g ∈ G, the translate g∂(V ) ⊆ g∆ is contained in an infinite complemen-
tary component of C. For these g, it is impossible that U ∩ V and V ∩ U0 are
finite. 2

We define an equivalence relation on H by

U ∼= V :⇐⇒ U ∩ V and U ∩ V are finite.

In addition, we define a partial order relation →− on H by

U →− V :⇐⇒ U ∩ V is finite but U 6∼= V.

Put
T := {gU} ∪

{
gU

}/
∼=

where
U ∼= V :⇐⇒ (U →− V and V →− U) .

Obviously→− descends and defines a partial order on T which we will also denote by
→−.

Claim E. T is a tree set.

Proof. Obviously,→− is a partial order, and taking complements is an order revers-
ing involution. The condition (3) is satisfied by claim (B). Finally, intervals are
finite by (D). 2

So finally, we have constructed the tree set. What about the action of G? The
number of orbits is clearly bounded by two since we used the orbits of U0 and U0 to
define T . That the stabilizers are finite, follows from (D) for the case U = U0. q.e.d.
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2.4.4 Grushko’s Theorem

Theorem 2.4.34. If a free product A ∗ B has a set of n generators, then it has a
separated set of n generators, i.e., a generating set contained in A∪B. In particular,

rk(A ∗B) = rk(A) + rk(B) .

We give a version of Stallings’ proof based on [Stal88]. We will, however, avoid the
use of two-complexes and work with folds (also invented by Stallings). This makes
the proof more combinatorial. It actually yields an algorithm for the construction of
a separated generating set.

Proof. Let us start with an arbitrary set of n generators for A ∗ B. Recall that
the elements are essentially words over the alphabet A ∪ B − 1. We will devise an
algorithm that takes this generating set as an input and has a separated generating
set of at most equal size as its output.

Our main bookkeeping device is a graph with edge labels in A ∪ B. Here is the
precise data structure that we use:

Definition 2.4.35. An A,B-labeling is a connected graph Γ together with a map

φ :
−→E Γ→ A ∪B − 1 satisfying

φ(op(~e)) = φ(~e)−1 .

The values of φ are called labels. We color all edges red that have their label in A.
The remaining edges are colored blue. A vertex in Γ is monochromatic if all edges in
its link have the same color. A path in Γ is called monochromatic if it contains edges
of one color only.

Since any directed edge “reads” an element of A ∗ B, any directed path “reads”
the product. We call a path null-homotopic if it reads the trivial element in A ∗B.

Clearly, we have a homomorphism

φ : π1(Γ, v)→ A ∗B

for any vertex v ∈ Γ.
An A,B-labeling is generating if the induced homomorphism is surjective.

The start for our algorithm is a rose:

Observation 2.4.36. We can realize any finite generating set for A ∗B by a gener-
ating A,B-labeling modeled on a rose with subdivided loops.

The goal of the algorithm is a rose too:
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Observation 2.4.37. Any generating A∗B-labeling modeled on a rose with undivided
loops, i.e., a graph with only one vertex, represents a separated generating set for A∗B.

Our algorithm modifies A,B-labelings. The goal is to reduce the number of ver-
tices. Eventually, we have a graph with only one vertex, which represents a separated
generating set.

For the reduction step, assume our labeling Γ has at least two vertices. Then
Γ contains path that is not a loop. This path can read any element of A ∗ B, but
as φ : π1(Γ, v) → A ∗ B is surjective, we can append a loop so that we obtain a
null-homotopic path that connects two different vertices.

The next step in the reduction is to come up with a monochromatic, null-
homotopic path connecting two different vertices. For those, who do not care about
a construction: Among all null-homotopic non-loops, chose a shortest one and prove
that this must be a monochromatic path.

A more constructive approach runs like this: We already have a null-homotopic
non-loop. First remove from this path all monochromatic, null-homotopic loops.
This will shorten the path and we will still have a null-homotopic non-loop. The
edges in this path come in runs of edges of the same color. Since we remove null-
homotopic, monochromatic loops, each of these runs is either not null-homotopic or
not a loop. Each run gives an element in A or B. The product of these has to be
trivial (the whole path is null-homotopic), but by the definition of runs, the factors
are taken alternatingly from A and B. An alternating product of non-trivial elements,
however, cannot be trivial in the free product A ∗B. Hence one of the runs reads the
identity element. Then, this run is not a loop. Hence we found a monochromatic,
null-homotopic path connecting two different vertices.

Note that our path has length ≥ 2 since we do not allow for trivial edge labels.
Since it reads the trivial element, the first edge reads the inverse of the rest. Therefore,
adjusting the orientations, we get the following picture:

g1
g2

gr−1 gr

g1g2 · · · gr

v0
v1

v2 vr−2
vr−1

vr

v−1

Now, we perform a fold, i.e., we replace the picture above by
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g1 g2 gr−1 grv0

v1 v2 vr−2 vr−1

vr

Clearly, the fundamental group of Γ did not change: we removed one edge and reduced
the number of vertices by one. Moreover, the induced homorphism φ is still surjective:
for every closed loop before the fold we can find a closed loop after the fold reading
the same group element. So we still have a generating A,B-labeling. But the number
of vertices dropped by one. Keep going, until there is only one vertex left. This
completes the proof.

Wait a minute. Pictures can be so misleading, and in this prove, there is a serious
gap: We want to remove the initial edge of our path. The justification is that we do
not need it as the complementary segment of the path already reads the same group
element. But what if this segment passes through the initial segment? Then deleting
it would cut the path – ouch.

Hm. Here is a patch. First let us observe that there is another process that
reduces the number of vertices in Γ. Suppose v is a monochromatic vertex, then we
can remove v. To do this, we replace

g3

gs−1

gs

g2

g1

g0

v1

v0

v2

vs−1

vs

v3

v

by

g0g
−1
1 g1g

−1
2

g2g
−1
3

g0g
−1
1

v1

v0

v2

vs−1

vs

v3
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So let us have a closer look at the initial edge e of our monochromatic path. We
assume that our path is red. Let v−1 be the first and v be the second vertex in the
path. Our plan is to do an unfold along e first to split v−1 into two vertices, one of
which keeps the connections to blue edges whereas the other one stays connected to
the red edges. So we replace the picture

v−1
vg

by

v−1

v′−1

v

g

g

Note that we increased the number of vertices by one. On the other hand, we have
a path starting at the new vertex v′−1 which is monochromatic and null-homotopic
and whose first edge is not used a second time. Hence we can immediately follow the
unfold by a fold which restores the number of vertices. So what was the progress?

By the unfold, the vertex v−1 became monochromatic. Hence we can get rid of
one of them, thereby reducing the number of vertices. So we did one step back and
two steps forward, and this does complete the proof. q.e.d.

Remark 2.4.38. There is a topological interpretation of this proof, which explains
why we call paths that read the trivial element “null-homotopic”: Realize A and B
as a fundamental groups of base pointed spaces. Then, by van Kampen’s Theorem,
their wedge X has fundamental group A ∗ B. A generating set can be realized as a
map from the n-rose Y to X. A path in Y is that maps to a null-homotopic loop in
X is what we called null-homotopic.

One of Stallings proofs for Grushko’s Theorem takes place in this setting: The
preimage of the wedge-point is probably not connected. So we want to reduce the
number of its components. This is done by glueing two cells onto Y without changing
the homotopy type. This procedure corresponds to the folds above: we just collapsed
the two cell immediately after the gluing. The patch is only needed because we insist
on this immediate return to a graph. For this reason, the topological proof is, in fact,
shorter and more elegant.
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2.5 The Hanna Neumann Conjecture

Definition 2.5.1. A group G has the finite intersection property if the intersection
of any two finitely generated subgroups in G is finitely generated.

Theorem 2.5.2 (Howson [Hows54]). Free groups enjoy the finite intersection
property.

By now, there are many proofs of this theorem. The one given here is stolen from
[Shor90].

Definition 2.5.3. Let G be a group with finite generating set Σ. A subgroup H ≤ G
is quasi-convex with respect to Σ if there is a constant R ≥ 0 such that every geodesic
path in the Cayley graph ΓGΣ joining two points in H lies in an R-neighbourhood of
H. That is, every point on such a path has distance ≤ R to at least one point in
H ⊂ Γ.

Example 2.5.4. Any finitely generated subgroup H of a free group is quasi-convex
with respect to the standard generators: Let B be a ball in the Cayley tree Γ centered
at 1 containing all generators of H. The union

HB =
⋃

h∈H
hB

of H-translates of B is connected and hence a subtree. Any geodesic joining two
point of H in Γ actually lies in HB. The constant R therefore can be chosen to be
the radius of B.

Proposition 2.5.5. Quasi-convex subgroups are finitely generated.

Proof. Let G, H, Σ, and R be as in the definition (2.5.3), and let B be the open ball
in Γ = ΓGΣ of radius R + 1. It is easy to see that

X = HB ⊆ Γ

is connected and that
Ξ := {h ∈ H hB ∩ B 6= ∅}

is finte. By (1.4.4) this finite set generates H. q.e.d.

Proposition 2.5.6. The intersection of two quasi-convex subgroups is quasi-convex.
More precisely, let G be a group with finite generating set Σ and let A and B be two
subgroups that are both quasi-convex with respect to Σ. Then A ∩ B is quasi-convex
with respect to Σ.
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Proof. Let RA and RB be the quasi-convexity constants for the two subgroups. Let
PR be the set of paths in Γ = ΓGΣ starting at 1 of length R. For any such path p let p
denote its end point – note that this is a vertex in Γ and therefore an element of the
group G. Consider the finite set

Π := {(p, q) ∈ PRA
× PRB

pa = qb for some a ∈ A, b ∈ B}

For any pair (p, q) ∈ Π, pick two paths γ(p,q) (with γ(p,q) ∈ A) and δ(p,q) (with δ(p,q) ∈
B) such that pγ(p,q) = qδ(p,q). Let R be the maximum length that occurs as a path
of the form pγ(p,q). We will show that any point that has distance ≤ RA to A and
distance ≤ RB to B must have distance ≤ R to A ∩ B. From this, quasi-convexity
follows since the statement of course applies to points on geodesic paths joining points
in A ∩ B.

So let g ∈ G be in the RA-neighbourhood of A and in the RB-neighbourhood of
B. Then there is a path p of length ≤ RA from g to some element of A. Similarly
there is a short path q connecting g to B. Hence (p, q) ∈ Π. Observe that gp ∈ A
whence gpγ(p,q) ∈ A. Similarly, gqδ(p,q) ∈ B, but because pγ(p,q) = qδ(p,q) it follows
that gpγ(p,q) ∈ A ∩ B. Hence g has distance ≤ R to A ∩ B. q.e.d.

Proof of (2.5.2). By (2.5.4), finitely generated subgroups of free groups are quasi-
convex. By (2.5.6), the intersection of two of these is quasi-convex itself. Finally, by
(2.5.4), the intersection is finitely generated. q.e.d.

Remark 2.5.7. Let G and H be two finitely generated subgroups of the free group
F . As G and H are free groups of finte rank, one might ask how the rank of G ∩ H
relates to the ranks of G and H. Hanna Neumann [Neum55] showed:

rk(G ∩ H)− 1 ≤ 2 (rk(G)− 1) (rk(H)− 1)

She asked whether

rk(G ∩ H)− 1 ≤ (rk(G)− 1) (rk(H)− 1)

This problem is still open and know as the Hanna Neumann conjecture.

Exercise 2.5.8. Show that F2 × C∞ does not have the finite intersection property.
That is, find two finitely generated subgroups whose intersection is not finitely gen-
erated.
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2.6 Equations in Free Groups and the Conjugacy

Problem

Reduced words provide normal forms for elements in Fn. Hence it is easy to decide
if two words in the free generators represent the same group element. We can phrase
this as

Observation 2.6.1. Free groups have a solvable word problem.

This is only one of many algorithmic problems one might study for a group with a
fixed generating set:

Definition 2.6.2. The word problem for a groupG = 〈Σ〉 is to decide algorithmically
for any two words in Σ ] Σ−1 whether they represent the same group element.

The conjugacy problem is to decide algorithmically whether two given words w1

and w2 represent conjugated group elements, i.e., if the equation

Xw1X
−1 = w2

has a solution in the ambient group.
The subgroup membership problem is to decide algorithmically whether a given

word represents an element of the subgroup generated by a finite list of given elements.
The subgroup conjugacy problem is to decide algorithmically for two finite sets of

words if the two subgroups they generate are conjugate.

Theorem 2.6.3. The conjugacy problem in Fn is solvable. More precisely, if the
equation

XuX−1 = w

has at least one solution in Fn, then there is a solution v such that

|v| < |u|+ |w|
2

.

Proof. Suppose v is a solution of minimal length. So we have vuv−1 = w. Assuming
that the words v, u, and w are reduced, we observe that cancellations on the left had
side occur only on the boundaries of u. We have to keep track of these cancellations.

First, there might be cancellations on both sides of u. In this case, we are undoing
a conjugation. Since we cannot conjugate something nontrivial into the empty word,
the number of those cancellations is < |u|

2
.

Afterwards, cancellations can only occur on one side of u′, where u′ is whatever
is left of u. Note that for each letter that cancels in front of u′, a copy of this letter

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2002]



2.6. EQUATIONS IN FREE GROUPS AND THE CONJUGACY PROBLEM 51

appears in the back. Hence it does not make sense to have |u′| cancellations or more
– we could spare these superflous letters.

The total number of cancellations, therefore, is < |u|−|u′|
2

+ |u′| ≤ |u| .
On the other hand, we know that after all cancellations are done, the right hand

side equalls w. Hence
2 |v|+ |u| < |w|+ 2 |u|

and the claim follows. q.e.d.

Corollary 2.6.4. Different generators of Fn are not conjugate.

Exercise 2.6.5. Find an efficient algorithm to solve the conjugacy problem in
finitely generated free groups.

Exercise 2.6.6. Modify the graphs-and-folds technique used in proving Grushko’s
Theorem to devise an algorithm that does the following:

The input it takes is a finite set {g1, . . . , gr} of elements in Fn given as
reduced words in the standard generators.

The output is a list of free generators {h1, . . . , hs} for the subgroup
〈g1, . . . , gr〉 generated by the gi.

Exercise 2.6.7. Find an algorithm that solves the subgroup membership problem
for finitely generated free groups.

Remark 2.6.8. The subgroup conjugacy problem is related to the recognition prob-
lem for groups: Suppose we had a machine that could tell us if the standard generator
x1 is has a conjugate in 〈g1, . . . , gr〉, then we could run the test on all the generators
and see if the normal closure of 〈g1, . . . , gr〉 is all of the free group. Given this ma-
chine, we have an easy way of deciding if a finite presentation acutally presents the
trivial group. This problem, however is undecidable.

Conjecture 2.6.9. The subgroup conjugacy problem is unsolvable for non-abelian
free groups.

For free groups, there has been a lot of research about decidability questions. We
list the most famous results:

Theorem 2.6.10 (Makanin [Maka82]). There is an algorithm that, given an
equation in a free group, decides whether the equation has a solution.

Theorem 2.6.11 (Razborov [Razb84]). There is an algorithm that, given a sys-
tem of equations in a free group, decides whether it has a solution.
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In both cases, the basis for the algorithm generalizes what we did for the conjugacy
problem: Find an a priori bound on the length of a minimal solution.

The ultimate theorem along those lines is a recent solution to Tarski’s problem. To
state the problem (and the solution) we need to understand the “elementary theory”
of a free group.

Definition 2.6.12. Let Fn be a free group of rank n. Consider statements of first or-
der logic over an alphabet containing a multiplication operation, the identity relation,
infinitely many variables, and one constant symbol for any of the n free generators of
Fn. We can interpret those statements over Fn in an obvious way.

The elementary theory of Fn is the set of all true statements.

The elementary theory encodes everything that can be said about Fn with “finite
linguistic means”, i.e., you are not allowed to use the langugage of sets or phrases like
“and so forth”. Obviously, it would be nice if the elementary theories of free groups
were decidable. This would generalize the theorems of Makanin and Razborov to a
large extent – e.g., we could deal with systems of equations and inequalities.

By means of the standard inclusions

F2 ≤ F3 ≤ F4 ≤ · · ·

we can interpret any statement over a free group on n generators as a statement about
all free groups of higher rank, as well. Tarski asked whether the elementary theories
of non-abelian finite rank free groups are all equal, i.e, if there is no statement that
has different truth values when interpreted in different free groups.

Both problems, decidability of elementary theories and Tarski’s problem, have
positive solutions. The priority for these results, which turn out to be strongly related,
is still unsettled. O. Kharlampovich and A. Myasnikov have their proofs spread out in
[KM98a], [KM98b], [KM98c], [KM00a], [KM00b], and [KM00c]; Z. Sela has presented
his account in [Se01a], [Se01b], [Se01c], [Se01d], [Se01e], and [Se01f]. Both proofs are
several hundred pages each. The upshot is:

Theorem 2.6.13 (Kharlampovic-Myasnikov, Sela). The elementary theories of
all non-abelian free groups of finite rank coincide and are decidable.

Remark 2.6.14. It is also possible to describe the set of all solutions to a system of
equations (or more generally the set of all solutions to an open sentence) by means
of “parametrized words”. This also comes out of the heavy machinery used to solve
Tarski’s problem.
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Chapter 3

SL2(Z) and the Hyperbolic Plane

The group SL2(Z) is the most simple arithmetic group. Many of its properties extend
to arithmetic groups or even S-arithmetic groups in general. On the other hand, it
has some features that are special and do not generalize to higher rank arithmetic
groups.

We observed in the proof of (2.2.6):

• SL2(Z) is linear.

• SL2(Z) is residually finite.

Here, we will show:

[3.3.3] SL2(Z) acts cocompactly, with finite vertex stablizers on a tree.

[3.2.7] SL2(Z) has only finitely many conjugacy classes of finite subgroups.

[3.2.9] SL2(Z) is virtually torsion free.

[3.3.5] SL2(Z) is virtually free. Thus:

(a) SL2(Z) is virtually of type F.

(b) SL2(Z) is of type F∞.

(c) SL2(Z) is not amenable.

[3.4.3] The conjugacy problem in SL2(Z) is solvable.

[3.5.6] SL2(Z) contains finite index normal subgroups that do not contain a congruence
subgroup.

[3.6.13] SL2(Z) is SQ-universal.

We will start, however, by describing the action of SL2(Z) on the hyperbolic plane.
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3.1 The Symmetric Space of SL2(R)

The group SL2(R) acts on the complex projective line P1(C) in an obvious way. The
complex projective line is the Riemann sphere, and since the coefficients of matrices
in SL2(R) are real, the equator of the Riemann sphere is invariant under this ac-
tion. Moreover, the action does not swap the northern and southern hemispheres.
Hence, there is an induced action on the northern hemisphere – the north pole is the
imaginary unit i. This action is given by Möbius transformations:

(
a b
c d

)
z :=

az + b

cz + d
.

The kernel of this action is the center of SL2(R):

{I2,−I2} .

The northern hemisphere is a well known model for the hyperbolic plane H2.

Exercise 3.1.1. Prove that H2 has constant curvature −1.

Exercise 3.1.2. Show that Möbius transformations are isometries of H2.

Exercise 3.1.3 (extra credit). Show that any orientation preserving isometry of
H2 is given by a Möbius transformation.

Exercise 3.1.4. Show that geodesics inH2 are vertical lines or half circles orthogonal
to the real axis.

Definition 3.1.5. A horizontal line or a circle tangent to the real axis in H2 is called
a horocircle.

Exercise 3.1.6. Show that the action of SL2(R) takes horocircles to horocircles.

Observation 3.1.7. Elements of the form

(
1 b
0 1

)
act as translations that preserve

the imaginary part and shift the real part by b. These elements are called translations.

Elements of the form

(
a 0
0 a−1

)
act act transitively on the imaginary line. They

move lines in the upper half plane to parallel lines. These elements are dilations.

Corollary 3.1.8. The action of SL2(R) on H2 is transitive. q.e.d.
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We determine the stabilizer of i: First, we have

(
a b
c d

)
i = i

ai + b = −c+ di

a = d b = −c.

Now, the determinant gives:

a2 + b2 = 1.

It follows that the stabilizer of i is precisely the group SO(2) . This is a compact Lie
group of rotations. Since these rotations act transitively on the unit tangent vectors
at i, we obtain the following strengthening of (3.1.8)

Observation 3.1.9. SL2(R) acts transitively on the following sets:

• The set of isometric embeddings R −→ H2.

• The unit sphere bundle of the Riemannian manifold H2.

Theorem 3.1.10. Any compact subgroup of SL2(R) is conjugate to a subgroup of
SO(2)

Proof. A compact subgroup has bounded orbits. The hyperbolic plane is negatively
curved and simply connected. Hence, compact subsets have unique centers – the
center of a bounded subset is the center of a minimal covering disk. Since the group
acts by isometries (3.1.2), the compact subgroup fixes the center of any of its orbits.
Thus, any compact subgroup fixes a point of the hyperbolic plane.

By transitivity of the action (3.1.8), we find an element that moves the fixed point
to i. This element conjugates the compact subgroup into Stab i. q.e.d.

Corollary 3.1.11. H2 = SL2(R) / SO(2).

Definition 3.1.12. An element M ∈ SL2(R) is called

• elliptic if |tr(M)| < 2,

• parabolic if |tr(M)| = 2, and

• hyperbolic if |tr(M)| > 2.
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Observation 3.1.13. The characteristic polynomial of

(
a b
c d

)
∈ SL2(R)

is ∣∣∣∣
1− xa xb
xc 1− xd

∣∣∣∣ = x2 − (a+ d)x+ 1.

Hence the matrix M ∈ SL2(R) has two conjugate complex eigenvalues if it is elliptic.
This is to say, M fixes a point in H2. In particular, M is conjugate to a rotation.
If M is hyperbolic, it has two real eigenvalues whence it has two fixed points on
∂(H2) = P1(R). Finally, if M is parabolic, it has one fixed point on the boundary
∂(H2). q.e.d.

3.2 A Fundamental Domain for SL2(Z)

Definition 3.2.1. Let G act on H2 by isometries. A strong fundamental domain for
the action is a subset D ⊆ H2 such that every G-orbit has precisely one point in D.

Observation 3.2.2. Let M =

(
a b
c d

)
∈ SL2(R). Then we have:

M
−d± 1

c
=

(
a b
c d

) −d± 1

c

=
−ad± a+ bc

−cd± c+ dc

=
−1± a
±c

=
a∓ 1

c
.

This computation shows that M takes the half circle of radius 1
|c| centered at −d

c
to

the half circle of the same radius centered at a
c
. Since M preserves the orientation,

we see that

M

{
z ∈ H2

∣∣∣∣z −
−d
c

∣∣∣∣ <
1

|c|
}

=

{
z ∈ H2

∣∣∣z − a

c

∣∣∣ > 1

|c|
}

and

M

{
z ∈ H2

∣∣∣∣z −
−d
c

∣∣∣∣ >
1

|c|
}

=

{
z ∈ H2

∣∣∣z − a

c

∣∣∣ < 1

|c|
}
.
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Corollary 3.2.3. Fix M =

(
a b
c d

)
∈ SL2(R). The 〈M〉-orbit of any point intersects

{
z ∈ H2

∣∣∣∣z −
−d
c

∣∣∣∣ ≥
1

|c| or
∣∣∣z − a

c

∣∣∣ > 1

|c|
}

in at most one point.

Put

D :=

{
z ∈ H2 |z| ≥ 1 and − 1

2
≤ <(z) ≤ 1

2

}

and
Σ :=

{
M ∈ SL2(Z) MD ∩ D 6= ∅} .

We shall first determine Σ. Let M =

(
a b
c d

)
∈ SL2(Z). If there are two points

x, y ∈ D with
Mx = y

then (3.2.3) implies c ∈ {−1, 0, 1} .
c = 0: Since Det(M) = 1, we have a = d = ±1. It follows that M either acts as the

identity or as a translation. Now b ∈ {−1, 0, 1} follows, and we obtain

M ∈
{
±

(
1 0
0 1

)
,±

(
1 1
0 1

)
,±

(
1 −1
0 1

)}
.

It is obvious that all these matrices belong to Σ.

c = ±1: There are only three half circles of radius 1 = 1
|c| centered at integer points

that intersect D non-trivially. Thus (3.2.3) implies a, d ∈ {−1, 0, 1}. Once we
pick a and d the last entry b is determined by Det(M) = 1. Thus, we have the
following candidates:

±
(

1 0
1 1

)
, ±

(−1 0
1 −1

)
, ±

(
1 −2
1 −1

)
, ±

(−1 −2
1 1

)
,

±
(±1 −1

1 0

)
, ±

(
0 −1
1 ±1

)
, ±

(
0 −1
1 0

)
.

By inspection, one establishes that the following matrices actually belong to Σ:

±
(

1 0
1 1

)
,±

(−1 0
1 −1

)
,±

(±1 −1
1 0

)
,±

(
0 −1
1 ±1

)
,±

(
0 −1
1 0

)
.
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Hence we have

Σ =





±
(

1 0
0 1

)
,±

(
1 1
0 1

)
,±

(
1 −1
0 1

)
,±

(
1 0
1 1

)
,

±
(−1 0

1 −1

)
,±

(±1 −1
1 0

)
,±

(
0 −1
1 ±1

)
,±

(
0 −1
1 0

)





Exercise 3.2.4. Show that, for any M ∈ SL2(Z),

MD ∩ D

does not contain a non-empty open subset of H2.

Let us define a subset D of D by excluding the right boundary and the open right
half of the bottom boundary. Thus D is given by the following picture:

0 1

i

D

Lemma 3.2.5. H2 = SL2(Z)D.

Proof. Since

D ⊂ D ∪
(

0 1
−1 0

)
D ∪

(
1 1
0 1

)
D,

it suffices to prove the claim for D instead of D.
We claim that the following algorithm eventually moves every z ∈ H2 into D. Put

z0 := z and define two sequences of points by the following rules:

• Let
z′i := zi + n

where n ∈ Z is chosen such that

−1

2
≤ <(z′i) <

1

2
.
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• Put

zi+1 :=

{
− 1
z′i

for |z′i| < 1

z′i otherwise.

Note that z′s ∈ SL2(Z) zi and zs+1 ∈ SL2(Z) z′i. Hence it suffices to prove that,
eventually, zi ∈ D.

First observe that

=(z′i) ≤
1

2

implies
|zi+1| ≥ 2 |z′i|

since |<(z′i)| ≤ 1
2
. Thus, we have =(z′i) = =(zi) >

1
2

for i large enough. for such an

i, let z′i = x+ iy and assume |z′i| < 1. We claim zi+1 ∈ D. This is apparent from the
following picture:

0 1

2i

which is valid by (3.1.6). q.e.d.

Our discussion so far can be summarized as follows:

Proposition 3.2.6. The collection of closed subsets MD where M ∈ SL2(Z) forms
an SL2(Z)-invariant tiling of H2 with ideal triangles. q.e.d.

From this, we can derive a good deal of information about SL2(Z).

Theorem 3.2.7. The group SL2(Z) has only finitely many conjugacy classes of finite
subgroups.

Proof. Let F ≤ SL2(Z) be finite. Then there is a point x ∈ H2 such that

Fx = x.
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Chose M ∈ SL2(Z) such that Mx ∈ D. Then

MFM−1 ⊆ Σ.

But Σ is finite. q.e.d.

Exercise 3.2.8. Let G be a residually finite group that has only finitely many con-
jugacy classes of finite subgroups. Show that G is virtually torsion free.

Corollary 3.2.9. SL2(Z) is virtually torsion free.

Theorem 3.2.10. The group SL2(Z) is finitely presented.

Proof. Let U be a contractible open neighborhood of D contained in the union of all
tiling triangles that intersect D. Then (A.1.10) applies. q.e.d.

We can improve (3.2.6) a little. This strengthenening is, however, not needed for
applications. Therefore, we omit all details of the proof.

Proposition 3.2.11. D is a strong fundamental domain for SL2(Z) in H2.

Proof. By (3.2.5), half of the claim is already proved. Thus we only have to show
that no two points in D are in the same SL2(Z)-orbit. This is done by inspection of
the elements in the finite set Σ. q.e.d.

3.3 The Tree of SL2(Z)

Let us draw the tiling (3.2.6) in the unit disc model:

D
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We see that the finite edges of the tiling triangles form a trivalent tree.

Proposition 3.3.1. We may trust our eyes, the finite edges of the tiling triangles
do, indeed, form a tree.

Proof. There is no doubt that these edges form a graph. We have to argue that this
graph is contractible. Thus it suffices to recognize this graph a a deformation retract
of H2.

In the fundamental triangle D, we define a retraction by moving every point x
down along the geodesic from ∞, the ideal triangle vertex, through x at hyperbolic
unit speed until the point hits the bottom boundary edge of D. This retraction, being
defined entirely in terms of the hyperbolic metric and the geometry of D, obviously
extends SL2(Z)-equivariantly to all of H2. q.e.d.

Definition 3.3.2. A group G acts properly discontinuously on a topological space
X if, for every compact subset C ⊆ X, the set

{g ∈ G gC ∩ C 6= ∅}

is finite.

Corollary 3.3.3. SL2(Z) acts cocompactly and properly discontinously on a tree.

Proof. Cocompactness is obvious. For the compact subset given by the fundamental
edge e, we already established that the action is properly discontinuous. The general
case follows: Let C be a compact subset of the tree. Then it is covered by finitely
many edges Mie. Thus,

MC ∩ C 6= ∅
implies

MMie ∩Mje 6= ∅
which in turn yields

M = MjxM
−1
i

for some x ∈ Σ. It is apparent that only finitely many elements arise that way. q.e.d.

Corollary 3.3.4. SL2(Z) is of type F∞.

Proof. This follows from the action on the tree in view of (D.1.2). q.e.d.

Exercise 3.3.5. Show that SL2(Z) contains a non-abelian free subgroup of finite
index.
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Exercise 3.3.6. LetG act on a tree T such that the following conditions are satisfied:

1. G acts transitively on the set of geometric (unoriented) edges.

2. G does not act transitively on the set of vertices.

3. T has no terminal vertices and is not isomorphic to a line.

Let e be an edge in T that connects the vertices v and w. Let Gv and Gw denote
the stabilizers of these vertices and let Ge denote the stabilizer of the edge e. Then
G = Gv ∗Ge Gw.

Infer that

SL2(Z) = C6 ∗C2 C4.

3.4 The Conjugacy Problem

Definition 3.4.1. A group G is combable with respect to the generating set Σ, if
there is a constant C and distinguished paths from 1G to each vertex v ∈ ΓGΣ that
have the C-fellow traveler property. That is, whenever we have two distinguished
paths p and q starting at 1G ∈ ΓGΣ whose endpoints have distance ≤ 1, the following
inequality holds along the paths:

d(pt, qt) ≤ C. (3.1)

Here the paths are traversed with unit speed. If all the combing paths can be chosen
to be geodesics, the group G is called geodesically combable. If any two geodesic
paths whose endpoints have distance ≤ 1 satisfy the inequality (3.1), we say that G
has the C-fellow traveler property.

Exercise 3.4.2. Prove that for some finite generating set and some constant C,
geodesic paths in the Cayley graph of SL2(Z) have the C-fellow traveler property.
Hint: Use the action on the tree.

Proposition 3.4.3. Geodesically combable groups have solvable conjugacy problem.

Proof. Let u and v be two words. We show that we can restrict the search for a
conjugating element w with wu = vw to words of a length bounded by a constant
that depends only on |u| and |v|.

So let w be a shortest conjugating element – if there is one. We have to give an
upper bound for |w|. This is done in two pictures:
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u v

w

w

t |w| − t

t |w| − t

t

|w| − t
C |u| ≥

≤ C |v|

This picture proves that the upper and lower geodesic are fellow travelers for a con-
stant essentially proportional to |u| + |v|. To see this, we just observe that the two-
colored segment that connects the dashed paths is short by the triangle inequality:
the diagonal has length between |w| − |v| and |w|+ |v|.

u v

w

w

p p

This picture shall remind you of the pigeon hole principle. If w is too long, then there
will be two points such that the short vertical geodesic connections read identical
group elements. We can then cut out the middle rectangle and shorten the conjugation
rectangle. q.e.d.

3.5 Finite Quotients and Congruence Subgroups

We note an immediate consequence of (3.3.6).

Observation 3.5.1. C3 ∗C2 is a quotient of SL2(Z). In fact, it follows from (3.3.6)
that C3 ∗ C2 = PSL2(Z). q.e.d.

It follows that every group that can be generated by two elements of orders two and
three is a quotient of SL2(Z).

Exercise 3.5.2. Show that the alternating group A11 is a quotient of SL2(Z).

Remark 3.5.3. More is true: For n ≥ 9, the alternating group An and the symmetric
group Sn are quotients of PSL2(Z). See [Magn74, page 119] for references.
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There is a class of obvious finite quotients of SL2(Z) and PSL2(Z), namely the groups
PSL2(Z

m).

Definition 3.5.4. A normal subgroup of SL2(Z) is a congruence subgroup if it is the
kernel of the canonical homomorphism

SL2(Z)→ PSL2(Z
m)

for some m.

Exercise 3.5.5. Prove that for every m ∈ N, the homomorphism

SL2(Z)→ PSL2(Z
m)

is onto.

Proposition 3.5.6. Not all finite index normal subgroups of SL2(Z) contain a con-
gruence subgroup.

This result is remarkable because it fails in higher ranks: Every finite index normal
subgroup in SLn(Z) contains a congruence subgroup provided n ≥ 3. (4.0.17)

Proof. In view of (3.5.2) and (3.5.5), it suffices to show that A11 is not a quotient
of PSL2(Z

m). Since A11 is simple, we only have to prove that it does not occur as
a factor in a decomposition series for PSL2(Z

m). We will, in fact, prove the slightly
stronger statement, that A11 does not occur as a factor in the decomposition series
of SL2(Z

m).
As a first step, we prove

SL2(Z
m) =

K
q

SL2(Z
q)

where q ranges over the prime powers in a decomposition of m. Let

(
a b
c d

)
be an

integer matrix of determinant 1 representing a given element N ∈ SL2(Z
m). Fix an

enumeration q1, . . . , qr of these factors. By the Chinese remainder theorem, there are
integers ai, bi, ci, and di satisfying the congruences

a ∼= aib ∼= bic ∼= cid ∼= di mod qi

and

Mj :=

(
aj bj
cj dj

)
∼=

(
1 0
0 1

)
mod qi for i 6= j.
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Moreover, these numbers are unique mod m. Observe that the product M of these
matrices is congruent to Mi mod qi regardless of the ordering of the factors. It
represents the element N in SL2(Z

m) that we picked in the first place. In addition,
the matrices Mi define elements in SL2(Z

m) that commute pairwise – to see this, just
verify that the commutators MiMj −MjMi vanish mod qk for any k. Finally, the
matrices Mi descend to matrices in SL2(Z

qi). It follows that

SL2(Z
m) =

K
i

SL2(Z
qi) .

Thus we reduced our task to proving that A11 does not occur as a factor in the
decomposition series of SL2(Z

q) where q is a prime power q = pk+1.

Check that PSL2(Z
p) has order p(p−1)(p+1)

2
. It follows that p is the largest prime

factor of this order. Thus A11 is not isomorphic to any of the groups PSL2(Z
p) because

p = 11 would be the only chance, and here orders do not match.
However the following exercise (3.5.7) implies by an easy induction that the only

non-abelian factors of a decomposition series of SL2(Z
q) are isomorphic to PSL2(Z

p).
q.e.d.

Exercise 3.5.7. Fix a prime p and a natural number k. Show that

Np,k :=

{(
1 + xpk ypk

zpk 1− xpk
)

mod pk+1 0 ≤ x, y, z < p

}
≤ SL2

(
Zp

k+1
)

is a normal abelian p-subgroup of rank 3 in SL2

(
Zp

k+1
)

such that

SL2

(
Zp

k+1
)
/Np,k

∼= SL2

(
Zp

k
)
.

3.6 Small Cancellation Theory for Free Products

3.6.1 Van Kampen Diagrams for Presentations

Definition 3.6.1. A disc map / spherical map is a graph, embedded in the plane /
2-sphere such that the bounded complementary regions are discs. A map is proper if
each vertex has degree ≥ 3.

Let D be a proper map and denote by Fi the number of regions bounded by i edges.
The number of vertices is V the number of edges is E, and F =

∑
Fi is the number

of two cells. Obviuosly,

2E =
∑

iFi

3V ≤ 2E
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Thus, we can estimate the Euler characteristik by

6 (V − E + F ) ≤ −2E + 6F =
∑

(6− i)Fi

Since the Euler characteristic of a disc is 1, we have proved the main lemma of small
cancellation theory:

Lemma 3.6.2. There are no proper disc maps all of whose two cells have at least six
edges. q.e.d.

We will use this idea, eventually, to prove that certain maps are injective. However,
the key points are probably more easy to comprehend in a model case. Consider the
presentation

P :=
〈
x1, y1, . . . , xg, yg x1y1x

−1
1 y−1

1 · · · xgygx−1
g y−1

g

〉

and let ΓP be the Cayley-2-complex associated with P . We shall use spherical maps
to prove

Proposition 3.6.3. If g ≥ 2, then ΓP is contractible.

Proof. Being a Cayley complex, ΓP is simpliy connected and of dimension 2. Thus,
by Hurewicz theorem, it suffices to prove that π2(ΓP) is trivial.

Every element of π2(ΓP) can be represented by a van Kampen diagram D, i.e., a
map whose oriented edges are labelled by generators such that each two cell boundary
reads a cyclic permutation of the relation or its inverse. We can assume that spherical
diagrams are reduced, i.e., no edge connects mirror images of two cells.

The key observation is that the relation has the following strange property: In
any reduced diagram, two cells cannoc have long commong segments along their
boundaries. The combinatorics of this particular rules out that a path of two edges is
common to two relator discs. Thus, the diagram D is actually a proper map and every
cell has at least 8 neighbors. Then the Euler characteristic estimate implies that D
is not homeomorphic to a sphere. Hence all spheres in ΓP are 0-homotopic. q.e.d.
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3.6.2 Van Kampen Diagrams for Free Products

Let us consider the free product

G = G1 ∗G2 ∗ · · · ∗Gr

and a set of cyclicly reduced words R closed under taking inverses and cyclic permu-
tation of words. Let N be the normal subgroup of G spanned by R.

Definition 3.6.4. A van Kampen diagram over R is a disc map D whose oriented
edges are labeled by elements of

⊎
i
Gi − {1}

such that for each two cell f one of the following holds:

1. The boundary ∂(f) reads a word that representes 1 and all of whose letters
belong to one of the factors Gi. In this case, we call f an auxiliary cell.

2. The boundary ∂(f) evaluates to an element of R. Here, we say that an edge
path evaluates to a word w, if the word that the edge path ready reduces to w.

Two diagrams whose boundaries evaluate to the same words are equivalent.

Observation 3.6.5. The boundary word of a van Kampen diagram representes the
trivial element in G/N . Conversely, for any element in N , there is a van Kampen
diagram whose boundary represents that element. q.e.d.

Definition 3.6.6. Every interior edge e in a van Kampen diagram has two neighbor-
ing two cells which provide two alternative paths equivalent to e. If these two paths
evaluate to identical words, we say that the edge is unreduced. A diagram without
unreduced edges is reduced.

Lemma 3.6.7. For every van Kampen diagram, there is an equivalent reduced
van Kampen diagram.

Proof. Let e be an unreduced edge. The easy case is that the two neighboring cells
are different. Then we reduce:
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If the unreduced edge arises from a self-idenitfication along the boundary of a two
cells, we can also reduce:

These processes decrease the number of two cells in a diagram and, therefore, must
stop eventually. q.e.d.

Lemma 3.6.8. If at least one of the canonical maps Gi → G/N is not injective,
then there is a reduced diagram without auxiliary cells whose boundary represents a
non-trivial element in one of the factors Gi.

Proof. By hypothesis, there are non-trivial elements in some factors that belong to
N . For these elements, there are van Kampen diagrams. Among those diagrams, let
D be one with a minimal number of two cells. Then D is obviously reduced. Thus,
we have to prove that it does not contain axiliary cells.

To see this, assume f was an auxiliary cell. We will reduce the number of boundary
edges, thereby eliminating this cell eventually.

First let us show that all auxiliary cells are embedded. So suppose not.

If the outer boundary evaluates to 1, so does the inner boundary. Then D′ would be
a smaller witness. If the outer boundary does not evaluate to 1, we delete the interior
and create a new auxiliary cell.
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So from now on, we assume that auxiliary cells are embedded. First consider the
case that xx−1 occurs along the boundary. Then this picture shows how to shrink the
f .

Now we deal with the remaining case:

Since the two cell will eventually disappear, we have a contradiction to the minimality
of D. q.e.d.

We give a slightly simplified version of small cancellation theory. For a full treat-
ment see [LSch77, Chapter V]

Definition 3.6.9. A piece is a word that occurs as an initial segment of two elements
of R.

Lemma 3.6.10. Suppose for every word w ∈ R and every piece b in w, we have

6 (|b|+ 2) ≤ |w|

then all maps Gi → G/N are injective.

Proof. Suppose not and let D be a minimal witness for non-injectivity. In particular,
D is reduced and contains non auxiliary cells. Eliminate all redundant vertices –
vertices of degree two that connect edges labelled by letters from the same factor Gi.
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The van Kampen diagram carries a proper map M whose edges correspond to
edge paths in D. Observe that these edge paths are pieces after chopping of the first
and last edge if necessary. Thus M consists entirely of cells whose boundaries have
length ≥ 6. This is a contradiction to (3.6.2) q.e.d.

Here is the application, we are headed for:

Definition 3.6.11. A group G is SQ-universal if every countable group embedds
into a quotient of G.

Lemma 3.6.12. The group G = G3 ∗G2 with |G3| ≥ 3 and |G2| ≥ 2 is SQ-universal.

Proof. We slightly modify the proof in [LSch77, Theorem 10.3]. Let H =
{h0, h1, h2, . . .} be a countable group and fix two non-trivial distinc element x1, x2 ∈
C3 and the non-trivial element y ∈ C2. Define N to be the normal subgroup in H ∗G
spanned by the relations

hi = (xy)200i+1x2y(xy)
200i+2x2y · · · (xy)200(i+1)x2y.

It is easy to check that pieces for this presentation satisfy the hypothesis of (3.6.10)
q.e.d.

Corollary 3.6.13. SL2(Z) is SQ-universal. q.e.d.

Exercise 3.6.14. Show that SQ-universal groups have uncountably many non-
isomorphic quotients.

Corollary 3.6.15. SL2(Z) has uncountably many non-isomorphic quotients. In par-
ticular, there are uncountably many non-isomorphic groups that are generated by two
elements.

Remark 3.6.16. More is known. See [BBW79] and the references therein.

• SL2(Z) has uncountably many non-isomorphic simple quotients.

• SL2(Z) has uncountably many non-isomorphic solvable quotients.

• SL2(Z) has uncountably many non-isomorphic residually alternating quotients.
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Chapter 4

SLn(Z)

The main series of examples coming from semi-simple linear algebraic groups are the
groups SLn(Z). Moreover by definition, any arithmetic subgroup embeds into SLn(Z)
for n large enough.

Proposition 4.0.17. Every subgroup of finite index in SLn(Z) contains a congruence
subgroup.
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Chapter 5

General Arithmetic Groups

Arithmetic groups are subgroups of linear algebraic groups. So we have to start with
some remarks on these.

Definition 5.0.18. A linear algebraic group defined over a field k is a set of poly-
nomials that cut out a subgroup of SLn(K) for any superfield K ⊇ k. We also call
these things k-groups.

Remark 5.0.19. You might wonder why definition (5.0.18) requires the set of poly-
nomials to define a subgroup for every superfield of k. The reason is that for finite
fields a certain set of polynomials might happen accidentally to define a subgroup of
SLn(k). What we really want, however, is that the polynomials are kind of a group
like object: It should be provable by algebraic manipulations alone that the set of
solutions to the equations is closed with respect to taking quotients. In fact, it suffices
to require that the subgroup in SLn

(
k
)

is a group.

Exercise 5.0.20. Show that the polynomial (a21 + 1)3 = 1 defines a subgroup of
SL2(F2), but it does not define a subgroup of SL2(F4).

Remark 5.0.21. You also might wonder why we require the determinant to be 1
and do not leave the freedom to have this equation, which is a polynomial equation
anyway, among our defining equations or not. Here, the reason is that we want the
coefficients of the inverse of an element g to be polynomials in the coefficients of that
matrix g.

Again, it turns out that this does not result in a loss of generality because GLn(k)
embeds into SLn+1(k).

Remark 5.0.22. This is the more down to earth definition of linear algebraic groups.
In a more scary way, we could define them as group objects in the category of affine
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k-varieties without referring to a particular representation in SL. It turns out that
we do not really loose generality that way since affine algebraic groups always have
faithful linear representations and thus are isomorphic to linear algebraic groups.

Example 5.0.23. Let G be a nilpotent Q-Lie algebra. Then the Campbell-Baker-
Hausdorff formula

g • h := g + h +
1

2
[g, h] +

1

12
([g, [g, h]] + [h, [h, g]]) + · · ·

defines a group law on the set G. Recall that the Campbell-Baker-Hausdorff series is
made to satisfy

eg•h = egeh

for non-commuting g and h.
Since G is nilpotent, this is a polynomial group law. Observe that −g is the inverse

of g with respect to this weird multiplication. Thus, G is an affine algebraic group
with multiplication • whose underlying variety is just an affine space: the vector space
underlying G.

We turn the class of linear algebraic groups into a category by saying what mor-
phisms ought to be.

Definition 5.0.24. Let G and H be two linear algebraic groups defined over k. A
k-homomorphism from G to H is a polynomial map with coefficients taken from k
that defines a group homomorphism GK → HK for any superfield K.

Example 5.0.25. The group SL2() defined over Q is isomorphic to the subgroup of
SL3() defined by 


? ? 0
? ? 0
0 0 1


 = MXM−1

where M ∈ GL3(Q) is fixed. The isomorphism is given by

(
a11 a12

a21 a22

)
7→M−1



a11 a12 0
a21 a22 0
0 0 1


M.

Let us consider k = Q and K = R. In this case, a linear algebraic group defines a
subset of SLn(R) by polynomial equations. Hence the set of solutions is a differentiable
manifolds, at least at the non-critical points, which form a dense subset. However,
since the group acts transitively on its set of points, actually all points look alike and
are non-critical. Hence a linear algebraic group defined over Q is always a Lie group.
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Remark 5.0.26. Although it might not be obvious, the same holds true in general:
A linear algebraic group defined over any field is always a smooth variety whose
irreducible components and connected components coincide and are finite in number.
In fact, this not only true but it is true for the same reason as in the case k = Q

provided the reason is formulated carefully.

Definition 5.0.27. Let G be a linear algebraic group over k. A Borel-subgroup
B ≤ G is a maximal connected solvable subgroup.

The radical Rad(G) of G is defined to be the connected component of the identity
of the intersection of all Borel-subgroups of G:

Rad(G) :=

( ⋂
B∈B

B

)0

.

The group G is called semi-simple if Rad(G) = 1.

Remark 5.0.28. The radical of G is a connected solvable normal subgroup of G.
The quotient G/Rad(G) is semi-simple. Hence the study of linear algebraic groups
naturally centers around the study of connected solvable groups on the one hand and
semi-simple groups on the other hand.

Example 5.0.29. Groups of upper triangular matrices are solvable. The group SLn()
is semi-simple.

Definition 5.0.30. Let G be a linear algebraic group defined over Q. We denote by
GZ the subgroup of GQ that consists of matrices with integer coefficients only.

Definition 5.0.31. Two subgroups of a common supergroup are called
commensurable if their intersection has finite index in both of them.

Exercise 5.0.32. Let ϕ : G → H be a Q-isomorphism of Q-groups. Show that
ϕ
(
GZ

)
and HZ are commensurable.

Exercise 5.0.33. Let ϕ : G → H be a Q-epimorphism of Q-groups. Show that
ϕ
(
GZ

) ∩ HZ has finite index in ϕ
(
GZ

)
.

Exercise 5.0.34. Let ϕ : G → H be a Q-morphism of Q-groups. Show that
ϕ−1

(
HZ

) ∩ GZ has finite index in GZ.

Definition 5.0.35. Let G be a linear algebraic groups over Q. An arithmetic sub-
group of G is a subgroup of GQ commensurable with GZ.

An abstract group is called arithmetic if it is isomorphic to an arithmetic subgroup
of some Q-group.
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Exercise 5.0.36. Let k be a finite extension of Q, let O ⊆ k be the subring of
algebraic integers in k, and let G be a k-group. Prove that GO is an arithmetic
group. Hint: Represent k as a matrix algebra over Q and use this to find a rational
representation of GO.

Example 5.0.37. The group of diagonal 2× 2-matrices with determinant 1
{(

a 0
0 b

)
ab = 1

}

is isomorphic to the multiplicative group. Hence its arithmetic subgroup is {±1}
which is the group with two elements. In particular, the trivial group is arithmetic.

Exercise 5.0.38. Show that any finite group is arithmetic.

Example 5.0.39. The infinite cyclic group is arithmetic. In fact, it is the arithmetic
subgroup of the Q-group (

1 ?
0 1

)
.

Fact 5.0.40 (Mal’cev). Any torsion free finitely generated nilpotent group is arith-
metic.

Fact 5.0.41 (from rational homotopy theory). The mapping class group of any
simply connected finite CW-complex is arithmetic. Conversely, any torsion free arith-
metic group arises this way.

5.1 Preliminary Observations

Arithmetic groups are groups of integer matrices with determinant 1. This already
implies some properties:

Observation 5.1.1. Every finitely generated subgroup of an arithmetic group has a
solvable word problem.

Observation 5.1.2. SLn(Z) is residually finite. q.e.d.

Corollary 5.1.3. Arithmetic subgroups are residually finite. q.e.d.

Exercise 5.1.4. Prove that SLn(Z) is generated by elementary matrices, i.e., ma-
trices that have 1s in the diagonal and precisely one additional 1 in an off-diagonal
slot.
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Exercise 5.1.5 (extra credit). Prove that SLn(Z) is generated by two elements for
n ≥ 5. Remark: The statement holds for n ≥ 2. However, a proof of the more general
statement distinguishes between n even and n odd.

Exercise 5.1.6 (Minkowski (1887)). Show that the kernel of the map

SLn(Z)→ SLn(Z
p)

is torsion free for any odd prime p. Hint: If M is a torsion element of SLn(Z) then
the roots of its characteristic polynomial are roots of unity. This tells you something
about the way it factors over Z.

Corollary 5.1.7. Arithmetic groups are virtually torsion free. q.e.d.
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Mapping Class Groups
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Chapter 6

Out(Fn) and Aut(Fn)

See [Vogt00].

6.1 Topological Representatives for Automor-

phisms

Definition 6.1.1. Let X be a topological space with base point P . A self-homotopy
equivalence is a base point preserving map f : X → X such that there is a base point
preserving homotopy inverse, i.e., a base point preserving map h : X → X such that

f ◦ h ∼ idX rel P

and
h ◦ f ∼ idX rel P.

The mapping class group of (X,P ) is the group

M(X,P ) := {[f ]P f : X → X is a homotopy equivalence rel. P} .

This is the group of self-homotopy equivalences modulo homotopy relative to the base
point.

Observation 6.1.2. The mappging class group is a group. q.e.d.

Observation 6.1.3. The map

ν : M(X,P ) → Aut(π1(X,P ))

[f ] 7→ α[f ] : [γ] 7→ [f ◦ γ]
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is a group homomorphism.

If X is the rose Rn on n petals, this homomorphism has an inverse given as
follows: An automorphism of π1(Rn, P ) assigns to each petal a loop in Rn. We can
think of this loop as a map from its petal to Rn. Since the base point is preserved,
the maps we obtained for the individual petals agree at the base point. This way, we
defined a map Rn → Rn. q.e.d.

Corollary 6.1.4. Aut(Fn) = M(Rn, P ). q.e.d.

6.1.1 Stallings Folds

Let Γ and ∆ be two graphs. A fold is a map

f~e,~e• : Γ→ ∆

that identifies two oriented edges ~e and ~e• that have the same initial vertex. A
fold is called singular if the two edges also share their terminal vertices, it is called
non-singular otherwise. Here are some examples:

f−→ non-singular

f−→ singular

f−→ non-singular
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f−→ singular

Observation 6.1.5. A non-singular fold is a homotopy equivalence. A singular fold
induces a non-injective map in homotopy. Its kernel is the normal subgroup generated
by the loop ~eop(~e•). q.e.d.

Observation 6.1.6. Let ϕ : Γ→ ∆ be a graph morphism. If ϕ is not locally injective,
then there is a vertex v from which two edges ~e and ~e• issue that are identified by the
map ϕ. Thus, ϕ factors through the fold f~e,~e•:

ϕ = ϕ′f~e,~e• . q.e.d.

Proposition 6.1.7 (Stallings). Let Γ be a finite graph and let ϕ : Γ → ∆ be a
graph morphism. Then there is a finite sequence of folds

Γ = Γ0
f1−→ Γ1

f2−→ Γ2
f3−→ · · · fr−→ Γr

and a graph morphism
ψ : Γr → ∆

such that
ϕ = ψ ◦ fr ◦ fr−1 ◦ · · · ◦ f1

and such that ψ is locally injective.

Proof. Since every fold decreases the number of edges, every sequence of folds must
terminate. So you try to write ϕ = ϕ1f1. If this succeds, you try the same on ϕ1.
Continue until you do not find a way of factoring through a fold. We have observed
in (6.1.6) that in this case the map is locally injective. q.e.d.

Let α : Fn → Fn be an automorphism. We realize α as a graph morphism:
Subdivide Rn such that petal li has as many segments as needed to write the word
representing α(xi). Call the subdivided rose Rn. These words then define a map

ϕ : Rn → Rn.

Let us factor out a maximal sequence of folds:

ϕ = ψ ◦ fr ◦ fr−1 ◦ · · · ◦ f1

such that ψ is locally injective. By (6.1.5), all the folds are non-singular, for otherwise
we would not induce an isomorphism of fundamental groups.
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Observation 6.1.8. A locally injective map takes non-backtraking paths to non-
backtracking paths. Thus, since ϕ is onto in π1, the map ψ : Γr → Rn is an iso-
morphism of graphs: Look at the vertex in Rn and consider which paths in Γr give
rise to the simple loops based at the vertex. It is immediate that for each such simple
loop in Rn there has to be a corresponding loop in Γr based at its base point. Then,
however, local injectivity rules out the existence of any other edges. q.e.d.

Corollary 6.1.9. Any assignment xi 7→ wi of words to generators determines a ho-
momorphism Fn → Fn. This homomorphism is an automorphism if and only if the
topological representative, realized as a graph morphism ϕ : Rn → Rn, decomposes as

ϕ = ψ ◦ fr ◦ fr−1 ◦ · · · ◦ f1

such that all folds are non-singular and ψ : Γn → Rn is an isomorphism of graphs.
This criterion can be checked algorithmically. q.e.d.

Corollary 6.1.10. Every generating set of Fn that consists of precisely n elements
is a free generating set.

Proof. We only needed surjectivity to argue that ψ is an isomorphism of graphs. Since
a non-singular fold will ensure non-surjectivity (check this in homology, if you consider
it non-obvious), we infer from surjectivity alone that all folds are non-singular and
the final locally injective graphmorphism is an isomorphism. Thus, every surjection
Fn →→ Fn is an isomorphism. Compare also Grushko’s Theorem (2.4.34), which is
also proved using Stallings folds. q.e.d.

Example 6.1.11. Let us consider F3 = 〈b,g, r〉.
1. The assignment

b 7→ b

g 7→ brgr−1

r 7→ rgr−1

has the following topological representative and crucial stages in the folding
sequence:
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The non-singular fold at the end detects a failure of injectivity. The final picture
also indicates a failure of surjectivity. Indeed, we can read off that the image of
the homomorphism is the subgroup generated by b and rgr−1.

2. The assignment

b 7→ gb

g 7→ rgb

r 7→ g−1bg

yields:

and we see that surjectivity fails.

3. The assignment

b 7→ bbrb−1g

g 7→ brb−1g

r 7→ brb−1

has the following topological representative and crucial stages in the folding
sequence:
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In this case, we actually have an automorphism.

6.1.2 Bounded Cancellation and the Fixed Subgroup

Definition 6.1.12. Let ϕ : F → F ′ a homorphism of free groups. A cancellation
bound for ϕ is a number N such that, for any two elements w, u ∈ F with |wu| =
|w|+ |u| , we have

|ϕ(wu)| ≥ |ϕ(w)|+ |ϕ(u)| − 2N.

(Note that letters always cancel in pairs.)

More generally, a graph morphism ϕ : Γ → ∆ has a cancellation bound N if, for
any two reduced paths p and q in Γ whose concatenation is also reduced, we have the
inequality

|ϕ∗(pq)| ≥ |ϕ∗(p)|+ |ϕ∗(q)| − 2N

of path-lengths. Here |ϕ∗(p)| is the reduced path homotopic relative to endpoints to
ϕ(p).

Theorem 6.1.13. If ϕ : F → F ′ is an injective homomorphism of finitely generated
free groups, then ϕ has a cancellation bound.

Observation 6.1.14. If ϕ : Γ→ ∆ is locally injective, then it has cancellation bound
0.

Lemma 6.1.15. Let N1 be a cancellation bound for ϕ1 : Γ0 → Γ1, and let N2 be a
cancellation bound for ϕ2 : Γ1 → Γ2. Then N1+N2 is a cancellation bound for ϕ2◦ϕ1.

Proof. Let p and q be reduced paths in Γ0 whose concatenation is also reduced. Since
N1 is a cancellation bound for ϕ1, there are reduced paths p1, q1 and r1 in Γ1 such
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that:

ϕ1∗(p) = p1r1

ϕ1∗(q) = rrev
1 q1

ϕ1∗(pq) = p1q1

|r1| ≤ N.

Now p1 and q1 are reduced and have a reduce concatenation; and since N2 is a
cancellation bound for ϕ2, we conclude that

|ϕ2 ◦ ϕ1∗(pq)| = |ϕ2∗(p1q1)|
≥ |ϕ2∗(p1)|+ |ϕ2∗(q1)| − 2N2

≥ |ϕ2 ◦ ϕ1∗(p)| −N1 + |ϕ2 ◦ ϕ1∗(q)| −N1 − 2N2

which is what was claimed. q.e.d.

Lemma 6.1.16. Every non-singular fold f : Γ→ ∆ has cancellation bound 1.

Proof. Let ~e and ~e• both start at the vertex v, but suppose these edges have different
end points. We think of these two edges as spanning a “V” (this might not be true,
as one of the edges might be a loop; but in this argument it does not matter.) The
only way to obtain a non-reduced path in ∆ from a reduced path in Γ is by traversing
the “V”. However, if p, q and pq are reduced paths in Γ at most one traversal of the
“V” can take place at the point where p and q are concatenated. q.e.d.

Proof of Theorem (6.1.13). We observed already that an injective homomorphism
gives rise to a folding sequence without singular folds. Since the last map in the folding
sequence is locally injective, it does has cancellation bound 0. q.e.d.

Definition 6.1.17. Let ϕ : G → G be an injective homomorphism. The fixed
subgroup of ϕ is

!!!...!!!(FIXME)

6.2 A Generating Set for Aut(Fn)

Theorem 6.2.1 (Nielsen). The following automorphisms of Fn generate Aut(Fn):

1. Transposition of two free generators.

2. Inversion of a free generator.

3. The autmorphisms αi,j defined as follows:

xk 7→
{
xk if k 6= i

xixj if k = i.
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6.2.1 Proof of Nielsen’s Theorem

The idea is to use Stallings folds. So let ϕ : Rn → Rn be a graph morphism repre-
senting the automorphism α : Fn → Fn. We decompose

ϕ = ψ ◦ fr ◦ · · · ◦ f1

with ψ locally injective and f : Γi−1 → Γi a fold. We know that ψ is actually an
isomorphism of graphs. Thus this gives a permutation of the genertators, some of
which are possibly inverted. We will want to recognize the folds as being related to
the generators αi,j. However, this is not straight forward since there is no canonical
identification of Fn with the fundamental groups of the intermediate graphs Γi.

The way to fix this, is to consider spanning trees in these graphs. Since permuting
and inverting generators is covered by the generating set, we will need a data structure
that just keeps track of an unodered set of free generators up to inversion (we could
call a two element subset {g, g−1} ⊂ Fn an unsigned element).

Definition 6.2.2. So let Γ be a graph together with

1. a labeling, i.e., a graph morphism ρ : Γ → Rn (one should think of this as an
assignment of free generators or their inverses to the oriented edges such that
swapping the orientation of an edge corresponds to inverting the generator),

2. a base vertex v0,

3. and a spanning tree T .

We will associate to this the following set of unsigned elements in Fn: For each edge
e not in T , there is a reduced cyclic edge path, unique up to orientation, starting at
v0 traveling along a geodesic in T going through e and heading back to v0 within T .
Collect all these elements. Let S(Γ, ρ, v0, T ) denote this set.

We have to study how this set changes with respect to the following transformations:

1. Change of the spanning tree.

2. Folding the graph.

Let us do change of spanning trees first. To simplify matters, we will want to change
spanning trees only a little bit, say replacing one edge at a time.

Definition 6.2.3. Let Γ be a graph. The complex of forests is the simplicial complex
F(Γ) whose vertices are the non-loop edges in Γ and whose simplices are the sub-
forests in Γ. Note that all maximal simplices in F(Γ) have the same dimension. Such
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complexes are called chamber complexes—the chambers are the maximal simplices.
In the case of F(Γ) the chambers are precisely the spanning trees.

Two chambers are called adjacent if they share a codimension-1 face. A gallery
is a sequence of chambers such that neighboring terms in the sequence are adjacent
chambers.

Lemma 6.2.4. F(Γ) is gallery connected, i.e., any two chambers are joined by a
gallery.

Proof. Let T and T ′ two spanning trees, and let e be an edge of T ′ that does not
occur in T . Adding this edge to T will create a circle. So we are to remove an edge
from this circle. Note that any edge will do. At least one of the edges along this circle
does not belong to T ′ since this tree does not contain circles. So we can exchange an
edge that is in T but not in T ′ by the edge e that is in T ′ but not in T and form a new
spanning tree. However, this tree differs from T ′ in fewer places. So, we keep doing
this until we have removed all differences (which are only finite in number). q.e.d.

Proposition 6.2.5. Let T and T ′ be two adjacent spanning trees in the labelled and
basepointed graph Γ. Then ST := S(Γ, ρ, v0, T ) and ST ′ := S(Γ, ρ, v0, T

′) are related
as follows:

There is an element g ∈ ST ∩ ST ′, and for every other element h ∈ ST ′
there is an element h′ ∈ ST such that one of the following holds:

h = h′

h = h′g

h = h′g−1

h = gh′

h = g−1h′

Note that we can realize a transition of this type as a product of Nielsen generators.

Proof. !!! PICTURE !!! q.e.d.

The very same picture also yields our first result about how folds change the gener-
ating set:

Proposition 6.2.6. Let f : Γ → ∆ be a fold compatible with the labeling ρ that
identifies an edge in the spanning tree T with a loop. Then ∆ has a spanning tree T ′

induced by T and a labeling τ induced by the labeling ρ. and SΓ := S(Γ, ρ, v0, T ) is
related to S∆ := S(∆, τ, v0, T

′) in the same way as described in (6.2.5).
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Proof. !!! PICTURE !!! q.e.d.

Observation 6.2.7. A fold of two edges in the spanning tree does not affect
S(Γ, ρ, v0, T ). q.e.d.

We put everything together. If a fold identifies two edges none of which is a loop,
then we can change the spanning tree to contain both of these edges. The change of
the spanning tree is taken care of by (6.2.5). If one of the edges is a loop, we can at
least put the other edge in the spanning tree (it cannot be a loop itself, since we do
not have singular folds). Afterwards, we are done by (6.2.6). Therefore, along our
chain of folds, we can use Nielsen generators to realize each fold.

6.2.2 The Homotopytype of the Complex of Forests

Theorem 6.2.8. Let Γ be a finite graph with m+2 vertices. Then the complex F(Γ)
is homotopy equivalent to a wedge of m-spheres.

Proof. Induct on the number of edges. Starting point is the case of a bridge edge
which serves as a cone point. The Induction step is that removing a non-bride gives
you a complex of the same type with fewer edges which is m-spherical by induction.
Now, the relative link of the vertex corresponding to the removed edge is a the forest
complex for the graph obtained by collapsing this edge. This is (m− 1)-spherical.

q.e.d.

Exercise 6.2.9. Find a recursive way to compute the number of spanning trees in a
graph Γ.

Exercise 6.2.10. Let M be a finite set. The partition complex X is the flag complex
whose vertices are non-trivial partitions of M into two disjoint subsets (nontrivial
means, none of the subsets is empty). There is an edge between {S0, T0} and {S1, T1}
if these two partitions are nested, i.e, one of the four possible inclusions hold:

S0 ( S1, T0 ( S1, S0 ( T1, T0 ( T1.

Prove that X is a wedge of spheres.

6.3 Outer Space and its Relatives

See: [CuVo86], [BrVo01], [CuMo87], [HaVo96], [Skor??].
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6.3.1 Categories Based on Graphs

We already used a category of graphs above when we used Stallings folds. In that
case, the morphisms were not allowed to crush edges. We shall have a need for at least
two other categories based on the same class of objects (graphs) but with different
sets of morphisms. But first, let us review a little bit about graphs.

We call a graph Γ trivalent if every vertex has degree at least 3. A graph Γ is
called n-connected if simultaneously removing strictly fewer than n edges will not
disconnect Γ. (Removing an edge does not change the vertex set, we remove the
interior only.)

Exercise 6.3.1. Let Γ be n-connected, and let v and w be two vertices in Γ. Show
that there are n edge-disjoint paths from v to w.

A 2-connected graph is called a core graph.

Exercise 6.3.2. Show that a graph is a core graph if and only if it is a union of
reduced loops. (Recall that an edge path is reduced if it does not contain a subpath
of the form ~e→− op(~e).

Corollary 6.3.3. Every connected graph Γ has a core, i.e., a maximal core graph,
which is unique; in fact, it is the union of all reduced closed edge paths in Γ. q.e.d.

Definition 6.3.4. Two edges e0 and e1 in a core graph Γ are equivalent if one of the
following equivalent conditions is satisfied:

1. Either, removing both edges simultaneously disconnects Γ; or e0 = e1.

2. Every reduced loop that passes through e0 also passes through e1.

From the first wording, it is apparent that equivalence is a reflexive and symmetric
relation. From the second formulation, we infer that equivalence is transitive.

Exercise 6.3.5. Show that the conditions (1) and (2) are equivalent.

Based on the class of graphs, there is the category of collapses whose objects are
graphs and whose morphisms are given by collapsing subforests: A collaps c : Γ0 → Γ1

is an isotopy class of a a map that sends edges either homeomorphically to edges or
crushes them to points such that the preimage of the 0-skeleton of Γ1 is a subforest
of Γ0.

Observation 6.3.6. Every collaps is a homotopy equivalence.

Observation 6.3.7. Vertex valency and graph connectivity can never decrease during
a collaps. In particular any collaps of a trivalent core graph is a trivalent core graph.
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6.3.2 Marked Graphs, Labelled Graphs, and Metric Trees

Exercise 6.3.8. Let Γ0 and Γ1 be two finite graphs with base points P0 and P1.
Prove that every isomorphism

φ : π1(Γ0, P0)→ π1(Γ1, P1)

is induced by a base point preserving homotopy equivalence f : Γ0 → Γ1. Moreover,
show that this homotopy equivalence f is unique up to homotopy trough base point
preserving maps.

Exercise 6.3.9. Show that a map f : Γ0 → Γ1 between graphs is a homotopy
equivalence if and only if it induces an isomorphism of fundamental groups.

Exercise 6.3.10. Let f : Γ→ Γ be a self-homotopy equivalence of the base pointed
finite graph Γ. Show that f is homotopic (not relative to the base point!) to the
identity if and only if f induces an inner automorphism of π1(Γ).

Let R be the rose with n loops.

Definition 6.3.11. A metric graph is a finite graph Γ together with an assignment
of strictly positive real numbers (lengths) to its unoriented edges. The sum of of all
these lengths is the volume of Γ.

A marking of a Γ is a homotopy equivalence

µ : R→ Γ.

A labelling of Γ is a homotopy equivalence

λ : Γ→ Γ.

Markings and labellings of base pointed graphs are supposed to preserve base points.
Two markings µ0 : R → Γ0 and µ1 : R → Γ1 of (metric) graphs are equivalent if

there is an isomorphism (isometry) ζ : Γ0 → Γ1 such that the diagram

Γ0
ζ // Γ1

R

µ0

``@@@@@@@ µ1

>>~~~~~~~

commutes up to homotopy (relative to base points if needed).
Similarly, two labellings λ0 : Γ0 → R and λ1 : Γ1 → R are equivalent, if there is

an isomorphism (isometry) ζ : Γ0 → Γ1 such that the diagram
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Γ0
ζ //

λ0 ÃÃ@
@@

@@
@@

Γ1

λ1~~~~
~~

~~
~

R

commutes up to homotopy (again base point preserving if there are base points in-
volved).

Observation 6.3.12. There is a bijective correspondence of markings and labellings
given by passage to a homotopy inverse. This correspondence is compatible with equiv-
alence.

Observation 6.3.13. The group Aut(Fn), regarded as the mapping class group of R
acts by composition on the set of marked graphs as well as on the set of labelled graphs.
Both actions are compatible with equivalence. Markings and labellings, however, do
not form isomorphic Aut(Fn)-sets: one of them is a right Aut(Fn)-set and the other
one is a left-Aut(Fn) set, and switching from one side to the other involves inverting
the group element.

6.3.3 Metric Trees and R-Trees

Definition 6.3.14. A CAT(−∞)-space is called an R-tree T . This is a geodesic
metric space wherein every geodesic triangle degenerates to a tripod. Let us expand
this: For any two points x, y ∈ T , put

[x, y] := {z ∈ T d(x, y) = d(x, z) + d(z, y)} .

Then, T is an R-tree if the following conditions hold:

1. For all pairs (x, y), the set [x, y] is isometric to a segment in R.

2. Whenever [x, y] ∩ [y, z] = {y} , we have [x, z] = [x, y] ∪ [y, z] .

3. For any three point x, y, and z, there is a point c such that

[x, y] ∩ [x, z] = [x, c] .

The link Lk(x) of a x is the set of infinitesimal geodesics issuing from x. More
precisely, call two geodesic segments starting at x equivalent if their intersection
consists of more that {x}. Note that in this case, the intersection contains a whole
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non-trivial geodesic segment. A point in Lk(x) is an equivalence class of geodesic
segments starting at x. Note that we have a canonical map:

T − {x} → Lk(x)

y 7→ [x, y]

A point is called a vertex if its link does not contain precisely two elements. A vertex
is called terminal, if its link is empty or contains one element.

Exercise 6.3.15. True or false: The elements of the link Lk(x) correspond bijectively
to the components of T − {x}.

Definition 6.3.16. Let G be a group that acts on T by isometries. The action is
called minimal if T does not contain a proper G-invariant subtree. The action is
called reducible if one of the following holds:

1. Every element of G is elliptic.

2. T has an end that is stabilized by all of G.

3. The action of G on the space of ends of T has an invariant set consisting of
precisely two ends. In this case, the action is hyperbolic.

Otherwise, the action is called irreducible. An action is semi-simple if it is trivial,
hypercolic, or irreducible.

The translation length

τ : G → R+

g 7→ min
x∈T

d(x, gx)

of a given action is a length function because of the triangle inequality.

6.3.4 The Definition of Auter Space and Outer Space

Outer space, X := Xn is a space acted upon by Out(Fn). Its construction is based
on metric graphs with a marking. Adding a base point to the graph, we will obtain
a construction for auter space, Y := Yn, upon which the group Aut(Fn) acts. Let us
describe the construction of X .

The set X := Xn of all equivalence classes of Rn-marked small volume 1 graphs
(with base point) is outer space (auter space). We have to put a topology on this set.
The idea is, of course, that changing the length of edges slightly should not move you
far in X . However, we have to discuss the case where the length of an edge goes to 0
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along a path: if this happens to a loop we run to infinity; if it happens to a non-loop,
we move towards the collaps.

Before we embark on the topology of X , let us give an alternative description of
the underlying set. Let Γ be a small metric graph of volume 1, and let µ : R → Γ
be a marking. The universal cover of Γ is a metric tree T . The marking induces an
action of Fn = π1(R) on T by isometries.

Definition 6.3.17. A length function ` : G→ R+ is a function satisfying

`(gh) ≤ `(g) + `(h) .

6.4 Proofs of Contractibility

6.4.1 Proof by Continous Folding (the Trees Proof)

This is based on the work of M. Steiner and D. Skora.

Definition 6.4.1. A map ϕ : Γ→ ∆ between metric graphs is a piecewise isometry
if there is a decomposition of Γ into line segments such that f is an isometry on each
segment.

Let Γ be a graph and ∆ be a metric graph. Every graph morphism f : Γ → ∆
is homotopic relative to vertices to a piecewise isometry ϕ for some suitably chosen
metric on Γ provided f . (Recall that graph morphisms do not crush edges.) The
piecewise isometry ϕ is called tight if it minimizes the length of each edge in Γ,
i.e., every piecewise isometry ψ that is homotopic to ϕ relative to vertices does not
allow for smaller edge lengths assigned to Γ. (Note that we can consider each edge
separately since we are dealing with homotopies that leave all vertices fixed.)

Observation 6.4.2. If a piecewise isometry of metric graphs is not locally injective,
there is a continuous metric fold.

6.4.2 Proof by Sophisticated Low-Dimensional Topology
(the Spheres Proof)

This is based on the work of A. Hatcher and K. Vogtmann.
Note that π1(S1 × S2) is infinte cyclic. Let M be a connected sum of n copies of

S1 × S2. Then Fn = π1(M). Note that M consists of two n-handlebodies that are
glued via the identity along their boundary surfaces. It is, therefore, easy to draw
half of M .
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Definition 6.4.3. A sphere set is a finite set of disjoint, embedded spheres in M .
Such a set is simple if every complementary region is simply connected. Two sphere
sets are compatible if their union is a sphere set.

A sphere system is a sphere set wherein no two spheres are isotopic and no sphere
is trivial.

A Dehn twist in M along a sphere S with a specified axis a diffeomorphism that is
the identity outside a tubular neighborhood S× [0, 1] of S and that acts as a rotation
by 2πt about the given axis in the slice S × {t}. Dehn twists change sphere systems
only up to homotopy.

Fact 6.4.4 (Laudenbach). Homotopic sphere systems are isotopic.

Corollary 6.4.5. Dehn twists act trivially on Y .

Fact 6.4.6 (Laudenbachs Dehn-Nielsen Theorem). The group Out(Fn) is iso-
morphic to

π0(Diff◦(M))
/
subgroup generated by Dehn twists

and the isomorphism is given by the natural action of Diff◦(M) = Fn on π1(M). In
particular, there is a natural action of Out(Fn) on Y .

Fix a simple sphere system S = {S1, . . . , Ss}.
A. Hatcher figured out that two sphere systems can be isotoped as to minimize

their intersections.

Definition 6.4.7. A sphere system S is in normal form with respect to S, if for every
sphere S in S, one of the following holds:

1. The sphere S is contained in S.

2. The sphere S ∪ S is a sphere system.

3. The sphere S has non-empty, transverse intersection with S and, for each com-
ponent W of M − S the following two conditions are both satisfied:

(a) Each component of S∩W has at most one boundary circle in each boundary
sphere of W .

(b) No component of S ∩W is isotopic in W to a disk in the boundary of W .

Two sphere systems S0 and S1 in normal form are equivalent if there is a homotopy
from S0 to S1 such that:
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1. The common spheres of S0 and S stay fixed pointwise during the homotopy.

2. The homotopy is transverse to S on the other spheres at all times.

3. The circles in St ∩ S vary only by an isotopy inside S. In particular, there is
a well defined notion of innermost circles: A circle component C in S0 ∩ S is
innermost if it bounds a disc D in S such that D ∩ S0 = C.

Fact 6.4.8 (Hatcher). Every sphere system can be isotoped as to be in normal form
with respect to S; and any two isotopic sphere systems in normal form are equivalent.

6.4.3 A Continuous Contracting Flow

Let X be the simplicial complex whose m-simplices are isotopy classes of (m+ 1)-
sphere systems. Note that these systems are not required to be simple. Let Y be the
simplicial complex whose vertices are isotopy classes of simple sphere systems and
wherein a set of those systems forms a simplex if it is a chain (totally ordered) with
respect to inclusion.

Proposition 6.4.9. The simplicial closure of outer space is isomorphic to X and the
spine of outer space is isomorphic to Y .

Proof. !!! fix me !!! q.e.d.

Construction 6.4.10 (Innermost Surgery). Let S be a sphere set that intersects
S transversally except for common spheres. Let C be an innermost circle component
in S ∩ S, and let S ∈ S be the sphere containing C. Consider a parallel copy of S
that intersects S in an even smaller circle and perform surgery along the disc D, i.e.,
cut this copy along the disc and glue in discs to close the holes that are parallel to D.
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This way, we obtain to spheres S+ and S−. Note that S ∪ S+ ∪ S− − S is a sphere
set, compatible with S, that intersects S in fewer circle components.

Obviously, we can surger simultaneously along severyl disjoint discs that are at-
tached to the sphere S from the same side.

Observation 6.4.11. Performing surgery in S has the following effects on the com-
plementary regions in M−S: The component that contains D is cut along D into two
pieces. The component not containing D is changed by attaching a 2-handle. Thus, if
the complementary components were simply connected, they stay that way. In other
words: If S is simple, than innermost surgery yields simple sphere sets. q.e.d.

A point in X is a formal convex combination of spheres that form a sphere system.
The coefficient of a sphere can be thought of as a thickness assigned to the sphere.
Spheres of width 0 are deleted from the picture. We will treat isotopy classes of sphere
systems like sphere sets. Weights of parallel spheres are added up to give the weight
of their isotopy class. We want to employ a continuous version of surgery.

Construction 6.4.12 (Continuous Parallel Innermost Surgery). Let S =
S1 ∪ · · · ∪ Sr with weights t1, . . . , tr satisfying

∑
ti = 1. Thicken those spheres Si a

little bit that are not contained in the fixed system S. We think of the thickenned
spheres as embedded annuli Si × [0, ti]. Let S the sphere set obtained from S by
replacing Si by Si × {0} ∪ Si × {ti} . In S, the weight ti is distributed evenly to both
of these spheres. (Here, we use the convention that weights of parallel spheres add
up.)

For each sphere S in the fixed simple system S, the intersection S ∩ S consists of
disjoint circles, at most one for each sphere S ∈ S. Let TS be the metric tree whose
vertices correspond to complementary regions in S − S and whose edges correspond
to those spheres in S that intersect S. The lenght of an an edge in TS is given be the
weight of its corresponding sphere in S.

We now perform innermost surgery simultaneously on all terminal points in the
trees TS. We are doing continuous surgery and the weight is transfered to from the
surgered spheres to their successors so that the terminal edges in the trees TS shrink
with unit speed.

This defines a continuous flow on X .

Observation 6.4.13. The endpoint of each flow-line is a sphere system all of whose
spheres are disjoint from the fixed system S. Thus, if S is maximal, all spheres will
be parallel to spheres in S at the end of the flow. In this case, the flow-lines all end
in the simplex defined by S, and the flow visibly defines a contraction. q.e.d.

Observation 6.4.14. It follows from (6.4.11) that the flow restricts to a flow on
X ⊂ X . It follows that Outer Space is contractible. q.e.d.
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6.4.4 A Discrete Version of the Argument and an Exponen-
tial Isoperimetric Inequality for Out(Fn)

Sphere sets and isotopy classes of sphere systems are partially ordered by inclusion.
Let X and Y be the geometric realizations of these posets. There is a natural pro-
jection X → Y that turns a sphere set S into a sphere system (up to isotopy) by
deleting all trivial spheres in S and, aditionally, deleting all but one sphere in each
isotopy class of S.

We will construct a contraction of the spine of Outer Space. To this end, we
use non-continuous surgery, i.e., we do not talk about slowly transfering the weight;
instead surgered spheres are removed at once and replaced by their successors. Thus,
we are hopping from one vertex to a neighbor in X. However, we will retain the
notion that a sphere has an inside and an outside, and that surgery cannot be done
on both sides at the same time.

Construction 6.4.15 (Parallel Innermost Surgery). A sphere set S is
S-oriented if S intersects no sphere of S in a single circle, and all innermost
surgery discs for the sphere S ∈ S, lie on the same side of S. (Note that because of
the first condition, there is no ambiguity as to what the surgery discs are.)

Parallel innermost surgery is the operation of performing surgery along all inner-
most discs in a S-oriented sphere set at once.

Lemma 6.4.16. For any sphere set S, let S be a sphere system obtained by sticking
in parallel copies for all spheres in S not contained in S. Then S is S-oriented, and
so is any sphere set obtain from it by a finite sequence of parallel innermost surgeries.

Proof. Let ΓS be the finite graph whose vertices are the components of S − S] and
whose edges are the circle components of S ∩ S. Note that ΓS is a finite union of
trees, one for each sphere in S that intersects S transversally. Observe, that ΓS is the
barycentric subdivision of ΓS. Orient twin spheres on opposite ways. This induces
an orientation on ΓS. The innermost discs correspond to extremal edges in ΓS. The
corresponding edges are all oriented the same way (say outward), and the surgery
discs are all on the same side. Thus, S is S-oriented.

Performing the surgery prunes the extremal edges from the graph. Now all ex-
tremal edges are oriented inward, and the new surgery discs are again all on the same
side of their discs. This continues. The orientations of extremal edges swap sign every
turn, but they remain in sync. q.e.d.

Now we can give a continuous version of surgery. A point in X is a convex
combination of spheres in a sphere system. We think of the weights as thicknesses of
the sphere. This is our interpretation for the two parallel copies of the sphere used
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in parallel innermost surgery. Instead of combinatorially hopping from one sphere
system to the next, observe that all the spheres are compatible. Thus, we can think
of surgery as decreasing the weight for a sphere and icreasing correspondingly the
weights of its surgery children.

Definition 6.4.17. For a simple sphere system S in normal form, we call the
sequence S = S0,S1,S2, . . . obtained by iterated parallel innermost surgery the
canonical path. Since the number of components in Si∩S decreases in each step, the
canonical path is finite and terminates with a sphere set Sr compatible with S. We
extend the canonical path by two steps: Sr,Sr ∪ S,S. The combing path of S is the
projection of the extended canonical path into Y .

Lemma 6.4.18. Equivalent sphere systems S0 and S1 have identical combing paths.

Proof. The homotopy proving the equivalence is an isotopy in St ∩ S. Moreover, St
moves inside components of M − S. Therefore, the surgeries correspond bijectively.

q.e.d.

Lemma 6.4.19. Let S and S ′ be two simple sphere systems, and suppose S ⊂ S ′.
Then the combing paths for S and S ′ are close.

Proof. It suffices to consider the case where S is obtained from S ′ by deleting one
sphere. q.e.d.

Let z be the complex whose m-simplices are (m+ 1)-systems of spheres. Let z′ be
the union of all those simplices in z that correspond to simple sphere systems. You
should think of a point in z as a sphere set where the spheres have a thickness and
these weights add up to 1.

Proposition 6.4.20. z is contractible. The contraction induces a contraction of z′.

Proof. Now the edges in the trees have a thickness.You shrink them at unit speed
from the terminal points. A sphere whose thickness becomes 0 is surged.

Finally, this contraction restricts to z′ because the 1-connectedness of the comple-
ment is preserved in the surgery process. q.e.d.

Consider a simplex S1 ⊂ S2 ⊂ · · · ⊂ Sm in X. Let us fix a sphere set S and let
S be a sphere set that contains two parallel copies for each sphere in S each assigned
an orientation pointing away from the other sphere. We assume S to be normal with
respect to Sm. This implies that S is normal with respect to all Sj.
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Construction 6.4.21. Put ∆1 := S1 and, for j > 1, put ∆j := Sj − Sj−1. Note
that the ∆j are disjoint. For each multi-index I := (i1, . . . , im), let SI be the sphere
set obtained from S by doing the first ij steps of parallel innermost surgery in the
trees TS with S ∈ ∆j. Since the Sj are disjoint, the order of these surgeries does not
matter.

Observation 6.4.22. If I = (i1, . . . , im) has all even or all odd entries, then the
spheres in SI corresponding to innermost discs are all oriented the same way: outward
if the entries are even, inward if the entries are odd. q.e.d.

Observation 6.4.23. Let I = (i1, . . . , im) be an all-odd multi-index. Then for any
J = (k1, . . . , km) ∈ {0, 1}m, the vertices

S(i1,i2,i3...,im) , S(i1+k1,i2,i3,...,im) , S(i1+k1,i2+k2,i3,...,im) , . . . , S(i1+k1,i2+k2,i3+k3,...,im+km)

form a simplex in Y . The reason is that these successive surgeries use disjoint surgery
discs all on the same side of SI . q.e.d.

We can push this a little:

Lemma 6.4.24. Let I = (i1, . . . , im) be an all-odd multi-index. Then for any J =
(k1, . . . , km) ∈ {−1, 0, 1}m, the vertices

S(i1,i2,i3...,im) , S(i1+k1,i2,i3,...,im) , S(i1+k1,i2+k2,i3,...,im) , . . . , S(i1+k1,i2+k2,i3+k3,...,im+km)

form a simplex in Y .

Proof. The new feature are the negative entries of J = (k1, . . . , km). Here, we are
asked to undo a surgery along a disc. Note that this is performing a surgery along an
arc transverse to the innermost disc that was surgered away. Yet again, the lemma
hinges upon the observation that we can perform all these operations independently
in any order always obtaining compatible sphere sets becauce all involved surgery
arcs and discs are disjoint and on the same side of S. q.e.d.

Corollary 6.4.25. Let the positive orthant in Rm be triangulated so that the integer
lattice points are the vertices and a !!! fix me !!!. Then, the map I 7→ SI induces a
simplicial map from the triangulation of the positive orthant to Y . q.e.d.

Observation 6.4.26. The vertices (i1, . . . , im) with

im ≤ im−1 ≤ · · · ≤ i2 ≤ i1 ≤ C

form a big simplex σC of dimension m+ 1 whose vertices are

(0, 0, 0, . . . , 0, 0) , (C, 0, 0, . . . , 0, 0) , (C,C, 0, . . . , 0, 0) , . . . (C,C, . . . , C, 0) , (C,C, . . . , C, C) .
q.e.d.
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Let Ci be the number of surgery steps in the canonical path from S to S i. Then

C1 ≤ C2 ≤ · · · ≤ Cm.

Observation 6.4.27. All vertices S(C1,...,Cj ,ij+1,...,im), are contained in the star of Sj.

Put C := C1.

Construction 6.4.28. Observe that the path

S(C,C,...,C,C) , S(C+1,C+1,...,C+1,C+1) , . . . , S(Cm,Cm,...,Cm,Cm) ,Sm
is an edge path.

All the vertices with indices ≥ Cm−1 are in the star of Sm−1. So we cone that off.
Inductively, we cone off more and more. Eventually, we constructed a big canonical

simplex T with vertices S,S1, . . . ,Sm.

Corollary 6.4.29. The spine of outer space is contractible. q.e.d.

Lemma 6.4.30. Let S ⊆ S ′ be two simple sphere systems adjacent in Y , and let C
and C ′ be the lengths of the canonical paths from S to S and S ′. Prove that

C ≤ C ′ ≤ 2nC + n.

Proof. The numbers 2C and 2C ′ are the maximum diameters of the trees TS where
the sphere S ′ ranges over S for C and over S ′ for C ′. Thus, 2C and 2C ′ measure the
length of a longest nested chain of circles in S∩S ′ for S ′ ∈ S and S ′ ∈ S ′, respectively.

So fix S ′ ∈ S ′ and let C1, C2, . . . , C2C′ be a nested chain of circles of maximum
length. Note that if S ′ ∈ S, this chain contributes to C, as well; and we have C = C ′.

So from now on, we assume S ′ ∈ S ′ − S. Let P be the component of M − S
containing S ′. Recall that P is a simply connected three manifold whose boundary
consists of disjoint non-parallel spheres.

To count the circles C1, C2, . . . in a maximal nested chain, we consider for each of
these circles the component Wi of S ∩ P determined by Ci. There are two kinds of
circles, which we count seperately:

1. The component Wi might be disjoint from ∂(P ). In this case, Wi is a sphere. By
normality, Wi has to separate the boundary spheres of P into two non-empty
subsets. Since the length of any chain of such partitions is bounded by the
number of boundary spheres of P , the number of those circles in our chain is at
most 2n.
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2. The component Wi intersects the boundary of P . Since the circles Ci are nested,
the circles in Wi ∩ S are nested for any boundary sphere S ⊂ ∂(P ). The length
of a chain intersecting S non-trivially is therefore bounded by 2C as S belongs
to S. The number of boundary spheres, again, is bounded by 2n.

Adding the two counts, we obtain

2C ′ ≤ 2n2C + 2n,

which yields the desired result. q.e.d.

Exercise 6.4.31. Show that T contains Cm
1 + Cm−1

2 + · · · + C1
m + 1 simplices of

top-dimension m. [Hint: Use induction.]

Corollary 6.4.32. Out(Fn) satisfies an exponential isoperimetric inequality.
q.e.d.

Proof. Fix a loop with N edges. Let S be a vertex on that loop and consider the
contraction towards that vertex S. Since each vertex on the loop is of distance 1

2
N to

S, we infer from (6.4.30) that the combing paths have length bounded from above by
CN . Thus, the number of triangles used in the contraction for one edge is bounded
by CC′N . Thus the total number of triangles is bounded by NCC′N . q.e.d.

6.4.5 The Graphs Proof

6.5 !!! FIXME !!!

M. Bridson proved in his thesis that Outer Space does not allow a CAT(0) metric.
S. Gersten strengthened this result and showed that there is no CAT(0) space for
Out(Fn) to act upon:

Theorem 6.5.1 (Gersten). For n ≥ 3, the group Aut(Fn), and for n ≥ 4, the
group Out(Fn) cannot act properly discontinuously on any CAT(0) space.

We will reproduce his proof.

Remark 6.5.2. Since any CAT(0) group has a quadratic isoperimetric inequality, it
would be nice to have a proof that Out(Fn) does not satisfy a quadratic isoperimetric
inequality.

The central idea of Gersten’s proof is to find a subgroup in Aut(F3) that visibly
cannot act properly discontinuously on a CAT(0) space. The group he finds has the
following presentation:

H :=
〈
a, b, c, s sas−1 = a, sbs−1 = ba, scs−1 = ca2

〉
.
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Lemma 6.5.3. Every word with vanishing s-exponent sum is equivalent to a word
that is s-free. Every word that has non-zero s-exponent sum is not trivial.

Proof. If the exponents for s add up to 0, we can find a subword sus−1 where u does
not involve s. However, the relations allow us to conjugate all the letters in u. Since
the right hand sides of the relations do not involve s, we got rid of two occurrences
of s. We continue until all occurrences are gone. q.e.d.

Consider the homomorphism

ι : H → Aut(〈a, b, c〉)
a 7→ ιa

b 7→ ιb

c 7→ ιc

s 7→ ϕ,

where ϕ : 〈a, b, c〉 → 〈a, b, c〉 is the homomorphism

a 7→ a

b 7→ ba

c 7→ ca2.

It is immediate from the relations that ι is a well defined homomorphism.

Lemma 6.5.4. The homomorphism ι is injective.

Proof. Observe that the generators a, b, and c act trivially on the abelianization Z3

whereas the homomorphism ϕ descends to an automorphism of Z3 described by the
matrix 


1 1 2
0 1 0
0 0 1




which has infinite order. Thus every element in ker(ι) has s-exponent sum 0. By
(6.5.3), a kernel element will be in the subgroup generated by a, b, and c. However,
their images form a free generating set for F3 ≤ Aut(F3). q.e.d.

Lemma 6.5.5. The group H cannot act properly discontinuously on any CAT(0)
space.
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Proof. We use the fact that any free abelian group of finite rank m acting properly
discontinuously on a CAT(0) space X stabilizes a flat F of dimension m upon which
it acts as a group of translations whose geometric rank is m. (This implies that the
quotient of the flat modulo the abelian group is compact.)

Observe that we can rewrite

H = 〈a, s as = sa〉 ∗ 〈b, c〉 /b−1sb = as, c−1sc = a2s.

Thus, a and s span a free abelian group of rank 2 inside H. Let τa, τas, and τa2s be
the Euclidean translations on the flat F corresponding to the words a, as, and a2s.
Since the words are conjugate, the three translations have the same length. Hence
they lie on a circle. On the other hand, they visibly lie on the line through τa with
direction τs. Thus, we have a line that intersects a circle in three points which is
impossible. q.e.d.

Proof of (6.5.1). Since H ≤ Aut(F3) embedds into Aut(Fn) for n ≥ 3 and into
Out(Fn) for n ≥ 4, the claim follows from (6.5.5) q.e.d.
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Chapter 9

Coxeter Groups and Artin Groups

9.1 Euclidean Reflection Groups

Let

• E be a Euclidean space, and let

• H be a set of hyperplanes satisfying the following:

1. H is locally finite, i.e., a set of hyperplanes such that any compact subset
of E intersects only finitely many hyperplanes from H.

2. H is a W -invariant subset of E where W is the subgroup of Isom(E)
generated by all reflections ρH with H ∈ H.

Definition 9.1.1. Such a group W is called a Euclidean reflection group.

Exercise 9.1.2. Assume that H is finite. Show that
⋂
H∈HH 6= ∅. See (9.1.16) for

a more elaborate statement.

We want to derive a presentation for W .

9.1.1 The Chamber Decomposition of E

A chamber is a complementary component of H, i.e., a component of E −⋃
H∈HH.

Note that the closure of a chamber C is a convex polytope (possibly non-compact).
The faces of this polytope span hyperplanes that belong to H. We say that those
hyperplanes from H are supporting C. For any chamber C, we denote by
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• |C| the set of hyperplanes in H supporting C.

Two chambers, C and D, are called adjacent along H if H ∩ C = H ∩ D is a
CoDim-1-face. In this case, we write

C|HD.

They are called adjacent if they are adjacent along some H. In this case, we
write

C|D.
Note that adjaciency and adjaciency along H are symmetric and reflexive rela-
tions.

A gallery is a sequence
C0|C1| · · · |Cr

of chambers such that Ci is adjacent to Ci+1 for all i < r. If Ci|HCi+1, we say
that the gallery crosses H at this step.

The last index r gives the length of the gallery, which henceforth is the number
of hyperplanes that are crossed by the gallery. The distance

• δ (C,D) of the chambers C and D is the minimum length of a gallery connecting
them. Note that two chambers are adjacent if and only if their distance is at
most 1.

Exercise 9.1.3. Show that C and D are H-adjacent if and only if H supports both
and {C, ρHC} = {D, ρHD}.

Observation 9.1.4. Any two chambers are connected by a gallery of finite length.
q.e.d.

Exercise 9.1.5. Prove that a gallery from C to D has minimum length if and only
if it does not cross any hyperplane twice. Moreover, the set of hyperplanes that are
crossed by a minimum length gallery from C to D is precisely the set of those H ∈ H
that separate C from D. In particular, this set is the same for all those minimum
length galleries.

Note that W acts on the set C of chambers by distance preserving permutations.

Observation 9.1.6. If the hyperplane H supports the chamber C, then ρHC|HC.
Let us fix an arbitrary chamber
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• C∗, the fundamental chamber. Put

• S := {ρH H ∈ |C∗|}.

Lemma 9.1.7. W acts transitively on C and is generated by S.

Proof. Let

C∗ = C0|C1| · · · |Cr−1|Cr
be any gallery starting at C∗. We will show that there are elements wi ∈ 〈S〉 with
Ci = wiC

∗. This is an easy induction: Suppose wi has been found already. Let H be
the hyperplane with Ci|HCi+1. Then w−1

i H is a hyperplane in H that supports C∗.
Thus

ρH = wisw
−1
i for some s ∈ S

and

Ci+1 = ρHCi = ρHwiC
∗ = wisw

−1
i wiC

∗ = wisC
∗.

This way, we constructed an element wi+1 = wis ∈ 〈S〉.
Since every chamber can be connected to C∗ by a gallery, the subgroup 〈S〉 already

acts transitively on C.
Consider H ∈ H. Let C = wC∗ (where w ∈ 〈S〉) be a chamber supported by H.

As we already have observered, there is an element s ∈ S such that

ρH = wsw−1 ∈ 〈S〉 .

Thus the generating set for W is contained in 〈S〉. q.e.d.

Lemma 9.1.8. Let s = s1s2 · · · sr be a word representing w ∈ W . If this word is a
minimum length representative for w, then its length r equals δ (C∗, wC∗). Otherwise,
one can obtain a shorter word representing w by deleting two of the letters, i.e., there
are two indices i < j such that

w = s1 · · · si−1si+1 · · · sj−1sj+1 · · · sL.

Proof. Put

• wi := s1 · · · si,

• Ci := wiC
∗, and let

• Hi be the hyperplane satisfying si = ρHi
.
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We claim that the corresponding gallery

C∗ = C0|w0H1C1|w1H2 · · ·Cr−2|wr−2Hr−1Cr−1|wr−1Hr

does not cross any hyperplane twice provided that s1 · · · sr is a minimum word length
representative for w. Then the claim follows from (9.1.5).

So let us suppose that
wi−1Hi = wj−1Hj

for some i < j. We conclude

wi−1siw
−1
i−1 = wj−1sjw

−1
j−1

whence
s1 · · · si−1sisi−1 · · · s1 = s1 · · · sj−1sjsj−1 · · · s1.

Thus,
1 = si · · · sj−1sjsj−1 · · · si+1.

Multiplying from the right, we obtain

si+1 · · · sj−1 = si · · · sj
which implies that we have a shorter word for w:

w = s1 · · · si−1si+1 · · · sj−1sj+1 · · · sL
This is a contradiction. q.e.d.

Corollary 9.1.9. The action of W on C is simply transitive. q.e.d.

This corollary allows us to draw the Cayley graph of W with respect to S. Since all
generators have order 2, we simplify matters by ommiting all the bi-gons that would
arise that way. Thus, we define the reduced Caley graph

Γ := ΓS(W )

of W to have a vertex for each group element and an edge (labelled by s) for each
unordered pair {w,ws}. Note that W acts from the left.

Observation 9.1.10. Pick a point inside the fundamental chamber. The W -orbit
of this point can be identified with the vertex set of Γ. The edges of Γ correspond to
CoDim-1-faces in the chamber decomposition of E. In fact, we can connect the vertices
by edges perpendicular to those faces. This way, the Cayley graph is W -equivariantly
embedded in E.
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Example 9.1.11. Here are the planar reflection groups whose fundamental chambers
are triangles:
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9.1.2 The Coxeter Matrix

The Coxeter Matrix of the pair (W,S) is the S × S-matrix

M := (ms,t := ordW (st))s,t∈S .

The entries are taken from {1, 2, 3, . . . ,∞}. Note that M is symmetric and satisfies:

ms,t = 1 if and only if s = t. (9.1)

Theorem 9.1.12. The group W has the presentation

W = 〈s ∈ S (st)ms,t = 1 for ms,t <∞〉 .
Proof. The given relations obviously hold. To deduce any given other relation, realize
the relation as a closed loop in the Cayley graph. This graph lies in the ambient
Euclidean space. Find a bounding disk that intersects the CoDim-2-skeleton of the
chamber decomposition transversally. Now see the van Kampen diagram. q.e.d.

For each s let us be the unit vector perpendicular to the hyperplane inducing the
reflection s. (There is a choice here: we use the vector that points away from the
fundamental chamber.)

Exercise 9.1.13. Show that for any s, t ∈ S,

〈us,ut〉 =

{
− cos

(
π

ms,t

)
for ms,t finite

−1 for ms,t infinite.
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Now, we can settle the question, whether S is finite.

Proposition 9.1.14. The fundamental chamber has finite support.

Proof. Suppose otherwise. Then the set of unit vectors us had an accumulation
point by compactness of the unit sphere. However, their pair-wise scalar products are
negative. q.e.d.

Corollary 9.1.15. The set H decomposes into fintely many parallelity classes.

Proof. Suppose otherwise, then, by compactness, there would be hyperplanes that
span arbitrary small angles. Take a point very close to their intersection that lies in
a chamber. Since the angles around faces of chambers are bounded away from 0, we
have a contradiction. q.e.d.

Exercise 9.1.16. Show that the following are equivalent:

1. H is finite.

2. W is finite.

3. W is torsion.

4.
⋂
H∈HH 6= ∅.

Corollary 9.1.17. A Euclidean reflection group W is virtually free abelian.

Proof. Consider the action of W upon the sphere at infinity. By (9.1.15), this sphere
is decomposed into finitely many regions, upon which W acts by spherical isometries.
The image of W in Isom(S) is a finite Euclidean reflecion group by (9.1.16). The
kernel of the homomorphism consists of translations. q.e.d.

9.1.3 The Cocompact Case

In this section, we assume that the fundamental chamber has compact closure. All
the result are valid in the general case, though. In deed, we will prove them for
arbitrary Coxeter groups later.

Observation 9.1.18. Every point of E is either contained in a chamber or belongs
to the closures of at least two adjacent chambers. In the latter case, it has a translate
in the closure of C∗. Thus, the closure of the fundamental chamber is a fundamental
domain for the action of W , i.e., the translates of the closure cover E while the
translates of C∗ stay disjoint.
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Theorem 9.1.19. W has only finitely many finite subgroups up to conjugacy.

Proof. A finite subgroup fixes a point. This point is a translate of some point in C∗.
Thus any finite subgroup is conjugate to a subgroup of a stabilizer of a point in C∗.
There are only finitely many of those since C∗ has only finitely many faces. q.e.d.

Theorem 9.1.20. The conjugacy problem in W is solvable.

Proof. !!! Do the CAT(0) proof !!! q.e.d.

9.2 Coxeter Groups

Definition 9.2.1. Let S be a set. A Coxeter matrix over S is a symmetric matrix
M = (ms,t)s,t∈S with entries ms,t in {1, 2, 3, . . . ,∞} such that

ms,t = 1 if and only if s = t.

The Coxeter group defined by M is the group given by the presentation

W = 〈s ∈ S (st)ms,t = 1 if ms,t finite〉 .

The pair (W,S) is called a Coxeter system.

Example 9.2.2. Every Euclidean reflection group is a Coxeter group.

Coxeter groups are defined by generators and relations. In general, it is hard to tell
wheter a group given in this manner is trivial or not. So our first problem will be to
see that Coxeter groups are not trivial.

Observation 9.2.3. Every defining relation of W has even length. Thus, there is a
well defined surjective homomorphism

W → C2

sending each generator in S to the generator of C2. In particular, none of the gener-
ators is trivial in W . q.e.d.

Thus, every generator generates a subgroup of order 2 inside W .
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9.2.1 The Geometric Representation

To show that the generators have order 2, we used a representation of W . Now, we
shall extend this method to show that the products st also have the orders that we
would expect from the presentation.

Definition 9.2.4. Let (W,S) be a Coxeter system with Coxeter matrix M . Let
V :=

⊕
s∈S Res be the real vector space generated by S: To avoid confusion, we

denote the basis vector corresponding to s by es.
Define a bilinear form on V by

〈es, et〉M :=

{
− cos

(
π

ms,t

)
if ms,t <∞

−1 if ms,t =∞

and define an action of W on V where the generator s acts as the linear automorphism

ρs : et 7→ et − 2 〈es, et〉M es.

This action defines the geometric representation

ρ : W → Aut(V ) .

Exercise 9.2.5. Check that the geometric representation does exist, i.e., check that
the automorphisms ρs satisfy the defining relations of W .

Lemma 9.2.6. The order of st in M is given by the entry ms,t of the Coxeter matrix.

Proof. Note that the action of the subgroup 〈s, t〉 leaves the subspace Vs,t := 〈es, et〉
invariant.

ms,t =∞: The action hits et as follows:

et
ρs−→ et + 2es

ρt−→ 3et + 2es
ρs−→ 3et + 4es

ρt−→ 5et + 4es
ρs−→ · · ·

Thus, the product ρtρs has infinite order.

ms,t <∞: In this case, the bilinear form 〈−,−〉M restricts to a positive definite bi-
linear form on Vs,t, and a direct computation shows that the product ρtρs is a
rotation about of order ms,t. q.e.d.

Corollary 9.2.7. Thus, the generators s and t span a copy of the dihedral group
Dms,t inside W . q.e.d.
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Exercise 9.2.8. Show that W is finite if the bilinear form 〈−,−〉M is positive defi-
nite.

Exercise 9.2.9. Show that if W is finite, then there is a unique bilinear form 〈−,−〉
on V characterized by the following properites

1. 〈−,−〉 is positive definite.

2. All basis vectors es have unit length.

3. The action of W preserves 〈−,−〉.
Moreover, this bilinear form is 〈−,−〉M .

Corollary 9.2.10. Finite Euclidean reflection groups and finite Coxeter groups are
the very same thing.

Remark 9.2.11. The classification of finite Coxeter groups is done by classifying all
Coxeter matrices that are positive definite.

Exercise 9.2.12. A Coxeter system is called irreducible if there is no non-trivial
partition of the generators into two sets S1 and S2 such that each generator from
S1 commutes with each generator from S2. Classify all irreducible Coxeter systems
over three generators whose Coxeter groups are finite. (Hint: You should recover
descriptions of the Platonic solids along the way; in fact, the existence of the Platonic
solids can be derived from this classification.)

9.2.2 The Geometry of a Coxeter System

We studied Euclidean reflection groups by means of the assiciated Chamber system
upon which the group acts. To study general Coxeter groups, we will construct the
geometry from the group. So, we will construct a chamber system from the (reduced)
Cayley complex ΓS(W ) for the Coxeter presentation. The vertices of the Cayley
complex are the chambers, and two chambers are s-adjacent if they are joined by an
edge with labes s. Of course an edge path in the Cayley complex is a gallery in the
chamber system. We will see that this chamber system allows reflections and half
spaces.

Definition 9.2.13. Two edges e and e• in ΓS(W ) are opposite if they are contained
in a relator disc and have maximal distance in this circle. We write e ←→ e•. The
edges e and e• are parallel if e = e• or if there is a finite sequence

e = e0 ←→ e1 ←→ e2 ←→ · · · ←→ er = e•.
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We write e ‖ e•.
Parallelity is an equivalence relation. Its equivalence classes are called walls.
It is useful to extend the notion of parallelism to oriented edges. Let us consider

opposite edges first. Inside a relator disc, an oriented edge induces an orientation of
the boundary circle of the disc. We call two oriented edges of a relator disc opposite,
if they induce opposite orientations of the boundary circle and their underlying geo-
metric edges are opposite. As above, parallelism is defined as the transitive closure of
opposition. Equivalence classes of oriented edges under parallelism are called oriented
walls

Observation 9.2.14. Let ~e0 and ~e1 are opposite oriented edges in a relator cell.
Then removing these two edges cuts the boundary circle of the relator disc into two
arcs; and the arc from ι(~e0) to ι(~e1) reads the same word as the arc from τ(~e0) to
τ(~e1). (Here, we use that relator discs are not “crushed”.)

By induction, it follows that if ~e and ~e• are parallel, then there is a group element
w ∈ W such that

ι(~e) = ι(~e•)w and τ(~e) = τ(~e•)w.

Note that we are multiplying from the right, which in general will tear edges apart.

Observation 9.2.15. Let us observe a “local converse”: Each relator disc is in its
own right the Cayley graph of a finite dihedral group. Let ~e and ~e• be two oriented
edges in this cell. If there is a group element w in the dihedral group such that

ι(~e) = ι(~e•)w and τ(~e) = τ(~e•)w

then ~e and ~e• are either opposite or identical.

Corollary 9.2.16. An (oriented) wall either avoids a relator cell or intersects it in
a pair of opposite (oriented) edges. q.e.d.
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Proof. Let ~e be an oriented edge in a relator cell. We have to show that the only
parallel edge in this cell is the opposite one. So let ~e• be any other parallel edge in
this relator cell. We know that there is an element w ∈ W such that

ι(~e) = ι(~e•)w and τ(~e) = τ(~e•)w.

Since both edges belong to the relator cell, the element w actually belongs to the
dihedral subgroup generated by the two labels around the relator cell. Now, it follows
from the local converse that ~e and ~e• are opposite or identical. q.e.d.

The same reasoning actually yields:

Corollary 9.2.17. Let e be an edge and let ~e and op~e denote the two corresponding
oriented edges. Then ~e and op~e are not parallel.

In particular, every wall can be oriented in precisely two ways. q.e.d.

Let H be a wall. The boundary ∂(H) of H is the set of vertices (chambers) that are
incident with at least one edge in H – recall that a wall is an equivalence class of
edges.

Example 9.2.18. Here is the Cayley graph for the group〈
b,g, r b2 = g2 = r2 = (br)3 = (bg)2 = 1

〉
. drawn in the hyperbolic plane.

Oberserve how the axes for the reflections intersect groups of two or four edges
perpendicularly. These are precisely the walls. The shaded regions are the relator
discs.
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Let H be a wall and let g be an edge path (a gallery). Let

• hits (H,g) denote the number of times that the edge path g passes through the
wall H.

Definition 9.2.19. An elementary homotopy of an edge path in the Cayley graph
of a Coxeter group is one of the following two types of moves:

1. Replacing a subpath reading part of a relator disc by the complementary part
of the relation.

2. Adding or removing a backtracking edge.

Two paths in the Cayley graph are called homotopic if one can be obtained from the
other by a finite sequence of elementary homotopy.

Observation 9.2.20. Since elementary homotopies correspond to substitutions in
words waranted by the defining relations, two galleries are homotopic if and only if
they connect the same end points.
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Observation 9.2.21. Given a wall and a path, the number of crossings between the
wall and the gallery changes by an even number during any elementary homotopy of
the gallery. This follows from (9.2.16) Thus for a given wall H and two galleries g0

and g1, we have
hits (H,g0) ≡ hits (H,g1) mod 2.

In particular, the endpoints of an edge inside H cannot be connected by a gallery that
does not cross H.

Corollary 9.2.22. Every wall separates Γ.

Observation 9.2.23. If ~e and ~e• are parallel their terminal vertices can be joined by
a path that does not intersect the wall they belong to. This follows by induction from
the corresponding statement about opposite oriented edges, which is obvious.

Corollary 9.2.24. Each wall separates the Cayley graph into precisely two half
spaces.

Proof. We already know that walls separate. That there are not more than two
components follows from (9.2.23). q.e.d.

Lemma 9.2.25. Associated to each wall, there is a unique element in W that acts
like a reflection along the wall.

Proof. Let e be an edge in the wall. Then there is a unique element in W that
interchanged its endpoints. (This is, indeed, true for any edge: There is a unique
group element taking the initial point to the terminal point. But then, it has to
swap the two points, because the action of W preserves the labelling of edges by
generators.)

Now, just check that this swap condition extends to edges that are opposite in a
relator disc. q.e.d.

Corollary 9.2.26. Half spaces are convex, i.e., if two chambers lie in a given half
space, then so does every minimal chamber between them. q.e.d.

Corollary 9.2.27. The gallery distance of two chambers is the number of walls seper-
ating them. q.e.d.

Definition 9.2.28. A morphism of graphs is a distance non-increasing map from
the vertices of graph to the vertices of another graph. A folding of a graph is an
idempotent graph endomorphism f : Γ → Γ such that the preimage of each vertex
v is either empty or contains precisely two vertices (one of which is v). The image
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αf of a folding is called a half space or a root. Two foldings f and f ′ are opposite if
their images are disjoint and the following hold:

f = f ◦ f ′
f ′ = f ′ ◦ f.

Any two opposite foldings f and f ′ induce a reflection

ρ : Γ → Γ

v 7→
{
f(v) if v ∈ αf ′
f ′(v) if v ∈ αf

Exercise 9.2.29. Show that a (locally finite) graph is the Cayley graph of a (finitely
generated) Coxeter group if and only if the following conditions holds:

1. For each oriented edge ~e there is a unique folding f~e of Γ satisfying f~e(ι(~e)) =
τ(~e) .

2. If ~e and op~e are opposite orientations of the same underlying geometric edge,
then f~e and fop~e are opposite foldings.

Above, we introduced the geometric representation of W on the vector space V
spanned by {es s ∈ S} . Let V ∗ be the dual of V . It turns out that the induced
action of W on V ∗,

τ : W → Aut(V ∗)

w : λ 7→ λ ◦ ρw,
gives another description of the chamber system: For any s, define the posite and
negative halfspace in V ∗ by

U+
s := {λ ∈ V ∗ λ(es) > 0}

U−s := {λ ∈ V ∗ λ(es) < 0} .
The Tits cone

C := {λ ∈ V ∗ λ(es) > 0 for all s ∈ S}
is the intersection of the positive cones.

Exercise 9.2.30. Show that for every w ∈ W ,

τw(C) ⊆ U+
s if and only if |sw| = |w|+ 1

and
τw(C) ⊆ U−s if and only if |sw| = |w| − 1.

Exercise 9.2.31. Infer from (9.2.30) that the geometric representation is faithful.

Corollary 9.2.32. Finitely generated Coxeter groups are linear. q.e.d.
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9.2.3 The Deletion Condition

In (9.1.8), we have seen, that the pair (W,S) for a Euclidean reflection group satisfies
the Deletion Condition:

Definition 9.2.33 (Deletion Condition). Let (W,S) be a pair whereW is a group
and S is a generating set for W consisting entirely of elements of order 2. We say
that this pair satisfies the Deletion Contition if:

For any non-reduced word s1 · · · sr over S there are two indices i and j
such that

s1 · · · sr =W s1 · · · ŝi · · · ŝj · · · sr.
The carets indicate ommision.

This is, one can delete two letters from any non-minimum-length word to obtain a
shorter representative for the same element of W .

In this section, we will recognize (W,S) as a Coxeter system using the Deletion
Condition.

Lemma and Definition 9.2.34 (Exchange Condition). The pair (W,S) satifies
the Exchange Condition, i.e.:

Let s1 · · · sr and and t1 · · · tr be two reduced words over S representing the
same element w ∈ W . If s1 6= t1, then there is an index i ∈ {2, . . . , r}
such that

w =W s1t1 · · · t̂i · · · tr.

Proof. This is a formal consequence of the Deletion Condition: From

s1 · · · sr =W t1 · · · tr,

we obtain
s2 · · · sr =W s1t1 · · · tr

where the right hand is longer than the left hand whence there must be a pair of
letters that can be dropped without changing the value of the product. However, one
of the two letters must be the leading s1: Otherwise, we had

s2 · · · sr =W s1t1 · · · t̂i · · · t̂i · · · tr
whence

s1 · · · sr =W t1 · · · t̂i · · · t̂i · · · tr
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contradicting the minimality of the initial words.
Thus, we have

s2 · · · sr =W t1 · · · t̂i · · · · · · tr
whence

s1 · · · sr =W s1t1 · · · t̂i · · · · · · tr. q.e.d.

The Coxeter Matrix of the pair (W,S) is the S × S-matrix

M := (ms,t := ordW (st))s,t∈S .

The entries are taken from {1, 2, 3, . . . ,∞}. Note that M is symmetric and satisfies:

ms,t = 1 if and only if s = t. (9.2)

Any symmetric matrix satisfying (9.2) is called a Coxeter matrix.
An elementary M -reduction is one of the following moves:

1. Delete a subword ss.

2. Replace a subword sts · · ·︸ ︷︷ ︸
ms,t letters

by tst · · ·︸ ︷︷ ︸
ms,t letters

.

Theorem 9.2.35 (Tits). Let s = s1 · · · s|s| be a reduced word over S. Then s can be
obtained from any word t = t1 · · · t|t| by a sequence of elementary M-reductions.

Proof. This is also a purely formal consequence of the Deletion Condition. Let us
first prove the theorem under the additional hypothesis that t is reduced, as well. In
this case, |s| = |t| and only moves of type (2) are possible. We induct on the length
of the words.

Assume first that s1 = t1. Then s2 · · · s|s| and t2 · · · t|s| are two reduced words
representing the same group element. By induction, we can pass from one to the
other by elementary M -reductions.

So assume s1 6= t1. So we can apply the exchange condition both ways and obtain

s1 · · · s|s| =W s1t1 · · · ŷi · · · t|s|
t1 · · · t|s| =W t1s1 · · · x̂i · · · s|s|

Note that both equations actually can be realized by M -reduction since the words
start with identical letters. Thus, we only have to realize an M -reduction to pass from
s1t1 · · · ŷi · · · t|s| to t1s1 · · · x̂i · · · s|s|. If ms,t = 1, we are done. Otherwise we apply the
exchange condition again:

!!! ... !!! (Finish this)
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Now let us drop the assumption that t is reduced. It suffices to prove that t can be
shortened by M -reductions. We induct on the length of t. If t2 · · · t|t| is not reduced,

we apply the induction hypothesis to this subword.
So we assume that t2 · · · t|t| is reduced. Then we find

t1 · · · t|t| =W t2 · · · t̂i · · · t|t|
whence t2 · · · t|t| can be transformed into t1t2 · · · t̂it|t| by M -reductions. (Both of

these words are reduced, so we are in the case that we have discussed already.) Now,
we can shorten:

t1 · · · t|t|
M−→ t1t1t2 · · · t̂it|t|

M−→ t2 · · · t̂it|t|.
The final step is an operation of type (1). q.e.d.

Corollary 9.2.36. The pair (W,S) is a Coxeter system.

Proof. A relation is a word that evaluates to 1 in W . Therefore, any relation can
be transformed into the empty word by M -reductions. However, these correspond to
the relations of the Coxeter presentation. q.e.d.

9.2.4 The Moussong Complex

The goal in this section is to describe a piecewise Euclidean CAT(0) complex upon
which the Coxeter group W acts cocompactly, properly, and discontinuously. We
can find such a complex, provided the generating set S of reflections is finite. The
existence of such a complex settles a lot of questions at once:

Corollary 9.2.37. For every finitely generated Coxeter group the following hold:

1. W has solvable conjugacy problem.

2. W has only fintely many conjugacy classes of finite subgroups.

The construction start with the Cayley graph. For any subset J ⊆ S, we define
J-residues to be the components of the Cayley graph after all edges whose labels are
not in J have been removed. So we restrict ourselves to edges with labels in J and
look at the connected components of the resulting graph. By (9.2.10), every finite
Coxeter group WJ is a Euclidean reflection group acting on some Euclidean space
E. The reflections are induced by finitely many hyperplanes that all pass through a
common point. The hyperplanes chop up E into chambers. In one of these chambers
find a point that has distance 1

2
from all the walls. The orbit of this points spans a

convex polyhedron PJ all of whose edges have length 1. Indeed, the 1-skeleton of this
convex polyhedron is a Cayley graph for the finite Coxeter group WJ . The following
exercise justifies all these claims.
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Exercise 9.2.38. For any subset J ⊆ S, let MJ be the submatrix of M whose rows
and columns have indices in J , and let (WJ , J) be the Coxeter system defined by MJ .
Prove:

1. The inclusion J ↪→ S induces an injective group homomorphism WJ → W that
identifies the group WJ with the subgroup of W generated by J ⊆ S.

2. in view of the preceeding result, we regard WJ as a subgroup of W . These
subgroups are called special parabolic subgroups. Prove that

WJ∩I = WJ ∩WI

for any two subsets J, I ⊆ S.

3. The J-residues in ΓW are in bijective correspondence to the left cosets of WJ .

4. Every J-residue is isomorphic to the Cayley graph of WJ with respect to the
generating set J .

Example 9.2.39. Here is the polyhedron for

〈
b,g, r b2 = g2 = r2 = (bg)3 = (br)3 = (gr)2 = 1

〉
,

which is the symmetric group on four letters:

Note how the faces correspond to cosets of special parabolic subgroups.

The Moussong complexX for the Coxeter system (W,S) is defined by the following
procedure:
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• Start with with the Cayley graph, and declare all edges to be of length 1.
Observe that the edges with label s correspond precisely to the {s}-residues.

• Construct the 2-skeleton by glueing in polygons P{s,t} for any pair {s, t} of
generators that generate a finite subgroup. More precisely, if the {s, t}-residues
are finite then P{s,t} is a polygon whose boundary is isomorphic to these residues.
The isomorphism induces attaching maps that we use to glue in one copy of
P{s,t} for each residue.

• The 3-skeleton is defined similarly. For every J ⊆ S of size three, we glue in
copies of PJ if the J-residues are finite. Note that the boundary sphere of PJ
consists of polygons that are isomorphic to the cells PI for strict subsets I ⊂ J .
Thus, we find the boundary spheres of our 3-cells in the 2-skeleton that has
been constructed already.

• Proceed on higher skeleta until every finite residue is geometrically realized.

Observation 9.2.40. The Moussong complex carries a natural piecewise Euclidean
structure: all its cells are convex polyhedra in Euclidean space, and all attaching maps
identify lower dimensional cells isometrically with faces of higher dimensional cells.

Observation 9.2.41. The 1-skeleton of X is the Cayley graph. The 2-skeleton is
the Cayley complex of the Coxeter presentation for W : The 2-cells in X are precisely
the cells whose boundaries read valid relations in W . It follows that X is simply
connected.

Corollary 9.2.42. To prove X to be CAT(0) it suffices to show that vertex links in
X are CAT(1) since X is piecewise Euclidean and simply connected.

Example 9.2.43. Here is a (distorted picture of) the Moussong complex for the
group

〈
b,g, r b2 = g2 = r2 = (br)3 = (bg)2 = 1

〉
.
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The grey shaded area consists of hexagons and squares that are glued in. All these
polygons are regular Euclidean polygons.

Observation 9.2.44. Since W acts transitively on the set of vertices, all vertex links
are isometric.

Theorem 9.2.45. The vertex link L of X is CAT(1).

Proof. We give an explicit description of the link as a piecewise spherical complex:
The vertex set of L is S. For every subset J ⊆ S that generates a finite subgroup in
W , we glue in a spherical simplex whose edge lengths are

d(s, t) = π − π

ms,t

.

We have to show that the resulting complex is metrically flag, i.e., if we find a
subset J ⊆ S such that all elements are joined by an edge (equivalently, ms,t is finite),
then this subset should generate a finite subgroup if the edge lengths can be realized
by a spherical simplex.

So suppose {us s ∈ J} is a collection of unit vectors whose distances realize the
edge lengths. Then

〈us,ut〉 = cos

(
π − π

ms,t

)
= − cos

(
π

ms,t

)

which is precisely the coefficient in the bilinear form 〈−,−〉MJ
, which therefore is

positive definite. By (9.2.8), this implies that WJ is finite as required. q.e.d.
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9.3 Artin Groups

!!! FIXME: Rewrite this. More pictures, include Garside structures and the recent
Eilenberg-Maclane spaces based on Bestvina’s greedy normal forms. !!!

Let M be a Coxeter matrix with index set S. The Artin group defined by M is
given by the presentation:

AM :=

〈
s ∈ S sts · · ·︸ ︷︷ ︸

ms,t factors

= tst · · ·︸ ︷︷ ︸
ms,t factors

〉
.

The Coxeter matrix M defines a Coxeter group WM at the same time. The canonical
homomorphism

AM → WM

is surjective. An Artin group is said to be of finite type if the associated Coxeter
group is finite.

Remark 9.3.1. Sometimes a group G is called of finite type or of type F if it has a
finite Eilenberg-Maclane complex. Therefore the statement

Artin groups of finite type are of finite type.

is actually meaningfull. It happens to be true.

9.3.1 The Braid Group

!!! This whole section needs PICTURES !!!

Configuration Spaces as Hyperplane Arrangements

The labeled configuration space of n points in the plane is

C̃n := {(z1, . . . , zn) ∈ Cn zi 6= zj for i 6= j} .

An element in this space is a set of n points in the plane that are labeled so that we can
tell them apart. The symmetric group Permn on n letters acts on these configurations
by permuting the labels. Hence the quotient

Cn := Permn

∖
C̃n

is the configuration space of n-point subsets in the plane.
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Definition 9.3.2. The braid group Bn is the fundamental group of Cn. The pure
braid group Pn is the fundamental group of C̃n.

Observation 9.3.3. The projection

π : C̃n → Cn

is a covering map with Permn acting as its group of deck transformations. Conse-
quently, we have a short exact sequence

P ↪→ Bn →→ Permn

of groups. In particular, the pure braid group is a finite index normal subgroup of the
braid group.

Our first goal is to prove that configuration spaces are Eilenberg-Maclane spaces
for braid groups. Later, we will find smaller Eilenberg-Maclane spaces.

Theorem 9.3.4 (Fadell-Neuwirth 1962 [FaNe62, Corollary 2.2]). The space
C̃n is a K (Pn, 1). Consequently, Cn is a K (Bn, 1).

We will follow the proof in [FaNe62].
For any finite set P ⊂ C of punctures, put

C̃P,n := {(z1, . . . , zn) zi 6∈ P and zi 6= zj for i 6= j} .
This is the configuration space of n labeled points in a plane with m := |P | punctures.
Note that up to homeomorphism, the position of the punctures does not matter since
all m-punctures planes are homeomorphic.

Fact 9.3.5. The map

π : C̃P,n → C− P
(z1, . . . , zn) 7→ z1

is a fibre bundle whose fibre over z ∈ C− P is C̃P∪{z},n−1.

This fact allows us to “freeze” the points of the configuration one by one: Since fibre
bundles are fibrations, we have a long exact sequence of homotopy groups

· · · → πm

(
C̃P∪{z},n−1

)
→ πm

(
C̃P,n

)
→ πm(C− P )→ πm−1

(
C̃P∪{z},n−1

)
→ · · ·

which proves

πm

(
C̃P∪{z},n−1

)
= πm

(
C̃P,n

)
for m ≥ 2

since C − P has trivial homotopy groups in dimension 2 and above. Applying this
observation repeatedly, we conclude that for m ≥ 2:

0 = πm

(
C̃{z1,...,zn},0

)
= πm

(
C̃{z1,...,zn−1},1

)
= · · · = πm

(
C̃{z1},n−1

)
= πm

(
C̃∅,n

)
.

This proves (9.3.4) as C̃∅,n = C̃n.
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Shrinking the Eilenberg-Maclane Space

The space of all configuration deformation retract onto the subspace C̃0
n of all those

configuration whose center of gravity is 0. Note that the symmetric group Permn

acts on V = {(t1, . . . , tn)
∑

i ti = 0} ≤ Rn by permuting the coordinates. This is, in
fact, the geometric representation of Permn as a finite reflection group. Decomposing
the n-tuples in C̃0

n into real and imaginary parts, we obtain

C̃0
n = V × V −

⋃
H∈H

H ×H

where H is the set of walls defining S as a finite reflection group on V .
Let X be the Moussong comlpex associated to Permn. Recall that this is a convex

polyhedrong in V given as the convex hull of a point chosen in a sector such that it
has distance 1

2
to all walls bounding its sector. Shrinking configurations if necessary

by rescaling them using a real scalar yields a deformation retraction of C̃0
n onto

Yn := X ×X −
⋃
H∈H

H ×H.

Note that Yn is an Eilenberg-Maclane space for the pure braid group. Let us define
a poset

An := {(c, v) c cell in X, v vertex in c}
where the order is given by

(c, v) ¹ (d, w) if and only if c ≤ d and v = πc(w) .

We will prove

Lemma 9.3.6. There is a cover Yn =
⋃
α∈An

Uα by convex open sets indexed by the
element of An such that for any subset σ ⊂ An,

Uσ :=
⋂
α∈σ

Uα 6= ∅ if and only if σ is a chain in An.

Corollary 9.3.7. The geometric realization of A is an Eilenberg-Maclane space for
the pure braid group.

Proof. For any closed cell c in the Moussong complex, let Hc denote the set of walls
cutting through c. Note that removing these walls chops up the Moussong comlex
into convex open subsets. The set of these subsets is in 1-1-correspondence to the
vertices of C: Each vertex of c pick the convex open set C(c,v) that contains v.
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On the other hand, let Dc be the open star of the barycenter of c in the barycentric
subdivision of X. Then Dc is, again, a convex open subset of X. Finally, put

U(c,v) := Dc × C(c,v).

This is a cover of X by convex open sets.
!!! finish this !!! q.e.d.

Corollary 9.3.8. The geometric realization |An| is an Eilenberg-Maclane space for
the pure braid group Bn.

Remark 9.3.9. All of this is Permn-equivariant. Thus

Permn

∖|An|

is an Eilenberg-Maclane space for the braid group.

As a consequence, we can actually work out a presentation for the braid group Bn. Let
us consider the case of B3 first. Here, the underlying Coxeter group is the symmetric
group on 3 letters with standard genrating set given by two transpositions. Our
Eilenberg-Maclane complex has precisely one 2-cell, which is a hexagon, two edges,
and one vertex. The tricky part is to figure out, how the 2-cell is attached.

!!! ... !!!
It turns out, that we get the following presentation of the braid group Bn:

Bn =

〈
s1, . . . , sn

sisjsi = sjsisj for |i− j| ≥ 2
sisj = sjsi for |i− j| = 1

〉
.

Exercise 9.3.10. Show that the H3

(
Permn

∖|A4|) is non-trivial. Infer that B4 does not
have an Eilenberg-Maclane complex of dimension ≤ 2.

Exercise 9.3.11. Prove that B3 = 〈a, b, c ab = bc = ca〉 .

Exercise 9.3.12. More generally, prove that

Bn =

〈
x[i,j] (i 6= j)

x[i,j]x[j,k] = x[j,k]x[k,i] if [i, j, k]
x[i,j]x[k,l] = x[k,l]x[i,j] if [i, j, k, l]

〉

where we put a cyclic ordering on {1, 2, . . . , n} and [a, b, . . .] denotes the fact that the
listed elements form a cycle in their given order. In particular, the generators are
indexed by cycles of length 2.
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Exercise 9.3.13. Prove that B3 = 〈a, b, c, s ab = bc = ca = s〉 . Moreover, show
that the Cayley 2-complex (i.e., the universal cover of the canonical 2-complex associ-
ated to this presentation) admits a CAT(0) metric. (This implies that the presentation
2-complex for this presentation is an Eilenberg-Maclane space for B3.)

Exercise 9.3.14. Decide whether the presentation 2-complex for the presentation

B3 = 〈a, b, c ab = bc = ca〉

is an Eilenberg-Maclane complex for B3.

CAT(0)-Structures

9.3.2 General Artin Groups

Fact 9.3.15 (van Lek). Let M be a Coxeter matrix over S, and let J ⊆ S be a set
of generators with restricted Coxeter matrx MJ . Then the canonical homorphism

AMJ
→ AM

is injective. The image is the subgroup generated by J .

Fact 9.3.16. The space

X ×X −
⋃
H

H ×H

is homotopy equivalent to the poset

AM := {(c, v) c cell in X, v vertex in c}

where the order is given by

(c, v) ¹ (d, w) if and only if c ≤ d and v = πc(w) .

The fundamental group of these spaces is the pure Artin group.

This space is conjectured to be an Eilenberg-Maclane space.

Fact 9.3.17 (Charney-Davis). The poset AM is an Eilenberg-Maclane space for
the pure Artin group PM , provided any two Artin generators generate a finite subgroup,
i.e., the Coxeter matrix M is 2-spherical. One obtains an Eilenberg-Maclane space
for the corresponding Artin group AM by modding out the group action of WM ]. In
particular, Artin groups of finite type have a finite Eilenberg-Maclane complex.
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9.3.3 Artin Groups of Finite Type

Fact 9.3.18 (Brieskorn-Saito, Deligne). Artin groups of finite type have solvable
word and conjugacy problem.

Fact 9.3.19 (Charney). Artin groups of finite type are biautomatic.

Fact 9.3.20 (Bestvina). Artin groups of finite type have the look and feel of
CAT(0)-groups: Let A be an Artin group of finite type. Then the following hold:

1. The group A contains only finitely many conjugacy classes of finite subgroups.

2. Every solvable subgroup of A is finitely generated and virtually abelian.

3. The set of translation lengths is bounded away from 0. (Note that Artin groups
of finite type have a finite Eilenberg-Maclane complex by (9.3.17) and are, there-
fore, torsion free.)

Fact 9.3.21 (Squier). An Artin group of finite type over the generating set S is a
duality group of dimension |S|.

Fact 9.3.22 (Krammer, Cohen-Wales). Artin groups of finite type are linear.

9.3.4 Right-Angled Artin Groups and the Example of
M. Bestvina and N. Brady

Right-angled Artin groups are also known as graph groups since the data determining
the presentation can most easyly be visualized as a graph: To any graph Γ with vertex
set V , we associate the group

GΓ := 〈v ∈ V vw = wv if there is an edge v −− w in Γ〉 .

Note that there is a canonical homomorphism

ϕ : GΓ → Z

v 7→ 1

whose kernel will be denoted by KΓ.
In this section, we also identify Γ with its associated flag complex, i.e., the sim-

plicial complex that shares the vertices with Γ and whose simplices are cliques in Γ:
A set of vertices forms a simplex if the vertices are pairwise connected by edges.
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Theorem 9.3.23 (Bestvina-Brady [BeBr97]). If Γ is a finite flag complex then
the following hold:

1. KΓ is of type Fm if and only if Γ is (m− 1)-connected.

2. KΓ is of type FPm if and only if Γ is (m− 1)-acyclic.

This section is devoted to a proof of this result. Note that the theorem allows one to
construct groups with prescribed finiteness properties. In particular, we could take Γ
to be 1-acyclic but not simply connected and infer:

Corollary 9.3.24. There is a group of type FP2 that is not finitely pre-
sented. q.e.d.

First, we construct an Eilenberg-Maclane space for GΓ. Let TV a product of a
family of circles Cv indexed by the vertices in V . We assume that all these circles
have a basepoint so that we can regard them as subspaces in TV . For any subset σ of
V we regard the torus Tσ =

J
v∈σ Cv as a subtorus of TV . We put

QΓ :=
⋃

σ simplex

Tσ

and let
XΓ := Q̃Γ

denote its universal cover.

Observation 9.3.25. The complex QΓ has precisely one vertex P , and the link of
this vertex is

Lk(P ) = S(Γ) =
⋃

σ simplex

Sσ ⊂ RV

where Sσ denotes the unit sphere in Rσ ⊆ RV . The cuibical structure on QΓ induces
the triangulation on S(L) given by

Sσ =
A
v∈σ

S{v}.

Note that XΓ is a piecewise Euclidean cube complex and all its vertex links are
isomorphic to S(Γ).

Exercise 9.3.26. Show that S(Γ) is a flag complex.

Corollary 9.3.27. XΓ is CAT(0) and, therefore, contractible. q.e.d.
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The canonical homomorphism ϕ has a topological representative

h : Q→ C

that is piecewise linear and restricts to the degree 1 map on each Cv. It lifts to a
piecewise linear map

h : X → R

which is affine on each cube in X.

Definition 9.3.28. A combinatorial Morse function on a piecewise Euclidean com-
plex is a real valued function h that is affine on closed cells, non-constant on edges,
and has a discrete set of critical values, i.e., the image of the 0-skeleton is discrete in
R.

The descending (ascending) link of a vertex v is that part of its link spanned by
those cells for which v is a maximum (minimum) for h.

The s-level set is the h-preimage of the real number s. The s-sublevel set is the
preimage of (−∞, s]. For any closed interval I, we call its h-preimage the I-slice.

Lemma 9.3.29. Let r < s be two real numbers such that there are no critical values
in [r, s]. Then the r-sublevel and s-sublevel sets are homotopy equivalent. Similarly,
any two slices whose difference does not contain vertices are homotopy equivalent.

Proof. Observe that the level set cuts through the polyhedral cells of the complex.
Thereby, the upper level set creates a free face in each cell. You can collapse the top-
dimensional material in the affected cells away. This defines a deformation retraction.
Now induct on lower dimensional material. q.e.d.

!!! Finish this !!!
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Chapter 10

Grigorchuk’s First Group

The “first Grigorchuk Group” G1 comes close to a “universal counterexample” as far
as finitely generated groups are concerned. It is the group theoretic analogue of a
fractal.

[10.1.4] G1 is finitely generated.

[10.7.10] G1 is not finitely presented.

[10.5.15] G1 has intermediate growth.

[10.6.1] G1 is amenable.

[10.6.8] G1 is not elementary amenable.

[10.4.16] Every finite two group embedds into G1.

[10.3.10] G1 is a general Burnside group. Thus:

[10.3.5] Every element of G1 has finite order.

[10.3.7] G1 is not virtually solvable and does not contain a non-abelian free group.

[10.4.21] G1 is residually finite.

[10.4.25] G1 is just infinite.

[10.4.24] G1 has the congruence subgroup property.

[10.2.33] The word problem is solvabel in G1.

[10.5.10] The conjugacy problem is solvabel in G1.

136
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[10.2.13] G1 is an automaton group.

[10.4.10] G1 is commensurable to G1 × G1.

[10.3.13] G1 is a 2-group.

[10.7.7] G1 is not co-Hopfian.

[10.7.8] G1 is Hopfian.

10.1 The Infinite Binary Rooted Tree

The First Grigorchuk Group G1 is a group of automorphisms of the infinite binary
rooted tree. So let us consider the automorphism group of this gadget first.

Let T •2 be the rooted binary tree without terminal vertices. Any vertex in T •2 can
be reached from the root by a minimal path. Along this path, you have to make
binary decisions whether you want to go left or right. Hence the vertices in T •2 are
finite word over {−1, 1} with the empty word as the root. The vertices come in levels
indexed by natural numbers: the root is the unique vertex at level 0, its children are
at level 1, and so on. The level of a vertex is its path-metric distance to the root. Let
T •2 (n) denote the sub-tree spanned by the vertices of level ≤ n.

let T •2 := Aut(T •2 ) denote the automorphism group of T •2 . Note that any au-
tomorphism preserves the root (as this is the only vertex of valency 2). Hence the
sets T •2 (n) are invariant under automorphism, and we have, for any n, a canonical
homomorphism

πn : T •2 → Aut(T •2 (n)) .

In fact, T •2 is easily seen to be the inverse limit of the system

Aut(T •2 (0))← Aut(T •2 (1))← Aut(T •2 (2))← · · · .
It follows that T •2 is pro-finite. So it is a compact topological group.

Let us have a look at the kernels of these homomorphism. We define

T2(n) := ker(πn : T • → Aut(T •2 (n))) .

All of these subgroups are normal. The first one deserves our utmost attention: Note
that T •2 contains two copies of itself as subtrees – the vertices at level 1 serve as roots
for these subtrees. Let us call these subtrees the left subtree T l and the right subtree
T r. The subgroup T •2 is the group of automorphisms taking T l to T l and T r to T r.
Moreover, this subgroup is clearly isomorphic to the square of T •2 :

T •2 × T •2 ∼= T2(1) .
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For this reason, we can interpret the direct product of subgroups of T •2 as a subgroup
of T2(1) ≤ T •2 :

Notation 10.1.1. For two subgroups A,B ≤ T •2 , let

A⊗B
denote the group of those elements in T2(1) that act as an element of A on the left
subtree and as an element of B on the right subtree. Note that A⊗B is isomorphic
to A×B as an abstract group.

On the other hand, the short exact sequence

T2(1) ↪→ T • →→ C2

splits since the swap σ ∈ T • has order two. This is the automorphism that inter-
changes the left and right subtree. The formal definition makes use of the represen-
tation of vertices as words over {±1}: The swap σ just flips the sign in the first slot.
Hence

T • ∼= T2(1)o C2

Putting things together, we obtain a strange isomorphism:

T •2 ∼= (T •2 × T •2 )o C2 = T •2 o C2

This allows us to define automorphisms recursively. As an example, consider the
tree automorphism ϕ defined by

ϕ = (1, ϕ)σ.

This equation has a unique solution. Indeed, the right hand side tells us first how ϕ
acts on level 1 vertices. Then we can plug this information back into the right hand
side. Now the right hand side is defined on all vertices up to level 2. We can continue
in this fashion. Similarly we have

Observation 10.1.2. Let ϕi be variables with values in T •2 , wi and ui given words
in these variables and some fixed given automorphisms (like the swap), and εi given
elements of {1, σ}. Then any system of equations

ϕ1 = (w1, u1)ε1

...
...

...

ϕn = (wn, un)εn

has a unique solution. q.e.d.
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Exercise 10.1.3. Show that the ϕ defined by

ϕ = (1, ϕ)σ

has infinite order.

Now we can define cool automorphisms!

Definition 10.1.4 (Grigorchuk [Grig80]). Let the automorphisms β, γ, and δ be
defined by

β = (σ, γ)

γ = (σ, δ)

δ = (1, β)

The First Grigorchuk Group G1 is the subgroup of T • generated by {σ, β, γ, δ}:
G1 := 〈σ, β, γ, δ〉 .

Our observation (10.1.2) is quite powerful. In fact, we can derive a complete multi-
plication table for the generators β, γ, and δ as follows:

Proposition 10.1.5. The set {1, β, γ, δ} is a subgroup of G1 isomorphic to Klein’s
Vierergruppe C2 × C2.

Proof. From the defining equations, we get

β2 = (1, γ2)

γ2 = (1, δ2)

δ2 = (1, β2)

Regarding this as a system of equations in β2, γ2, and δ2, we conclude that the unique
solution is

β2 = γ2 = δ2 = 1.

We turn this trick into a method, i.e., we use it twice. So let us write down a system
of equations in the products of length 3. We find:

βγδ = (1, γδβ)

γδβ = (1, δβγ)

δβγ = (1, βγδ)

and it follows that
βγδ = γδβ = δβγ = 1.

So we established that the defining relations of Klein’s Vierergruppe hold. Hence we
only have to check that β, γ, and δ are non-trivial. But this follows from the swaps
that occur in the defining set of equations. q.e.d.
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Let us call an automorphism of T •2 is recursive if it can be defined by a finite
system of equations. If you invert all the equations, you see that the inverse of a
recursive automorphism is recursive, too. Moreover, it is easy to see that products
of recursive automorphisms are recursive. Hence the recursive automorphisms form
a group. We shall study a subgroup of this momentarily.

The exposition in this section owes a lot to [Harp00] and [BGS01]

10.2 Automaton Groups and the Word Problem

Definition 10.2.1. A simplistic finite state automaton over the alphabetA is a finite
directed graph with a distinguished start vertex whose edges and vertices are labeled
by elements of A such that for any vertex v and any letter a ∈ A there is precisely
one edge starting at v labeled with a.

A transformation is a length preserving map A∗ → A∗ where A∗ is the set of all
words over the alphabet A, including the empty word.

Remark 10.2.2. There is an obvious way to use a finite state automaton over A
to define a transformation A∗ → A∗. Given a sequence of letters, there is a unique
directed path starting at the start vertex that reads this sequence of letters. The
output is given by reading the vertex labels along this path, starting with the vertex
after the start vertex.

Definition 10.2.3. A sophisticated finite state automaton over the alphabet A is a
finite directed graph with a distinguished start vertex together with to labelings. The
vertices are labeled by elements of Perm(A) and the edges carry labels taken from
the alphabet A such that for any vertex v and any letter a ∈ A there is precisely one
edge starting at v labeled with a.

Remark 10.2.4. There is also an obvious way to use a sophisticated finite state
automaton over A to define a transformation A∗ → A∗. Given a sequence of letters,
take the unique directed path starting at the start vertex that reads this sequence of
letters. The output is given by applying the permutations you read along this path
to the letters in your sequence.

Exercise 10.2.5. Show that a transformation A∗ → A∗ can be defined by a simplis-
tic finite state automaton if and only if it can be realized by a sophisticated finite
state automaton.

Remark 10.2.6. Maybe, one should introduce the even more convenient notion of
a finite state automaton deluxe where the vertices carry labels in Map(A,A). This

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2002]



10.2. AUTOMATON GROUPS AND THE WORD PROBLEM 141

generalizes both notions: For simplistic automata, use constant maps; and for sophis-
ticated automata, use permutations. However, it does not add to the computational
power of these devices.

Definition 10.2.7. A vertex v in a finite state automaton is accessible if there is
a directed path from the start vertex to v. An automaton is sophomoric if it has
inaccessible vertices.

From now on, all automata will be simplistic but not sophomoric. Let us have a
look at some small automata over the alphabet with two letters {L,R}.

Example 10.2.8. Here is an automaton, that maps everything to a string of Rs of
the same length.

ONMLHIJKR∗L -- Rqq

Example 10.2.9. The identity can be realized with two vertices:

GFED@ABCL∗L 00

R
++ GFED@ABCR

L

ll Rll

Example 10.2.10. And here is the swap:

GFED@ABCL∗R 00

L
++ GFED@ABCR

R

ll Lll

Example 10.2.11. The twist automorphism

GFED@ABCL∗R 00

L
++ GFED@ABCR

L

ll Rll

needs two states but has a fairly complicated dynamic.
The picture shows that this automorphism is just a twisted swap, whence the

name!

Exercise 10.2.12. Prove or disprove: The twist has infinite order.

Example 10.2.13. Here is a picture that displays all the generators of G1 at once.
You just have to pick the right vertex as start.
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GFED@ABCL

L
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R
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L

KK

R 22
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L
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R

``AAAAAAAAAAAAAAAAAA
GFED@ABCR Lll

R
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Definition 10.2.14. A map ϕ : A∗ → A∗ is finitary if it can be realized by a finite
state automaton.

Observation 10.2.15. Of course, bijective transformations ϕ : A∗ → A∗ are tree-
automorphisms of a rooted tree where each vertex has precisely |A| children. Hence
we can speak of finitary tree-automorphisms.

Moreover, any finitary automorphism is recursive. You construct the defining
equations from the automation A as follows: For each vertex introduce a variable,
and the defining equation will have the children of this vertex in the pair followed by
a swap of the identity, depending on the local labels. Rule: the child that prints R is
in the right slot. As the preceding sentence is incomprehensible for those who are not
in the know, let us consider an example. Here is the system for the twist (10.2.11)
where t corresponds to the start at R and y corresponds to the start at L.

x = (y, x)σ

y = (y, x)

Exercise 10.2.16. Is there a recursive system of equations defining a tree automor-
phism that cannot be realized by a finite state automaton?

Exercise 10.2.17. This is an automaton over {0, 1}. What does it do? Is the
transformation invertible? Is it of infinite order? If the transformation is invertible,
find a recursive definition as small as possible.

GFED@ABC0∗
0 //1 22

?>=<89:;1
0

++

1

··
?>=<89:;0 0ii

1

kk

We will show that finitary bijections form a group. Obviously, we have to construct
automata for inverses and products. So let us start with inverses.
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Key Idea 10.2.18. The basic idea of inverting an automaton is this: if you are at
the start vertex and the input sequence gives you a letter, you do not have to look at
the edge labels but at the labels of the neighboring vertices. If there is precisely one
with that label, you know where to go. While you are on the way, you print out the
label of the edge. So we would like to construct the inverse of an automaton just by
exchanging the label of an oriented edge with the label of its terminal vertex.

However, this simple minded procedure might not be allowed! Have a look at exam-
ple (10.2.11). The trouble comes from the fact that some vertices have edges with
different label pointing to them.

Definition 10.2.19. A finite state automaton is tidy if every vertex has all its in-
coming edges given identical labels.

The main tool for inverting an automaton is the blow-up construction:

Proposition 10.2.20 (Blow-Up). For every finite state automaton, there is an
equivalent tidy finite state automaton.

Proof. We use a cover. So let A be a finite state automaton over the alphabet A.
We define a new automaton B on the vertex set VA × A. For an edge ~e in A with
label a pointing from S to T , we glue in |A| edges in B. They point from the vertices
(S,−) to the vertex (T, a).

It is obvious that the result B is tidy and equivalent to A. To understand this,
let us give the pictures for the twist-automaton. Here is the untidy version again:

GFED@ABCL∗R 00

L
++ GFED@ABCR

L

ll Rll

And this is the way to tidy it up:

GFED@ABCL∗R 00

L
++ GFED@ABCR

L

zz

R

®®
GFED@ABCL

R

KK

L

::

GFED@ABCR
L

kk Rll

Play and see!! q.e.d.

For tidy automata, finding the inverse is no problem.

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2002]



144 CHAPTER 10. GRIGORCHUK’S FIRST GROUP

Proposition 10.2.21. Let A be a tidy finite state automaton. Define a graph B with
edge and vertex labels on the same vertex set by exchanging the label of each oriented
edge with the label of its terminal vertex. The result is a finite state automaton if and
only if A realizes an invertible transformation. In this case B is tidy and realizes the
inverse.

Proof. Look at the picture for the twist-automorphism. Here is the tidy twist:

GFED@ABCL∗R 00

L
++ GFED@ABCR

L

zz

R

®®
GFED@ABCL

R

KK

L

::

GFED@ABCR
L

kk Rll

And here is the inverse (the untwist):

ONMLHIJKR∗L --

R
++GFED@ABCL

L

zz

R

®®
GFED@ABCL

L

KK

R

::

GFED@ABCR
L

kk Rll

Now, play with it and see how the key idea (10.2.18) works. q.e.d.

Corollary 10.2.22. It is decidable whether a finite state automaton defines an in-
vertible transformation, and if it does an automaton realizing the inverse can be con-
structed effectively.

Problem 10.2.23. Is there an algorithm that takes a finite state automaton as input
and decides whether it describes a transformation of finite order?

Proposition 10.2.24. Suppose the transformations ϕ : A∗ → A∗ and ψ : A∗ → A∗
are finitary, i.e., they can both be realized by finite state automata A and B. Then
the composition ψϕ (second factor acts first on the input!) is finitary, too. Moreover,
an automaton realizing the product can be effectively constructed from A and B.
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Proof. The product automaton is constructed on the vertex set A × B. The start
vertex is the pair of start vertices. From (S1, T1) we have an edge labeled with a to
(S2, T2) if there is an a-edge from S1 to S2 and an edge from T1 to T2 that has the
same label as v2. The point is, that this label is the output of A at this stage and
therefore guides the computational path in B. q.e.d.

Corollary 10.2.25. The set of all those bijections that can be realized by finite state
automata forms a group.

Definition 10.2.26. An automata group over A is a group of bijective finitary trans-
formations A∗ → A∗.

Example 10.2.27. From (10.2.13) it follows that G1 is an automata group.

The following lemma introduces an idea that is ubiquitous in the study of finite
state automata. The key observation is that a path in a finite graph has to contain
a loop if it becomes too long.

Lemma 10.2.28. If two finite state automata A and B over the same alphabet are
inequivalent, then there is an input of length ≤ |A|×|B| for which their outputs differ.

Let us first note an immediate consequence.

Corollary 10.2.29. There is an algorithm that, taking two finite state automata A1,
and A2 over the same alphabet is its input, decides if these automata define the same
transformation.

Proof. Let us assume the shortest input sequence that proves the two automata to
be inequivalent has length > |A| × |B|. Follow the computational paths in A and B
for this sequence. As there are only |A|×|B| many pairs of states (S, T ) ∈ A×B, one
of these pairs is visited twice. Then, however, the part of the input sequence between
the two times can be cut out without affecting the rest of the computation. q.e.d.

Exercise 10.2.30. Prove: A finite state automaton takes ultimately periodic inputs
to ultimately periodic outputs.

Exercise 10.2.31. The decision procedure for equivalence of finite state automata
based on checking inputs of length ≤ |A| × |B| is exponential. Find an effective
algorithm that decides if two automata are equivalent.

Let us fix some consequences that pertain to Grigorchuk’s Group.
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Corollary 10.2.32. The word problem for finitely generated automata groups is solv-
able.

Corollary 10.2.33. The word problem in G1 is solvable.

This solution to the word problem closely parallels the solution to the word prob-
lem in finitely generated linear groups. The idea is as follows: Given a word in the
generators, just multiply the corresponding matrices and check if the result is the
identity matrix. Of course, this presupposes that you can multiply matrices. The
problem is that, say, complex numbers do not have finite representations.

To overcome this problem, observe that finitely many matrices have only finitely
many coefficients. So we start with matrix coefficients like π, e or

√−5 and in the
end, we have a martix whose entries are rational functions in the original coefficients.
How can we detect, if this is the identity matrix? Well, this is precisely what a
computer algebra system is supposed to do. The way is based on the observtion that
all computations really take place in a finite extension of the prime field. Now, there
is a little lemma to be proved that says you can always do this extension in two steps:

(a) Pass to a purely transcendental extension. This field obviously has a computa-
tionally effective arithmetic.

(b) Move on to an algebraic extension of finite degree – this can be done since finitely
generated algebraic extensions are finite. Those extensions can be represented
as matrix algebras over their base field. Hence they, too, are computationally
effective.

These considerations have two consequences:

Theorem 10.2.34. A finitely generated linear group has a solvable word problem.
q.e.d.

Theorem 10.2.35 (Mal’cev). A finitely generated linear group has a faithful rep-
resentation over a pure transcendental extension of the prime field.

Proof. There is only a finite extension missing. This, however, can be realized as a
matrix algebra. q.e.d.

This technique is know as “restriction of scalars”.
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10.3 Burnside’s Problem

Definition 10.3.1. A group G is periodic if there is a number n ∈ Z such that for
all g ∈ G.

gn = 1.

The number n is called the exponent of G.

General Burnside Problem 10.3.2. Are there no finitely generated, infinite tor-
sion groups?

Burnside Problem 10.3.3. Are there no finitely generated, infinite periodic
groups?

Restricted Burnside Problem 10.3.4. Are there only finitely many finite groups
with a given exponent and a given bound on the number of generators?

The answers are “no”, “no”, and “yes”. Grigorchuk’s Group provides a example for
the General Burnside Problem.

Definition 10.3.5. A general Burnside group is a finitely generated, infinite torsion
group.

It is not at all easy to come up with examples of finitely generated, infinite torsion
groups since these are subject to rather strong restrictions.

Theorem 10.3.6. Finitely generated, virtually solvable torsion groups are finite.

Proof. Let us ignore the word “virtually” for a while. First observe that finitely
generated abelian torsion groups are finite. Being abelian is the same as being step-
1-solvable. Of course, we proceed by induction.

Let N ↪→ G →→ Q be a short exact sequence with Q abelian, N step-s-solvable,
and G finitely generated and torsion. It follows that Q is finitely generated and
torsion and, therefore, finite. Hence N has finite index and is finitely generated, too.
As a subgroup of G, it is clearly torsion. By induction, N is finite. Hence G is
finite-by-finite whence finite. This completes the induction.

Now, we know that finitely generated solvable torsion groups are finite. So suppose
G is torsion, finitely generated, and virtually solvable. Then the solvable subgroup of
finite index is finitely generated and torsion. Hence it is finite. But if G has a finite
subgroup of finite index, G is finite. q.e.d.

Corollary 10.3.7. A general Burnside group does not satisfy the Tits alternative,
i.e., it neither contains a non-abelian free group, nor is it virtually solvable.
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Proof. Since a torsion group cannot contain a non-abelian free subgroup, we are
reduced to the virtually solvable case. q.e.d.

Corollary 10.3.8 (Burnside-Schur-Kaplanski). Finitely generated linear tor-
sion groups are finite.

Remark 10.3.9. Of course, this is sort of a a mock proof of the Burnside-Schur-
Kaplanski theorem: Tits’ proof that linear groups satisfy the Tits alternative uses re-
sults from representation theory that come close to give the Burnside-Schur-Kaplanski
result directly.

Theorem 10.3.10. The First Grigorchuk group G1 is a general Burnside group. In
particular it is neither linear nor virtually solvable.

As G1 is finitely generated by construction, we have to prove that it is infinite [10.3.12]
and torsion [10.3.13].

Lemma 10.3.11. Let G1(1) := ker(G1 → Aut(T •2 (1))) be the stabilizer of the level 1
subtree. The inclusion

G1(1) ↪→ T2(1) = Aut(T •2 )⊗ Aut(T •2 )

induces an inclusion

G1(1) ↪→ G1 ⊗ G1

which is “surjective in each coordinate”, i.e., for each element ξ0 ∈ G1 there is an
element ξ1 ∈ G1 such that (ξ0, ξ1) ∈ G1(1).

Proof. G1(1) contains (in fact it is generated by) the elements

(σ, β), (σ, γ), (σ, δ), (β, σ), (γ, σ), (δ, σ)

and therefore surjects onto G1, e.g., by projection onto the first coordinate. q.e.d.

Corollary 10.3.12. G1 is infinite.

Proof. G1(1) is a proper subgroup of G1. However, a finite group cannot have a
proper subgroup that surjects onto the bigger group. q.e.d.

Proposition 10.3.13. G1 is a 2-group, i.e., every element has finite order which is
a power of 2.
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Proof. This is done by induction on a “complexity”, a refined version of word length.
First observe that, since all generators of G1 are involutions, we can represent each
element as a word in the generators without using inverses. Moreover, (10.1.5) implies
that we can use a word in which the swap alternates with the other generators. Finally,
since the order of an element is unaffected by conjugation, we may assume that the
word length is ≤ 1 or even. Let us call those words cyclicly reduced.

For each cyclicly reduced word w let Cσ(w) denote the number of occurrences of
σ in w. Define Cβ, Cγ, and Cδ analogously. The complexity of w to be the tuple

C(w) := [Cσ(w) ;Cβ(w) , Cγ(w) , Cδ(w)] .

We order complexities lexicographically. Note that for cyclicly reduced words the
σ-count closely reflects the length of the word. And for Cσ(w) ≥ 1, we have Cσ(w) =
Cβ(w) + Cγ(w) + Cδ(w) unless w = σ.

The induction starts with

C(w) ∈ {[0; 0, 0, 1] , [0; 0, 1, 0] , [0; 1, 0, 0] , [1; 0, 0, 0]} .
These cases correspond to the generators which are involutions.

Now assume that w has a higher complexity. We distinguish two cases:

Cσ(w) is even: Then w = (w1, w2) for two word whose σ-count is at most Cσ(w)
2

. Hence
induction applies.

Cσ(w) is odd: Now we will consider w2. This word has an even σ-count whence we
have

w2 = (w1, w2)

and our aim is to show that w1 and w2 have a smaller complexity that w.

We have subcases:

Cδ(w) > 0: In this case, Cσ(wi) < Cσ(w). The reason is δ = (1, β) and σδσ =
(β, 1). The 1-components do the shortening.

Cδ(w) = 0: In this case, no cancellations occur. The word wi will be cyclicly
reduced right away, and we can track where the letters come from. It
transpires that β-letters in w give rise to γ-letters in the wi and γ-letters
in w will provide δ-letters in the wi. Hence, we have

C(wi) = [Cσ(w) ; 0, Cβ(w) , Cγ(w)] < [Cσ(w) ;Cβ(w) , Cγ(w) , 0] .

This completes the induction. q.e.d.

Remark 10.3.14. Let us explicitly write out the low complexity cases:
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• σδ has order 4. Hence 〈σ, δ〉 is a dihedral group of order 8.

• σγ has order 8. Hence 〈σ, γ〉 is a dihedral group of order 16.

• σβ has order 16. Hence 〈σ, β〉 is a dihedral group of order 32.

10.4 Subgroup Structure

Definition 10.4.1. Let us define the following elements:

t := σβσβ = (γσ, σγ)

v := (βσδσ)2 = (t, 1)

w := (σβσδ)2 = (1, t)

Darn Technical Computation 10.4.2. We have the following conjugacy identi-
ties:

βtβ=σβσβ = t−1

σtσ= t−1

δtδ=w−1t

βwβ= t−1δtδ = t−1w−1t
σwσ= v
δwδ=w−1

βvβ= v−1

σvσ=w
δvδ= βσδσδβδσδσ = v.

In the last identity, we used σδσδ = δσδσ.
In particular, 〈t, v, w〉 is normal in G1.
Moreover, we have

βββ = β

σβσ = tβ

δβδ = β

In particular 〈β, t, v, w〉 is normal in G1.

Definition 10.4.3. We put

B := 〈β, t, v, w〉
K := 〈t, v, w〉

Lemma 10.4.4. Let πs : G1 → Aut(T •2 (s)) be the canonical projection. Then

|π3(G1)| = 128

|π3(B)| = 16

|π3(K)| = 8

In particular, the index of B in G1 is at least 8 and the index of K in B is at least 2.
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Proof.

1 2 3 4 5 6 7 8

We consider the canonical homomorphism from Aut(T •2 (3)) to Perm(1, . . . , 8) and
compute the images of the generators σ, β, and δ:

σ 7→ (1, 5)(2, 6)(3, 7)(4, 8)

β 7→ (1, 3)(2, 4)(5, 6)

δ 7→ (5, 6)

It requires a finite amount of work to check that the image is isomorphic to

(C2 o C2) o C2.

The order of this group is 128.
For the elements t, v, and w, we have

t 7→ (1, 4, 2, 3)(5, 7, 6, 8)

v 7→ (1, 2)(3, 4)

w 7→ (5, 6)(7, 8)

Now the amount of work for determining the images of K and B is finite, too. q.e.d.

Another Technical Computation 10.4.5. We write v, and w as products of con-
jugates of t and t−1.

w = tδt−1δ

v = σwσ

So v and w lie in the normal span of t.

Proposition 10.4.6. The subgroup B has index 8 in G1 and is the normal subgroup
generated by β.
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Proof. We know that B is normal and therefore contains the normal closure of β.
To prove the other inclusion, we observe that t lies clearly in the normal span of β.
We already saw (10.4.5) that u and v lie in the normal closure of t.

Now, we determine the index of B. Since B is normal, this amount to compute
the size of the group G1/B. Since β dies in this quotient, δ and γ become equal
whence G1/B is actually a factor of 〈σ, δ〉 which has order 8. Hence the index of B is
at most 8. We saw in (10.4.4) that the index is at least 8. q.e.d.

Exercise 10.4.7. Put D := 〈(σ, δ), (δ, σ)〉 ≤ G1 ⊗ G1. Show that the image of G1(1)
in G1 ⊗ G1 is

(B ⊗B)oD

where the action is conjugation in each component. Infer that G1(1) has index 8 in
G1 ⊗ G1.

Proposition 10.4.8. The subgroup K has index 16 in G1 and is the normal closure
of t. Moreover, K contains G1(3) as a subgroup of index 8.

Proof. It follows from (10.4.5) that K is the normal closure of t. In (10.4.4) we saw
that its index in B is at least 2. Hence it suffices to show that B/K has order ≤ 2.
This, however, is clear as the quotient is generated by the image of β which has order
2.

It follows that K is actually the preimage of its order 8-image in Aut(T •2 (3)) which
implies that G1(3) is a normal subgroup of K of index 8. q.e.d.

Corollary 10.4.9. For any element ξ ∈ G1, the coset Kξ can be effectively computed.

Proof. Since the coset G1(3) ξ depends only on the action of ξ on the vertices of
level 3, the proposition follows from the fact that G1(3) is a finite index subgroup in
K. q.e.d.

The subgroup K is very important because this is the fractal part of G1 whose
self-similarity is at the heart of virtually all theorems about the First Grigorchuk
Group.

Proposition 10.4.10. K ⊗K is a subgroup of K of index 4.

Proof. First, we observe

w = σβσδσβσδ = (γ, σ)(1, β)(γ, σ)(1, β) = (1, t).
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From this we get 1⊗K ≤ K as follows: For any ξ ∈ G1, there is at least one partner
ζ ∈ G1 such that (ζ, ξ) ∈ G1(1). Hence, we have

(ζ, ξ)(1, t)(ζ, ξ)−1 = (1, ξtξ−1) ∈ K.

As conjugation by σ swaps the coordinates, we also have K⊗1 ≤ K. Hence K⊗K ≤
K.

As for the index, we quote (10.4.7). We know that K has index 8 in G1(1) which
has index 8 in G1 ⊗G1. This accounts for an index of 64. On the other hand, K ⊗K
has index 256 = 162 in G1 ⊗ G1. Hence it is of index 4 in K. q.e.d.

Corollary 10.4.11. For any four elements ξ1, ξ2, ζ1, ζ2 ∈ G1, consider the pairs
(ξ1, ζ1) and (ξ2, ζ2) in G1 ⊗ G1. If ξ1 ≡ ξ2 mod K and ζ1 ≡ ζ2 mod K then

(ξ1, ζ1) ∈ G1 ⇐⇒ (ξ2, ζ2) ∈ G1.

Proof. Clear since K ⊗K ≤ K ≤ G1 and K ⊗K ≤ G1 ⊗ G1. q.e.d.

Remark 10.4.12. The statements (10.4.9) and (10.4.11) allow us to decide algorith-
mically if a pair (ξ, ζ) of elements in G1 defines another element of G1.

Remark 10.4.13. The group K has the strange property of containing its square as
a subgroup of finite index. Amazingly, one can do even better: Not only does there
exists a finitely generated group G that is isomorphic to G × G, but every finitely
generated group can be embedded into such a self-similar finitely generated group
[Meie82].

The self-similar structure of K rules out polynomial growth:

Corollary 10.4.14. G1 does not have polynomial growth.

Proof. Clearly G1 and K have the same growth. On the other hand, K contains
an isomorphic copy of itself of infinite index. This contradicts polynomial growth by
(1.4.27). q.e.d.

10.4.1 Finite 2-groups

Proposition 10.4.15. Let H ≤ K be a subgroup. Then K contains an isomorphic
copy of H o C2.
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Proof. Here is the idea: Since H ⊗H ≤ K ⊗K ≤ K we have a copy of H oC2 inside
G1, namely

(H ⊗H)o 〈σ〉 .
Unfortunately, σ 6∈ K. This is the problem we have to fix.

We need an element in K that acts somewhat like σ. So, note that K contains
the following element:

σ̃ := t4

= (γσ, σγ)4

= ((σδ, δσ), (δσ, σδ))2

= (((β, β), (β, β)), ((β, β), (β, β)))

= ((((σ, γ), (σ, γ)), ((σ, γ), (σ, γ))), (((σ, γ), (σ, γ)), ((σ, γ), (σ, γ)))) ∈ G1(4) .

This is an element of order 2 and spans a copy of C2.
Now let us work on the subgroup H. Using K ⊗K ≤ K, we descend to K32 ≤ K

and find two isomorphic copies of H, namely,

H0 := H ⊗ 1⊗ 1⊗ · · · ⊗ 1 ≤ K32

and
H1 := 1⊗H ⊗ 1⊗ · · · ⊗ 1 ≤ K32.

These copies commute, hence H0H1
∼= H ×H. Moreover,

σ̃H0σ̃ = H1.

Hence we have
H o C2

∼= (H0H1)o 〈σ̃〉 ≤ K

as desired. q.e.d.

Corollary 10.4.16. Every finite 2-group embeds into G1. In particular, G1 is not
periodic.

Proof. Every finite 2-group embeds into an iterated wreath product
((C2 o C2) o · · · o C2) o C2. This follows by induction from the following two facts:

1. [10.4.17] Every finite 2-group surjects onto C2.

2. [10.4.18] Every extension G of N by a finite group Q injects into N oQ. q.e.d.

Lemma 10.4.17. Let G be a finite 2-group. Then there is a surjective homomor-
phism G→→ C2.
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Proof. We have |G| = 2n. Consider the set

M :=
{
S ⊂ G 2n−1 = |S|}

and let G act on it by
gS = {gs s ∈ S} .

It is obvious that G cannot fix an element of M . An easy induction proves that

|M | =
(

2n

2n−1

)
≡ 2 mod 4.

Since powers of 2 are the only possible sizes for orbits, the congruence shows that one
of them has length 2. This induces the desired homomorphism. q.e.d.

Lemma 10.4.18. Let N ↪→ G →→ Q be a short exact sequence of groups with Q
finite. Then there is an injective homomorphism G ↪→ N oQ.

Proof. Choose a set-theoretic section σ : Q→ G. It is easy to check that

g 7→ (
(
σqgσqg

)
q∈Q , g)

defines an injective homomorphism. Here g denotes the image of g in the quotient
Q. q.e.d.

Now, we can prove that G1 is not linear without quoting a big theorem.

Proposition 10.4.19. A finitely generated linear torsion group G is periodic.

Proof. Using Mal’cev’s observation (10.2.35), we assume that G ≤ GLn(k) where k
is a purely transcendental extension of its prime field k0.

Consider g ∈ G ≤ GLn(k) and let µg(t) be its minimal polynomial. We aim to
show that only finitely many polynomials arise this way. This will imply the propo-
sition since the order of an endomorphism only depends on its minimal polynomial.

Since g is torsion, we have, say, gn = 1. Since every root of µg(t) is an eigenvalue
for g, we find, that roots of µg(t) are roots of unity. Hence these roots are algebraic
integers over k0. The coefficients of µg are elementary symmetric functions of the
roots. Since k is a purely transcendental extension of k0, these coefficients belong to
k0. For finite k0 we are done now.

For k0 = Q, everything takes place inside C. Thus, we can talk about absolute
values. Roots of unity have absolute value 1. This implies a bound on the absolute
values of coefficients of µg(t). On the other hand, these coefficients are integers, as
we have seen. Therefore, we have only finitely many numbers from which to chose
our coefficients. q.e.d.

Corollary 10.4.20. G1 is not linear.
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10.4.2 Congruence Subgroups

Put G1(s) := ker(G1 → Aut(T •2 (s))) .

Observation 10.4.21. Since every non-trivial tree automorphism has to act non-
trivially on some finite subtree, we have

⋂
s≥1

G1(s) = 1.

In particular, G1 is residually finite.

Definition 10.4.22. A congruence subgroup of G1 is a group that contains the
groups G1(s). for s large enough.

Remark 10.4.23. This definition is reminiscent of arithmetic groups. The congru-
ence subgroups of SLn(Z) are those normal subgroups that contain a kernel of a
congruence-homomorphism SLn(Z) → SLn(Z

m) . It turns out that for n ≥ 3, every
non-central normal subgroup in SLn(Z) is a congruence subgroup.

We aim to prove

Theorem 10.4.24 (Congruence Subgroup Property). Every non-trivial nor-
mal subgroup of G1 is a congruence subgroup.

Remark 10.4.25. This is to say that any quotient of G1 is a quotient of one of the
finite groups Aut(T •2 (s)). In particular, all proper quotients of G1 are finite, i.e., it is
just infinite.

Definition 10.4.26. A group is just infinite if it is infinite but all its proper quotients
are finite.

Lemma 10.4.27. The canonical homomorphism

G1(2)→ (G1 ⊗ G1)⊗ (G1 ⊗ G1) = G1
4

is onto in each coordinate.

Proof. Check

((σ, γ), (γ, σ)) = γσδσβ

((γ, σ), (σ, γ)) = σγσδσβσ

((β, β), (β, β)) = σγσγσγσγ

and recall that G1 = 〈σ, β, γ〉. q.e.d.
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Lemma 10.4.28. For any level s, the action of G1 on the set of vertices of level s is
transitive.

Proof. This is an easy induction. Since σ ∈ G1, we are done for s = 1.
On level s ≥ 2, we have a left half and a right half. The swap σ interchanges

theses halves. Hence we only have to see that the action on the left half is transitive.
This follows by induction from the fact that for any ξ ∈ G1, there is a partner ζ ∈ G
such that (ξ, ζ) ∈ G1(1). So we can act transitively on the left half by going into the
left subtree and choosing an appropriate ξ. q.e.d.

Proposition 10.4.29. For the commutator subgroup of K, we have

G1(5) ≤ [K,K] ≤ G1(3) .

Proof. Note that [K,K] is normal in G1 since inner automorphism take commutators
to commutators. As a normal subgroup, it is generated by the commutators of the
three generators t, v, and w. So let us compute these commutators first:

[v, w] = [(t, 1), (1, t)]

= 1

[v, t] = [(t, 1), (γσ, σγ)]

= (w, 1)

= ((1, t), (1, 1))

ξ :=
[
w, t−1

]
= [(1, t), (σγ, γσ)]

= (1, w)

= ((1, 1), (1, t))

From this computation we infer:

• [K,K] ≤ G1(3) since t ∈ G1(1).

• (1⊗ 1)⊗ (1⊗K) ≤ [K,K]. This follows from (10.4.27) and the fact that K is
the normal closure of t.

On the other hand, we have

σξσ = ((1, t), (1, 1))

βσξσβ = ((t, 1), (1, 1))

σβσξσβσ = ((1, 1), (t, 1))
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whence we have

(1⊗K)⊗ (1⊗ 1) ≤ [K,K]

(K ⊗ 1)⊗ (1⊗ 1) ≤ [K,K]

(1⊗ 1)⊗ (K ⊗ 1) ≤ [K,K]

It follows that K ⊗K ⊗K ⊗K ≤ [K,K]. Thus

G1(5) ≤ G1(4)⊗ G1(4) ≤ G1(3)4 ≤ K4 ≤ [K,K]

which proves the claim. q.e.d.

Exercise 10.4.30. Prove that

K ⊗K ⊗K ⊗K = [K,K]

and determine the index of [K,K] in K.

Lemma 10.4.31. Fix ξ = (ξ1, . . . , ξ2t) ∈ G1(t) − G1(t+ 1) such that ξ1 6∈ G1(1).
Then, for any two elements κ1, κ2 ∈ K, we have

[[ξ, κ′1] , κ
′
2] =

(
(
[
κ−1

1 , κ2

]
, 1), 1, . . . , 1

)
2t

where

κ′i := ((κi, 1), (1, 1), . . . , (1, 1))2t ∈ K.

Proof. We observe ξ1 = (ζ0, ζ1)σ, and compute

[ξ, κ′1] =
(
(κ−1

1 , ζ1κ
−1
1 ζ−1

1 ), 1, . . . , 1
)
2t

and the claim follows. q.e.d.

Corollary 10.4.32. G1 has trivial center.

Proof. As G1 acts transitively on the vertices of any fixed level (10.4.28), any non-
trivial element in G1 is conjugate to an element satisfying the hypotheses of (10.4.31).
For a central element, however, the double commutator had to be trivial which con-
tradicts G1(5) ≤ [K,K] (10.4.29). q.e.d.

Now we are ready to prove that G1 has the congruence subgroup property.
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Proof of Theorem (10.4.24). Let N be a normal subgroup and ξ ∈ N be a
non-trivial element.

As
⋂G1(s) = 1, we find t such that ξ ∈ G1(t)− G1(t+ 1) . Since the action of G1

on the vertices of any fixed level is transitive (10.4.28), we can conjugate ξ such that
it satisfies the hypotheses of (10.4.31). For arbitrary elements κ1 and κ2 of K, we
have

[[ξ, κ′1] , κ
′
2] =

(
(
[
κ−1

1 , κ2

]
, 1), 1, . . . , 1

)
2t .

This element belongs to the normal closure of ξ. Since G1(5) ≤ [K,K], it follows that

G1(5)⊗ 1⊗ · · · ⊗ 1 ≤ N

where we have 2t+1 factors. Using (10.4.28) again, it follows that

G1(5)⊗ · · · ⊗ G1(5) ≤ N.

This implies G1(t+ 1 + 5) ≤ N . q.e.d.

10.5 The Weight of Elements

To study Grigorchuk’s group G1, it is useful to use a modified metric on the Cayley
graph instead of the ordinary word metric.

Definition 10.5.1. Assign weights to the generators as follows:

σ 7→ 3, β 7→ 5, γ 7→ 4, δ 7→ 3.

The weight of a word w in the generators is the sum of the weights of its letters. The
weight ‖ξ‖ of an element ξ ∈ G1 is the weight of a minimum weight word representing
ξ.

Observation 10.5.2. We can regard the generators as one letter words or as group
elements. A priori the weight as words might be different from their weights as ele-
ments. However, since every two letter word has weight at least 6, the two notions of
weight coincide on the generators. q.e.d.

Observation 10.5.3. Weights are sub-multiplicative:

‖ξζ‖ ≤ ‖ξ‖ + ‖ζ‖ for all ξ, ζ ∈ G1. q.e.d.

Observation 10.5.4. The weight function defines a metric on the Cayley graph that
is bi-lipschitz equivalent to the word metric. q.e.d.
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Definition 10.5.5. We call a word in the letters {σ, β, γ, δ} reduced if the letter σ
alternates with the other letters.

Observation 10.5.6. Any minimum weight word is reduced. q.e.d.

Remark 10.5.7. Also, any minimum length word is reduced.

The importance of the weight stems from the following:

Lemma 10.5.8 (Weight Reduction). Let ξ = (ξ0, ξ1) ∈ G1(1) , then

‖ξ0‖ + ‖ξ1‖ ≤ 7

8
‖ξ‖ + 3.

In particular,

‖ξ0‖ + ‖ξ1‖ < ‖ξ‖ for ‖ξ‖ > 24,

which applies to all but finitely many elements.

Proof. Let w be a reduced four-letter word. Since σ occurs twice in w it represents a
pair (w0, w1) where wi is a two letter word or a single letter. It is easy to check that

‖w0‖ + ‖w1‖ ≤ 7

8
‖w‖ .

(The worst case is the word σβσβ = (γσ, σγ).)

If w is reduced, has an even number of σ-occurences and length at most three, we
can still check that

‖w0‖ + ‖w1‖ ≤ 7

8
‖w‖ + 3.

To finish the proof, let u be a minimum weight word representing ξ. Subdivide u into
blocks of length four possibly with a shorter block at the end. Apply the preceeding
considerations block by block. The claim follows. q.e.d.

Observation 10.5.9. Minimum weight representatives can be algorithmically com-
puted, i.e., given a word w, we can compute a minimum length word u representing
the same group element as w. q.e.d.
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10.5.1 The Conjugacy Problem

Theorem 10.5.10. The conjugacy problem for G1 is solvable.

We simplify the proof given in [GrWi00]. Put

Q(ξ, ζ) := {Kχ ξχ = ζ} .
Obviously, two elements ξ and ζ are conjugate if and only if the finite set Q(ξ, ζ) of
K-cosets is non-empty. We will show that this set can be computed.

Observation 10.5.11 (mixed case). If ξ = (ξ0, ξ1) and ζ = (ζ0, ζ1)σ, then ξ and ζ
are not conjugate. In this case

Q(ξ, ζ) = Q(ζ, ξ) = ∅. q.e.d.

The following two lemmas show how to compute Q(ξ, ζ) in the other two (pure) cases:
recall that by (10.4.11), we can effectively check whether a pair (χ0, χ1) defines an
element of G1.

Lemma 10.5.12. If ξ = (ξ0, ξ1) and ζ = (ζ0, ζ1), then

Q(ξ, ζ) = Q1 ∪Qσ

with:

Q1 := {K(χ0, χ1) Kχi ∈ Q(ξi, ζi) and (χ0, χ1) ∈ G1}
Qσ := {K(χ0, χ1)σ Kχi ∈ Q(ξi, ζ1−i) and (χ0, χ1) ∈ G1}

Proof. First, we compute the elements χ = (χ0, χ1) in Q(ξ, ζ). We find

ξχ = ζ

⇐⇒ (ξ0, ξ1)
(χ0,χ1) = (ζ0, ζ1)

⇐⇒
∣∣∣∣
ξχ0

0 = ζ0
ξχ1

1 = ζ1

∣∣∣∣ and (χ0, χ1) ∈ G1

Similarly, we compute the elements χ = (χ0, χ1)σ in Q(ξ, ζ). Here, we find

ξχ = ζ

⇐⇒ (ξ0, ξ1)
(χ0,χ1)σ = (ζ0, ζ1)

⇐⇒ (ξ0, ξ1)
(χ0,χ1) = (ζ1, ζ0)

⇐⇒
∣∣∣∣
ξχ0

1 = ζ0
ξχ1

0 = ζ1

∣∣∣∣ and (χ0, χ1) ∈ G1

From these two computations, the claim follows. q.e.d.
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Lemma 10.5.13. If ξ = (ξ0, ξ1)σ and ζ = (ζ0, ζ1)σ, then

Q(ξ, ζ) = Q1 ∪Qσ

with:

Q1 :=
{
K(χ0, ξ

−1
0 χ0ζ0) Kχ0 ∈ Q(ξ0ξ1, ζ0ζ1) and (χ0, ξ

−1
0 χ0ζ1) ∈ G1

}

Qσ :=
{
K(χ0, χ1)σ Kχ0 ∈ Q(ξ0ξ1, ζ1ζ0) and (χ0, ξ

−1
0 χ0ζ1) ∈ G1

}

Proof. This proof is similar. However, the computation is a little more tricky. First
we compute the elements χ = (χ0, χ1) in Q(ξ, ζ). We find

ξχ = ζ

⇐⇒ (ξ0, ξ1)σ
(χ0,χ1) = (ζ0, ζ1)σ

⇐⇒ (χ−1
0 , χ−1

1 )(ξ0, ξ1)σ(χ0, χ1) = (ζ0, ζ1)σ

⇐⇒ (χ−1
0 , χ−1

1 )(ξ0, ξ1)(χ1, χ0)σ = (ζ0, ζ1)σ

⇐⇒
∣∣∣∣
χ−1

0 ξ0χ1 = ζ0
χ−1

1 ξ1χ0 = ζ1

∣∣∣∣ and (χ0, χ1) ∈ G1

⇐⇒
∣∣∣∣

χ−1
0 ξ0χ1 = ζ0

χ−1
0 ξ0ξ1χ0 = ζ0ζ1

∣∣∣∣ and (χ0, χ1) ∈ G1

⇐⇒
∣∣∣∣

χ1 = ξ−1
0 χ0ζ0

χ−1
0 ξ0ξ1χ0 = ζ0ζ1

∣∣∣∣ and (χ0, χ1) ∈ G1

⇐⇒ Kχ0 ∈ Q(ξ0ξ1, ζ0ζ1) and (χ0, ξ
−1
0 χ0ζ0) ∈ G1

The case χ = (χ0, χ1)σ is similar and left to the reader. q.e.d.

Exercise 10.5.14. Verify that Kξ = Kζ implies K(ξ, χ) = K(ζ, χ), K(χ, ξ) =
K(χ, ζ), K(ξ, χ)σ = K(ζ, χ)σ, and K(χ, ξ)σ = K(χ, ζ)σ.

Proof of (10.5.10). We will show that the set Q(ξ, ζ) can be effectively computed.
Here the two elements are given as words in the generators. Since we can alogrith-
mically compute minimum weight representatives, we will always assume that group
elements are given as minimum weight words in the generators. Now the algorithm
is as follows:

1. If ‖ξ‖ ≤ 27 and ‖ζ‖ ≤ 27, return the value for

Q(ξ, ζ)

from a finite table.
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2. If ξ and ζ act differently on the first level of the infinite binary tree (i.e., one
swaps, the other does not), then return the empty set for Q(ξ, ζ). This condi-
tion is easy to check: The parity of σ-occurences in reduced words determines
whether an element acts trivially or as the swap on the first level.

3. If ξ and ζ both act trivially on the first level, rewrite

ξ = (ξ0, ξ1)

and
ζ = (ζ0, ζ1)

which can be done algorithmically. Recurse and compute Q1 and Qσ as in
(10.5.12). Return

Q(ξ, ζ) := Q1 ∪Qσ.

4. If ξ and ζ both act non-trivially on the first level, rewrite

ξ = (ξ0, ξ1)σ

and
ζ = (ζ0, ζ1)σ

which can be done algorithmically. Recurse and compute Q1 and Qσ as in
(10.5.13). Return

Q(ξ, ζ) := Q1 ∪Qσ.

The algorithm terminates because of the Weight Reduction Lemma (10.5.8). q.e.d.

10.5.2 Intermediate Growth

Theorem 10.5.15 (Grigorchuk). G1 has intermediate growth.

Proof. We already observed that G1 does not have polynomial growth (10.4.14).
Thus, we have to prove that its growth is subexponential. This will be done in
(10.5.17). q.e.d.

Grigorchuk’s group G1 was the first group of intermediate growth; and to this day,
most constructions for groups of intermediate growth are based on the principles used
in the design of G1.

Let G be a group with fixed finite generating set Σ. The growth function βΣ(n),
defined in (1.4.14), counts the number of group elements that can be connected to the
trivial element in the Cayley graph by a path of length at most n. Thus it depends
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164 CHAPTER 10. GRIGORCHUK’S FIRST GROUP

on the generating set. We have seen in (1.4.18) that different generating sets still
yield weakly equivalent (1.4.16) growth functions. In particular, it is independent
of the generating set whether a group has exponential, intermediate, or polynomial
growth; and in the case of polynomial growth, the degree of the polynomial also does
not depend on the generating set.

This argument extends to growth functions based on the weight-metric instead of
the word-metric:

Observation 10.5.16. Let β′(n) be the number of elements in G1 of weight ≤ n, and
let β(n) be the number of elements in G1 of word-length ≤ n. Then

β(n) ≤ β′(5n) for all n ∈ Z0

since every group element of length n has weight at most 5n: recall that the maximum
weight assigned to a generator is 5. q.e.d.

Thus, to prove sub-exponential growth for Grigorchuk’s group, it suffices to show:

Proposition 10.5.17. The function β′ is sub-exponential.

Since we have to rule out exponential growth, we need a better understanding of this
particular growth type. We will see that exponential growth functions in groups can
be characterized by a real number, their growth-rate.

Observation 10.5.18. The weight growth function β′ is sub-multiplicative, i.e.,

β′(n1 + n2) ≤ β′(n1) β
′(n2) for all n1 and n2.

The reason is, of course, that any word of weight ≤ n1 +n2 is a product of two shorter
words of weights at most n1 and n2, respectively. q.e.d.

Exercise 10.5.19. Let a1, a2, a3, . . . be a positive sub-additive sequence, i.e, suppose
ai+j ≤ ai + aj. Show that the Cesaro-limit limi→∞ a

i
exists and satisfies

lim
i→∞

a

i
= inf

i

ai
i
.

Corollary 10.5.20. Since β′ is positive and sub-multiplicative, its logarithm is sub-
additive. Hence, we can infer that

λ := lim
n→∞

n

√
β′Σ(n) = inf

n≥1

n
√
β′(n)

exists. We call this number, the growth rate of β′. Obviously, G1 has exponential
growth if only if the growth rate of β′ is strictly bigger than 1.
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Observation 10.5.21. Note that λ satisfies

λn ≤ β′(n) .

Moreover, any λ′ > λ yields an upper bound:

β′(n) ≤ λ′n for n large enough.

Multiplying by some constant, we can always turn this into a universal upper bound:

β′Σ(n) ≤ Cλn for all n. q.e.d.

This discussion shows that the growth in a group cannot oscilate between to bounds:
it is impossible that we have, say, the inequalities

2n ≤ β′(n) ≤ 3n

and that each bound is sharp infinitely many times.

Remark 10.5.22. The reasoning applies verbatim to growth functions based on
word-metrics, as well. Be warned, however, that the growth-rate is not an intrisic
invariant of the group: different generating sets (and more generally, different length
functions on the group) will yield different growth rates.

Now we can complete the proof of Theorem (10.5.15).

Proof of (10.5.17). We have to show that β′(n) is sub-exponential. The reason is
that there is no consistent choice for a growth rate. Thus, we obtain a contradiction
to (10.5.20).

Assume the function β′ is exponential with growth rate λ > 1. Fix a number L
slightly bigger than λ. Then we have

λn ≤ β′(n) ≤ O(Ln) .

Since every element of G1 − G1(1) can be pushed into G1(1) by multiplication by σ,
we find:

λn ≤ β′(n)
≤ |{ξ ∈ G1(1) ‖ξ‖ ≤ n+ 3}|
≤ ∑

i+j< 7
8
(n+3)+3 β

′(i) β′(j) by (10.5.8)

≤ (
7
8
(n+ 3) + 3

)2
O

(
L

7
8
(n+3)+3

)
by counting terms

= O
(
L

7
8
n
)
.

This says that L is not just slightly bigger than λ. A real contradiction can be
obtained by making the notion of “slightly bigger” more precise. q.e.d.
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10.6 Amenability

Since G1 has intermediate growth, we have the following:

Corollary 10.6.1. G1 is amenable.

Proof. Follows from (10.5.15) and (1.4.23). q.e.d.

Definition 10.6.2. The class EG of elementary amenable groups is the smallest
class containing all finite groups and the integers that is closed with respect to

1. taking subgroups

2. taking quotients

3. forming extensions

4. forming direct unions

The class NF consists of all groups that do not contain a non-abelian free sub-
group.

We denote the class of all amenable groups by AG.

Remark 10.6.3. From what we know already, it is immediate that

EG ⊆ AG ⊆ NF.

We will prove that G1 is not elementary amenable. The standard proof quotes the
fact that elementary amenable groups cannot have intermediate growth [Chou80].
Our approach, however, will be based on congruence subgroups.

Observation 10.6.4. All abelian groups are elementary amenable. q.e.d.

This observation gives rise to the following stratification of the class EG. Let EG0

be the class of groups that are finite or abelian. For any ordinal α > 0 define

EGα :=

{
G G is an extension or a direct union of groups in

⋃

β<α

EGβ

}
.

Proposition 10.6.5. Each stratum EGα is closed with respect to subgroups and quo-
tients.
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Proof. Let N ↪→ G →→ F be a short exact sequence of groups, and let G0 be a
subgroup of G. Then the following is a short exact sequence:

N0 ↪→ G0 →→ F0

where N0 := N ∩ G0 and F0 ≤ F is the image of G0 in F .
Moreover, if G0 is normal in G, then N0 is normal in N and F0 is normal in F

and the following diagram has an exact botton row by the 3× 3 lemma

N0 −−−→ G0 −−−→ F0y
y

y
N −−−→ G −−−→ Fy

y
y

N/N0 −−−→ G/G0 −−−→ F/F0

From this, it follows that if G is included in EGα because it is an extension of
groups in lower strata, then all its subgroups and quotients will be in EGα, too.

Dealing with direct unions is easy and we will leave it to the reader. q.e.d.

Corollary 10.6.6. EG =
⋃
αEGα.

Proof. The key observation is that
⋃
αEGα is closed with respect to subgroups,

quotients, extensions, and direct unions. Subgroups and quotients are immediate
from (10.6). Extensions are easy: you might have to go up one stratum. The only
case that requires thought is how to deal with a direct union. So let G =

⋃
iGi where

each Gi ∈ EGαi
for some αi. This is, where set theory kicks in and tells you that

there is an ordinal at least as big as each of these αi. So everything actually takes
place in one (sufficiently high) stratum. Then you have to move up once more, and
you will find G. q.e.d.

After these preparations, let us start with a simple consequence of (10.4.31).

Lemma 10.6.7. Fix ξ = (ξ1, . . . , ξ2t) ∈ G1(t) − G1(t+ 1), and let N be the normal
closure of ξ in G1(t). Then, N contains an embedded copy of G1(5).

Proof. Let us assume for a moment that ξ1 6∈ G1(1). In this case, (10.4.31) says that
for any two κ1, κ2 ∈ K, there are κ′1, κ

′
2 ∈ G1(t+ 1) such that

[[ξ, κ′1] , κ
′
2] =

(
(
[
κ−1

1 , κ2

]
, 1), 1, . . . , 1

)
2t .
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Thus,
[K,K]⊗ 1⊗ · · · ⊗ 1 ⊆ N.

Since G1(5) embeds into [K,K], the claim follows.
Now let us deal with the case ξ1 ∈ G1(1): By (10.4.28)we can conjugate ξ inside

G1 such that ξ1 6∈ G1(1). Since G1(t) is normal in G1, this operation puts us in the
situation above. q.e.d.

Theorem 10.6.8. For any s, the congruence subgroup G1(s) is not elementary
amenable. In particular, G1 is amenable but not elementary amenable.

Proof. Let α be minimal with G1(s) ∈ EGα for some level s. Since the stratum EGα

is closed with respect to subgroups, we may assume s ≥ 5.
Note that G1(s) is not a direct union of groups from lower strata since it is finitely

generated: after finitely many steps, all the generators are cought whence the direct
union is a finite ascending union. Thus, G1(s) is an extension

N ↪→ G1(s)→→ F

where N and F belong to lower strata.
Since N is a non-trivial normal subgroup in G1(s), (10.6.7) implies that there is

an embedding G1(s) ≤ G1(5) ↪→ N . Thus, N cannot belong to a lower stratum since
α was minimal. q.e.d.

10.7 Presentations

Here, we will outline a strategy for obtaining a presentation of G1. The starting point
is the group

Γ :=
〈
σ, β, γ, δ σ2 = β2 = γ2 = δ2 = βγδ = 1

〉 ∼= C2 ∗V

which has an obvious homomorphism onto G1. Let Γ1 and ΓK denote the preimages
of G1(1) and K, respectively, and meditate on the following diagram:

N ↪→ Γ
π−→ G1

↑ ↑
Γ× Γ

ψ=(ψL,ψR)←−−−−−− Γ1 →→ G1(1) → G1 ⊗ G1

↑ ↑ ↑ ↑
ΓK × ΓK ΓK →→ K ← K ⊗K

Our goal is do determine the kernel N of the epimorphism π.
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Let N0 := 1 ≤ Γ1 ≤ Γ, and put

Ni+1 := ψ−1 (Ni ×Ni) .

Note that N1 is the kernel of ψ. Put

N∞ :=
⋃
i

Ni.

Lemma 10.7.1. N = N∞.

Proof. The inclusion N∞ ≤ N is clear. To see the other inclusion, let w be a reduced
word in N . Note that for |w| ≥ 3, we have

|ψL(w)| ≤ |w|
2

and |ψR(w)| ≤ |w|
2
.

Since a non-trivial reduced word of length ≤ 2 in Γ is not in N , we infer that

ψdlog2(|w|)e(w) = (11, . . . , 12dlog2(|w|)e) .

This implies w ∈ Ndlog2(|w|)e ≤ N∞. q.e.d.

Observation 10.7.2. Since ψL(w) = ψR(σwσ) and β, γ, δ ∈ Γ1, all the Ni are

normal in Γ and we have Ni+1 = ψR
−1 (Ni)

Γ
. q.e.d.

Our next goal is to find a subset R that generates N as a normal subgroup of Γ,
so that we can turn the identity G1 = Γ/N into a presentation for G1. Our starting
point will be a finite set R1 ⊂ Γ that generates N1 as a normal subgroup in Γ: To
find R1, note that the image of ψ is a finitely presented group since it has finite
index in the finitely presented group Γ × Γ. Hence we can find a finite presentation
by the Reidemeister-Schreier method (A.1.12). Thus N1 is finitely generated as a
normal subgroup of Γ1 and we can find explicitly a finite set R0 that generates N1

as a normal subgroup of Γ1. Improving upon this, you can construct a finite, and
possibly smaller, set that generates N1 as a normal subgroup of Γ. We will not carry
this out, but a good choice for R1 is known.

Fact 10.7.3 ([Gri98]). R1 =
{
(σδ)4, (σγ)8, (σδσγσγ)4} generates N1 as a normal

subgroup of Γ.

The next step is to determine, in terms of R1, our normal generating set R for N .
The problem is: Ni+1 is defined as a preimage, thus we have everything backwards.
Taking iterated preimages does not lend itself to a nice description of a set R. The
following fact will allow us to overcome this obstacle.
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Miracle 10.7.4. The letter substitution

σ 7→ σγσ

β 7→ δ

γ 7→ β

δ 7→ γ

defines an endomorphism Φ : Γ→ Γ which satifies

Φ(w) = (1, w) for all w ∈ ΓK .

To see this, just evaluate Φ on t, v, and w and check that you obtain (1, t), (1, v),
and (1, w).

It follows that Ni+1 is the normal closure of Φ(Ni) . Hence, N is the normal closure
of R :=

⋃
i Φ

i im(R1) . Thus, the observation that Φ
(
(σδ)4) = (σγ)8 completes our

sketchy proof of

Theorem 10.7.5 ([Lys85],[Gri98]). The First Grigorchuk Group G1 has a presen-
tation

G1 =
〈
σ, β, γ, δ σ2 = β2 = γ2 = δ2 = βγδ = Φi

(
(σδ)4) = Φi

(
(σδσγσγ)4) = 1, (i ≥ 0)

〉
.

Definition 10.7.6. A group is co-Hopfian if every injective endomorphism is onto.

Exercise 10.7.7. The endomorphism Φ : Γ → Γ descends to an injective endomor-
phism of G1. The index of the image is infinite. Thus G1 is not co-Hopfian.

Remark 10.7.8. As G1 is finitely generated and residually finite, it is automatically
Hopfian (2.2.9).

Exercise 10.7.9. Show that, for all i ≥ 1,

Φi
(
(σδ)4) ∈ Ni+1 −Ni.

Corollary 10.7.10. For all i, the inclusion Ni ≤ Ni+1 is strict. In particular, G1 is
not finitely presented.

Proof. If G1 was finitely presented, all but finitely many relators in the presenta-
tion (10.7.5) would be redundant. Hence the inclusions Ni ≤ Ni+1 would stabi-
lize. q.e.d.
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Chapter 11

Thompson’s Group F

!!! FIXME: This chapter is currently being revised. !!!
Thompson’s Group F is a discrete subgroup of the homeomorphism group of the

Cantor set. It has the following infinite presentation:

F := 〈x0, x1, . . . xmxi = xixm+1 for i < m〉 .

[11.3.4] The abelianization of F is C∞ × C∞. Thus, F is infinite.

[11.4.4] F acts homeomorphically on R, R∞≥0 = [0,∞) and [0, 1].

[11.7.3] F is of type F∞.

[11.4.23] F has a solvable word problem.

[11.8.1] The conjugacy problem in F is solvable.

[11.4.24] F has exponential growth.

[11.4.25] F has trivial center.

[11.5.1] The commutator subgroup of F is simple and all proper quotients of F are
abelian.

[11.5.7] F is not residually finite.

[11.5.8] F is torsion free.

[11.6.1] F is not elementary amenable.

The standard reference for this group and some of its relatives is [CFP96].
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11.1 Associativity, Trees, and Homeomorphisms

Recall first that there is a correspondence of finite rooted planar binary trees and
parenthesized expressions. The word planar here means that the two children of a
node are distinguished: one of them is the right child, the other one is the left child.
Since all binary trees in this chapter will be rooted and planar, we will drop these
attributes from now on.

We just give an example that should make the correspondence clear:

A ((BC)D) corresponds to .

Note that we do not label the leaves of the tree with the letters from the expression
since we do not consider the letters an essential part of the expression, we are only
interested in the arrangement of parentheses. Thus the letters in a parenthesized
expression are insignificant.

The law of associativity

(AB)C = A (BC)

is usually regarded as an equation that is supposed to hold in a given algebraic struc-
ture for all values of A, B, and C. However, we can also regard it as a transformation
rule for parenthesized expressions:

ξ0 :





(AB)C → A (BC)

→

Of course, there is also the inverse transformation:

ξ−1
0 :





A (BC) → (AB)C

→

An easy induction on the length of expressions is used in every class on elementary
group theory to prove:

Theorem 11.1.1. Any parenthesized expression can be put in left-parenthesized nor-
mal form by a sequence of applications of the transformation ξ0 and its inverse ξ−1

0 .
As a consequence, we can move parentheses around at will. q.e.d.
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This theorem is not as precise as it could be: In the course of the sequence, we
might have to apply the transformation ξ0 and the inverse transformation to some
subexpression deeply nested inside of the expression that we want to change. In
fact, if we restricted the rules and allow only transformations on the top-level
expansion of a parenthesized expression, the theorem would be false.

Example 11.1.2. The transformation

ξ1 :





A ((BC)D) → A (B (CD))

→

cannot be realized as a sequence of applications of the transformations ξ0 and ξ−1
0 on

the top-level expansion of parenthesized expressions.

Theorem 11.1.3. Suppose we are allowed to apply the transformation rules
EffGenerator[0] and ξ1 as well as their inverses freely to the top level expan-
sion of every parenthesized expression, then we can put any expression into left-
parenthesized normal form. Consequently, we can move parentheses around at will.

Proof. The procedure is algorithmic. In a first step, we isolate the first letter as
shown in this example:

(((ab)(cd))e)f
x0−→ ((ab)(cd))(ef)
x0−→ (ab)((cd)(ef))
x0−→ a(b((cd)(ef))︸ ︷︷ ︸

right tail

)

For the second step, note that ξ1 acts like ξ0 applied to the right tail, i.e., we can
apply ξ0 to the right tail subexpression by applying ξ1 to the top-level expression. If
we had some magic sequence that, when applied to the top-level, acts as ξ1 applied
to the right tail, we could argue by induction on the length of the expression that the
tail can be put in normal form.

Thus, we construct a substitution rule ξ2 that acts like ξ1 in the tail:

ξ2 :





a(A ((BC)D)︸ ︷︷ ︸
tail

)

ξ−1
0−−→ (aA) ((BC)D)
ξ1−→ (aA) (B (CD))
ξ0−→ a (A (B (CD)))
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This completes the proof. q.e.d.

We have already illustrated the transformations ξ0 and ξ1 by pairs of binary trees.
Such a pair actually describes a homemorphism of the Cantor set as follows: Recall
that the Cantor set is the space of ends of the infinite binary tree.

︸ ︷︷ ︸
Cantor set

Every finite binary tree canonically embeds into the infinite binary tree: the root
maps to the root, and for every node already embedded its right child maps to the
right child of the image node and its left child maps to the left child of the image
node. The leaves of a finite binary tree, therefore, correspond to subtrees in the
inifite binary tree, which in turn determine subsets of the Cantor set, all of which are
homemorphic copies of the Cantor set.

↪→

A pair of binary trees that have the same number of leaves induces two decom-
positions of the Cantor set into an equal number of Cantor subsets. The induces
homeomorphism just identifies matching subsets in an order preserving way. The
following picture illustrates the rule. Given a pair of finite binary trees T top and T bot,
one of them represents the domain of the homeomorphism (this is the top tree) and
the other one, representing the range of the homeomorphism, is drawn upside down
(this is the bottom tree). Such a stack is called a tree diagram. This way, vertices
match so that corresponding chunks of the cantor set are aligned. The right hand of
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the picture illustrates how the homeomorphism actually works whereas the left hand
shows the allignment of leaf-vertices.

=

Definition 11.1.4. A homeomorphism of the Cantor set C that can be given by a
finite tree diagram is called a finite C-homeomorphism.

Example 11.1.5. We already met the finite C-homeomorphisms

ξ0 = , ξ1 =

Note that there are many tree diagrams representing the same finite C-
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homeomorphism. The following picture shows how this happens.

=

=

The diagram on the right is unreduced. We also call it a blow up of the left diagram.
Every diagram that has a pair of opposing carets is unreduced and removing such a
pair is called a reduction step. Every diagram can be reduced by a finite number of
reduction steps.

Theorem 11.1.6. Every finite C-homeomorphism is represented by a unique reduced
diagram.

The proof introduces a good deal of useful terminology.

Proof. We only have to argue uniqueness. Define standard dyadic subsets of the
Cantor set C recursively as follows: The set C is called the generation 0 standard
dyadic subset of C. A generation s+ 1 standard dyadic subset is a generation s
standard dyadic subset of either the left or the right half of C. We call the canonical
homeomorphism identifying two standard dyadic subsets of generations s and t a
standard map of degree t− s.
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Given a finite C-homeomorphism ξ, we say that a standard dyadic subset S of C
is ξ-maximal if ξ restricts to a standard map on S (in particular, the ξ-image of S is
also standard dyadic).

Note that every point of C is contained in precisely one of those ξ-maximal sets.
Moreover, since ξ is finite, there are only finitely many ξ-maximal sets. They form a
partition of C.

Note that the vertices of the infinite binary rooted tree corresopond to the standard
dyadic subsets of C. Now it is easy to see that there is a forest diagram whose top
forest corresponds to the dyadic decomposition of C into ξ-maximal subsets and that
every forest diagram for ξ reduces to this unique forest diagram. q.e.d.

Theorem and Definition 11.1.7. The set F of finite C-homeomorphisms forms a
group. This group is called Thompson’s group.

Proof. First note that F is closed with respect to taking inverses: Interchanging the
domain and the range tree of a tree diagram defines the inverse homeomorphism. It
remains to show that F is closed under composition of homeomorphisms.

In order to multiply finite C-homeomorphisms, we start with two tree diagrams
t1 = (T top

1 , T bot
1 ) and t2 = (T top

2 , T bot
2 ). Let us first consider the case where T bot

1 =
T top

2 . In this case, the bottom tree of the first factor (representing the image of the
homeomorphism) determines the same decomposition of the Cantor set C as the
top tree of the second factor (representing the domain of that homeomorphism).
Thus the composition of the two homeomorphisms is represented by the diagram
(T top

1 , T bot
2 ). So if T bot

1 = T top
2 , the composition of the homeomorphisms is itself a
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finite C-homeomorphism. The follwoing diagram illustrates what is happening here:

=

The general case now follows from our discussion of reducing and unreducing tree
diagrams: Any two finite binary trees have a common blow up. The minimal common
blow up is given as the union of their images in the infinite binary tree under their
canonical embeddings. Thus, any two tree digrams can be unreduces so that the
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bottom tree of the first matches the top tree of the other. Again, we give a picture:

= =

Please note that this proof is constructive and gives an algorithm for doing compu-
tations in Thompson’s group F . q.e.d.

Remark 11.1.8. It follows immediately from Theorem 11.1.3 that the homeomor-
phism group generated by ξ0 and ξ1 contains all finite homeomorphisms. Thus,
Thompson’s group F is generated by the elements ξ0 and ξ1.

Remark 11.1.9. The way (un)reducing relates to multiplication suggests that
Thompson’s group F ought to e the group of fractions of a monoid. This is in
fact true: For i ≥ 1, put

ξi := ξ−i0 ξ1ξ
i
0.
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The tree diagram for ξi is as follows:

︸ ︷︷ ︸
i strands

It will turn out that F is the group of fractions of the monoid generated by the ξi.
(??).

Exercise 11.1.10. Show that the following relations hold among the elements ξi:

ξmξi = ξiξm+1 for i < m.

11.2 The Positive Monoid and Forest Diagrams

Finite C-homeomorphisms preserve the left-to-right order on the Cantor set. In par-
ticular both endpoints 0 and 1 are fixed. We will remove the right endpoint. Then
we still have the complete left half of C, which is a copy of C. The right half is not
quite complete. We only have its left quarter, which is another copy of C. The right
quarter has a missing point, and so it goes. Thus C−{1} is a countable infinite union
of copies of C:

C − {1} =
∞⋃
i=0

Ci = N[0]× C

where Ci is a homeomorphic copy of C. The copy Ci is to the left of Cj if i < j. The
set C − {1} is the space of ends of the following forest with countably many binary
trees:
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We can now rewrite tree diagrams into forest diagrams. Given a finite C-
homeomorphism f and a tree diagram representing it, the right-most vertices in
the tree diagram represent f -matching chunks of C that contain 1. Removing the
right endpoint 1 turns these chunks into countable unions. Diagrammatically, the
transformation of a tree diagram into a forest diagram it looks as follows:

= =

Note that the right-most material is redundant. Thus, we delete it from the schematic
forest diagram far on the right.

Blow-up, reduction and multiplication of forest diagrams works precisely the way
it does for tree diagrams:

Definition 11.2.1. A forest diagram that does not contain a matching pair of sym-
metric trees is called reduced.

Exercise 11.2.2. Show that every finite C-homeomorphism is represented by a
unique forest diagram.

An element of F is called positive if its reduced forest diagram has a 0-hight
bottom forest, i.e., the bottom forest consits entirely of trivial trees.

Exercise 11.2.3. Show that the homeomorphism ξi is represented as follows:

ξ0 =

ξ1 =

ξ2 =

...

In particular, all the ξi are positive elements of F .
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Observation 11.2.4. In multiplying two positive elements, we have to blow up only
the first factor. Thus the bottom forest of the second factor remains trivial. We
conclude that the positive elements for a monoid inside F . q.e.d.

We can actually be more precise and work out an easy rule for multiplying positve
elements:

Observation 11.2.5. Let (T1, B1) and (T2, B2) be two reduced forest diagrams of
positive elements. Then the reduced forest diagram for the product has a trivial bottom
forest and its top forest is given as follows:

Number the leaves of T1 from left to right. Number the roots of T2 from
left to right. Identitify vertices that have been assigned equal numbers.

The reason is that this is precisely how to construct the blow up of the first tree
diagram whose bottom forest matches the top forest T2. q.e.d.

To put this as a slogan: In multiplication of positive element, you put the left factor
on top of the right factor.

Lemma 11.2.6. The reduced forest diagram for the element

ξa00 ξ
a1
1 · · · ξar

r

has trivial bottom forest and its top forest is given by the following criterion:

The leaf at position i has a right-ascending edge path of length a but not
of length a+ 1.

Proof. First, let us illustrate the criterion by one example:

ξ2 =

ξ2
2 =

ξ0ξ
2
2 =

ξ2
0ξ

2
2 =

This already is a proof: The criterion holds for the elements ξi and since we are
multiplying from the left by elements whose indices do not exceed the indices that
have been dealt with, we do not mess up the criterion in each step: recall that
multiplication from the left by ξi is dropping a caret whose left foot connects to the
ith root of the forest. q.e.d.
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Proposition 11.2.7 (Normal Form for Elements of the Positive Monoid).
Every positive element of F can be expressed uniquely as a product

ξa00 ξ
a1
1 · · · ξar

r

with non-negative exponents ai.

Proof. This follows immediately from (11.4.18) since we can encode every forest
diagram with trivial bottom forest by the associated sequence of exponents; and
vice versa, every sequence of exponents defines such a forest diagram for a positive
element. q.e.d.

Corollary 11.2.8 (Existence of Normal Forms in F ). Every element f ∈ F
can be expressed as

ξa0
0 ξ

a1
1 · · · ξar

r ξ
−bs
s · · · ξ−b11 ξ−b00

such that the following conditions are met:

1. ar 6= 0 and as 6= 0.

2. r 6= s.

3. Whenever ai 6= 0 and bi 6= 0, then at least one of ai+1 or bi+1 is 0.

Proof. Realize f by a reduced forest diagram, and let

ξa00 ξ
a1
1 · · · ξar

r

and

ξb00 ξ
b1
1 · · · ξbss

be the normal forms for the top and bottom forest, respectively. Then

f = ξa00 ξ
a1
1 · · · ξar

r ξ
−bs
s · · · ξ−b11 ξ−b00 .

The three conditions are restating the fact that our forest diagram is reduced: any
violation would indicate a pair of opposing carets.

Conversely, any way of writing f in normal form translates into a reduced forest
diagram for f , whence normal forms are unique as reduced forest diagrams are unique.

q.e.d.
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11.3 Presentations for Thompson’s Group

The goal of this section is to find various presentations for Thompson’s group F . The
main result is:

Theorem 11.3.1. Thompson’s group has the following infinite presentation:

F = 〈x0, x1, . . . xmxi = xixm+1 for i < m〉 .

Proof. For the sake of comparison, we need to distinguish the two groups the theorem
claims are equal. Thus, we put

G := 〈x0, x1, . . . xmxi = xixm+1 for i < m〉 .

By (11.1.10), the map
xi 7→ ξi

induces a homomorphism
G→ F.

The key observation is that these relations are sufficient to put every element into its
normal form: Note that, for i < m, the following relations all hold in G:

xmxi = xixm+1

x−1
i x−1

m = x−1
m+1x

−1
i

x−1
i xm = xm+1x

−1
i

x−1
m xi = xix

−1
m+1

We want to write a given word in the form

xa0
0 · · ·xar

r x
−br
r · · ·x−b00

where

1. ai, bi ≥ 0.

2. 0 ∈ {ar, br} 6= {0}.
3. If ai > 0 < bi, then {ai+1, bi+1} 6= {0} .

Note that we can use the last two relations to move the positive powers of generators
to the left and the negative powers to the right. In a second step, we use the first two
relations to sort the indices within the left and right half in increasing and decreasing
orders respectively. We now achieved a rough normal form, wherein the positive and
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negative powers occur in the right order. Then, we do all possible cancellations at the
center. This will ensure the second requirement. Finally, observe that the conjugacy
relation

xix
±1
m+1x

−1
i = x±1

m

allows us to ensure the final third requirement of normal forms.
We are now in a position to prove injectivity. So suppose that some word w in the

generators xi is mapped to the trivial element in F . Using the defining relations, we
can put w into normal form. But the normal of the trivial element is the empty word.
This implies that the relation w = 1 follows from the defining relations. q.e.d.

Exercise 11.3.2. Show that the following presentations also define Thompson’s
Group F :

Ffinite,a :=
〈
a, b baa = bab, babb = babb

a〉

Ffinite,b :=
〈
c, d dcc = dcd, dcdc = dcdd

〉
.

Here, we use the convention gh := h−1gh.

Corollary 11.3.3. Thompson’s Group F is finitely presented.

Proposition 11.3.4. F is infinite. In fact, the abelianization is F ab = C∞ × C∞.

Proof. From the presentation, we have

F ab = 〈x0, x1, . . . xixm = xmxi = xixm+1 for i < m〉
= 〈x0, x1, . . . x0x1 = x1x0, xi = xi+1 for 1 ≤ i〉

which is a presentation of C∞ × C∞. q.e.d.

11.4 An Action of Thompson’s Group F

Definition 11.4.1. Let R∞≥0 := [0,∞) be the positive real numbers including infinity.
The Group F (1

2
,R∞≥0) is the group of piecewise linear self-homeomorphism f of R∞≥0

satisfying:

1. Slopes change only finitely many times.

2. Slopes changes only a places in Z
[

1
2

]
.

3. Slopes are in 2Z.
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4. There is an integer s such that

f t = t+ s

for all sufficiently large t.

Remark 11.4.2. Since there is a piecewise linear homeomorphisms I→ R∞≥0 identi-
fying the unit interval an R∞≥0, we have an isomorphism

F (
1

2
,R∞≥0) = F (

1

2
, I) := PL

Z[ 1
2 ],2Z

(I)

of F (1
2
,R∞≥0) and the group F (1

2
, I) of piecewise linear self-homeomorphism of the

unit-interval with finitely many break points all in Z
[

1
2

]
and slopes in 2Z.

Note that F (1
2
, I) also is the strict subgroup of F (1

2
,R∞≥0) of those homeomorphism

that are the identity on [1,∞).

Let us have a closer look at those piecewise linear self-homeomorphisms of R∞≥0:

Example 11.4.3. The following maps are in F (1
2
,R∞≥0):

y

x0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

ξ0

y

x0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

ξ1

In general, we define ξi to be the function that has slope 1 on [0, i] and [i+ 2,∞] and
has slope 1

2
in [i, i+ 2].

Exercise 11.4.4. Prove that the map

xi 7→ ξi

extends to a group homomorphism

F → F (
1

2
,R∞≥0).
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11.4.1 Forest Diagrams

Definition 11.4.5. A standard dyadic interval is an interval of the form
[
n

2m ,
n+1
2m

]
where n and m are non-negative integers. Let us call a standard dyadic interval of
length 1 a standard unit interval. Note that this implies that its boundary points are
integer.

A finitary dyadic decomposition of R∞≥0 is a set {I0, I1, . . .} of standard dyadic
intervals satisfying:

1. R∞≥0 =
⊎
i≥0Ii.

2. For all i sufficiently large, Ii has length 1.

Let I and J be two finitary dyadic decompositions of R∞≥0. We say that J is a
refinement of I – and that I is coarser than J – if every interval in J is contained
in an interval from I.

The trivial finitary dyadic decomposition is the set of standard unit intervals in
R∞≥0. Every finitary dyadic decomposition is a refinement of the trivial one.

Observation 11.4.6. Note that if you pick a standard dyadic interval in a finitary
dyadic decomposition of R∞≥0 and replace it by its two halves, you obtain another
finitary decomposition. We call this operation an elementary split. The result of a
split is always a refinement. Vice versa, every refinement of a decomposition can be
obtained by finitely many splits.

Definition 11.4.7. An infinite binary forest is a directed tree where each vertex has
two outgoing edges one of which is labeled as left whereas the other is labeled as
right. The endpoints of these two edges are the children of the vertex. Each vertex
is the parent of its children. A finite binary forest is a subgraph of an infinite binary
forest all of whose vertices either have two children or none.

Example 11.4.8. The standard dyadic intervals form a forest F (2). Each standard
dyadic interval I is a vertex in F (2) and its two children are the left and right half of
I, respectively.

Observation 11.4.9. Every finitary dyadic decomposition I of R∞≥0 defines a sub-

forest F (2)
I ⊆ F (2): The intervals in I are vertices of F (2) and F (2)

I is the minimal
subforest containing all of them. Since a standard dyadic interval of length 2−m cor-
responds to a vertex of distance m to a root vertex, you can actually read off the
decomposition I from F (2)

I pretty easily by looking at the “spaces between the leafs”
as indicated in this example:
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We are interested in finitary dyadic decompositions because they provide a convenient
way of describing elements of F (1

2
,R∞≥0). The reason is that if you map a standard

dyadic interval linearly to another standard dyadic interval, the slope of the map is
a power of 2. Hence a pair (I,J ) of finitary dyadic decompositions describes an
element ϕ(I,J ) ∈ F (1

2
,R∞≥0) as follows: The left-most interval in I is mapped linearly

to the left-most interval in J , and from there you proceed from left to right matching
intervals in I with intervals in J .

Definition 11.4.10. A pair of finitary standard dyadic decompositions of R∞≥0 is
called a forest diagram.

Observation 11.4.11. If (I,J ) is a forest diagram representing ϕ, then (J , I) is a
forest diagram that represents ϕ−1.

Because of the way the intervals are supposed to match up, we draw the forest diagram
(I,J ) as a top forest with leafs pointing down and a bottom forest with leafs pointing
up such that leafs corresponding to matching intervals are aligned.

Example 11.4.12. The diagram
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represents the piecewise linear map that interpolates the chart

0 7→ 0
1

4
7→ 1

2
1

2
7→ 3

4
3

4
7→ 1

1 7→ 2

1
1

2
7→ 2

1

2

1
3

4
7→ 3

2 7→ 4

and has slope 1 thereafter.

There are, of course, different forest diagrams that define the same element of
F (1

2
,R∞≥0) – for instance, any symmetric forest diagram (I, I) defines the identity.

More general, any forest diagram can be expanded without changing the homeo-
morphism it represents by simultaneously splitting matching top and bottom leafs.
Conversely, deleting of matching symmetric subtrees will also not alter the homeo-
morphism.

Definition 11.4.13. A forest diagram that does not contain a matching pair of sym-
metric trees is called reduced.

Note that any non-reduced forest diagram contains a matching pair of carets:

The importance of forest diagrams derives from the following
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Theorem 11.4.14. Every element ϕ ∈ F (1
2
,R∞≥0) is represented by a unique reduced

forest diagram.

Proof. Let I be a closed interval with dyadic rational endpoints such that ϕ is linear
on I. Since the slope of ϕ|I is a power of 2, the image ϕ im(I) also has dyadic rational
endpoints. Since a sufficiently high power of 1

2
divides evenly into the endpoints of

I and ϕ im(I), we can find a decomposition of I into standard dyadic intervals that
maps to a decomposition of ϕ im(I) by standard dyadic intervals. Since ϕ has only
finitely many breakpoints, existence of a forest diagram representing ϕ follows from
the fact that for sufficiently large t, the map ϕ acts as an integer shift, which implies
that “far to the right” we can describe ϕ by matching standard unit intervals.

Given existence of forest diagrams representing ϕ, we obtain a reduced one by,
well, reducing any unreduced forest diagram for ϕ.

As for uniqueness, consider the maximum standard intervals that have the follow-
ing properties:

1. The homeomorphism ϕ restricts to a linear map.

2. The image of the interval under ϕ is a standard dyadic interval.

Observe that these intervals form a finitary dyadic decomposition I := Iϕ of R∞≥0

which in turn defines a subforest F (2)
ϕ of F (2) that is contained in the bottom forest

of any forest diagram for ϕ. On the other hand, it is obvious from the definition
that ϕ takes the decomposition I to a finitary dyadic decomposition J . It follows
that (I,J ) is a reduced forest diagram for ϕ to which any other forest diagram for
ϕ reduces. q.e.d.

11.4.2 Normal Forms

We have yet to prove that normal forms are unique. Eventually, this will follow from
(11.4.14), but we have to exhibit the interplay between reduced forest diagrams and
normal forms first.

Example 11.4.15. The elements ξi is represented by the following forest diagram:
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Definition 11.4.16. An element ϕ ∈ F (1
2
,R∞≥0) is called positive if its reduced forest

diagram has a depth 0 bottom forest, i.e., the homeomorphism ϕ takes every standard
unit interval standard dyadic interval.

Observation 11.4.17. Positive elements in F (1
2
,R∞≥0) form a submonoid, i.e., the

product of two positive elements is positive. In fact, it is easy to multiply the corre-
sponding forest diagrams. Let ϕ and ψ be two positive elements with top forests Iϕ
and Iψ, respectively. As the roots of Iψ correspond to standard unit intervals, they
match with the vertices of the bottom forest for ϕ. Hence the top tree for the product
ϕψ is obtained from Iϕ and Iψ by identifying the leafs of Iϕ with the roots of Iψ.
Here is an example:

× =

To put this as a slogan: In multiplication of positive element, you put the left factor
on top of the right factor. An immediate consequence is the

Proposition 11.4.18. The reduced forest diagram for the element

ξa0
0 · · · ξar

r

has trivial bottom forest and its top forest is given by the following criterion:

The leaf at position i has a right-ascending edge path of length a but not
of length a+ 1.
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Proof. First, let us illustrate the criterion by one example:

ξ2 =

ξ2
2 =

ξ0ξ
2
2 =

ξ2
0ξ

2
2 =

This already is a proof: The criterion holds for the elements ξi and since we are
multiplying from the left by elements whose indices do not exceed the indices that
have been dealt with, we do not mess up the criterion in each step. q.e.d.

Remark 11.4.19. Note that every forest is uniquely determined by the numbers ai
which give the maximum length of a right ascending edge path starting at leaf i.
Conversely, any sequence of non-negative integers with finite support determines a
forest. In particular, the set of positive elements is the submonoid generated by the
ξi.

Observation 11.4.20. In general, we have to think of a forest diagram as a quotient
of two positive elements. Since we are not in an abelian setting, we cannot easily mul-
tiply quotient. The rule for multiplying two forest diagrams, therefore, is to unreduce
both by splitting top an bottom leafs as to make the bottom forest of the left factor
equal to the top forest of the of the right factor. Once this is done, the isomorphic
forest cancel:
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Corollary 11.4.21. The homomorphism F → F (1
2
,R∞≥0) is surjective.

Theorem 11.4.22. The normal forms of (??) are unique.

Proof. First, recall that a normal form is a word of the form

xa0
0 · · ·xar

r x
−br
r · · ·x−b00 = (xa0

0 · · ·xar
r )

(
xb00 · · ·xbrr

)−1

where

1. ai, bi ≥ 0.

2. 0 ∈ {ar, br} 6= {0}.
3. If ai > 0 < bi, then {ai+1, bi+1} 6= {0} .

Condition (1) implies that both parts of the word give rise to a forest. Hence a normal
form defines a forest diagram in an obvious way. The other two restrictions imply
that this forest diagram is reduced. Since a reduced diagram is uniquely determined
by the homeomorphism it defines (11.4.14), the claim follows. q.e.d.

This theorem has many consequences.

Corollary 11.4.23. Thompson’s group F has solvable word problem. q.e.d.

Corollary 11.4.24. Thompson’s group F has exponential growth.
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Proof. x−1
0 and x1 generate a free monoid inside F . To see this, write a word, say

x−1
0 x−1

0 x−1
0 x1x1x

−1
0 x−1

0 x1x
−1
0 x−1

0 x1x1

and pull all the x−1
0 to the right as to obtain the normal form:

x4x4x6x8x8x
−7
0 .

As the subscripts remember how many letters x−1
0 passed by, two different words in

the monoid have different normal forms and, therefore, represent different elements
of F . q.e.d.

Corollary 11.4.25. F has trivial center.

Proof. Let f = xa0
0 · · · xar

r x
−br
r · · · x−b00 be a non-trivial element of F . We will show

that it does not commute simultaneously with x0 and x1.

a0 > 0 < b0: In this case, x−1
0 fx0 is in normal form and visibly not equal to f .

r > 0 and b0 = 0: Now, we have

x−1
0 fx0 = x−1

0 xa0
0 x

a1
1 · · · xar

r x
−br
r · · · x−b11 x0

= xa0
0 x

a1
2 · · · xar

r+1x
−br
r+1 · · ·x−b12

6= f.

r > 0 and a0 = 0: This is dealt with like the previous case.

r = 0: Now, f is a power of x0 and, therefore, does not commute with x1. q.e.d.

Exercise 11.4.26. Show that the centralizer of x1 in F is isomorphic to F × C∞.

Exercise 11.4.27. Does the group

〈. . . x−2, x−1, x0, x1, x2, . . . xmxi = xixm+1 for i < m〉

embed into F?
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11.4.3 A Remark on Tree Diagrams

As noted in (11.4.2), we have an isomorphism

F (
1

2
,R∞≥0) = F (

1

2
, I)

whence we can identify the three groups F , F (1
2
,R∞≥0), and F (1

2
, I). The notion of

forest diagram carries over to F (1
2
, I) as this group can be viewed as a the subgroup

of F (1
2
,R∞≥0) whose elements have support in [0, 1], i.e, these homeomorphism are the

identity outside I. In fact, since I corresponds to a root in F (2), the forest diagrams
for elements in F (1

2
, I) are somewhat degenerate in that the top an bottom forest are

almost trivial – only the first subtree can be non-trivial. Hence, when using F (1
2
, I)

as a model for F , one often uses tree diagrams instead of forest diagrams. There is,
however, not much of a difference.

11.5 Subgroups and Quotients

We already saw (11.4.25) that F has trivial center. In this section we will prove the
following:

Theorem 11.5.1. The commutator subgroup of group F is simple, and all proper
quotients of F are abelian.

These two claims are strongly related as shown by the following:

Lemma 11.5.2. If a group G has trivial center and its commutator subgroup [G,G]
is simple, then every proper quotient of G is abelian.

Proof. Let N E G be a non-trivial normal subgroup, and let n ∈ N − {1} be a
non-trivial element. As G has trivial center, there is an element g ∈ G that does not
commute with n. Hence [n, g] ∈ [G,G]∩N proves that N ∩ [G,G] is non-trivial. This
is obviously a normal subgroup of G and hence a normal subgroup of [G,G]. As the
latter group is simple, we have N ∩ [G,G] = [G,G] whence [G,G] ≤ N. Hence G/N
is abelian. q.e.d.

Thus, we only have to show that the commutator subgroup [F, F ] is simple. For this
reason, we shall examine the commutator subgroup in various models. We start with
the presentation.

Proposition 11.5.3. An element f = xa0
0 · · ·xar

r x
−br
r · · ·x−b00 is in the commutator

subgroup if and only if

a0 − b0 = 0 = a1 + · · ·+ ar − br − · · · − b1.
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Proof. The canonical projection F → F ab = Z×Z sends x0 to (1, 0) and xi to (0, 1)
for i ≥ 1. Hence the claim follows from the fact that

a0 − b0 = 0 = a0 + · · ·+ ar − br − · · · − b0
is equivalent to

a0 − b0 = 0 = a1 + · · ·+ ar − br − · · · − b1
which is easily seen. q.e.d.

This characterization translates into the other models for F straightforwardly.

Corollary 11.5.4. A homeomorphism ϕ ∈ F (1
2
,R∞≥0) is in the commutator subgroup

if and only if it is the identity close to 0 and close to ∞.

Proof. Write ϕ = ξa00 · · · ξar
r ξ

−br
r · · · ξ−b00 . The slope at 0 translates into a0−b0 whereas

a0 + · · ·+ ar − br − · · · − b0 is the shift realized by ϕ for large arguments. q.e.d.

The same routine translation from one model to the next gives:

Corollary 11.5.5. A homeomorphism ϕ ∈ F (1
2
, I) is in the commutator subgroup if

and only if it is the identity close to 0 and close to 1. q.e.d.

Lemma 11.5.6. Let f = xa00 · · · xar
r x

−br
r · · · x−b00 be an element of F with s := a0 +

· · · + ar − br − · · · − b0 > 0. Then the normal closure of f contains the commutator
subgroup [F, F ].

Proof. Let N be the normal closure of f . Then, for sufficiently large M , we have

f−1xMf =
(
xa00 · · · xar

r x
−br
r · · · x−b00

)−1
xMx

a0
0 · · · xar

r x
−br
r · · · x−b00

= xM+a0+···+ar−br−···−b0
= xM+s.

Hence we have
xM ≡ xM+s mod N.

Conjugating this congruence by a high power of x0, we infer:

x1 ≡ x1+s mod N

Conjugating by a high power of x1, we finally obtain:

x1 ≡ x2 = x−1
0 x1x0 mod N.

Hence x0x1 ≡ x1x0 mod N which implies that the factor F/N is abelian since x0

and x1 generate F . q.e.d.
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Proof of Theorem (11.5.1). As we have already seen (11.5.2), we only have
to prove that the commutator subgroup [F, F ] is simple. So let N E [F, F ] be a
non-trivial normal subgroup and let n be a non-trivial element in N .

Working in the unit interval model for F = F (1
2
, I), we draw n:

n = .

Let J ⊂ I be the support of n. Then the picture becomes this:

n = .

Note that F (1
2
, J) is an isomorphic copy of F (1

2
, I) inside

[
F (1

2
, I), F (1

2
, I)

]
. Moreover,

n satisfies the hypothesis of (11.5.6) inside F (1
2
, J). Hence

[
F (

1

2
, J), F (

1

2
, J)

]
≤ N ∩ F (

1

2
, J).

On the other hand, any element of
[
F (1

2
, I), F (1

2
, I)

]
is conjugate inside[

F (1
2
, I), F (1

2
, I)

]
to an element of

[
F (1

2
, J), F (1

2
, J)

]
. Hence the normal clo-

sure of
[
F (1

2
, J), F (1

2
, J)

]
in

[
F (1

2
, I), F (1

2
, I)

]
is the whole commutator subgroup[

F (1
2
, I), F (1

2
, I)

]
. Hence

[
F (1

2
, I), F (1

2
, I)

]
= N . q.e.d.

Corollary 11.5.7. Thompson’s group F is not residually finite.

Proof. Since F is infinite, any finite quotient is proper whence abelian. Therefore, ev-
ery co-finite subgroup contains the commutator subgroup which is non-trival. q.e.d.

Exercise 11.5.8. Show that F is torsion-free.
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Theorem 11.5.9. Every non-abelian subgroup of F contains a copy of C∞ × C∞.

Proof. Let f and g be two elements that do not commute. We have to find a copy
of C∞ × C∞ in the subgroup 〈f, g〉.

Since f has only finitely many break points, the closed set

{t f(t) = t}

decomposes into finitely many intervals. As the same holds for g, it follows that the
open set

{t f(t) 6= t or g(t) 6= t}
decomposes into finitely many open intervals I0, . . . , Ir.

We consider the commutator f0 := [f, g]. We will find a conjugate of f0 inside
〈f, g〉 that commutes with f0. The key idea is to conjugate such that the support of
f0 in I0 is moved off itself, which is possible since this homemomorphism f0 is the
identity in small neighborhoods of the endpoints of I0. So we only have to prove the
existence of this conjugating element.

Let t be any point in Ii. Obviously, inf 〈f, g〉 · t is a global fix point for the action
of 〈f, g〉 in the closure of Ii. Clearly, it has to be inf Ii. Hence this points is a limit
point of the orbit of t. Hence the problem in the preceding paragraph has a solution
and we can conjugate f0 as to move its support off itself inside I0. Call this conjugate
g0.

Now, consider f1 := [f0, g0]. By construction, this element is the identity on I0.
So we run the same argument as above in the interval I1. This way, we can take care
of all intervals. Eventually, we have two elements fr and gr that commute. q.e.d.

Corollary 11.5.10. F does not contain non-abelian free groups. q.e.d.

11.6 Amenability

It is not known whether F is amenable. However, if F is amenable, it is at least not
obviously so.

Theorem 11.6.1. Thompson’s group F is not elementary amenable.

Proof. We prove F 6∈ EGα for all α. And, of course, this is done by transfinite
induction or contradiction. We proceed by contradiction. So assume there was an
ordinal α with F ∈ EGα. Then we can take α to be minimal with this property.

Since F is neither abelian nor finite, α > 0 and so F sneaked into EGα as an
extension or as a direct union of groups in lower strata. The direct union possibility is
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ruled out since F is finitely generated. Thus, we have to deal with ways of representing
F as an extension.

Let Nβ ↪→ F →→ Q0 be a short exact sequence where Q0 is a proper quotient.
By (11.5.1), Q0 is abelian. Hence Nβ ∈ EGβ contains [F, F ]. Hence [F, F ] ∈ EGβ.
However, since [F, F ] contains a copy of F , it follows that F ∈ EGβ. Thus, α was
not minimal. q.e.d.

11.7 Finiteness Properties

We will construct a very nice (i.e., contractible) cube complex upon which F acts.
The construction is due to K.S. Brown and R. Geoghegan [BrGe84].

This construction starts from the Cayley complex for the infinite presentation

F̃ := 〈x0, x1, . . . xmxi = xixm+1 for i < m〉 .
Thus, we have a vertex for each element in F . From each vertex countably many edges
issue, and the relations give rise to squares. This complex ΓF̃ is simply connected.
Our goal is to fill in cubes as to kill off higher homotopy groups. To do this, we fill
in all the obvious cubes: For any square whose edges are labeled by j, k and k + 1
with j < k, and any i < j, we have a cube

We continue in higher dimensions. Thus for each vertex in ΓF̃ and each tupel
(q0 < q2 < · · · < qr), we have a cube issuing from that vertex whose edges are la-
beled by the indices qi. Note that each of these cubes has a unique vertex with all
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edges pointing away (the source) and a unique vertex with all edges coming in (the
sink). Let Y denote the cube complex constructed this way, and put X := F\Y .

Theorem 11.7.1 ([BrGe84]). Y is contractible.

Proof. Let P be the monoid of positive elements in F and let Y+ be the subcomplex
of Y spanned by P ⊂ Y . This is the complex formed by all those cubes whose sink
is in P .

Claim A. Y+ is contractible.

Proof. We will do Morse theory. There is an obvious height function on the vertices:
the length of the positive word – or alternatively, the number of non-leaf nodes
in the forest representing that vertex. Moving along an outgoing edge increases
the height by 1. Thus, the height extends linearly to the cubes. This is a
combinatorial Morse function as it is non-constant on edges. Since the minimal
set is just one point (the identity vertex), contractibility of Y+ would follow
from contractibility of descending links (C.2.11).

The descending link is the part of the link in a vertex v spanned by its incoming
edges. These correspond to splitting off a generator on the right, i.e., deleting
a terminal caret in the forest. Thus we can tell which incoming edges issue
from vertices in Y+. More importantly, we see that we can delete all terminal
carets and find a source in Y+ which gives rise to a simplex in the link of v that
connects all the descending vertices. Thus, we proved that the descending link
is a simplex and therefore contractible. The claim follows. 2

Now we consider the cover of Y by translates fY+.

Claim B. For any finite set of elements f0, . . . , fm ∈ F , there is an element f ∈ F
such that

f0Y+ ∩ · · · ∩ fmY+ = fY+.

Proof. This follows from the corresponding claim about translates fP which in turn
follows by induction from the claim that for any f ∈ F , there is a g ∈ P such
that

P ∩ fP = gP.

Writing f as a pair of trees, we see that in order to find a positive right multiple
of f , we first have to annihilate the bottom tree. Afterward, we will end up
with a right multiple of the top tree. Thus, g is the element represented by the
top tree of f . 2
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From this claim, it follows at once, that the translates fY+ form a cover of Y by
contractible subcomplexes such that any intersection of these subcomplexes is con-
tractible. The nerve of the cover is the simplex with vertex set F . Hence, by (C.2.17),
the space Y has the homotopy type of a big simplex. q.e.d.

Theorem 11.7.2. Y is CAT(0).

Proof. The edges around each vertex v come in pairs: For each generator xi, there is
one incoming edge and one outgoing edge, both labeled by i. We denote the incoming
edge by the pair (i, 1) and the outgoing edge by (i, 1). These pairs represent the
vertices in Lk(v). In order to determine the simplices, we have to know which of
these edges span a cube. Obviously, there are no cubes that involve both, (i, 0) and
(i, 1). Hence we can represent cubes in the star of v by tupels

((q1, ε1), . . . , (q1, ε1))

with qi < qi+1.
The following picture assumes i < j and shows the edge labels of all possible

squares involving these to labels.

The incoming edges only can form a square if i < j − 1. In general, a tupel

((q1, ε1), . . . , (q1, ε1))
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of edges spans a cube if qi < qi+1 − εi.
This condition, however, is satisfied for a tupel if and only if it is satisfied for

all of its subtupels of size two. This is, a set of vertices in Lk(v) spans a simplex if
and only if any two of them are joined by an edge. Thus, Lk(v) is a flag complex.
It follows from Gromov’s lemma that Y is CAT(0) provided it is simply connected.
That, in turn follows from the fact that the 2-skeleton of Y is a Cayley complex for
F . q.e.d.

We give a description of the quotient X. This is also a cube complex. X has one
vertex. The edges in the 1-skeleton are indexed by non-negative integers. We index
higher dimensional cubes by the indices of the edges pointing toward the sink of the
cube. Then, an ascending sequence

q := (q1, . . . , qm)

describes a cube if and only if 0 ≤ q1 and qi + 2 ≤ qi+1. The 2m faces of the cube q
are given by the boundary operators

∂+
i q := (q1, . . . , qi−1, qi+1, . . . qm)

∂−i q := (q1, . . . , qi−1, qi+1 − 1, . . . qm − 1) .

Theorem 11.7.3. X is homotopy equivalent to a CW-complex that has one vertex
and two cells in each dimension ≥ 1.

Proof. We distinguish three types of cells. For each dimension ≥ 1, we have
two essential cells (0, 3, . . . , 3m− 3) and (1, 4, . . . , 3m− 2). We call an m-cube
q = (q1, . . . , qm) collapsible if there is an index i such that qi+1 6= qi + 3 and such
that, for the last index j with that property, qj+1 = qj + 2. In this case

∂+
j q = (q1, . . . , qj−1, qj+1, . . . qm)

is called the free face of the collapsible cube q. Cells that are neither essential nor
collapsible are considered redundant.

Observe that the free face ∂+
j q of a collapsible cube q is redundant since qj+1 ≥

qj−1 + 4 and qi+1 = qi + 3 for all i > j + 1.
On the other hand, each redundant cell p = (p1, . . . , pm) is the free face of a unique

collapsible cell since for the last index i with pi+1 6= pi + 3, we have pi+1 ≥ pi + 4
whence

(p1, . . . , pi, pi+1 − 2, pi+1, . . . , pm)

is a collapsible cell with free face p – note that we have to allow i = 0 here because
of cubes like (2, 5, 8, . . .).
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Now consider the collapsible cube q = (q1, . . . , . . . qm) with free face ∂+
j q which is

to say that we have

qi = qj + 3 (i− j)− 1

for all i > j. The following statements are easy to see:

1. For i < j, the face ∂−i q is collapsible.

2. For i > j, the tupel ∂−i q precedes the free face ∂+
j q in the lexicographic order.

3. Also, ∂−j q precedes the free face in the lexicographic order.

We define X−0 := X+0 := X0, and inductively

X−m := X+m−1 ∪ essential cells in dimension m

X+m := X−m ∪ redundant cells in dimension m ∪ collapsible cells in dimension m+ 1.

Obviously, we have

X+m−1 ⊆ X−m ⊆ Xm ⊆ X+m.

Moreover, we have X−m w X+m since the latter is obtained from the former by a
transfinite sequence of elementary expansions which are performed according to the
lexicographic order. Since the lexicographic order is a well ordering, this actually
makes sense.

Now, we are ready to construct the space Z which is homotopy equivalent toX but
uses at most two cells per dimension. Put Z0 := X0. Higher skeleta are constructed
by induction together with the homotopy equivalence. So assume we have already a
homotopy equivalence

πm−1 : X+m−1 → Zm−1.

Put

Zm := Z ∪Bm
0 ∪Bm

1

where the attaching maps are induced by the maps that embed the boundaries of the
two essential m-cubes in X+m−1. Thus we obtain a homotopy equivalence

πm : X−m → Zm

and X−m w X+m gives us the equivalence

πm : X+m → Zm

which completes the proof. q.e.d.
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11.8 The Conjugacy Problem

Theorem 11.8.1. The conjugacy problem in F is solvable.

Proof. ... q.e.d.
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Appendix A

Combinatorial Group Theory:
Nuts and Bolts

A.1 Generators and Relations

A.1.1 Generating Sets / Cayley Graphs

Definition A.1.1. Let S be a set of elements in the group G. The intersection of all
subgroups H ≤ G containing S is a subgroup of 〈S〉 ≤ G. It is called the subgroup
generated by S. The subset S is called a generating set for 〈S〉.

Definition A.1.2. A graph Γ is a map τ :
−→E Γ → VΓ where VΓ is a set (its elements

are called vertices) and
−→E Γ is a free Z2-set, i.e., a set together with a fixpoint free

involution op :
−→E Γ → −→E Γ. The elements of

−→E are (oriented) edges. The elements of

EΓ :=
−→E Γ/op are called (geometric) edges.

An orientation on Γ is a section o : E → −→E .

We define another map ι :
−→E Γ → VΓ by ι(~e) := τ(op(~e)). The map τ assigns to

each edge its terminal vertex whereas ι provides the initial vertex of the edge.

Definition A.1.3. A G-labeling of a graph Γ is a map φ :
−→E Γ → G satisfying

φ(op(~e)) = φ(~e)−1 .

Definition A.1.4. Let G be a group with finite generating system Σ. The (left)
Cayley graph Γ := ΓGΣ is constructed as follows: The set VΓ is G. The set of oriented

edges is
−→E Γ := G × Σ × {±1}. We have to specify a fixpoint free involution op :
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−→E Γ → −→E Γ and an endpoint map τ . For any oriented edge ~e = (g, σ, ε)

op(~e) :=
(
gσ, σ−1,−ε)

τ(~e) := g

The set of geometric edges is obviously isomorphic to G× Σ and the map

(g, σ) 7→ (g, σ, 1)

defines an orientation on Γ. We regard this as the standard or positive orientation.
Note that G acts from the left on ΓGΣ , and this action preserves the orientation.

There is a corresponding notion of a right Cayley graph upon which G acts from
the right.

For an oriented edge ~e = (g, σ, ε), we call σ is the label of ~e. We denote the label
of ~e by σ~e. When we talk about labels of geometric edges, we either (silently) identify
them with the positively oriented edges or there is an implied orientation for the edge
(e.g., when the edge is part of a directed path).

Any directed path in Γ reads a word in Σ ]Σ−1: while you are moving along the
path, you pick up the labels of the oriented edges you are traveling. Note that all
G-translates of a given path read the same word. On the other hand, any word w
over Σ ] Σ−1 defines a G-orbit of paths: For any vertex in v ∈ Γ there is a unique
directed path starting at v that reads w.

A.1.2 Defining Relations / Cayley Complexes

Definition A.1.5. Let G = 〈Σ〉 be a group and Γ = ΓGΣ. A Relation in G over Σ is
a word w over Σ ] Σ−1 that evaluates to 1 ∈ G by multiplication of its letters.

Note that relations in G correspond to loops in Γ. Therefore, a relation r over Σ
determines a G-orbit of loops in Γ. We can G-equivariantly glue in a family Dr of
2-cells killing theses loops: The 2-cells are polygons whose boundaries are reading r.

A set R of relations defines G if glueing in
⋃
r∈RDr kills the fundamental group

of Γ. In this case, the resulting space

ΓΣ,R(G) := Γ ∪
⋃
r∈R
Dr

is called the Cayley complex of the presentation P = 〈Σ R〉 which is said to present
the group G.

Note that G acts freely (from the left) on ΓΣ,R and the quotient

KP := G\ΓΣ,R(G)
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is called the presentation complex or standard two-complex of the presentation P .
Moreover, ΓΣ,R(G) is the universal cover of KP and G acts as the group of deck
transformations. In particular, every group is the fundamental group of a 2-complex
since

G = π1(KP) .

Two presentations are equivalent if they present the same group (or more precisely,
if they present isomorphic groups).

Fact A.1.6. Let Σ generate G. A set R of words over Σ]Σ−1 defines G if and only
if it generates the kernel of the canonical projection

FΣ]Σ−1 → G

as a normal subgroup of FΣ]Σ−1.

Fact A.1.7. Let 〈Σ R〉 be a presentation for G. Then, a word w is a relation in
G over Σ if and only if, when interpreted as an element of the free group FΣ]Σ−1, it
represents an element of the normal subgroup generated by R.

Fact A.1.8. The “calculus of presentation” is given by the following rules.

1. Let 〈Σ R〉 present G, and let R′ be a set of relations in G over Σ. Then

〈Σ R ∪R′〉

also presents G. This process is called adding redundant relations. There is an
obvious inverse process of deleting redundant relations.

2. Let 〈Σ R〉 present G, and let w be a word over Σ ] Σ−1 that represents the
element g ∈ G, then 〈

Σ ∪ {g} R ∪ {
wg−1

}〉

also presents G. This process is called adding a generator and a defining
equation. You can also add many generators with their defining equations at
the same time – even infinitely many.

The inverse passage from a presentation of the form

〈
Σ ∪ {g} R ∪ {

wg−1
}〉

to 〈Σ R〉 is the deletion of a redundant generator. Again, you can delete many
generators at the same time.
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3. Two presentations are equivalent if and only if you can pass from one to the
other by a finite chain of the following processes: adding redundant relations,
deleting redundant relations, adding generators and defining equations, deleting
redundant generators.

Remark A.1.9. A relation of the form wg−1 is often written (and always read) as
w = g for this is what it says.

Let us discuss the question of how to come up with presentations. In addition to
ad hoc methods (which are at times unavoidable and can be very powerful too), there
are two geometric principles.

Theorem A.1.10. Let G act by homeomorphisms on the 1-connected space X, and
let U be an open 0-connected subset in X such that X = GU . Put

Σ := {g ∈ G U ∩ gU 6= ∅}
and

R := {xy = (xy) x, y ∈ Σ and U ∩ xU ∩ xyU 6= ∅} .
Then P := 〈Σ R〉 is a presentation for G.

Proof. Let G̃ be the group presented by P . Define X̃ =
⊎
g∈G̃gU/ ∼ where

g0u0 ∼ g1u1 :⇐⇒ g1 = g0x, u0 = xu1 ∈ U ∩ xU for some x ∈ Σ.

Let us call x a witness for the equivalence.
It is not hard to show that ∼ is an open equivalence relation. For transitivity, you

have to use the defining relations for G̃: If

g0u0 ∼ g1u1

with witness x ∈ Σ and
g1u1 ∼ g2u2

with witness y ∈ Σ, then

u0 = xu1 = xyu2 ∈ U ∩ xU ∩ xyU 6= ∅
whence (xy) ∈ Σ and R contains the relation xy = (xy). Then

g0u0 ∼ g2u2

with witness (xy).
Since U is path-connected, so is X̃. This is clear from the picture:
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There is an obvious group homomorphism G̃→ G which induces a map X̃ → X.

This map is a covering map, and the group of deck-transformations is ker
(
G̃→ G

)
.

Since X is 1-connected and X̃ is a connected cover, the projection is an isomorphism,
the group of deck-transformations is trivial, and G̃ = G. q.e.d.

The second geometric source of presentations are 2-complexes. Their fundamental
groups have presentations that can be read off the complex easily. This methods goes
way back to Poincare, was described in a more precise fashion by Tietze, and works
because of the Seifert-Van-Kampen theorem.

Fact A.1.11. Given a 2-complex X, a presentation for π1(X) can be read off as
follows:

1. Choose a spanning tree T for the 1-skeleton.

2. Introduce a formal generator for each edge in X.

3. For each 2-cell read off a relation along its boundary.

4. Finally declare trivial each generator that comes from an edge in T .

Let H ≤ G = 〈Σ R〉 . Then H is the fundamental group of a cover of the presentation
2-complex associated to the presentation P = 〈Σ R〉 . In this case (A.1.11) is know
as the Reidemeister-Schreier method for finding presentations of subgroups of groups
defined by generators and relations.

Fact A.1.12. Let H ≤ G = 〈Σ R〉 , and fix a set T of words w1, . . . , wr in the free
group FΣ representing the right cosets of H in G. (Such a set is called a Schreier
transversal.) For each g ∈ G, let g be the word wi representing the coset Hg.

For each w ∈ T and x ∈ Σ, define

yw,x := wx(wx)
−1

Then H is generated by the yw,x with defining relations wrw−1 where w ∈ T and
r ∈ R.

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2002]



A.1. GENERATORS AND RELATIONS 211

This needs an illustration.

Example A.1.13. Let H be the kernel of the homomorphism

〈
x1, . . . , xr x1

2 · · · xr2 = 1
〉→ C2

sending each xi to the non-trivial element.
There are two cosets, represented by 1 and xr. We have the following generators

for H:

yi := 1xix
−1
r for i ≤ r − 1

zi := xrxi for i ≤ r.

Now, we write the two relations first in the generators xi:

x1
2 · · · xr2 = 1

xrx1
2 · · · xr2x−1

r = 1.

Now we rewrite these:

x1x
−1
r xrx1x2x

−1
r xrx2 · · · xrx−1

r xrxr = 1

xrx1x1x
−1
r xrx2x2x

−1
r · · · xrxrxrx−1

r = 1.

Finally, we rewrite these in the generators for H:

y1z1 · · · yr−1zr−1zr = 1

z1y1 · · · zr−1yr−1zr = 1

An easy Tietze transformation eliminates zr, and we have:

H = 〈y1, . . . , yr−1, z1, . . . , zr−1 y1z1 · · · yr−1zr−1 = z1y1 · · · zr−1yr−1〉 .

Exercise A.1.14. Prove (A.1.12).

Definition A.1.15. A group is finitely presented if it has at least one finite presen-
tation, i.e., a presentation that employs only finitely many generators and finitely
many relations.

Observation A.1.16. It follows immediately from (A.1.12) that a subgroup of finite
index in a finitely presented group is finitely presented.

Exercise A.1.17. Prove that a virtually finitely presented group is finitely pre-
sented.
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Exercise A.1.18. Let G be finitely generated. Show that every generating set for
G contains a finite subset that already generates G.

Exercise A.1.19. Let G be finitely presented. Show that any finite generating set
for G set can be extended to a finite presentation for G.

Exercise A.1.20. Let
G = 〈x1, . . . , xr r1, r2, . . .〉

be a finitely presented group. Show that in the above presentation all but finitely
many relations are redundant.

Exercise A.1.21. Prove that finitely presented by finitely presented groups are
finitely presented.

Exercise A.1.22. The fundamental group of English is generated by the 26 letters
a, . . . , z, subject to all relations w = u where w and u are letter sequences that are
pronounced identically in at least some contexts. E.g., gh is trivial since it is silent
in some words, and ir = er because of the words “bird” and “her”.

Prove that the fundamental group of English is trivial.

In passing from the Cayley graph ΓGΣ to the Cayley complex ΓΣ,R(G) we killed
the fundamental group by gluing in 2-cells. This might introduce non-trivial π2. Of
course, we could go on and kill this π2 by gluing in 3-cells in a G-equivariant way, at
the cost of, maybe, introducing non-trivial π3. We can continue and kill all homotopy
groups. We get a contractible free G-complex. Given this construction, what will the
presentation 2-complex turn into? The answer is given in the following definition.

Definition A.1.23. An Eilenberg-Maclane-complex for G is a CW-complex with
fundamental group G and contractible universal cover.

See section 2.4.1, in particular (2.4.7) and (2.4.8), for more on Eilenberg-Maclane
spaces and their relation to group cohomology.

A.1.3 Van Kampen Diagrams

Let
P := 〈x1, . . . , xr r1, . . . , rs〉

be a finite presentation for the group G. The associated presentation 2-complex KP
is the two dimensional CW-complex constructed as follows: There is precisely one
0-cell (the vertex). For each generator xi, we attach a loop, labeled by its genera-
tor xi. So far, we have constructed a graph, and every word w over the alphabet{
x1, x

−1
1 , . . . , xr, x

−1
r

}
defines a loop based at the vertex. We attach a 2-cell along

this path.
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Fact A.1.24. The fundamental group of KP is presented by P.

A Van Kampen disc diagram is a pictorial proof that some word is trivial. Let us
discuss examples before providing a more rigorous definition.

Example A.1.25. We consider 〈x, y, z xy = yz = zx〉. This is a picture proof that
xyx = yxy:

Example A.1.26. Here, we prove that zyzx = yxzy−1zy follows from yx = zy:

Definition A.1.27. A Van Kampen disc diagram for the word w is a planar graph Γ,
embedded in the 2-sphere all of whose complementary regions are simply connected
together with

1. a distinguished complementary region (represented in the drawings as the region
containing∞) whose boundary (with the orientation induced from the 2-sphere
reads w,
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2. a labeling of its oriented edges by the generators, i.e., a map

λ :
−→E Γ→ {

x1, x
−1
1 , . . . , xr, x

−1
r

}

satisfying

λ(~e) = λ(op~e)−1 ,

and

3. a labeling of its non-distinguished complementary regions by the relators rj (or
their inverses) such that the boundary of each region reads the corresponding
relator word or its inverse, respectively.

It is clear from the examples we discussed above that a Van Kampen diagram for w
proves w =G 1.

Fact A.1.28. Every word representing the trivial element has a Van Kampen disc
diagram. This diagram can be chosen to be reduced: Think of the relations as (regular)
polygonal discs whose boundaries read the rj. A Van Kampen diagram provides a way
of manufacturing a planar region (the complement of the distinguished region) by
glueing together copies of these polygons. Some of these discs need to be flipped over
before glueing them onto the graph; this happens if they are labeled by the inverse of
a relation. A diagram is unreduced if you two polygons sharing an edge such that one
if the flipped image of the other obtained by reflecting the polygon along the very edge
that they share. Any unreduced diagram can be reduced.

Example A.1.29. This picture illustrates schematically, how reduction works:
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A.1.4 Isoperimetric Inequalities

Definition A.1.30. The area of a van Kampen disc diagram for the word w is its
number of non-distinguished regions. The length of w is the perimeter of the diagram.
An isoperimetric function for the presentation P is a function δ : N → N such that
every word of length ≤ n representing 1 in G has a van Kampen diagram of area
≤ δ(n). A minimal isoperimetric function is called a Dehn function for the group G
– note that this notion is only well defined up to weak equivalence (1.4.16) if we do
not specify the generating set.

Observation A.1.31. If a group has a computable isoperimetric function, then it
has a solvable word problem. (In fact, it was shown in [SBR02] that every Dehn func-
tion for G is equivalent to the time function for a non-deterministic Turing machine
solving the word problem in G.)

Fact A.1.32. Every group with a sub-linear isopermetric function has a linear
isoperimetric function. The groups with linear isoperimetric functions are precisely
the word hyperbolic groups.

Fact A.1.33. The weak equivalence class of an isoperimetric function for G can be
computed from any simply connected cocompact G-CW-complex that is quasi-isometric
to the universal cover of the presentation 2-complex.

A.1.5 Small Cancellation Theory

Definition A.1.34. A vertex of Γ is essential if has degree 6= 2. The rational is that
we can delete degree-2-vertices: A segment is an edge path whose terminal vertices
are essential and whose inner vertices are not.

Observation A.1.35. If all relations rj and the word w are cyclic reduced, then each
essential vertex has degree ≥ 3. We shall henceforth make this assumption. Moreover,
note that if each vertex has degree ≥ 3, we can use an easy Euler characteristic count
to prove:

The average number of segments around each non-distinguished 2-cell is
strictly less than 6.

So let F be the number of non-distinguished regions, E be the number of segments,
and V be the number of essential vertices. Then

1 = V − E + F.
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On the other hand

2E ≥ (6 + 3ε)F

2E ≥ 3V

Thus
(6 + 2ε)E ≥ (6 + 3ε) (F + V ) = (6 + 3ε) (E + 1)

which is a contradiction. q.e.d.

Small cancellation theory is based upon the idea that one can write down com-
binatorial conditions to ensure that segments are “short”. For the moment, we shall
not precisely spell out those conditions, but we shall examine the consequences of the
following:

Hypothesis A.1.36. In each reduced Van Kampen diagram for w, the length of any
segment is at most 1

7
of the perimeter of its neighboring non-distinguished regions.

So this is what we mean by “short”. Note that an immediate consequence of (A.1.36)
is that an interior region has at least seven segments in its boundary. A region is
interior if it is does not share an edge with the distinguished region.

Observation A.1.37. At most 95% of all regions are interior. Since they have at
least seven segments in their boundary, too high a percentage of interior regions will
drive the average number of segments in the boundary of regions above 6. We have
already observed that this is impossible.

Corollary A.1.38. A small cancellation presentation satisfies a linear isoperimetric
inequality. Thus, the word problem is solvable.

Another application of the small cancellation hypothesis is the construction of
2-dimensional Eilenberg-Maclane spaces.

Definition A.1.39. A spherical Van Kampen diagram is a van Kampen disc diagram
whose distinguished region also reads a relator word. Thus, we can drop the marker for
the distinguished region and consider them all equal. Therefore, a spherical diagram is
a planar graph embedded in the sphere all of whose complementary regions are simply
connected and identified with the relators so that the boundaries of the regions read
the corresponding relations. The notion of reduction and reduced diagrams carry over
without difficulty.

Fact A.1.40. If there is no reduced spherical diagram, then π2(KP) = 0.
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Observation A.1.41. Every small cancellation presentation is aspherical: Our Eu-
ler characteristic count showed that a sphere cannot be tiled in such a way that each
tile has at least six edges, if each vertex is of degree ≥ 3. q.e.d.

Remark A.1.42. The presentation 2-complex of any aspherical presentation is an
Eilenberg-Maclance space for the group presented, i.e., the universal cover of the pre-
sentation 2-complex is contractible. Hence any finite aspherical presentation presents
a torsion free group of type F.

Proof. The universal cover of an aspherical 2-complex is a simply connected 2-
complex whose homotopy group in dimension 2 vanishes. By Hurewicz’s Theorem,
the first non-trivial homology and homotopy group of the cover occur in the same
dimension. But beyond dimension 2 all homology vanishes since there are no cells
to generate the chains. Thus all homology groups and all homotopy groups of the
universal cover are trivial. q.e.d.

A.2 Constructions

Here is a brief overview on various way of building groups on top of other groups.

A.2.1 Direct, Semidirect, and Wreath Products

Definition A.2.1. Let (Gi)i∈I be a family of groups. The cross product of the Gi is
the group K

i∈I
Gi := Map(I,G)

where multiplication is defined pointwise.
The direct product of the Gi is the subgroup of the product consisting of those

families (gi) where gi = 1 for all but at most finitely many i ∈ I. We denote the
direct product by ∏

i∈I
Gi.

Note that for finite index sets I, the notion of cross product and direct product
coincides.

Definition A.2.2. A homomorphism π : G → Q is a retraction if there is a homo-

morphism σ : Q → G such that the composition Q
σ−→ G

π−→ Q is the identity. Note
that in this case π has to be surjective. The homomorphism σ is called a (group
theoretic) section.
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A short exact sequence of groups is a sequence of groups and homomorphisms

N
ι−→ G

π−→ Q

such thatN embeds intoG as a normal subgroup with quotientQ – i.e., ι is injective, π
is surjective, and the image of ι is the kernel of π. In this case G is called an extension
of N by Q.

A short exact sequence splits if π is a retraction. In this case G is called a split
extension.

Definition A.2.3. Let N
ι−→ G

π−→ Q be a split extension with section Q
σ−→ G. Then

we have a homomorphism

ϕ : Q → Aut(N)

q 7→ ασq

where αg is conjugation by g:

αg : N → N

n 7→ gng−1

We call ϕ the homomorphism induced or realized by the split extension.

Given a pair of groups Q and N , it turns out, any homomorphism Q→ Aut(N) can
be realized by a split extension. This is called the semi-direct product:

Definition A.2.4. Let ϕ : Q → Aut(N) be as above. The semi-direct product of
Q and N along ϕ is the group N oϕ Q which has N × Q as its underlying set with
multiplication defined by

(n1, q1)(n2, q2) := (n1ϕ
n2
q1
, q1q2)

The way to memorize this is: We really want to think of the ni and qi as element in
an ambient group. So we should be able to write

n1q1n2q2 = n1

(
q1n2q

−1
1

)
q1q2

And then, we want conjugation by q1 correspond to ϕ.

The semi-direct product is a split extension of N by Q which induces ϕ. The proof
of this fact is usually left to the student as an exercise.
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Remark A.2.5. The topological analogue of the direct product of two groups is the
Cartesian product of two spaces. The analogue of a semi-direct product of groups is
a fibration.

Definition A.2.6. The wreath product of G and H is the semi-direct product

G oH :=

(∏

h∈H
G

)
oH

where H acts on
∏

h∈H G by left-multiplication on the indices.

A.2.2 Free Products / Amalgamated Products / HNN-
Extensions

!!!...!!!

A.2.3 Graphs of Groups and Spaces

!!!...!!!

A.3 Faithful Representations

!!!...!!!
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Appendix B

Geometry: Nuts and Bolts

B.1 Metric Spaces

Definition B.1.1. A metric space is proper if all closed balls are compact.
The length pseudo metric of a metric space X is given by

(x, y) 7→ inf
p:x−→y

|p| .

If the metric and the induced length pseudo metric coincide, the space X is called a
length space.

A geodoesic (segment) in a metric space X is a distance preserving map

γ : [0, |γ|]→ X

whose domain is an interval. The length of the domain is the length of the geodesic.
A bi-infinite geodesic or a geodesic line is a distance preserving map

γ : R→ X,

and a geodesic ray is a distance preserving map

γ : R+ → X.

A geodesic space is a a metric space wherein any two points are joined by a
geodesic. A Hadamard space is a complete geodesic space.

Exercise B.1.2. Let X be a complete metric space. Show that X is geodesic if
“it has midpoints”, i.e., for every pair {x, y} there is a point z such that d(x, z) =
d(y, z) = 1

2
d(x, y).
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Exercise B.1.3. Let X be a complete metric space. Show that X is a length space
if “it has approximate midpoints”, i.e., for every pair {x, y} and every ε > 0 there is
a point z such that d(x, z) , d(y, z) ≤ ε+ 1

2
d(x, y).

Definition B.1.4. A sequence fi : X → Y of maps between metric spaces is
equicontinuous if for any ε > 0 there is a δ > 0 such that, for every i: if d(x, y) ≤ δ,
then d(fi(x) , fi(y)) ≤ ε.

Fact B.1.5 (Arzelà-Ascoli). Let X be a compact metric space and Y be a separable
metric space, then every sequence of equicontinuous functions fi : X → Y has a
subsequence that converges uniformly on compact subsets to a continuous map f :
X → Y .

Corollary B.1.6. In a complete geodesic space with unique geodesics, those geodesics
vary continuously with their endpoints.

Fact B.1.7 (Hopf-Rinow). Let X be a complete, locally compact, length space.
Then X is a proper geodesic space.

Let Mm
κ be the simply connected Riemannian manifold of constant curvature κ

of dimension m. (There is only one up to isometry.)

Definition B.1.8. A geodesic triangle ∆ inside a metric space X is called
κ-admissible if there is a triangle in M2

κ that has the same side length. Such a
triangle is called a κ-comparison triangle.

Note that every point of ∆ has a corresponding point in the comparison triangle.
The triangle ∆ is called κ-thin if distances of points in ∆ are bounded from above by
the distances of their corresponding points in a κ-comparision triangle.

A complete geodesic space X is CAT(κ) if any κ-admissible triangle in X is κ-thin.
The space X is said to have curvature ≤ κ, if it is locally CAT(κ), i.e., every point
has an open ball around it so that this ball is a CAT(κ) space.

Example B.1.9. Any Riemannian manifold with non-positive sectional curvature is
CAT(0).

Exercise B.1.10. Show that any two points in a CAT(0) space are connected by a
unique geodesic segment.

Fact B.1.11 (Cartan-Hadamard). Let X be a connected complete metric space of
curvature ≤ κ ≤ 0. Then the universal cover of X with the induced length metric
is CAT(κ). Moreover, geodesic segments in the universal cover are unique and vary
continuously with their endpoints.
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Definition B.1.12. Let X be a CAT(0) space. A flat strip in X is a convex subspace
that is isometric to a strip in the Euclidean plane bounded by two parallel lines.

Exercise B.1.13 (Flat Strip Theorem). Let X be CAT(0) and let γ : R → X
and γ′ : R → X be two geodesic lines. Show that the convex hull of these two
lines is a flat strip provided that the geodesic lines are asymptotic, i.e., the function
d(γ(t) , γ′(t)) is bounded.

Exercise B.1.14. LetX be a connected complete metric space of curvature ≤ κ ≤ 0.
Show that every free homotopy class has a representative that is a closed geodesic.
Moreover, any two such representatives bound a “flat annulus”, i.e., they lift to bi-
infinite geodesics in the universal cover that bound a flat strip.

Definition B.1.15. A subset X ′ ⊆ X is convex if with any pair of points in X it
contains all geodesic segments joining them.

Fact B.1.16. Let X ′ be a convex complete subspace of the proper CAT(0) space X.
Then there is a nearest-point projection

π : X → X ′

that takes every point x ∈ X to the point in X ′ that is nearest to x. This image
point exists by properness and is unique by CAT(0)-ness. For any point x outside
X ′, the geodesic segment [x, π(x)] is perpendicular to X ′. Moreover π is a distance
non-increasing map.

B.2 Piecewise Geometric Complexes

Recall thatMm
κ is the simply connected manifold of constant curvature κ of dimension

m.

Definition B.2.1. A piecewise Mκ-complex is a CW-complex whose cells have the
structure of convex polyhedra in some Mκ and whose attching maps are isometric
identifications with faces.

Fact B.2.2 (Bridson). If a connected piecewise Mκ complex has only finitely many
shapes, then it is a complete geodesic space.

Fact B.2.3. Let X be a piecewise Mκ complex. For κ ≤ 0, the following are equiva-
lent:
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1. X is CAT(κ).

2. X has unique geodesics.

3. All links in X are CAT(1) and X does not contain a closed geodesic.

4. All links in X are CAT(1) and X is simply connected.

For κ > 0, the following are equivalent:

1. X is CAT(κ).

2. For any two points x, y ∈ X of distance d(x, y) < π√
κ
, there is a unique geodesic

segment joining x and y.

3. All links in X are CAT(1) and X does not contain a closed geodesic of length
< 2π√

κ
.

Fact B.2.4 (Gromov’s Lemma). A piecewise spherical simplicial complex all of
whose edges have length π

2
is CAT(1) if and only if it is a flag complex, i.e., any

collection of vertices that are pairwise joined by edges forms a simplex. (Whenever
you see a possible 1-skeleton of a simplex, the simplex is actually there.)

A piecewise spherical simplicial complex is called metrically flag if every collection
of vertices that are pairwise joined by edges forms a simplex provided there is a non-
degenerate spherical simplex with those edge lengths.

Fact B.2.5 (Moussong’s Lema). Let X be a piecewise spherical simplicial complex
all of whose edges have length ≥ π

2
. Then X is CAT(1) if and only if X is metrically

flag.

Proof that metrically flag implies CAT(1). We follow the argument of D. Kram-
mer [Kram95]. !!! ... !!! q.e.d.

Exercise B.2.6. Prove that a CAT(1) piecewise spherical simplicial complex is met-
rically flag.
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B.3 Group Actions

Definition B.3.1. Let X be a metric space, and let λ : X → X be an isometry. The
displacement function of λ is the map

Dλ : x 7→ d(x, λ(x)) .

The displacement of λ is

D(λ) := inf
x∈X

D(x) .

The min-set of λ is the set

Min(λ) := {x ∈ X D(x) = D(λ)} .

The isometry is parabolic if its min-set is empty. It is semi-simple otherwise. A semi-
simple isometry is called elliptic if its displacement is 0 and hyperbolic otherwise.

Observation B.3.2. Let X be CAT(0). Then the min-set of any semi-simple isom-
etry is a closed, convex, and complete subspace.

Observation B.3.3. Let X be CAT(0), let λ be a semi-simple isometry of X, and
let X ′ be a closed, convex, complete, and λ-invariant subspace. Then

DX(λ) = DX′(λ)

since the nearest-point projection to X ′ is λ-equivariant and distance non-increasing.

Proposition B.3.4. Let X be a complete CAT(0) metric space and let λ be a hyper-
bolic isometry. Then the min-set of λ is a disjoint union of bi-infinite geodesics each
of which is fixed by λ set-wise. Indeed, λ acts on each of these axes as a translation
of amplitude D(λ).

Proof. Let x be in the min-set of λ. The axis through x is the union of the geodesic
segments

[
λk−1x, λkx

]
. To see that this is a geodesic, assume that at one of the break

points the angle was not π. The midpoints of the adjacent edges would have distance
strictly less than D(λ). q.e.d.

Corollary B.3.5. For any semi-simple isometry λ, we have D
(
λk

)
= kD(λ) .

q.e.d.
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B.3.1 Proper Actions

Definition B.3.6. Let G act by isometries on the metric space X. For any subset
Y ⊂ X, we define the big stabilizer to be

StabG(S) := {g ∈ G gY ∩ Y 6= ∅} .
The action is said to be proper if every compact subset C ⊆ X has a finite big
stabilizer.

The action is properly proper if for every point x ∈ X there is an r > 0 such that
the closed ball B̄r(x) has a finite big stabilzer.

Exercise B.3.7. Show that every properly proper action is proper, and that every
proper action on a proper metric space is properly proper.

Theorem B.3.8. Let G act properly properly by isometries on the metric space X.
Then the following hold:

1. For every point x ∈ X there is an ε > 0 such that

StabG
(
B̄ε(x)

)
= StabG(x) .

2. The action is discontinuous, i.e., the distance between orbits induce a metric
(and not just a pseudo-metric) on the quotient space.

3. If G acts freely, then the projection X → G\X is a covering projection and a
local isometry.

Proof. The first clain is easy and the other two follow. q.e.d.

B.3.2 Proper Cocompact Actions

Exercise B.3.9. Let G act properly and cocompactly on the length space X. Show
that X is complete and locally compact.

By the Hopf-Rinow theorem (B.1.7), we infer:

Corollary B.3.10. A length space that admits a cocompact proper action is a proper
metric space. q.e.d.

Proposition B.3.11. Let G act properly and cocompactly by isometries on the proper
metric space X. Then the following hold:

1. There are only finitely many conjugacy classes of point stabilizers.

2. Every element g ∈ G acts by a semi-simple isometry.

Proof. For both arguments, we fix a compact subset C ⊆ X whose G-translates cover
X.
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(1) Choose a finite cover of C by finitely many balls B̄1, . . . , B̄r whose big stabilizers
are all finite. Then for every x ∈ X there is an element g ∈ G such that gx ∈ B̄i for
some i. Thus

g−1 Stab(x) g ⊆ Stab
(
B̄i

) ⊆
⋃
i

Stab
(
B̄i

)
.

However the right hand is finite. Note that we only used strict properness of the
action and could do away with properness of the space.

(2) Let (xi) be a sequence of points in X such that Dg(xi) → D(g) as i → ∞.
Choose elements gi such that yi := gixi ∈ C.

Observe that

Dgigg−1yi = d
(
g−1
i yi, gg

−1
i y

)
= d(xi, gxi)→ D(g) .

Thus there is an ε such that the expression

d
(
x, gigg

−1
i x

)

is bounded for all i and all x ∈ C by 2 diam(C)+D(g)+ε. Thus there is a closed ball
such that all gigg

−1
i are in its big stabilizer. Therefore, the sequence gigg

−1
i traverses

only finitely many different group elements. Passing through several subsequences,
we may assume that gigg

−1
i is constant and that yi converges to some point y ∈ C.

But then gigg
−1
i is semi-hyperbolic with y in its min-set. Thus g is semi-hyperbolic

with g−1
i y in its min-set. q.e.d.

Definition B.3.12. The translation distance of a group element g ∈ G with respect
to a given action on the metric space X is the limit

τ(g) := lim
k→∞

d
(
x, gkx

)

k
.

Exercise B.3.13. Show that translation distances exists and are independend of the
choice of x ∈ X.

Exercise B.3.14. Let λ by a semi-simple isometry of a CAT(0) space X. Show that
τ(λ) = D(λ) .

Definition B.3.15. Let G = 〈Σ〉 be a finitely generated group. For every element
g ∈ G, the translation length (with respect to Σ) is defined as

τ(g) := lim
k→∞

∣∣gk
∣∣

k
.
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Exercise B.3.16. Show that the translation length of a group element is well defined,
i.e., the limit exists and is independent of the generating set Σ.

Corollary B.3.17. If G acts isometrically, cocompactly, and properly on a proper
CAT(0) space, then the following hold:

1. The finite subgroups of G are precisely the subgroups of G that have a global
fixed point in X. In particular:

(a) The group G has only finitely many conjugacy classes of finite subgroups
(B.3.11(1)).

(b) An element of G has finite order if and only if it acts by an elliptic isom-
etry.

2. The group G does not contain a Baumslag-Solitar group

〈
a, b baqb−1 = ap

〉

where q 6= p.

3. The set of translation distances is discrete.

4. There is a strictly positive lower bound ε > 0 on the translation length of non-
torsion elements of G.

Proof.

(1) Since the action is proper, every point stabilizer is finite. It remains to prove
that every finite subgroup has a global fixed point.

For any compact subset C ⊆ X let B̄C denote the smallest closed ball that contains
C. (It follows from X being CAT(0) that this ball exists and is unique.) Let xC be
the center of B̄C . Note that since B̄C is defined entirely in metric terms, we have

B̄gC = gB̄C

and
xgC = gxC

for any group element g ∈ G.
Let F ≤ G be a finite subgroup. Let C be the orbit of some point y ∈ X. Note

that C is F -invariant. By the preceeding considerations, the point xC is F -invariant,
too.
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(2) As a matter of fact, Baumslag-Solitar groups are torsion free. Thus, if G con-
tained a copy, the elements inside the subgroup would be hyperbolic. Since aq and
ap are conjugate, they have the same displacement. On the other hand, their dis-
placements have the ratio q

p
. It follows that the displacement of a is 0 which is a

contradiction.

(3) Suppose we have a sequence gi of group elements with different translation
distances that converge to a limit L. Passing to a sequence of conjugates (which have
the same translation lengths), we find a sequence of points xi ∈ C such that xi is in
the min-set of gi. The contradiction is assumed at any accumulation point x ∈ C
as hit by the different gi: The ball of radius L + 3ε is not moved off itself by any gi
where τ(gi) = D(gi) is ε-close to L and xi is ε-close to x.

(4) Observe that for any point x ∈ X, we have

d(x, g1 · · · grx) ≤ d(x, g1 · · · gr−1x) + d(g1 · · · gr−1x, g1 · · · grx)
= d(x, g1 · · · gr−1x) + d(x, grx)

≤
r∑
i=1

d(x, gix)

≤ r max
i∈{1,...,r}

d(x, gix) .

Thus, fixing a generating set, we can find a constant C such that for any element
g ∈ G,

d
(
x, gkx

)

k
≤ C

∣∣gk
∣∣

k
.

Passing to the limit, we find

τ(g) ≥ τ(g)

C
≥ ε

for some ε > 0 that exists by (3). q.e.d.

B.3.3 Abelian and Solvable Subgroups

Exercise B.3.18. Let G be virtually Zn, and let H be a subgroup of G that is
isomorphic to Zn. Show that H has finite index in G. (Hint: Consider a finite index
Zn inside G and the action of H on G/Zn.)

Exercise B.3.19. Let G be finitely generated. Show that G is virtually abelian
provided the commutator subgroup [G,G] is finite. (Hint: Let H be the centralizer
of [G,G] in G and show that the center of H has finite index in H and that H has
finite index in G.)
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Appendix C

Topology: Nuts and Bolts

C.1 Topological Categories

There are way too many topological spaces – most of them pathological. Hence real
topology (as opposed to point set topology) takes place in smaller categories. The
additional structure makes their objects amenable to stronger methods. Fortunately,
all spaces we are interested in, are very nice.

C.1.1 Paracompact Spaces

A Hausdorff space X is paracompact if every open cover has a locally finite subcover.
Any space you would want to meet is paracompact. It is the minimum requirement
for a space to be considered “nice” in any sense. The technical importance of para-
compactness is

Fact C.1.1. If X is paracompact and U is an open cover, then there is a partition
of unity subject to U .

Example C.1.2. All manifolds are paracompact as they have a countable basis. All
CW-complexes are paracompact.

C.1.2 Complexes

Cell Complexes come in different flavors. The most general kind is build from a set
of vertices by successively glueing in higher dimensional cells. The cells of dimension
m + 1 are balls whose boundary spheres are mapped via attaching maps into the
m-skeleton which has been constructed already. The generality lies in the fact, that
we do not make any assumptions about the attaching maps.
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Piecewise Euclidean cell complexes have cells that have the additional structure
of convex polyhedra in Euclidean space. Here the attaching maps are supposed to
identify a boundary cell of an (m+ 1)-cell isometrically with a cell in the m-skeleton,
which then is called a face of the (m+ 1)-cell. The category of piecewise Euclidean
cell complexes is suitable for geometric methods because broken straight line paths
have lengths: you can measure the lengths of the pieces inside the cells.

Generalized simplicial complexes are piecewise Euclidean cell complexes all of
whose cells are regular unit length simplices. They differ from ordinary simplicial
complexes only in that two simplices might share more than one boundary simplex.
For instance you can realize a sphere simply by gluing two simplices along their bound-
ary. The result is a generalized simplicial complex which is not a simplicial complex.
Thus, we call a piecewise Euclidean cell complex combinatorial if the intersection of
any two closed cells is empty or consists of just one closed cell. Note that links in
combinatorial complexes are combinatorial.

A simplicial complex is called a flag complex if it does not have “hollow simplices”,
i.e., if you see the one skeleton of a triangle, there is a 2-simplex filled in; if you see
the 2-skeleton of a tetrahedron, there is a 3-simplex filled in; and so on. Observe that
any barycentric subdivision of a combinatorial cell complex is a flag complex.

Another useful specialization of piecewise Euclidean complexes are cube complexes
whose cells look like unit cubes. Combinatorial cube complexes are more combina-
torial than topological objects – very much like simplicial complexes. Compared to
simplicial complexes they have the advantage that the cross product of cube com-
plexes is a cube complex. Moreover, you can define links in cube complexes in two
ways: in one way the links are simplicial complexes in the other way the links are
cube complexes themselves.
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It turns out that for geometry, the links a better regarded as simplicial complexes –
in fact, the simplices should be viewed metrically as spherical simplices.
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C.1.3 Posets

A combinatorial substitute for cell complexes is the notion of a poset (partially ordered
set). Every cell complex gives rise to a poset: The elements of the posets are the cells
of the complex and the order is given by the face relation. Employing this analogy,
let us agree to call the elements of a poset (open) cells. Moreover, if we have two
cells p and q satisfying p ¹ q, we say that p is a face of q or, equivalently, that q is a
coface of p. If p ¹ q with p 6= q, we say that p is a strict face of q. The boundary of a
cell is the subposet of all its strict faces, and the link is the subposet of all its strict
cofaces. Thus, the link should properly be called the coboundary.

For each poset, the finite totally ordered subsets (chains) form a simplicial com-
plex, whose geometric realization is considered the geometric realization of the poset.
This way, all topological notions apply to posets. The analog of a closed cell in a
poset is the subposet formed by a cell together with its boundary. The analog of a
closed subset is a closed subposet, that is, a subposet that contains all faces of any
cell it contains. I never encountered someone using the dual notion of a coclosed
subposet.

Let us denote by P op the poset P with the order relation reversed. Observe that
P and P op have the same geometric realization as a finite totally ordered subset of
one is also a totally ordered subset of the other.

A morphism f : P → Q of posets is just a map that preserves the partial ordering.
Given a cell q ∈ Q, we have define the fibre of f over q to be the subposet

f/q := {p ∈ P f(p) ¹ q}
and the cofibre to be

q\f := {p ∈ P q ¹ f(p)} .

C.2 Computing Homotopy Groups

A space X is called m-connected if, for every i ≤ m any map from Si → X extends to
a map Di+1 → X. Note that −1-connected means non-empty and that 0-connected
is the same as path-connected and non-empty.

C.2.1 Fibrations and Fibre Bundles

For i ≥ 0, let
ν : Di−1 ↪→ Di

be the embedding of Di−1 in Di as the northern hemisphere and let

σ : Di−1 ↪→ Di
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be the embedding as the southern hemisphere.

Definition C.2.1. A map π : E → X has the homotopy lifting property in
dimension m if for every commutative diagram

Dm−1
f̄ //

ν

²²

E

π

²²
Dm f

// X

there exists a lift f̃ : Dm → E such that

Dm−1
f̄ //

ν

²²

E

π

²²
Dm f

//

f̃

=={{{{{{{{{{{{{{{{{
X

commutes.
A map that has the homotopy lifting property in all dimensions is called a

fibration.

Example C.2.2. Every covering space projection is a fibration.

Definition C.2.3. A fibre bundle over X with fibre F is a map f : E → X such
that:

1. There is an intersection closed open cover U of X and a familiy of local
trivializations (φU : U × F → E)U∈U that are homeomorphism onto their im-
age and preserve fibres, i.e., the following diagram

U × F φU //

²²

E

²²
U // X

commutes.
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2. For every inclusion U ↪→ V , there is a fibre preserving change of coordinates
φ : U × F → V × F such that

U × F
φU

##GG
GG

GG
GG

G

φ

²²

{{ww
ww

ww
ww

w

X E

V × F
φV

;;wwwwwwwww

ccGGGGGGGGG

commutes

Exercise C.2.4. Prove that fibre bundles are fibrations.

Suppose π : E → X has the homotopy lifting property in dimensions ≤ m + 1.
Let F be the preimage of the base point in X. Recall that every element in πm(X)
can be represented as a map f : Dm → X that takes the whole boundary sphere
∂(Dm) to the base point of X. Let f̃ be the lift in

Dm−1
f̄ //

ν

²²

E

π

²²
Dm f

//

f̃

=={{{{{{{{{{{{{{{{{
X

where Dm−1 entirely sent to the basepoint of E. Then the composition

Dm−1
σ−→ Dm

f̃−→ E

maps Dm−1 to F and sends the boundary sphere ∂(Dm−1) to the base point. Thus,
it defines an element of πm−1(F ).

Exercise C.2.5. Prove that this map is a well defined group homomorphism
πm(X)→ πm−1(F ) .

Exercise C.2.6. For i ≤ m, show that the sequence

πi(E)→ πi(X)→ πi−1(F )

is exact in the middle.
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Exercise C.2.7. For i ≤ m, show that the sequence

πi(X)→ πi−1(F )→ πi−1(E)

is exact in the middle.

Exercise C.2.8. The aim of this exercise is to show that Eilenberg-Maclane com-
plexes are unique up to homotopy equivalence. Let G be a group, and let X and
Y be two cell complexes. Assume that G acts on both complexes freely and cellu-
larly. Construct two G-equivariant maps f : X → Y and h : Y → X such that the
composition h ◦ f is G-equivariantly homotopic to the identity on X and f ◦ h is
G-equivariantly homotopic to the identity on Y . Conclude that

G

∖
X w G

∖
Y .

(Hint: Use induction on skeleta for the construction of the maps as well as for the
construction of the homotopies.)

Exercise C.2.9. Let Cn be a non-trivial finite cyclic group. Find a “nice” Eilenberg-
Maclance complex for this group and compute its homology. In particular, demon-
strate that there are non-vanishin homology groups in arbitrary high dimensions.

Conclude that no Eilenberg-Maclance space for Cn has finite dimension.

The following is immediate:

Corollary C.2.10. The braid group Bn is torsion free. q.e.d.

C.2.2 Combinatorial Morse Theory

Let X be a piecewise Euclidean cell complex. A Morse function on X is a map
h : X → R that is affine on closed cells and satisfies the following slope condition:

There is an ε > 0 such that

ε < |h(w)− h(v)|
for all pairs of vertices v and w joined by an edge in X.

Note that h is, in particular, non-constant on edges.
We think of h(x) as the height of the point x ∈ X. For each vertex v, we define

the descending link Lk↓(v) with respect to h to be that part of Lk(v) spanned by all
the cells that contain v as a vertex of maximum height. For each height s, define the
sublevel set Xs := {x ∈ X h(x) ≤ s}.
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Morse Lemma C.2.11. For any two heights s < t with t− s < ε

Xt w Xs ∪D C

where

D :=
⊎

s<h(v)≤t
Lk↓(v)

and

D :=
⊎

s<h(v)≤t
Cone

(
Lk↓(v)

)
.

In words: In order to get Xt from Xs up to homotopy equivalence, you have to cone
off the descending links of the vertices that are in Xt −Xs.

Proof. Here is a sequence of pictures:
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All we do is pushing in free faces. This defines a deformation retraction. q.e.d.

Corollary C.2.12. If all descending links are contractible, then the homotopy type
of sublevel sets does not change as the height increases. Hence the whole space has
the homotopy type of any of its sublevel sets. q.e.d.
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C.2.3 The Vietoris-Smale-Quillen Argument

Lifting a theorem of Vietoris from homology to homotopy, S. Smale proved:

Fact C.2.13 ([Smal57]). Let X and Y be 0-connected, locally compact, Hausdorff
and metrizable. Let f : X → Y be proper and onto. Assume that X is locally
m-connected, that Y is locally (m− 1)-connected, and that f−1 (y) is locally (m− 1)-
connected, for any point y ∈ Y . Then the following hold:

1. Y is locally m-connected.

2. The map f induces an isomorphism in homotopy groups

πi(X)→ πi(Y )

for 0 ≤ i < m and an epimorphism for i = m.

For geometric group theory the combinatorial setting is more suitable. The following
version, due to D. Quillen, is stated in the language of posets. Note that it therefore
applies to all piecewise Euclidean cell complexes.

Fact C.2.14 ([Quil78]). Let f : P → Q be a morphism of posets. Assume that each
fibre is m-connected. Then P is m-connected if and only if Y is m-connected.

Moreover, if each fibre is contractible, then f is a homotopy equivalence.

This is a very powerful tool for computing the connectivity of a space.

C.2.4 Nerves

Definition C.2.15. The nerve of a cover (Ui)i∈I is the simplicial complex

N :=

{
σ ⊂ I

⋂
i∈σ

Ui 6= ∅
}
.

Fact C.2.16. Let X be a paracompact topological space and U = (Ui)i∈I be a cover
by open subsets. If for every simplex σ in the nerve N , the subset

Xσ :=
⋂
i∈σ

Ui

is a contractible subspace of X, then X and N are homotopy equivalent.
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Fact C.2.17. Let X be a CW-complex and U = (Ui)i∈I be a cover by closed subcom-
plexes. If for every simplex σ in the nerve N , the subcomplex

Xσ :=
⋂
i∈σ

Ui

is contractible, then X and N are homotopy equivalent.

Fact C.2.18. Let P be a poset U = (Ui)i∈I be a cover by closed subposets. If for
every simplex σ in the nerve N , the subposet

Pσ :=
⋂
i∈σ

Ui

is contractible, then P and N are homotopy equivalent.

We give a proof of the poset-version to illustrate the connection with the Vietoris-
Smale-Quillen argument.

Proof. Consider the map

P
f−→ Nop

p 7→ {i ∈ I p ∈ Ui} .

The fibres are easily seen to coincide with the subposets Uσ. Thus, the fibres are
contractible, and f is a homotopy equivalence by (C.2.14). q.e.d.
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Finiteness Properties

Definition D.0.19. A group G is of type Fm if it has an Eilenberg-MacLane complex
K (G, 1) with finite skeleta in dimensions ≤ m.

Remark D.0.20. We do not simply require the m-skeleton to be finite so that the
definition makes sense for m = ∞. In this case we require the Eilenberg-MacLane
complex to have finitely many cells in each dimension.

Observation D.0.21. A group G is of type Fm if and only if there is an (m− 1)-
connected simplicial complex X with a free and cocompact G-action.

Corollary D.0.22. Every group is of type F0, a group is finitely generated if and only
if it is of type F1, and it is finitely presented if and only if it is of type F2. q.e.d.

Example D.0.23. Free groups are of type F∞. So is Thompson’s group F . Grig-
orchuk’s group is finitely generated but not finitely presented.

Exercise D.0.24. Let G be of type Fm and let X be a (m− 2)-connected simplicial
complex of dimension m− 1 with a free, cocompact G-action. Show that X embeds
G-equivariantly into an (m− 1)-connected simplicial complex of dimension m with a
free, cocompact G-action.

Infer that a group is of type F∞ if and only if it is of type Fm for all m <∞.

Exercise D.0.25. Let N ↪→ G →→ Q be a short exact sequence of groups where N
is of type Fm−1 and G is of type Fm. Then Q is of type Fm.
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D.1 Brown’s Criterion

The big lemma about finiteness properties is due to K.S. Brown [Bro87a, Theo-
rems (2.2) and (3.2) and Remark (2) on page 48]

Theorem D.1.1. Let G be a group and D a directed set. Let (Xα)α∈D be a directed
system of G-CW-complexes upon which G acts cocompactly by cell-permuting home-
omorphisms. Assume that lim−→α∈DXα is (m− 1)-connected and that for each α ∈ D
and each cell p in the m-skeleton of Xα, the stabilizer StabG(p) is of type Fm−dim(p).
Then the following are equivalent:

1. G is of type Fm.

2. For each i < m, the directed system of homotopy groups (πi(Xα))α∈D is
essentially trivial.

Here a directed system of groups (Hα)α∈D is called essentially trivial if for each α ∈ D
there is an element β > α such that the homomorphism Hα → Hβ is trivial, i.e., maps
everything to the trivial element.

Corollary D.1.2. Suppose G act cocompactly by cell permuting homeomorphisms on
an (m− 1)-connected CW-complex X such that for every cell p, the stabilizer Stab(p)
is of type Fm−dim(p). Then G is of type Fm.

Proof. Consider the directed system

X
idX−−→ X

idX−−→ X
idX−−→ · · ·

and check that it satisfies the hypotheses of Brown’s Criterion. q.e.d.

Exercise D.1.3. Show that all finite groups are of type F∞.

D.2 Applications of Brown’s Criterion

Example D.2.1. Let G be a group and let D := {K ⊆ G K is finite} be the set of
finite subsets of G directed by inclusion. For K ∈ D, define the simplicial complex

XK := {σ σ ⊆ gK for some g ∈ G} .
Obviously, G acts cocompactly on XK . Simplex stabilizers conjugate into K and are,
therefore, finite. Thus G is of type Fm if and only if (πi(Xα))α∈D is essentially trivial
for all i < m.

Let H be a subgroup of finite index in G. Then the induced action of H on XK

is still cocompact. Thus we can use the same directed system to detect finiteness
properties of H. Thus, we have
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Corollary D.2.2. Let H be a subgroup of finite index in G. Then H is of type Fm
if and only if G is of type Fm.

With only little more effort, the same construction yields:

Exercise D.2.3. Let G be of type Fm and let H be a retract of G. Then H is of
type Fm.

Proposition D.2.4. Let N ↪→ G→→ Q be a short exact sequence of groups where N
and Q are of type Fm. Then G is of type Fm.

Proof. Take any free Q complex that proves Q to be of type Fm. Consider this
complex as a G-complex where the G-action is given via the projection G → Q.
Then, all cell stabilizers equal N and are of type Fm. Thus the same complex proves
that G is of type Fm. q.e.d.

Definition D.2.5. Let X and Y be two metric spaces. A map f : X → Y is called
Lipschitz if there are constants L and K such that

d(x, y) ≤ Ld(f(x) , f(y)) +K

for all x, y ∈ X.
A Lipschitz f : X → Y is a quasi-retraction if there exists a Lipschitz h : Y → X

and a constant C such that
d(f(h(y)) , y) ≤ C

for all y ∈ Y . The map h is called a quasi-section for f . If there is a quasi-retraction
f : X → Y , the space Y is called a quasi-retract of X.

The map f is a quasi-isometry if there is a map h : Y → X such that f is a
quasi-retraction with quasi-section h and h is a quasi-retraction with quasi-section f .

Two finitely generated groups are called quasi-isometric if they have quasi-
isometric Cayley graphs for some finite generating sets. The notion of a quasi-retract
carries over to groups in the same way.

Observation D.2.6. Since compositions of Lipschitz maps are Lipschitz, quasi-
isometry is an equivalence relation on the class of metric spaces.

Exercise D.2.7. Show that X and Y are quasi-isometric if and only if there is a
map f : X → Y and constants L, K, and C such that the following hold:

1. f is bilipschitz, i.e., d(f(x),f(y))
L

−K ≤ d(x, y) ≤ Ld(f(x) , f(y))+K for all x, y ∈ X.

2. f is quasi-surjective, i.e., Y =
⋃
x∈X B

x
C .
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Exercise D.2.8. Let Σ and Ξ be two finite generating sets for G. Prove that ΓGΣ
and ΓGΞ are quasi-isometric.

Proposition D.2.9 ([Alon94]). Let G be of type Fm. If H is a quasi-retract of G,
then H is of type Fm.

Proof. Our directed set will be N. For n ∈ N, define

Xn := {σ ⊆ G diam(σ) ≤ n}
Yn := {σ ⊆ H diam(σ) ≤ n}

The group G acts on Xn cocompactly and with finite stabilizers. The same holds for
H and Yn. Moreover, both directed systems converge to big simplices. Thus, we can
use these directed systems to determine the finiteness properties of these groups.

Let f : G → H be a retraction with quasi-section h : H → G with constants L,
K and C as in the definition. Then, we form

Ym
h−→ XM −→ XN

f−→ Yn

where M ≥ L (m+K) and N is chosen so that the middle map annihilate homotopy
in dimensions < m. The number n, again, is derived from the Lipschitz constants.
Now the composite map is induced by f ◦ h which is homotopic to the inclusion map
into Yn′ for any n′ ≥ n+ 2C. Here, we use that fact that two simplicial maps f and
h are homotopic if, for each simplex σ, the union f(σ) ∪ hσ is a simplex.

Hence the inclusion Ym ⊆ Yn′ annihilates homotopy groups in dimensions < m.
This implies that H is of type Fm. q.e.d.

Corollary D.2.10. Finiteness properties are geometric, i.e., they depend only on the
quasi-isometry type of a group.

D.3 The Stallings-Bieri Series

Finiteness properties are not yet well understood. We have, however, some series of
groups for which finiteness properties have been established. In this section, we shall
discuss the most accessible example of such a series, which is due to J.R. Stallings
and R. Bieri.

Consider the exact homomorphism

F{x1,y1} ∗ F{x2,y2} ∗ · · · ∗ F{xn,yn} → Z

that sends all generators xi, yi to 1 and let

Gn

be the kernel.

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2002]



244 APPENDIX D. FINITENESS PROPERTIES

Proposition D.3.1. The group Gn is of type Fn−1 but not of type Fn.

Proof. The free group F{xi,yi} acts freely and cocompactly on a regular tree Ti all of
whose vertices have degree 4. The homomorphism

F{xi,yi} → Z

xi, yi 7→ 1

induces an action of F{xi,yi} on R by translations. With respect to this action, we
have a height function

hi : Ti → R

that is F{xi,yi}-equivariant. Note that at each vertex of Ti we have two ascending edges
(labeled by the generators) and two descending edges (labeled by their inverses).

Put

X :=
K
i

Ti

and consider the height

h : X → R

(ti) 7→
∑
i

hti

The ascending and descending links of vertices in X are spheres of dimension n− 1.
In fact, they arise as joins of ascending, respectively descending, links in the factors
Ti. It follows by the Morse lemma (C.2.11) that slices

Xt := h−1 ([−t, t])

are (n− 2)-connected: As t increases, we cone off (n− 2)-connected subcomplexes,
thereby not changing homotopy groups in dimensions ≤ n− 2. However, in the limit,
we obtain the contractible space X. Thus, the homotopy groups in dimensions ≤ n−2
were trivial all along.

We use Xt as a directed system of CW-complexes to apply Brown’s Criterion. It
is obvious that Gn acts freely and cocompactly on any Xt. Since the complexes Xt

are already (n− 2)-connected, it follows that Gn is of type Fn−1.
As for the other direction, we have to prove that the directed system (Xt)t is not

essentially (n− 1)-connected. Note that X, being a product of trees, is a metric space
with unique geodesics. Thus, for each vertex v ∈ X, we have a geodesic retraction

X − {v} → Lk(v) .

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2002]



D.4. HOMOLOGICAL FINITENESS PROPERTIES 245

It follows that a sphere in X is not 0-homotopic in X−{v} unless it has a 0-homotopic
image in Lk(v). Moreover, we have a retraction

Lk(v) =
A
i

{
xi
±, yi±

}→ Sn−1 =
A
i

{xi, yi}

induced by xi
± 7→ xi and yi

± 7→ yi. This way, we recognize ascending links of vertices
as retracts of the links.

Now, we are ready to construct, for any specified number t, an (n− 1)-sphere in
X0 that does not die in Xt. To do this, let us fix a vertex v ∈ X whose height is
≤ t. The ascending link Lk↑(v) is a sphere of dimension n − 1. It is spanned by
the ascending edges starting at v. Each of these edges lives in some component tree
Ti and can be extended in this factor to a geodesic ray. This way, we can move the
sphere up inside X until it reaches height 0. Let S be the sphere obtained that way.
Since we used geodesic rays, S maps homeomorphically to Lk↑(v) under the geodesic
retraction

X − {v} → Lk(v)

and is, by our previous considerations, not 0-homotopic in X − {v} ⊇ Xt.
It follows that the directed system Xt is not essentially (n− 1)-connected whence

Gn is not of type Fn. q.e.d.

D.4 Homological Finiteness Properties

Definition D.4.1. A group G is of type FPm over the commutative ring R if R,
regarded as an RG-module via the trivial G-action, has a projective resolution

· · · → Pi → · · ·P1 → P0 →→ R

wherein the RG-modules Pi are finitely generated in dimension i ≤ m.

Exercise D.4.2. Show that a group of type FPm over Z is of type FPm over any
ring.
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Dictionary

E.1 Properties

Let G be a group.

Definition E.1.1. G is finite if it has only finitely many elements.

Definition E.1.2. G is torsion if every element has finite order.

Definition E.1.3. G is periodic if there is a number n ∈ N such that for all g ∈ G.

gn = 1.

The number n is called the exponent of G.

Definition E.1.4. G is torsion free if no element has finite order.

Definition E.1.5. G is cyclic if it is generated by one element.

Definition E.1.6. G is indicable if it admits an epimorphism onto the infinite cyclic
group.

Definition E.1.7. G is abelian if the commutator subgroup is trivial.

Definition E.1.8. G is perfect if it equals its commutator subgroup. Equivalently,
G is perfect if it does not have any non-trivial abelian quotients.

Definition E.1.9. G is s-nilpotent if it is trivial or the commutator subgroup is
(s− 1)-nilpotent.
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Definition E.1.10. G is nilpotent if it is s-nilpotent for some s.

Definition E.1.11. G is simple if it has no proper non-trivial normal subgroups.

Definition E.1.12. G is pro-finite if it is the projective/inverse limit of finite groups.

Definition E.1.13. G is Hopfian if every surjective endomorphism G →→ G is an
automorphism.

Definition E.1.14. G is co-Hopfian if every injective endomorphism G ↪→ G is an
automorphism.

Definition E.1.15. G is linear if it has a faithfull representation of finite dimension
over some field (not necessaryly of characteristic 0).

Definition E.1.16. G is of type F if there is a finite Eilenberg-Maclane space
K (G, 1). An Eilenberg-Maclane space for G is a CW-complex with fundamental
group G and a contractible universal cover (equivalentlty, one may require the higher
fundamental groups to vanish).

Definition E.1.17. G is finitely generated if G has a finite generating system.

Definition E.1.18. G is finitely presented if G has a finite generating system and
all relations among the generators follow from a finite set of relations.

Definition E.1.19. G has finiteness length ≤ m if there is an Eilenberg-Maclane
space K (G, 1) with finite m-skeleton.

Definition E.1.20. G has solvable word problem if is is finitely generated and for a
fixed generating set there is an algorithm that decides whether a given word in the
generators represents the identity.

Definition E.1.21. G has solvable conjugacy problem if it is finitely generated and
for a fixed generating set there is an algorithm that decides whether two given words
represent conjugated elements.

Definition E.1.22. G has bounded generation if there is a finite sequence g1, . . . , gr
of elements in G such that every element g ∈ G can be written as a product

g = g1
k1 · · · grkr

with exponents ki ∈ Z.
Equivalently, G has bounded generation if it is an internal product of finitely many

cyclic subgroups.
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Definition E.1.23. G has Serre’s Property FA if every action of G on a tree has a
global fixed point.

Definition E.1.24. G is an automata group if it can be represented as a group of
automorphisms of a finitary regular rooted tree all of whose elements can be realized
as finite state automata. See (10.2.1) and (10.2.26).

Definition E.1.25. G has Kashdan’s Property (T) if if every unitary representation
that has almost invariant vectors has an invariant vector. Here a unitary representa-
tion of a group G on a Hilbert space H is said to have almost invariant vectors, if,
for any finite subset K ⊆ G and any ε > 0, there is a unit vector u ∈ H satisfying

|gu− u| < ε.

Definition E.1.26. A group G satisfies the Tits Alternative if each finitely generated
subgroups either is virtually solvable or contains a non-abelian free group.

Definition E.1.27. G is amenable if there is a left-invariant finitely additive prob-
abilty measure defined on all subsets of G.

Definition E.1.28. G has polynomial growth if it is finitely generated and the vol-
ume of a ball in the Cayley graph grows polynomially with the radius.

Definition E.1.29. G has exponential growth if it is finitely generated and the vol-
ume of a ball in the Cayley graph grows expoentially with the radius.

Definition E.1.30. G has intermediate growth if it is finitely generated and has
neither polynomial nor exponential growth. (Note that growth is at least polynomial
and at most exponential.)

Definition E.1.31. G satisfies a quadratic isoperimetric inequality if if has a finite
presentation P and there is a quadratic function δ : N → N such that any loop of
length l in the Cayley complex for P bounds a disc of area ≤ δl.

Definition E.1.32. G has the finite intersection property if the intersection of any
two finitely generated subgroups in G is finitely generated.

Definition E.1.33. G is a Burnside group if it is finitely generated, infinite, and
torison.

Definition E.1.34. G is SQ-universal if every countable group embedds into a quo-
tient of G.
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Definition E.1.35. G is combable with respect to the generating set Σ, if there is
a constant C and distinguished paths from 1G to each vertex v ∈ ΓGΣ that have the
C-fellow traveler property. That is, whenever we have two distinguished paths p and
q starting at 1G ∈ ΓGΣ whose endpoints have distance ≤ 1, the following inequality
holds along the paths:

d(pt, qt) ≤ C.

Here the paths are traversed with unit speed. If all the combing paths can be chosen
to be geodesics, the group G is called geodesically combable.

Definition E.1.36. G is subgroup separable if for every subgroup H ≤ G and every
element g ∈ G − H, there is a normal subgroup N E G of finite index such that
H ⊆ N but g 6∈ N .

E.2 Prefixes

Let “blah”, “foo”, and “bar” be properties, and let G be a group.

Definition E.2.1. G is foo–by–bar if there is a short exact sequence

1→ H → G→ F → 1

where H is foo and F is bar.
Remark: You might find something like foo–by–bar–by–blah, which means (foo-

by–bar)–by–blah.

Definition E.2.2. G is meta-blah if it is blah–by–blah.

Definition E.2.3. G is virtually blah if G has a blah-subgroup of finite index.

Definition E.2.4. A subgroup N of G is co-blah, if it is normal and the quotient
G/N is blah.

Definition E.2.5. G is residually blah, if the intersection of all co-blah subgroups
of G is trivial.

Definition E.2.6. G is locally blah if every finitely generated subgroup of G is blah.

Definition E.2.7. G is poly-blah if there is a subnormal series

1 = G1 E G2 E G3 E · · · E Gn−1 E Gn = G

with all quotients Gi+1/Gi being blah.
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Definition E.2.8. G is just blah if it is blah but does not have any proper quotients
that are blah.

Example E.2.9. Some well known concepts are just shorthands:

• solvable = poly-abelian

• coherent = locally finitely presented

E.3 Metaproperties

Definition E.3.1. Let “blah” be a property. It is called subgroup closed if every
subgroup of a blah group is blah.

It is quotient closed if every epimorphic image of a blah group is blah.
It is called extension closed if every meta-blah group is blah.

Remark E.3.2. The following properties are subgroup closed:

• finite

• free

• cyclic

• abelian

• nilpotent

• solvable

• amenable

Exercise E.3.3. Prove: If foo and bar are subgroup closed, so is foo–by–bar.

Remark E.3.4. The following properties are quotient closed:

• finite

• abelian

• nilpotent

• solvable

• finitely generated
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• Serre’s Property FA

Remark E.3.5. The following properties are extension closed:

• finite

• solvable

• finitely generated

• finitely presented

• finiteness length ≤ m

• finite type

• Serre’s Property FA

E.4 The Unnamed Famous

There is a bunch of theorems that fit into the following schemes:

• If . . . , then G has only finitely many conjugacy classes of finite subgroups.

• If . . . , then all solvable subgroups of G are finitely generated and virtually
abelian.

• If . . . , then all elements of infinite order in G have translation length bounded
away from 0.

Exercise E.4.1 (M. Bridson). Let G be polycylic and assume that all elements of
infinite order have translation length bounded away from 0. Show that every solvable
subgroup of G is finitely generated and virtually abelian.

Exercise E.4.2. Assume that G has only finitely many conjugacy classes of finite
subgroups. Show that G is virtually torsion free provided it is residually finite.
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Solutions to Selected Exercises

(1.4.28) Observe that it suffices to prove that G is abelian as we know precisely what
the torsion free finitely generated abelian groups look like. Now suppose we
had a non-trivial homomorphism G → R. Then the kernel cannot contain an
element of infinite order as the infinite cyclic subgroup it generates had linear
growth and infinite index which implies by (1.4.27) that G had at least quadratic
growth. So all elements in the kernel are torsion for which reason the kernel is
trivial as G is torsion free. Hence G would be abelian, and we would be done.
Thus our aim is to find a non-trivial homomorphisms ϕ : G→ R.

Let H be an infinite cyclic subgroup of finite index in G. Then, the kernel
of the action of G on the finite set of cosets G/H is a normal subgroup N of
finite index in G that is contained in H. Hence we may assume without loss
of generality that H is normal. Let {g1, . . . , gr} be a generating set for G, and
let t be a generator for H. Since G/H is finite, every generator has a power in
H wherefore every generator commutes with a certain power of t. Passing to
an even smaller subgroup, we may therefore assume that H is not only normal
but, in fact, central in G.

Fix a generator t for H and coset representatives g1, . . . , gr. Then every group
element g can be written in a unique way as

g = git
kg .

It is easy to check that, for any finitely additive measure µ on G,

ϕ : h 7→
∫

g∈G
khg − kg dµ g

defines a homomorphism with ϕ(t) = 1.

252



253

(2.2.9) Let G be finitely generated and residually finite, and let λ : G →→ G be a
surjective endomorphism. Suppose that λ is not an automorphism. Then, we
can chose a non-trivial element g ∈ G in the kernel of λ. Let ϕ : G → F be a
homomorphism to a finite group such that ϕ(g) is non-trivial.

We consider the set Hom(G;F ) of all homomorphisms from G to F . As G is
finitely generated, Hom(G;F ) is a finite set. Note that

Hom(G;F ) −→ Hom(G;F )

ψ 7→ ψ ◦ λ

is injective since λ is onto. It follows, that this operation is just a permutation
of the finite set Hom(G;F ) . In particular, the operation has finite order, and
for some number of factors, we have

ϕ = ϕ ◦ λ ◦ λ ◦ · · · ◦ λ,

which implies that ϕ(g) is trivial. This is a contradiction.

(2.4.25) Let U be an open neighborhood of e. The tree T is connected and covered by
the G translates of U . Hence G is generated by

{g ∈ G gU ∩ U 6= ∅} = Gv ∪Gw

Hence Gv and Gw generate G.

Now, consider the action of G on ∂∞T . Note that cutting the edge e defines
two subsets Ev := ∂+

∞(e) ⊂ ∂∞T and Ew := ∂−∞(T ) ⊂ ∂∞T . Every non-trivial
element of Gv moves Ew into Ev and vice versa. So the Ping Pong Lemma (2.2.1)
applies provided Gv and Gw have enough elements.

Since G acts transitively on the set of edges, the stabilizer Gv acts transitively
on the set of edges meeting in v. Since these are at least one of the two vertices
v and w has degree 3 and the other one has at least degree 2, the Ping Pong
Lemma (2.2.1) applies. Hence G = 〈Gv, Gw〉 = Gv ∗Gw.

(10.2.16) Yes, there is. We will prove that

x = (x2, x)σ

defines a tree automorphism that cannot be realized by a finite state automaton
because it takes an infinite string of Ls to an output that is not ultimately
periodic.
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It is easy to see that the output is given as follows. Define a map f : Z→ Z by

f : n 7→
⌈

3n

2

⌉
=

{
fodd(n) := 3n+1

2
if n is odd

feven(n) := 3n
2

if n is even
.

Define a sequence ai by the recursion

a1 = 1

ai+1 = f(ai)

Then, the ith letter in the output is an L if and only if ai is even. Thus, we
have to show that the sequence of parities of the ai is not ultimately periodic.

We do this following an idea of Rodrigo Perez. Suppose, we see the sequence

RRL . . . starting at i in the output. What does this tell us about ai? First,
we can deduce from the first R that ai is odd. Thus, ai+1 = fodd(ai). The
second R, then implies that ai+1 = 3ai+1

2
is odd, too. Thus, ai ∼= 3 mod 4 and

ai+2 = fodd(fodd(ai)) = 9ai+5
4

. Finally, the L says that ai+2 = 9ai+5
4

is even,
whence ai ∼= 3 mod 8. Note that the congruence is alway uniquely determined
since 3 is invertible modulo all powers of 2. Thus, we obtain an infinite system
of congruences:

ai ∼= 1 mod 2

ai ∼= 3 mod 4

ai ∼= 3 mod 8
...

...
...

The key point is that an infinite system of such congruences determines its so-
lution uniquely if it has a solution at all. Therefore, if the sequence of parities
was ultimately periodic, we would find the same tail starting at two different
positions i and j. The correponding numbers ai and aj satisfy the same con-
gruences mod all powers of 2, whence ai = aj. Since the sequence a1, a2, . . . is
visibly increasing, we infer i = j.

(10.2.31) We define a finite directed graph on the vertex set VΓ := VA × VB. We have a
directed edge from (S1, S2) to (T1, T2) if there is a letter a ∈ A such that there
are directed edges labeled by a from Si to Ti. Obviously, this graph can be
constructed effectively.

The pair whose coordinates are the distinguished start vertices in A1 and A2

serves as a base point in Γ. There is a standard algorithm that computes the
set P ⊂ Γ be the set of vertices that can be reached from the base point by a
directed path. Hence the statement follows from the following claim:
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The two automata A1 and A2 define the same transformation A∗ →
A∗ if and only if for each pair (v1, v2) ∈ P the labels of v1 and v2

agree.

This is, however, is clear: The directed paths in Γ correspond precisely to the
paths taken in the individual automata when given identical inputs.

(D.2.3) Let π : G→ H be the retraction. We do not label the section but regard H as
a subgroup of G. Let D be the set of all those finite subsets of G that contain
their π-image:

D := {K ⊆ G π im(K) ⊆ K and K is finite } .

For any K ∈ D, we have a retraction

XK → YK

induced by π where

XK = {σ σ ⊆ gK for some g ∈ G}
YK = {σ σ ⊆ hK for some h ∈ H} ⊆ XK .

Since G is of type Fm, there is L ∈ D with K ⊆ L such that

XK ↪→ XL

induces the trivial map in homotopy in dimensions < m. Thus

YK ↪→ XK ↪→ XL → YL

induces the trivial map in homotopy in dimensions < m, as well. Thus the
directed system

(πi(YK))K∈D

is essentially trivial for i < m. Hence H is of type Fm.

(D.4.2) Let
· · · → Pi → · · ·P1 → P0 →→ Z

be a projective resolution of Z by ZG-modules wherein Pi is finitely generated
for i ≤ m. Recall that a ZG-module can be regarded as an Abelian group
with a G-action by automorphisms. Thus, R⊗Z Pi is a RG-module. Using the
criterion that a module is projective if and only if it is a direct summand of a
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free module, it is easy to see that R ⊗Z Pi is a projective RG-module. Clearly
R⊗Z Pi is finitely generated if Pi is finitely generated.

It remains to show that

· · · → R⊗Z Pi → · · ·R⊗Z P1 → R⊗Z P0 →→ R⊗Z Z = R

is a resolution, i.e., an exact sequence. Exactness does not depend on the G-
action and projective RG-modules are projective R-modules, Hence it suffices
to prove the follwing claim:

Let
· · · → Pi → · · ·P1 → P0 →→ Z

be an exact sequence of projective s-modules. Then the chain complex

C∗()(R) := · · · → R⊗ZPi → · · ·R⊗ZP1 → R⊗ZP0 →→ R⊗ZZ = R

is exact.

Note that the homology of C∗()(R) computes the homology of the trivial group
with coefficients in R. This homology, however, is also clearly computed by

· · · → 0→ R→→ R

which has trivial homology.
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