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1 Greetings

The goal of this class is to make you understand the joke in the title.
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2 Preliminaries on Algebra

Definition 2.1. Let M be a set. A law of composition ⊗ on M is a map

⊗ : M ×M −→ M

(m,n) 7→ m⊗ n

This is the mathematicians way to say that a law of composition takes in two ele-
ments of M and returns (depending on its input) another element of M . A law of
composition may be sensitive to the order of its arguments.

Example 2.2. Taking differences is a law of composition on the set of real numbers:

− : R×R −→ R

(t, s) 7→ t− s

Note that 5− 3 6= 3− 5.

All algebra starts with a set that carries a law of composition. Such a mathematical
structure is called a magma, which tells you something about mathematical humor.
More interesting structures are obtained by imposing further restrictions. (Almost
nothing can be said about magmas.)

2.1 Groups

Groups are the most interesting things in mathematics (I am a group theorist, just in
case you wonder). They arise from magmas via three innocent looking requirements:

Definition 2.3. A group is a set G together with a distinguished element (called
identity-element) I and a law of composition

⊗ : G×G → G

(g, h) 7→ g ⊗ h

such that the following three axioms hold:

1. The operation ⊗ is associative, i.e., we have

(g1 ⊗ g2) ⊗ g3 = g1 ⊗ (g2 ⊗ g3) for all g1, g2, g3 ∈ G.

2. The element I is a right-identity element, i.e., we have

g ⊗ I = g for all g ∈ G.

3. Every group element g has a right-inverse, i.e., there is an element j satisfying

g ⊗ j = I.

(Of course different elements may have different inverses.)

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2005–2008] 4
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Theorem 2.4. Let (G, I,⊗) be a group.

1. Right-inverses are left-inverses, i.e., we have

if g ⊗ j = I then j ⊗ g = I

for any two g, j ∈ G.

2. The right-identity I is a left-identity, i.e., we have

I ⊗ g = g

for every g ∈ G.

Proof. (1) We assume g ⊗ j = I. Now, we calculate:

j ⊗ g = (j ⊗ g) ⊗ I by axiom 2

= (j ⊗ g) ⊗ (j ⊗ k) by axiom 3, where k is a right-inverse for j

= ((j ⊗ g) ⊗ j) ⊗ k by axiom 1

= (j ⊗ (g ⊗ j)) ⊗ k by axiom 1

= (j ⊗ I) ⊗ k by our hypothesis that g ⊗ j = I

= j ⊗ k by axiom 2

= I recall that k is a right-inverse for j

(2) Let g be any element of G. We pick an inverse j, and by part 1, which has
been proved already, we know that

g ⊗ j = I = j ⊗ g.

With this information, we can carry out the calculation:

I ⊗ g = (g ⊗ j) ⊗ g since g ⊗ j = I

= g ⊗ (j ⊗ g) by axiom 1

= g ⊗ I since j ⊗ g = I by part 1

= g by axiom 2

q.e.d.

Theorem 2.5. Let (G, I,⊗) be a group, and fix two elements g, h ∈ G. Then:

1. Left-quotients exist and are unique, i.e. the equation

x⊗ g = h

has a solution, and this solution is unique.

2. Right-quotients exist and are unique, i.e. the equation

g ⊗ y = h

has a solution, and this solution is unique.

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2005–2008] 5
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Warning: It is not necessarily true that the left- and the right-quotient coincide.

Proof. We only proof (1). Since Theorem 2.4 establishes a symmetry of left and
right, we can leave the proof for (2) as an exercise.

We deal with uniqueness first. So let us assume that

x0 ⊗ g = h

x1 ⊗ g = h

Uniqueness of solutions means that we have to show x0 = x1. Let j be a (right-)
inverse for g, i.e., pick j so that g ⊗ j = I. Then we have:

x0 ⊗ g = h by hypothesis

(x0 ⊗ g) ⊗ j = h⊗ j by applying ⊗ j

x0 ⊗ (g ⊗ j) = h⊗ j by axiom 1

x0 ⊗ I = h⊗ j by axiom 3

x0 = h⊗ j by axiom 2

By the very same reasoning, we obtain x1 = h⊗ j. Hence

x0 = h⊗ j = x1,

which settles uniqueness.
To prove the existence of a solution, we check the candidate that we obtained in

our uniqueness proof: We claim that x = h⊗ j will solve the equation

x⊗ g = h

We verify this:

x⊗ g = (h⊗ j) ⊗ g by our choice x = h⊗ j

= h⊗ (j ⊗ g) by axiom 1

= h⊗ I by Theorem 2.4, j is a left-inverse for g

= h by axiom 2

Note how it becomes important that the right-inverse j for g, which we picked in the
uniqueness argument, is a left-inverse when we want to prove that the only possible
candidate for a solution actually is a solution. q.e.d.

Corollary 2.6. Inverses are unique: The right-inverse for g solves the equation g ⊗
x = I. Since there is only one such x, right-inverses are unique. We denote the
right-inverse for g by g.

Corollary 2.7. The identity element is unique, i.e., if an element satisfies g⊗x = g
then x = I. The reason is that I satisfies the equation, and any equation of that sort
has but one solution.

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2005–2008] 6
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Exercise 2.8. Let (G, I,⊗) be a group, and let g and h be elements of G. Show that

g ⊗ h = h⊗ g.

Exercise 2.9. Addition of integers induces a well-defined way of “adding parities”:

+ even odd

even even odd

odd odd even

Put G := {even, odd}. Show that (G, even,+) is a group.

Exercise 2.10. Let G be the set of non-zero real numbers. We define a law of
composition on G as follows:

g ⊗ h := |g|h.
Show that

1. The non-zero real number 1 ∈ G is a left-identity element for ⊗ in G.

2. Every element g ∈ G has a right-inverse with respect to ⊗, i.e., there is an
j ∈ G such that

g ⊗ j = 1.

3. The structure (G, 1,⊗) is not a group.

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2005–2008] 7



2.2 Fields jan18.pdf

2.2 Fields

Definition 2.11. A field is a set F together with two laws of composition + (called
addition) and · (called multiplication) and two distinguished elements 0 (called zero)
and 1 (called one), such that the following axioms hold:

1. Addition in F obeys the law of associativity:

(r + s) + t = r + (s+ t) for all r, s, t ∈ F.

2. The zero-element is a right-identity for addition:

r + 0 = r for all r ∈ F.

3. Addition in F admits right-inverses: for every r ∈ F, there is an element s ∈ F
such that

r + s = 0.

4. Multiplication in F obeys the law of associativity:

(r · s) · t = r · (s · t) for all r, s, t ∈ F.

5. The one-element is a right-identity for multiplication:

r · 1 = r for all r ∈ F.

6. Non-zero elements in F have right-inverses with respect to multiplication: for
every r ∈ F except r = 0, there is an element s ∈ F such that

r · s = 1.

7. Multiplication and addition interact via the laws of distributivity:

(r + s) · t = (r · t) + (s · t)
t · (r + s) = (t · r) + (t · s) for all r, s, t ∈ F.

8. Multiplication in F is commutative:

r · s = s · r for all r, s ∈ F.

Remark 2.12. The first three axiom (1-3) just state that (F, 0,+) is a group. The
axioms (4-6) imply that the non-zero elements of F form a group with · as the law
of composition and 1 as identity-element. Hence, what we derived for groups readily
applies to fields. In particular we have:

1. The identity-elements 0 and 1 are left-identities, too.

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2005–2008] 8
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2. There is no other right-identity element with respect to either addition nor
multiplication.

3. Every element r has a unique right-inverse with respect to addition, and if r 6= 0,
it has a unique right-inverse with respect to multiplication.

4. These right-inverses are also left-inverses.

Customarily, the additive inverse of r is denoted by (−r) and the multiplicative inverse
of r is denoted by r−1.

Remark 2.13. Some people do not require multiplication to be commutative. They
would call our fields “commutative field”. I prefer to require commutative fields and
call their (defective) fields “skew fields”. This disagreement is the reason for listing
two forms of the distributive laws. In the presence of commutativity they mutually
imply one another.

You may wonder why we include commutativity of multiplication but not commuta-
tivity for addition. The reason is that commutativity of addition is actually implied
by the other axioms:

Theorem 2.14. Addition in any field F obeys the law of commutativity:

r + s = s+ r for all r, s ∈ F.
Proof. First of all, we define

2 := 1 + 1

and observe that by axioms 5 and 7:

r + r = (r · 1) + (r · 1) = r · (1 + 1) = r · 2 (1)

With this lemma, we can carry out the crucial computation:

(r + r) + (s+ s) = (r · 2) + (s · 2) by equation 1

= (r + s) · 2 by axiom 7

= (r + s) + (r + s) by equation 1

The crucial part is how the order of the two middle terms has changed. We exploit
this as follows:

r + s = (r + s) + 0 by axiom 2

= (r + s) + (s+ (−s)) by axiom 3

= 0 + ((r + s) + (s+ (−s))) since 0 is also a left-zero

= ((−r) + r) + ((r + s) + (s+ (−s))) since (−F) is also a left-inverse

=
(
(−r) + ((r + r) + (s+ s))

)
+ (−s) repeated use of axiom 1

=
(
(−r) + ((r + s) + (r + s))

)
+ (−s) by our crucial computation

= s+ r by reversing the steps above

q.e.d.
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Example 2.15. You already know the fields Q (the set of all rational numbers) and
R (the set of all real numbers). Some of you may also know the set C of complex
numbers. All of these are fields. The integers Z do not form a field since we cannot
divide (most integers lack multiplicative inverses!)

Exercise 2.16. Recall the group {even, odd} with two elements from Exercise 2.9.
Define a multiplication on this set as follows

· even odd

even even even

odd even odd

Show that these conventions turn {even, odd} into a field with even as its zero and
odd as its one.

Remark 2.17. This field with two elements is used in computer science and coding
theory. Linear algebra over this peculiar field is actually quite useful.

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2005–2008] 10
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3 Vector Spaces

3.1 Definition and First Properties

Definition 3.1 (see book 1.1). Let F be a field. A vector space over F (or short,
an F-vector space) is a set V together with a distinguished element 0 [called the
zero-vector] and two binary operations

⊕ : V × V −→ V

(v,w) 7→ v ⊕ w

[called (vector) addition] and

¯ : F× V −→ V

(r,v) 7→ r ¯ v

[called (scalar) multiplication] such that the following axioms hold:

1. (commutativity of addition) We have v ⊕ w = w ⊕ v for all v,w ∈ V.
2. (associativity of addition) We have

(v ⊕ w)⊕ x = v ⊕ (w ⊕ x) for all v,w,x ∈ V.

3. (additive right identity) We have

v ⊕ 0 = v for all v ∈ V.

4. (existence of additive right inverses) For each v ∈ V , there is a vector x ∈ V
(depending on v) satisfying v ⊕ x = 0.

5. (distributivity I) We have

r ¯ (v ⊕ w) = (r ¯ v)⊕ (r ¯ w) for all r ∈ F and v,w ∈ V.

6. (distributivity II) We have

(r + s)¯ v = (r ¯ v)⊕ (s¯ v) for all r, s and v ∈ V.

7. (associativity of multiplications) We have

(r · s)¯ v = r ¯ (s¯ v) for all r, s ∈ F and v ∈ V.

8. (multiplicative identity) We have

1¯ v = v for all v ∈ V.

Proposition 3.2 (2–4). If v ⊕ w = 0, then w ⊕ v = 0.

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2005–2008] 11
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Proof. First, we chose x so that w ⊕ x = 0. Such a vector x exists by Axiom 3.1.4.
Now, we compute:

w ⊕ v = w ⊕ (v ⊕ 0) by Axiom 2

= w ⊕ (v ⊕ (w ⊕ x)) by choice of x

= w ⊕ ((v ⊕ w)⊕ x) by Axiom 3.1.2

= w ⊕ (0⊕ x) since v ⊕ w = 0

= (w ⊕ 0)⊕ x by Axiom 3.1.2

= w ⊕ x by Axiom 3.1.3

= 0 by choice of x

q.e.d.

Proposition 3.3 (2–4). We have

0⊕ v = v for all v ∈ V.

Proof. Using Axiom 3.1.4, we choose some x satisfying v ⊕ x = 0. Then:

0⊕ v = (v ⊕ x)⊕ v by choice of x

= v ⊕ (x⊕ v) by Axiom 3.1.2

= v ⊕ 0 x⊕ v = 0 by Proposition 3.2

= v by Axiom 3.1.3

q.e.d.

Proposition 3.4 (2–4). For all v,w ∈ V , there is a unique vector x ∈ V satisfying

v ⊕ x = w.

The uniqueness statement means that v ⊕ x = w = v ⊕ y implies x = y.

Proof. Using Axiom 3.1.4, we chose v′ so that v ⊕ v′ = 0. There are two parts of
this statement that need to be argued separately.

existence: Now, we claim that x := v′ ⊕ w satisfies the equation. To see this, we
just plug and chuck:

v ⊕ x = v ⊕ (v′ ⊕ w) by choice of x

= (v ⊕ v′)⊕ w by Axiom 3.1.2

= 0⊕ w by choice of v′

= w by Proposition 3.3

uniqueness: We have to prove that

v ⊕ x = v ⊕ y implies x = y.

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2005–2008] 12
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We compute

v ⊕ x = v ⊕ y hypothesis

v′ ⊕ (v ⊕ x) = v′ ⊕ (v ⊕ y) adding v′

(v′ ⊕ v)⊕ x = (v′ ⊕ v)⊕ y by Axiom 3.1.2

0⊕ x = 0⊕ y v′ ⊕ v = 0 by Proposition 3.2

x = y by Proposition 3.3

q.e.d.

Proposition 3.5 (2–4, see book 1.8). For all v,w ∈ V , there is a unique vector
y ∈ V satisfying

y ⊕ v = w.

The uniqueness part means that x⊕ v = w = y ⊕ v implies x = y.

Proof. Proposition 3.2 and Proposition 3.3 are mirror images of Axioms 3 and 4.
Thus, Proposition 3.5 holds as it is the mirror image of Proposition 3.4. The real
proof is left as an exercise. q.e.d.

Corollary 3.6 (2–4, see Theorem 1.3). For each v there is a unique v with

v ⊕ x = 0

We denote this vector x by −v. It also satisfies −v ⊕ v = 0 and is also uniquely
determined by this condition.

Proof. Use Proposition 3.4 with w = 0. For the symmetric statements, use Propo-
sition 3.5. q.e.d.

Proposition 3.7 (see book 1.4). We have

0¯ v = 0 for all v ∈ V.

Proof. First, we compute

v ⊕ (0¯ v) = (1¯ v)⊕ (0¯ v) by Axiom 3.1.8

= (1 + 0)¯ v Axiom 3.1.6

= 1¯ v since 1 + 0 = 1

= v by Axiom 3.1.8

Thus, 0¯ v is a solution to the equation

v ⊕ x = v.

This, equation however has the obvious solution x = 0 by Axiom 3.1.3. Since there is
only one solution to this equation (uniqueness part of Proposition 3.4), we find that
the two solutions we have must coincide, i.e., 0¯ v = 0. q.e.d.

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2005–2008] 13
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Proposition 3.8 (see book 1.5(d)). We have

(−1)¯ v = −v for all v ∈ V.

Proof. We have to show that (−1) ¯ v is an additive inverse for v, i.e., we need to
show

v ⊕ ((−1)¯ v) = 0.

This can be done like so:

v ⊕ ((−1)¯ v) = (1¯ v)⊕ ((−1)¯ v) by Axiom 3.1.8

= (1 + (−1))¯ v by Axiom 3.1.6

= 0¯ v

= 0 by Proposition 3.7

q.e.d.

Lemma 3.9. If v ⊕ v = v, then v = 0.

Proof. Consider the equation
v ⊕ x = v.

By Proposition 3.4, this equation has a unique solution, which by Axiom 3.1.3 must
be x = 0 and by hypothesis (v ⊕ v = v) must be x = v. q.e.d.

Proposition 3.10 (see book 1.5(b)). We have

r ¯ 0 = 0 for all r ∈ F.

Proof. Note

(r ¯ 0)⊕ (r ¯ 0) = r ¯ (0⊕ 0) by Axiom 3.1.5

= r ¯ 0 by Axiom 3.1.3

Thus, r ¯ 0 satisfies the hypothesis of Lemma 3.9. Hence r ¯ 0 = 0. q.e.d.

Proposition 3.11 (compare book 1.5(c,i)). If r 6= 0 and r¯ v = 0, then v = 0.

Proof. Since r 6= 0, there is a scalar s such that r · s = 1. Since multiplication in F is
commutative, we have s · r = 1, as well. (Exercise: find a way to avoid the reference
to commutativity of multiplication in F.) Now, we compute:

v = 1¯ v by Axiom 3.1.8

= (s · r)¯ v since s · r = 1

= s¯ (r ¯ v) by Axiom 3.1.7

= s¯ 0 by hypothesis r ¯ v = 0

= 0 by Proposition 3.10

q.e.d.
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Theorem 3.12 (commutativity of addition). We have

v ⊕ w = w ⊕ v for all v,w ∈ V.

Proof. First, we argue

(v ⊕ v)⊕ (w ⊕ w) = (v ⊕ w)⊕ (v ⊕ w) (*)

as follows:

(v ⊕ v)⊕ (w ⊕ w) = ((1¯ v)⊕ (1¯ v))⊕ ((1¯ w)⊕ (1¯ w)) by Axiom 3.1.8

= ((1 + 1)¯ v)⊕ ((1 + 1)¯ w) by Axiom 3.1.6

= (1 + 1)¯ (v ⊕ w) by Axiom 3.1.5

= (1¯ (v ⊕ w))⊕ (1¯ (v ⊕ w)) by Axiom 3.1.6

= (v ⊕ w)⊕ (v ⊕ w) by Axiom 3.1.8

Now that we established (*), we argue:

(v ⊕ v)⊕ (w ⊕ w) = (v ⊕ w)⊕ (v ⊕ w) this is (*)

v ⊕ (v ⊕ (w ⊕ w)) = v ⊕ (w ⊕ (v ⊕ w)) by Axiom 3.1.2

v ⊕ (w ⊕ w) = w ⊕ (v ⊕ w) by Proposition 3.4 (uniqueness)

(v ⊕ w)⊕ w = (w ⊕ v)⊕ w by Axiom 3.1.2

v ⊕ w = w ⊕ v by Proposition 3.5 (uniqueness)

q.e.d.

3.2 Examples

Example 3.13 (You can be a vector). The one-element set V :=
{ }

is a vector
space when endowed with the following structure:

1. The zero-vector is 0 := .

2. Addition is defined by ⊕ := .

3. Multiplication is defined as r ¯ := for all r ∈ F.

Proof. First, note that the only element is its own inverse: ⊕ = = 0. Since this
covers all elements, we have established Axiom 3.1.4. All other axioms just require
that some equation LHS = RHS holds in general. However, note that any expression
eventually will evaluate to as this is the only legitimate value. Thus any equation
will hold in this case. In particular all those that are required by the axioms. q.e.d.

Example 3.14 (standard vector spaces). We endow the set

Rm := {(x1, x2, . . . , xm) x1, x2, . . . , xm ∈ R}

with the following structure
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1. The zero-vector is the all-0-tuple: 0 := (0, 0, . . . , 0) .

2. Addition is given by (x1, . . . , xm) ⊕ (y1, . . . , ym) := (x1 + y1, . . . , xm + ym) .

3. We define multiplication by r ¯ (x1, . . . , xm) := (rx1, . . . , rxm)

This way, Rm is a vector space over R.

Proof. We start by verifying Axiom 3.1.4. Of course, there is but one reasonable
candidate for the inverse of (x1, . . . , xm) , namely: (−x1, . . . ,−xm) . Indeed, we check:

(x1, . . . , xm) ⊕ (−x1, . . . ,−xm) = (x1 + (−x1), . . . , xm + (−xm)) by definition of ⊕
= (0, . . . , 0) by arithmetic in R

= 0 by definition of 0 ∈ Rm

The recipe for all other axioms is as follows: To prove an identity in Rm, write
out the left hand side eliminating all occurrences of ⊕ and ¯ using the definitions.
Afterwards, use the corresponding rules for real numbers to check that the left hand
and the right hand match. Here is a sample demonstration of Axiom 3.1.5: We have
to show that

r ¯ ((x1, . . . , xm) ⊕ (y1, . . . , ym)) = (r ¯ (x1, . . . , xm)) ⊕ (r ¯ (y1, . . . , ym))

Thus, we evaluate

LHS := r ¯ ((x1, . . . , xm) ⊕ (y1, . . . , ym))

= r ¯ (x1 + y1, . . . , xm + ym) by definition of ⊕
= (r(x1 + y1), . . . , r(xm + ym)) by definition of ¯

and

RHS := (r ¯ (x1, . . . , xm)) ⊕ (r ¯ (y1, . . . , ym))

= (rx1, . . . , rxm) ⊕ (ry1, . . . , rym) by definition of ¯
= (rx1 + ry1, . . . , rxm + rym) by definition of ⊕

Now, it follows that LHS = RHS since

r(x1 + y1) = rx1 + ry1

...

r(xm + ym) = rxm + rym

Note how the law of distributivity for real numbers is used to argue its counter part
Axiom 3.1.5. The other axioms are verified in exactly the same fashion. This is left
as an exercise. q.e.d.

Example 3.15 (perverted operations). We endow the set V := R with the fol-
lowing (perverted) structure:
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1. The zero-vector is 0 := −2.

2. Addition is given by v ⊕ w := v + w + 2.

3. We multiply as follows: t¯ v := tv + 2t− 2.

These absurd conventions do, in fact, turn V into a vector space over R.

Proof. We shall just demonstrate two axioms: Axiom 3.1.5, and Axiom 3.1.4. For
Axiom 3.1.5, we have to show:

LHS := r ¯ (v ⊕ w) = (r ¯ v) ⊕ (r ¯ w) =: RHS.

Now, we unravel the definitions (getting rid of circles symbols):

LHS = r ¯ (v ⊕ w) by defition of LHS

= r(v ⊕ w) + 2r − 2 by defintion of ¯
= r(v + w + 2) + 2r − 2 by defintion of ⊕
= r(v + w + 4) − 2 by real arithmetic

RHS = (r ¯ v) ⊕ (r ¯ w) by definition of RHS

= (r ¯ v) + (r ¯ w) + 2 by definition of ⊕
= (rv + 2r − 2) + (rw + 2r − 2) + 2 by definition of ¯
= r(v + w + 4) − 2 by real arithmetic

= LHS

For Axiom 3.1.4, we have to find additive inverses. Because of Proposition 3.8,
there is but one candidate for −v, namely (−1) ¯ v = −v − 4. Now, we actually
find:

v ⊕ (−v − 4) = v + (−v − 4) + 2 by definition of ⊕
= −2 by real arithmetic

= 0 by definition of 0

Thus, each v has an additive inverse. q.e.d.

Example 3.16 (the big function space). Let V be a vector space over the field F,
and let M be a set. We endow the set Maps(M ;V ) := {f : M → V } of all V -valued
functions over the domain M with the following structure:

1. The zero-vector in Maps(M ;V ) is the map that is 0V everywhere:

0 : M −→ V

m 7→ 0V

2. Addition of vectors is defined point-wise (the vectors are maps!):

f ⊕ h := (M 3 m 7→ f(m)⊕V h(m))

i.e.,
(f ⊕ h)(m) := f(m)⊕V h(m) for all m ∈M.
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3. Multiplication is defined point-wise, too:

r ¯ f := (M 3 m 7→ r ¯V f(m))

i.e.,
(r ¯ f)(m) := r ¯V (f(m)) for all m ∈M.

(Here a V -subscript indicates that the corresponding symbol belongs to the F vector
space structure of V .) These definitions turn Maps(M ;V ) into a vector space over F.

Proof. We argue axiom 3.1.4 first: The inverse for a map f will be the map

x 7→ −f(x) .

This does the trick, since we have:

(f ⊕ (x 7→ −f(x)))(m) = f(m)⊕V (−f(m))

= 0V

Hence
(f ⊕ (x 7→ −f(x))) = 0.

The other axioms transfer from V in the usual way. We just illustrate Axiom 3.1.6:

LHS := (r + s) ¯ f = (r ¯ f) ⊕ (s¯ f) =: RHS.

We find:
LHS = (r + s) ¯ f by definition of LHS

= (m 7→ (r + s) ¯V f(m)) by definition of ¯
and

RHS = (r ¯ f) ⊕ (s¯ f) by definition of RHS

= (m 7→ (r ¯ f)(m)⊕V (s¯ f)(m)) by definition of ⊕
= (m 7→ (r ¯V f(m)) ⊕V (s¯V f(m))) by definition of ¯
= (m 7→ (r + s) ¯V f(m)) by Axiom 3.1.6 for V

= LHS

The other axioms are done exactly the same way. q.e.d.
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3.3 Subspaces

Definition 3.17. Let (V,0,⊕,¯) be a vector space over the field F. Let S be a
subset of V . We say that S is closed w.r.t. addition if

v ⊕ w ∈ S for all v,w ∈ S.
We say that S is closed w.r.t. multiplication if

r ¯ v ∈ S for all r ∈ F and all v ∈ S.
Exercise 3.18. Show that the empty set is closed with respect to addition and mul-
tiplication.

Observation 3.19. If S ⊆ V is closed with respect to addition, then addition in the
ambient vector space V (denoted by ⊕V ) induces a binary operaton on S (denoted by
⊕S):

⊕S : S × S −→ S

(v,w) 7→ v ⊕V w

Theorem 3.20 (Subspace Theorem). Let (V,0V ,⊕V ,¯V ) be a vector space over
the field F. Suppose a subset S ⊆ V satisfies the following conditions:

1. S is non-empty.

2. S is closed with respect to addition.

3. S is closed with respect to scalar multiplication.

Then, the following conventions turn S into a vector space:

0S := 0V .

v ⊕S w := v ⊕V w for all v,w ∈ S.
r ¯S v := r ¯V v for all r ∈ F and v ∈ S.

That is, with the above definitions, (S,0S,⊕S,¯S) is an F-vector space.

Proof of the Subspace Theorem 3.20. Since 0V = 0¯V v, we find that 0V ∈ S
since S is non-empty and closed with respect to multiplication.

All axioms but axiom 3.1.4 are inherited from their counterparts for ⊕V and ¯V .
Existence of inverses, however, also is easy: By Proposition 3.8 (−1) ¯V v is an
additive inverse for v ∈ V . If v ∈ S, then (−1)¯V v ∈ S and therefore, we have an
inverse in S. q.e.d.

Definition 3.21 (Subspace). Let (V,0,⊕,¯) be a vector space over the field F. A
subspace of V is a non-empty subset of V that is closed with respect to addition and
scalar multiplication. By the previous theorem, any subspace inherits the structure
of a vector space from the ambient vector space.
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Example 3.22 (Polynomials). For each number d ≥ 0, the set

Pd :=



p : R→ R

There are a0, a1, . . . , ad ∈ R such that

p(x) = adx
d + ad−1x

d−1 + a1x
1 + a0x

0

for all x ∈ R.





is a subspace of Maps(R;R).

Proof. By the Subspace Theorem, we have to see that the set of polynomials of degree
≤ d is closed with respect to addition and scalar multiplication. That, however, is
obvious, e.g.:

(x 7→ 3x+ 2)⊕ (x 7→ 2x+ (−1)) = (x 7→ 5x+ 1)

and
2¯ (x 7→ x2 − x+ 2) = (x 7→ 2x2 − 2x+ 4).

q.e.d.

Definition 3.23.

Example and Definition 3.24 (Span). Let (V,0,⊕,¯) be an F-vector space. Given
vectors v1,v2, . . . ,vr ∈ V, the span

span{v1,v2, . . . ,vr} := {w ∈ V (a1 ¯ v1)⊕ · · · ⊕ (ar ¯ vr) = w for some a1, . . . , ar ∈ F}
is a subspace of V .

An expression of the form (a1¯v1)⊕ · · ·⊕ (ar¯vr) is called a linear combination
of the vectors vi. Thus, the span of the vi consists of precisely those vectors that
can be realized as a linear combination of the vi. (Warning: the coefficients used in
a linear combination to write w need not be unique!)

Proof. Note that

0 = (0¯ v1)⊕ · · · ⊕ (0¯ vr) ∈ span{v1,v2, . . . ,vr}.
Also, the span is closed with respect to addition: if

w = (a1 ¯ v1)⊕ · · · ⊕ (ar ¯ vr) ∈ span{v1,v2, . . . ,vr}
and

v = (b1 ¯ v1)⊕ · · · ⊕ (br ¯ vr) ∈ span{v1,v2, . . . ,vr}
then

w ⊕ x = ((a1 ¯ v1)⊕ · · · ⊕ (ar ¯ vr)) ⊕ ((b1 ¯ v1)⊕ · · · ⊕ (br ¯ vr))

= ((a1 ¯ v1)⊕ (b1 ¯ v1)) ⊕ · · · ⊕ ((ar ¯ vr)⊕ (br ¯ vr))

= ((a1 + b1)¯ v1) ⊕ · · · ⊕ ((ar + br)¯ vr))

∈ span{v1,v2, . . . ,vr}
A similar argument (left as an exercise!) shows that the span is closed with respect
to scalar multiplication. q.e.d.
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Example 3.25 (Solutions to a linear equation). The set

S :=







x

y

z


 5x− 7y + z = 0





is a subspace of R3.
We can write S as a span: We have



x

y

z


 ∈ S

⇐⇒ 5x− 7y + z = 0

⇐⇒ z = −5x+ 7y

⇐⇒


x

y

z


 =




x

y

−5x+ 7y




⇐⇒


x

y

z


 = x




1

0

−5


 + y




0

1

7




Thus:

S = span{



1

0

−5


 ,




0

1

7


}

Morale: solving a linear equation is to write its space of solutions as a span!
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4 Linear Maps

4.1 Definition and Examples

Definition 4.1 (Linear Maps). Let V andW be vector spaces. A map ϕ : V → W
is called linear if it satisfies the following two conditions:

1. ϕ(v ⊕V w) = ϕ(v)⊕W ϕ(w) for all v,w ∈ V.
2. ϕ(r ¯V v) = r ¯W ϕ(v) for all r ∈ F and v ∈ V.

Remark 4.2. If ϕ : V → W is linear, then

ϕ(0V ) = ϕ(0¯V 0V ) by Proposition 3.7

= 0¯W ϕ(0V ) by linearity

= 0W by Proposition 3.7

Example 4.3 (The derivative). The derivative

D : P3 −→ P2

(x 7→ p(x)) 7→ d p

dx

is a linear map.

Proof. By Calculus,
d(p+ q)

dx
=

d p

dx
+

d q

dx
and

d(rp)

dx
= r

d p

d x
.

Now, we also observe that the derivative of a polynomial is a polynomial. The dergree
drops by 1. q.e.d.

Example 4.4 (The evaluation map). Let M be a set and V be a vector space.
Fix an elemen m ∈M . The evaluation at m

evm : Maps(M ;V ) −→ V

f 7→ f(m)

is linear.

Proof. We have:

evm(f ⊕ h) = (f ⊕ h)(m) definition of evm

= f(m)⊕V h(m) definition of ⊕V

= evm(f)⊕V evm(h) definition of evm

and:
evm(r ¯ f) = (r ¯ f)(m) definition of evm

= r ¯V f(m) definition of ¯V

= r ¯V evm(f) definition of evm

q.e.d.
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Example 4.5 (Spaces of Linear Maps). Let V and W be vector spaces. Then

Lin (V ;W ) := {ϕ : V → W ϕ is linear}

is a subspace of Maps(V ;W ).

Proof. Observe that the zero-map

v 7→ 0W for all v ∈ V

is linear. Thus, by the Subspace Theorem, all we have to show is that the sum of
two linear maps is linear (Lin (V ;W ) is closed with respect to addition) and that
scalar multiples of linear maps are linear (Lin (V ;W ) is closed with respect to scalar
multiplication).

Now, assume that ϕ : V → W and ψ : V → W are linear. Then for any two
vector v,w ∈ V ,

(ϕ⊕ ψ)(v ⊕V w) = ϕ(v ⊕V w)⊕W ψ(v ⊕V w) definition of ⊕
= (ϕ(v)⊕W ϕ(w)) ⊕W (ψ(v)⊕W ψ(w)) ϕ and ψ are linear

= (ϕ(v)⊕W ψ(v)) ⊕W (ϕ(w)⊕W ψ(w)) vector arithmetic in W

= (ϕ⊕ ψ)(v)⊕W (ϕ⊕ ψ)(w) definition of ⊕

Hence ϕ⊕ ψ is additive. We also have

(ϕ⊕ ψ)(r ¯V v) = ϕ(r ¯V v)⊕W ψ(r ¯V v) definition of ⊕
= (r ¯W ϕ(v)) ⊕W (r ¯W ψ(v)) ϕ and ψ are linear

= r ¯W (ϕ(v)⊕W ψ(v)) vector arithmetic in W

= r ¯W ((ϕ⊕ ψ)(v)) definition of ⊕

Thus, ϕ⊕ ψ is linear.
Similar computations show that s¯ ϕ is linear:

(s¯ ϕ)(v ⊕V w) = s¯W ϕ(v ⊕V w) definition of ¯
= s¯W (ϕ(v)⊕W ϕ(w)) ϕ is linear

= (s¯W ϕ(v)) ⊕W (s¯W ϕ(w)) vector arithmetic in W

= (s¯ ϕ)(v)⊕W (s¯ ϕ)(w) definition of ¯

and:
(s¯ ϕ)(r ¯V v) = s¯W ϕ(r ¯V v) definition of ¯

= s¯W (r ¯W ϕ(v)) ϕ is linear

= r ¯W (s¯W ϕ(v)) vector arithmetic in W

= r ¯W (s¯ ϕ)(v) definition of ¯
Note how these proofs differ only in the third step: the required “vector arithmetic”
varies. You are strongly encouraged to expand this step into an explicit sequence
elementary operations. q.e.d.
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4.2 Linear Maps between Standard Vector Spaces

In this section, we fix a field F (think R if you want); and we shall study linear maps
from Fn to Fm (see example 3.14).

Example 4.6. The map

ϕ : R2 −→ R[
x

y

]
7→ −5x+ 3y

is linear. In fact, any two scalars a1, a2 ∈ R define a linear map

ψ : R2 −→ R[
x

y

]
7→ a1x+ a2y.

Moreover, any linear map
ψ : R2 −→ R

is of this form. In fact, you can recover the two scalars as

a1 = ψ

([
1

0

])

a2 = ψ

([
0

1

])
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Proposition 4.7. Given scalars ai,j ∈ F, for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, the
map

ϕ : Fn −→ Fm



x1
...

xn


 7→



a1,1x1 + a1,2x2 + · · ·+ a1,nxn

...

am,1x1 + am,2x2 + · · ·+ am,nxn




is linear.

Proof. This is a straight forward computation. The only difficulty is to not get lost
in all those subscripts. The following computation shows that ϕ is compatible with
addition:

ϕ






x1
...

xn


 +



y1
...

yn





 = ϕ






x1 + y1

...

xn + yn





 addition in Fn

=




∑n
j=1 a1,j(xj + yj)

...∑n
j=1 am,j(xj + yj)


 definiton of ϕ

=




(∑n
j=1 a1,jxj

)
+

(∑n
j=1 a1,jyj

)

...(∑n
j=1 am,jxj

)
+

(∑n
j=1 am,jyj

)


 arithmetic in F

=




∑n
j=1 a1,jxj

...∑n
j=1 am,jxj


 +




∑n
j=1 a1,jyj

...∑n
j=1 am,jyj


 addition in Fm

= ϕ






x1
...

xn





 + ϕ






y1
...

yn





 definition of ϕ

The computation that shows ϕ to be compatible with scalar multiplication is similar
and left as an exercise. q.e.d.

Exercise 4.8. Complete the proof of Proposition 4.7 by showing that ϕ is compatible
with scalar multiplication.

Lemma 4.9. Let ϕ : Fn → Fm and ψ : Fn → Fm be two linear maps. Suppose that
ϕ and ψ coincide on the “standard basis vectors”

e1 :=




1

0

0
...

0




e2 :=




0

1

0
...

0




· · · en−1 :=




0
...

0

1

0




en :=




0
...

0

0

1
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i.e., assume that ϕ(ej) = ψ(ej) for each j ∈ {1, . . . , n}.

Then, ϕ = ψ, i.e., for any



x1
...

xn


 ∈ Fn we have ϕ






x1
...

xn





 = ψ






x1
...

xn





 .

Proof. The main observation is

x1
...

xn


 = x1e1 + · · ·+ xnen

Hence, using linearity, we compute:

ϕ






x1
...

xn





 = ϕ(x1e1 + · · ·+ xnen) main observation

= x1ϕ(e1) + · · ·+ xnϕ(en) ϕ is linear

= x1ψ(e1) + · · ·+ xnψ(en) ϕ and ψ coincide on ej

= ψ(x1e1 + · · ·+ xnen) ψ is linear

= ψ






x1
...

xn





 main observation

q.e.d.

Proposition 4.10. Let
ϕ : Fn −→ Fm

be linear. Then there exist uniquely determined scalars a1,1, . . . , a1,n, a2,1, . . . , am,n ∈ F
such that

ϕ






x1
...

xm





 =



a1,1x1 + a1,2x2 + · · ·+ a1,nxn

...

am,1x1 + am,2x2 + · · ·+ am,nxn


 for all



x1
...

xm


 ∈ Fm.

Proof. We first observe uniqueness: the scalar can be recovered by evaluating ϕ on
the standard basis vectors: 



a1,1

a2,1
...

am,1


 = ϕ







1

0

0
...

0










a1,2

a2,2
...

am,2


 = ϕ







0

1

0
...

0
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and so on.
Now let ψ be the linear map defined by the scalars ai,j according to Proposition 4.7.

It follows immediately from Lemma 4.9 that ϕ = ψ. Thus, ϕ can be described in the
promissed way. q.e.d.

Customarily, the scalars ai,j are arranged as an m× n-matrix



a1,1 · · · a1,n

...

am,1 · · · am,n


 ∈Mm×n(F)

This allows us to interpret Propositions 4.7 and 4.10 as follows: Proposition 4.7 defines
a map

Φ : Mm×n(F) −→ Lin (Fn;Fm)

and Proposition 4.10 defines the inverse

Φ : Lin (Fn;Fm) −→Mm×n(F) .

Recall that Mm×n(F) and Lin (Fn;Fm) are vector spaces.

Proposition 4.11. Φ is linear.

Proof. We argue compatibility with addition. Let us fix to matrices



a1,1 · · · a1,n

...

am,1 · · · am,n


 ,



b1,1 · · · b1,n

...

bm,1 · · · bm,n


 ∈Mm×n(F) .

Put

ϕ := Φ






a1,1 · · · a1,n

...

am,1 · · · am,n


 +



b1,1 · · · b1,n

...

bm,1 · · · bm,n







ψ1 := Φ






a1,1 · · · a1,n

...

am,1 · · · am,n







ψ2 := Φ






b1,1 · · · b1,n

...

bm,1 · · · bm,n







We need to verify that ϕ = ψ1 + ψ2 which is an identity of functions saying

ϕ(v) = (ψ1 + ψ2)(v) = ψ1(v) + ψ2(v) for each v ∈ Fn.
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We compute

ϕ






x1
...

xn





 =




∑n
j=1 (a1,j + b1,j)xj

...∑n
j=1 (am,j + bm,j)xj


 by definition of ϕ

=




∑n
j=1 a1,jxj

...∑n
j=1 am,jxj


 +




∑n
j=1 b1,jxj

...∑n
j=1 bm,jxj


 vector arithmetic in Fm

= ψ1






x1
...

xn





 + ψ2






x1
...

xn





 by definition of ψi

The argument that Φ is compatible with scalard multiplication is similar and left as
an exercise. q.e.d.

Exercise 4.12. Show that Φ is compatible with scalar multiplication.

Exercise 4.13. Show that Ψ is linear.

Example 4.14. The following map is not linear:

ϕ : R2 −→ R[
x

y

]
7→ x2 − y

Proof. This map cannot be described by a matrix in the way of Proposition 4.7.
Thus, it cannot be linear by Proposition 4.10.

(Alternatively, one can just give counterexamples to additivity and multiplicativ-
ity. That isn’t hard.) q.e.d.
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4.3 Kernel and Image of a Linear Map

Proposition and Definition 4.15. Let F be a field, let (V,0V ,⊕V ,¯V ) and (W,0W ,⊕W ,¯W )
be F-vector spaces. Let ϕ : V → W be a linear map. Then the kernel

ker(ϕ) := {v ∈ V ϕ(v) = 0W}
is a subspace of V .

Proof. By Remark 4.2, we have ϕ(0V ) = 0W . Thus, 0V ∈ ker(ϕ) .
Let v1,v2 ∈ ker(ϕ). Then

ϕ(v1 ⊕V v2) = ϕ(v1)⊕W ϕ(v2) ϕ is linear

= 0W ⊕W 0W vi ∈ ker(ϕ)

= 0W

Hence, ker(ϕ) is closed with respect to addition.
Similarly, for v ∈ ker(ϕ) and r ∈ F, we have

ϕ(r ¯V v) = r ¯W ϕ(v) ϕ is linear

= r ¯W 0W v ∈ ker(ϕ)

= 0W by Proposition 3.10

Hence, ker(ϕ) is closed with respect to scalar multiplication. q.e.d.

Proposition and Definition 4.16. Let F be a field, let (V,0V ,⊕V ,¯V ) and (W,0W ,⊕W ,¯W )
be F-vector spaces. Let ϕ : V → W be a linear map. Then the image

im(ϕ) := {w ∈ W ϕ(v) = w for some v ∈ V }
is a subspace of V .

Proof. Remark 4.2, we have ϕ(0V ) = 0W . Thus, 0W ∈ im(ϕ) .
Let w1,w2 ∈ im(ϕ), i.e., assume that there are vectors v1,v2 ∈ V with ϕ(v1) = w1

and ϕ(v2) = w2. Then

w1 ⊕W w2 = ϕ(v1)⊕W ϕ(v2) by choice of v1 and v2

= ϕ(v1 ⊕V v2) ϕ is linear

∈ im(ϕ) definition of the image

Hence, im(ϕ) is closed with respect to addition.
Similarly, let w ∈ im(ϕ) and let r ∈ F. Thus there is v ∈ V with ϕ(v) = w.

Then
r ¯W w = r ¯W ϕ(v) by choice of v

= ϕ(r ¯V v) ϕ is linear

∈ im(ϕ) definition of the image

Hence, im(ϕ) is closed with respect to scalar multiplication. q.e.d.
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5 Linear Systems

5.1 Solving Linear Systems: Preliminary Observations

Example 5.1. Let us consider the linear system

L1 :=

∥∥∥∥
x +3y −z = 9

2x +y +3z = 8

∥∥∥∥

The vertical bars indicate that both equations are supposed to hold simultaneously.
The set of solutions for L1, therefore, is:

S1 :=







x

y

z


 x+ 3y − z = 9 and 2x+ y + 3z = 8



 ⊆ R3.

Note that a solution is a triple of numbers and the set of all solutions is a subset of
R3. That set maybe empty (no solutions), a point (a single solution), or infinite. It
is this last possibility that requires a little care.

To solve L1, we first observe that subtracting twice the first row from the second
row, yields:

L2 :=
∥∥ −5y +5z = −10

∥∥
This system has the solution set

S2 :=







x

y

z


 − 5y + 5z = −10



 .

Since the equations of the first system imply the equation in system L2, we conclude
that any solution to L1 is also a solution to L2, formally:

S1 ⊆ S2.

The problem is that we might have (and in this case, indeed, have) increased the set
of solution: For instance x = 100, y = 2, z = 0 solves the second system, but it does
not solve the first. Thus: just drawing inferences, we run into the risk of picking up
bogus solutions or shadow solutions.

Example 5.2. In high school algebra, the problem of bogus solutions also arises.
Consider: √

x = x− 2 square both sides

x = x2 − 4x+ 4 −x
0 = x2 − 5x+ 4 factor

0 = (x− 4)(x− 1)

x ∈ {1, 4}
Now, the candidate x = 1 does not solve the original equation. Thus, we have to
check all candidates and throw those out that to not work. This elimination process
is not feasible if we might pick up infinitely many bogus solutions.
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Example 5.3. Let us be more careful about drawing our conclusions. We want to
replace system L1 by a somewhat simpler system that has the same set of solutions.
Thus, we may not throw away information. Thus, when drawing a conclusion, we
also copy some of the original equations. In our example, after subtracting twice the
first row from the second, we also copy the first row. Now, we get:

L3 :=

∥∥∥∥
x +3y −z = 9

−5 +5z = −10

∥∥∥∥

The corresponding set of solutions is

S1 :=







x

y

z


 x+ 3y − z = 9 and − 5y + 5z = −10



 .

I claim:
S1 = S3.

Note that the inclusion S1 ⊆ S3 follows by the same argument as above. To see that
S3 ⊆ S1 we have to see that the system L3 implies system L1. In this case, the two
systems mutually imply one another, they are equivalent.

To that L3 implies L1, note that adding twice the first row in L3 to its second row
yields the second equation of the first system.

From these considerations, we arrive at the following first crude method:

Rule 5.4. To solve a linear system, replace the system by a simpler equivalent system.
Continue until you cannot simplify any further. Be sure to check at each step that
the simplified system and the previous system imply mutually one another, i.e., you
have to find an algebraic passage both ways.
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5.2 The Method of Row-Reduction

5.2.1 The Matrix Associated with a Linear System

Given a linear system with r equations in s variables, we can use an r×(s+ 1)-matrix
to encode it. The matrix just encodes the coefficients, and its right column records
the right hand sides of the equations.

Example 5.5. Recall our linear system from above:

L1 :=

∥∥∥∥
x +3y −z = 9

2x +y +3z = 8

∥∥∥∥

The corresponding matrix is

A1 :=

[
1 3 −1 9

2 1 3 8

]

5.2.2 The (Reduced) Row-Echelon Form

In this section, we shall make the notion of “solving a linear system” a bit more
precise. In our crude wording, we wanted an equivalent system that cannot be further
simplified. What that means, however, is not very clear. Passing to matrices allows
us to make a more precise definition.

Definition 5.6. Let A be an m× n-matrix.
A leading entry of A is non-zero entry that is the first, from the left, non-zero

entry in its row. A leading 1 is a leading entry that happens to be 1.
We say that A is in row-echelon form if it satisfies all of the following three con-

ditions:

(a) Each leading entry is a leading 1.

(b) These leading 1s form a staircase pattern, i.e., given two rows with leading 1s,
then the leading 1 in the higher row is strictly to the left of the leading entry
in the lower row. (In particular, no column contains two leading 1s.)

(c) All the rows without leading 1s are together at the bottom of A. Note that
these rows consist of 0-entries only.

We say that A is in reduced row-echelon form if in addition the following holds:

(d) Above any leading 1 there are only 0-entries in its column.

We consider a linear system solved when its matrix is in reduced row-echelon form.

Example 5.7. The system ∥∥∥∥
x −2z = 1

y +3z = 4

∥∥∥∥
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corresponds to [
1 0 −2 1

0 1 3 1

]

which is in reduced row-echelon form. Note how that enables us to solve for x and y
in terms of z. This is the key point of the row echelon form: you always can solve for
the more left variables in terms of those more to the right.

Example 5.8. The matrix [
0 1 2 0

0 0 0 1

]

is in reduced row-echelon form. The corresponding system is

∥∥∥∥
0x +1y +2z = 0

0x +0y −0z = 1

∥∥∥∥

You can see right away that there are no solutions because of the second equation.

5.2.3 Elementary Row Operations

Definition 5.9. An elementary row operation on a matrix is one of the following
three types:

1. The swap interchanges two rows Ri and Rj. We denote the swap by: Ri ↔ Rj.

2. Adding a multiple of some row Ri to some other row Rj. Here we require i 6= j.
We denote this type by: CRi +Rj → Rj.

3. Rescaling a row Rj by a non-zero factor C 6= 0. This is denoted by: CRj → Rj.

Observation 5.10. Let A be a matrix encoding a linear system L. Suppose you
obtain a matrix A′ from A by an elementary row-operation. Then the system L′
encoded by A′ follows from the system L. In particular, any solution to L is a solution
to L′.

Proposition 5.11. Every elementary row-operation can be un-done by another ele-
mentary row-operation.

Proof. We have to see, how the three different types of elementary row-operations
can be un-done.

As for swaps, this is easy as swaps are self-reversing: swapping twice amounts to
doing nothing.

Rescaling by a non-zero scalar (i.e., an operation like CRj → Rj with C 6= 0)
is also easy to un-do: just rescale by 1

C
. (Here, we use the fact that fields have

multiplicative inverses for non-zero elements!)
Finally, a modification CRi + Rj → Rj is un-done by −CRi + Rj → Rj. Note:

this argument uses i 6= j. (Can you see why?) q.e.d.
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Corollary 5.12. Let A be a matrix encoding a linear system L. Suppose you obtain
a matrix A′ from A by an elementary row-operation. Then the system L′ encoded by
A′ is equivalent to the system L. In particular, both systems have exactly the same
set of solutions.

Remark 5.13. It is important to note that

CRi +Rj → Ri

is not an elementary row-operation. (Why is this not an elementary row operation?
and why is this important? Hint: consider C = 0.)

Definition 5.14. A matrices A1 is equivalent to the matrix A2 if there is a sequence
of elementary row operations fransforming A1 into matrix A2.

Remark 5.15. If a matrix describes a linear system, then any equivalent matrix
describes a system with the same solution set.

Exercise 5.16. Prove the following:

1. Every matrix is equivalent to itself. (Hint: You have to show that doing nothing
can be realised as a sequence of elementary row-operations.)

2. If A1 is equivalent to A2, then A2 is equivalent to A1. (Hint: You need to show
that very sequence of elementary row operations can be un-done by another
sequence of elementary row-operations. For a single row-operation, this un-
doability is the contents of Proposition 5.11

3. If A1 is equivalent to A2 and A2 is equivalent to A3, then A1 is equivalent to
A3. (Hint: Consider concatenation of sequences of row-operations.)
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5.2.4 The Gauss-Jordan Algorithm of Row-Reduction

Theorem 5.17 (existence of the reduced row-echelon form). Every matrix A
is equivalent to a matrix in reduced row-echelon form.

Proof by giving an algorithm. We have to find a sequence of elementary row-
operations that puts A into reduced row-echelon form. The following method does
not try to be particularly smart, but it will always succeed:

1. If needed, swap two rows so that the first row has a left-most leading entry, i.e.,
no other row shall have a leading entry farther to the left.

2. If needed, rescale the first row so that its leading entry becomes 1.

3. Subtract multiples of the first row from all other rows to make the leading 1 in
the first row the only non-zero entry in its column.

4. Restrict your attention to the submatrix of all rows below the first row, and
restart.

5. Continue the loop of the first four steps until the submatrix under consideration
has no non-zero entries. Note: the empty matrix has no entries, hence it has
no non-zero entries.

6. Now, the matrix is in row-echelon form. To promote it to reduced row-echelon
form, for each row with a leading 1 add multiples of that row to all higher rows
as to kill the entries above the leading 1.

The inner workings of this method are best understood by working through a (not so
random) example: Here is the matrix:




0 1 2 −1 3 1

0 0 0 2 1 3

3 4 5 0 2 −1

6 7 8 1 1 −3

6 7 8 3 2 0

3 4 5 2 3 2




Step 1 says, we have to swap R1 ↔ R3 which yields:




3 4 5 0 2 −1

0 0 0 2 1 3

0 1 2 −1 3 1

6 7 8 1 1 −3

6 7 8 3 2 0

3 4 5 2 3 2
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Step 2 changes the leading entry in the top row to 1 by 1/3R1 → R1. We obtain:




1 4/3 5/3 0 2/3 −1/3

0 0 0 2 1 3

0 1 2 −1 3 1

6 7 8 1 1 −3

6 7 8 3 2 0

3 4 5 2 3 2




Step 3 is about killing the entries below the first leading 1.
−6R1 +R4 → R4 yields




1 4/3 5/3 0 2/3 −1/3

0 0 0 2 1 3

0 1 2 −1 3 1

0 −1 −2 1 −3 −1

6 7 8 3 2 0

3 4 5 2 3 2




−6R1 +R5 → R5 yields:




1 4/3 5/3 0 2/3 −1/3

0 0 0 2 1 3

0 1 2 −1 3 1

0 −1 −2 1 −3 −1

0 −1 −2 3 −2 2

3 4 5 2 3 2




−3R1 +R6 → R6 yields:




1 4/3 5/3 0 2/3 −1/3

0 0 0 2 1 3

0 1 2 −1 3 1

0 −1 −2 1 −3 −1

0 −1 −2 3 −2 2

0 0 0 2 1 3




Now, the first column is fixed. We discard the first row and restart the loop.
R2 ↔ R3 yields: 



1 4/3 5/3 0 2/3 −1/3

0 1 2 −1 3 1

0 0 0 2 1 3

0 −1 −2 1 −3 −1

0 −1 −2 3 −2 2

0 0 0 2 1 3
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1R2 +R4 → R4 yields:



1 4/3 5/3 0 2/3 −1/3

0 1 2 −1 3 1

0 0 0 2 1 3

0 0 0 0 0 0

0 −1 −2 3 −2 2

0 0 0 2 1 3




1R2 +R5 → R5 yields



1 4/3 5/3 0 2/3 −1/3

0 1 2 −1 3 1

0 0 0 2 1 3

0 0 0 0 0 0

0 0 0 2 1 3

0 0 0 2 1 3




Now, the second row is taken care of. In the next loop, we are lucky and can skip
step 1.

1/2R3 → R3 yields:



1 4/3 5/3 0 2/3 −1/3

0 1 2 −1 3 1

0 0 0 1 1/2 3/2

0 0 0 0 0 0

0 0 0 2 1 3

0 0 0 2 1 3




−2R3 +R5 → R5 yields:



1 4/3 5/3 0 2/3 −1/3

0 1 2 −1 3 1

0 0 0 1 1/2 3/2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 2 1 3




−2R3 +R6 → R6 yields:



1 4/3 5/3 0 2/3 −1/3

0 1 2 −1 3 1

0 0 0 1 1/2 3/2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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We finished the third row, and oops: all bottom rows have died. Thus, we stop.
Note that we achieved row echelon form.

Finally, we promote this to reduced row-echelon form.
−4/3R2 +R1 → R1 yields:




1 0 −1 4/3 −10/3 −5/3

0 1 2 −1 3 1

0 0 0 1 1/2 3/2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




−4/3R3 +R1 → R1 yields:




1 0 −1 0 −4 −11/3

0 1 2 −1 3 1

0 0 0 1 1/2 3/2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




1R3 +R2 → R2 yields: 


1 0 −1 0 −4 −11/3

0 1 2 0 7/2 5/2

0 0 0 1 1/2 3/2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




which is our result. q.e.d.

Later in this class, we shall prove:

Fact 5.18 (uniqueness of the reduced row-echelon form). Every matrix is equiv-
alent to one and only one matrix in reduced row-echelon form.
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5.3 Linear Systems and Vector Spaces

Observation 5.19. A linear system in s variables x1, x2, . . . , xs with r equations can
be written as a single equation

x1v1 + x2v2 + · · ·+ xsvs = w

using vectors v1,v2, . . . ,vs,w ∈ Rr.

Example 5.20. Consider the system

∥∥∥∥
x +3y −z = 9

2x +y +3z = 8

∥∥∥∥

Note that we can write this as one equation using (column) vectors:

x

[
1

2

]
+ y

[
3

1

]
+ z

[−1

3

]
=

[
9

8

]
.

Definition 5.21. A linear system is homogeneous if its right hand side consists of
zero entries only. The corresponding vector equation would therefore be

x1v1 + x2v2 + · · ·+ xsvs = 0

Proposition 5.22 (the kernel is a subspace). The set

S :=







x1
...

xs


 ∈ Rs x1v1 + x2v2 + · · ·+ xsvs = 0





of solutions to a homogeneous system of equations is a subspace of Rs.

Proof. We verify the hypotheses of the Subspace Theorem. First observe that

0v1 + 0v2 + · · ·+ 0vs = 0

whence 


0
...

0


 ∈ S.

Now, we consider two solutions



x1
...

xs


 ,



y1
...

ys


 ∈ S
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Then, we have 

x1
...

xs


 +



y1
...

ys


 =



x1 + y1

...

xs + ys


 ∈ S

since

(x1 + y1)v1 + · · ·+ (xs + ys)vs = x1v1 + y1v1 + · · ·+ xsvs + ysvs

= (x1v1 + · · ·+ xsvs) + (y1v1 + · · ·+ ysvs)

= 0

Thus, S is closed with respect to addition.
Similarly, we find that for a solution



x1
...

xs


 ∈ S

we have

r



x1
...

xs


 =



rx1
...

rxs


 ∈ S

since

(rx1)v1 + · · ·+ (rxs)vs = r(x1v1 + · · ·+ xsvs)

= r0

= 0

Thus, the Subspace Theorem applies. q.e.d.

Definition 5.23. The vectors v1, . . . ,vs are called linearly dependent if the linear
system

x1v1 + x2v2 + · · ·+ xsvs = 0

has a non-trivial solution. If it has only the trivial solution, we call these vectors
linearly independent.

Exercise 5.24. Determine whether the vectors




1

2

3


 ,




2

−1

−4


 ,



−1

0

1




are linearly independent. (Remark: it is pure coincidence that the number of variables
and the number of equation are equal in this example!)
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Proposition 5.25 (the image/span is a subspace). Given vectors v1,v2, . . . ,vs ∈
Rr, the set

S := {w ∈ Rr x1v1 + x2v2 + · · ·+ xsvs = w has a solution}

of all right hand sides for which the corresponding linear system is solvable, is a
subspace. (See exercise 1.8.18)

Proof. We verify the hypotheses of the Subspace Theorem. First, we have 0 ∈ S
since a homogeneous linear system of equation always has a solution (e.g., the trivial
solution).

Now assume wx,wy ∈ S, i.e., there there are scalars x1, . . . , xs ∈ R such that

x1v1 + x2v2 + · · ·+ xsvs = wx

and scalars y1, . . . , ys ∈ R such that

y1w1 + y2w2 + · · ·+ ysws = wy.

We observe

wx + wy = (x1v1 + x2v2 + · · ·+ xsvs) + (y1w1 + y2w2 + · · ·+ ysws)

= (x1 + y1)v1 + (x2 + y2)v2 + · · ·+ (xs + ys)vs

Hence, wx + wy ∈ S.
Similarly, we show that S is closed with respect to scalar multiplication: Again

assume w ∈ S, i.e., there there are scalars x1, . . . , xs ∈ R such that

x1v1 + x2v2 + · · ·+ xsvs = w.

Given a scalar r, we find

rw = r(x1v1 + x2v2 + · · ·+ xsvs)

= (rx1)v1 + (rx2)v2 + · · ·+ (rxs)vs

Thus, the Subspace Theorem applies. q.e.d.

Exercise 5.26 (finding the image). Determine all triples (a, b, c) ∈ R3 such that

∥∥∥∥∥∥

x +2y −z = a

2x −y = b

3x −4y +z = c

∥∥∥∥∥∥

has a solution.
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Solution 5.27. We row-reduce:



1 2 −1 a

2 −1 0 b

3 −4 1 c




−2R1 +R2 → R2 


1 2 −1 a

0 −5 2 −2a+ b

3 −4 1 c




−3R1 +R3 → R3 


1 2 −1 a

0 −5 2 −2a+ b

0 −10 4 −3a+ c




−1
5
R2 → R2 


1 2 −1 a

0 1 −2
5

2
5
a− 1

5
b

0 −10 4 −3a+ c




10R2 +R3 → R3 


1 2 −1 a

0 1 −2
5

2
5
a− 1

5
b

0 0 0 a− 2b+ c




−2R2 +R1 → R1 


1 0 −1
5

1
5
a+ 2

5
b

0 1 −2
5

2
5
a− 1

5
b

0 0 0 a− 2b+ c




Thus, the system is solvable if and only if

a− 2b+ c = 0.

Remark 5.28. Our computation establishes an interesting identity:


x




1

2

3


 + y




2

−1

−4


 + z



−1

0

1


 x, y, z ∈ R



 =







a

b

c


 ∈ R3 a− 2b+ c = 0





This is an identity of subspaces in R3. On the left hand side, we describe the subspace
from the inside: the vectors




1

2

3


 ,




2

−1

−4


 ,



−1

0

1




all lie within the subspace, and the subspace is spanned by these vectors. On the right
hand side, we describe the subspace a the set of solutions to a homogeneous system
of linear equations. Row reduction actually allows us to convert freely between the
two points of view. Make sure that you understand this technique.
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Example 5.29 (Interpolation). Find a quadratic polynomial ax2+bx+c through:

(1, 3), (2, 1), (3,−3)

We know:

a12 + b1 + c = 3

a22 + b2 + c = 1

a32 + b3 + c = −3

and this is a linear system, which we solve. This way, one can always find a polynomial
taking some prescribed values at finitely many given points.

5.4 Inhomogeneous Systems

Theorem 5.30. Fix v1,v2, . . . ,vs,w ∈ Rr. Let V ⊆ Rs be the set of solutions to
the homogeneous system

x1v1 + x2v2 + · · ·+ xsvs = 0

i.e.,

V =







x1
...

xs


 ∈ Rs x1v1 + x2v2 + · · ·+ xsvs = 0




.

Then, the set

A :=







x1
...

xs


 ∈ Rs x1v1 + x2v2 + · · ·+ xsvs = w





of solutions to the inhomogeneous system is either empty or of the form

A = {x0 + v v ∈ V }

where x0 is any given solution to the inhomogeneous system. Such a set is called an
affine subspace of Rs.

We will prove this later as a special case of a more general theorem.
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6 Dimension Theory

6.1 Spans and Linear Independence in Abstract Vector Spaces

We have seen how we can rewrite systems of linear equations as a single equation
using vectors. This motivates the following:

Definition 6.1. Let V be a vector space, and let v1,v2, . . . ,vs ∈ V be a finite
collection of vectors. An expression of the form

r1v1 + r2v2 + · · ·+ rsvs

is called a linear combination of the vectors v1,v2, . . . ,vs. Given another vector w ∈
V , we call

x1v1 + x2v2 + · · ·+ xsvs = w

a linear equation in the unknowns x1, x2, . . . , xs.
We call such a linear equation homogeneous if the right hand side w happens to

be the zero vector 0.

Remark 6.2. You should think of linear equations as generalized systems of linear
equations. In general, one such vector-equation will boil down to a messy linear
system.

Theorem 6.3. The set

S :=







x1
...

xs


 ∈ Rs x1v1 + x2v2 + · · ·+ xsvs = 0





of solutions to a homogeneous linear equation is a subspace of Rs.

Proof. The proof of Proposition 5.22 applies verbatim. q.e.d.

Definition 6.4. Let V be a vector space, and let v1,v2, . . . ,vs ∈ V be a finite
collection of vectors. Then the span of these vectors is the set

span{v1,v2, . . . ,vs} := {r1v1 + r2v2 + · · ·+ rsvs r1, r2, . . . , rs ∈ R} .
This is the set of right hand sides w ∈ V for which the linear system

x1v1 + x2v2 + · · ·+ xsvs = w

is solvable.

Theorem 6.5. Given vectors v1,v2, . . . ,vs ∈ V , the set

span{v1,v2, . . . ,vs} = {w ∈ V x1v1 + x2v2 + · · ·+ xsvs = w has a solution}
of all right hand sides for which the corresponding linear equation is solvable, is a
subspace of V .
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Proof. The proof of Proposition 5.25 applies verbatim to the slightly more general
situation here. q.e.d.

Definition 6.6. Let V be a vector space, and let v1,v2, . . . ,vs ∈ V be a finite
collection of vectors. We call these vectors linearly independent if the homogeneous
linear equation

x1v1 + x2v2 + · · ·+ xsvs = 0

has no non-trivial solutions, i.e., its only solution is

x1 = x2 = · · · = xs = 0.

Example 6.7. We determine whether the polynomials

(t− 1)2, t2, (t+ 1)2, (t+ 2)2 ∈ P2

are linearly independent. Thus, we have to determine whether the homogeneous
linear equation

x1(t− 1)2 + x2t
2 + x3(t+ 1)2 + x4(t+ 2)2 = 0

has a non-trivial solution. We get:

x1(t− 1)2 + x2t
2 + x3(t+ 1)2 + x4(t+ 2)2 =

x1

(
t2 − 2t+ 1

)
+ x2

(
t2

)
+ x3(t2 + 2t+ 1) + x4(t2 + 4t+ 4) =

(x1 + x2 + x3 + x4)t
2 + (−2x1 + 2x3 + 4x4)t+ (x1 + x3 + 4x4) = 0

Since a polynomial vanishes if and only if all its coefficients are 0, this equation is
equivalent to the homogeneous linear system

∥∥∥∥∥∥

x1 +x2 +x3 +x4 = 0

−2x1 +2x3 +4x4 = 0

x1 +x3 +4x4 = 0

∥∥∥∥∥∥

Since this is a system in 4 variables with 3 equations, we can see right away that
there will be non-trivial solutions. Thus the four polynomials above are not linearly
independent.

Example 6.8. Let us modify the example slightly. We ask whether the polynomials

(t− 1)2, t2, (t+ 1)2 ∈ P2

are linearly independent. Thus, we have to determine whether the homogeneous
linear equation

x1(t− 1)2 + x2t
2 + x3(t+ 1)2 = 0

has a non-trivial solution. We get:

x1(t− 1)2 + x2t
2 + x3(t+ 1)2 =

x1

(
t2 − 2t+ 1

)
+ x2

(
t2

)
+ x3(t2 + 2t+ 1) =

(x1 + x2 + x3)t
2 + (−2x1 + 2x3)t+ (x1 + x3) = 0
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Since a polynomial vanishes if and only if all its coefficients are 0, this equation is
equivalent to the homogeneous linear system

∥∥∥∥∥∥

x1 +x2 +x3 = 0

−2x1 +2x3 = 0

x1 +x3 = 0

∥∥∥∥∥∥

Note how all this just amounts to omitting the fourth column of the linear system
we got previously. Obviously, in some way yet to be explained, the fourth column of
that system corresponds to the forth polynomial.

Anyway, no we have to row-reduce this system. We get:



1 1 1 0

−2 0 2 0

1 0 1 0




2R1 +R2 → R2 


1 1 1 0

0 2 4 0

1 0 1 0




−1R1 +R3 → R3 


1 1 1 0

0 2 4 0

0 −1 0 0




1
2
R2 → R2 


1 1 1 0

0 1 2 0

0 −1 0 0




1R2 +R3 → R3 


1 1 1 0

0 1 2 0

0 0 2 0




1
2
R3 → R3 


1 1 1 0

0 1 2 0

0 0 1 0




−1R2 +R1 → R1 


1 0 −1 0

0 1 2 0

0 0 1 0




1R3 +R1 → R1 


1 0 0 0

0 1 2 0

0 0 1 0
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−2R3 +R2 → R2 


1 0 0 0

0 1 0 0

0 0 1 0




Since each column has a leading 1 except for the right hand side, we see that the
system has only the trivial solution. Thus the three polynomials are linearly inde-
pendent.

Example 6.9. Again, we modify the example. Now, we ask whether the polynomials

(t− 1)2, t2, (t+ 1)2 ∈ P2

span all of P2. This is to ask whether every polynomial

at2 + bt+ c

can be written as a linear combination of the given three polynomials. I.e., we ask
whether the linear equation

x1(t− 1)2 + x2t
2 + x3(t+ 1)2 = at2 + bt+ c

can always be solved. Running through the same computation as in the previous
example, we find that this equation is equivalent to the linear system system

∥∥∥∥∥∥

x1 +x2 +x3 = a

−2x1 +2x3 = b

x1 +x3 = c

∥∥∥∥∥∥

which we can row-reduce:



1 1 1 1a+ 0b+ 0c

−2 0 2 0a+ 1b+ 0c

1 0 1 0a+ 0b+ 1c




2R1 +R2 → R2 


1 1 1 1a+ 0b+ 0c

0 2 4 2a+ 1b+ 0c

1 0 1 0a+ 0b+ 1c




−1R1 +R3 → R3 


1 1 1 1a+ 0b+ 0c

0 2 4 2a+ 1b+ 0c

0 −1 0 −1a+ 0b+ 1c




1
2
R2 → R2 


1 1 1 1a+ 0b+ 0c

0 1 2 1a+ 1
2
b+ 0c

0 −1 0 −1a+ 0b+ 1c
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1R2 +R3 → R3 


1 1 1 1a+ 0b+ 0c

0 1 2 1a+ 1
2
b+ 0c

0 0 2 0a+ 1
2
b+ 1c




1
2
R3 → R3 


1 1 1 1a+ 0b+ 0c

0 1 2 1a+ 1
2
b+ 0c

0 0 1 0a+ 1
4
b+ 1

2
c




−1R2 +R1 → R1 


1 0 −1 0a− 1
2
b+ 0c

0 1 2 1a+ 1
2
b+ 0c

0 0 1 0a+ 1
4
b+ 1

2
c




1R3 +R1 → R1 


1 0 0 0a− 1
4
b+ 1

2
b

0 1 2 1a+ 1
2
b+ 0c

0 0 1 0a+ 1
4
b+ 1

2
c




−2R3 +R2 → R2 


1 0 0 0a− 1
4
b+ 1

2
c

0 1 0 1a+ 0b− 1c

0 0 1 0a+ 1
4
b+ 1

2
c




From the solution, we gather that we can always solve for x1, x2, x3 given any values
for a, b, c. Thus the three polynomials span P2. Note that they do not stand the
slightest chance of spanning P3 since you will not be able to write t3 as a linear
combination of polynomials of degree 2.
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6.2 Coordinates

Proposition and Definition 6.10 (The Evaluation Map) Let V be a vector space
and fix a finite sequence S of vectors v1,v2, . . . ,vr ∈ V. Then, the evaluation map

evS : Fr −→ V


r1
r2
...

rr


 7→ r1v1 + r2v2 + · · ·+ rrvr

is linear.

Proof. We check additivity first:

evS







r1
r2
...

rr


 +




s1

s2
...

sr





 = evS







r1 + s1

r2 + s2
...

rr + sr







= (r1 + s1)v1 + (r2 + s2)v2 + · · ·+ (rr + sr)vr

= (r1v1 + s1 + v1) + (r2v2 + s2v2) + · · ·+ (rrvr + srvr)

= (r1v1 + r2v2 + · · ·+ rrvr) + (s1v1 + s2v2 + · · ·+ srvr)

= evS







r1
r2
...

rr





 + evS







s1

s2
...

sr







Now we check that evS is homogeneous:

evS


s




r1
r2
...

rr





 = evS







sr1
sr2
...

srr







= (sr1)v1 + (sr2)v2 + · · ·+ (srr)vr

= s(r1v1 + r2v2 + · · ·+ rrvr)

= s evS







r1
r2
...

rr







This completes the proof. q.e.d.
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Definition 6.11. Let M and N be two sets and let f : M → N be a map. The
map f is called onto if every n ∈ N has at least one preimage , i.e., an element
m ∈M satisfying f(m) = n. The map f is called 1-1 if every n ∈ N has at most one
preimage.

A map h : N →M is called an inverse of f if

h(f(m)) = m for all m ∈M
and

f(h(n)) = n for all n ∈ N.

Proposition 6.12. A map f : M → N has an inverse if and only if f is onto and
1-1. If h : N → M is an inverse for f , then f is an inverse for h. If a map has an
inverse, the inverse is onto and 1-1.

Proof. First suppose that f is onto and 1-1. Consider n ∈ N . Since f is onto, n has
at least one preimage, and since f is 1-1, it has at most one preimage. Hence, n has
exactly one preimage m ∈ M . We define h(n) := m. Thus, h assigns to each n its
unique preimage in M .

Now, we verify that h : N →M is an inverse for f . First consider m ∈M . Then
h(f(m)) is the unique preimage of f(m). On the other hand, m is a preimage of
f(m). Hence h(f(m)) = m. Now, consider n. Then h(n) is a preimage of n. But this
says f(h(n)) = n. Thus, h is an inverse for f . This proves: If a map is onto and 1-1,
it has an inverse.

Now assume that f has an inverse h. To finish the proof of the first claim, we
have to see that f is onto and 1-1. So, consider n ∈ N . The map f is onto as we can
find a preimage, namely h(n). It remains to see, that f is 1-1. So suppose that m1

and m2 are both preimages of n. Then

m1 = h(f(m1)) = h(n) = h(f(m2)) = m2.

This concludes the proof of our first claim.
The second claim (if h is an inverse for f , then f is an inverse for h) is obvious: the

two defining identities for being an inverse are symmetric with respect to changing
the roles of f and h.

Finally, the last claim is an immediate consequence of the first two. q.e.d.

Theorem 6.13. Let V be a vector space and fix a finite sequence S of vectors v1,v2, . . . ,vr ∈
V. Then:

1. The vectors v1,v2, . . . ,vr span V if and only if the associated evaluation map
evS : Fr → V is onto.

2. The vectors v1,v2, . . . ,vr are linearly independent if and only if the associated
evaluation map evS : Fr → V is 1-1.

In particular, if v1,v2, . . . ,vr is a basis of V , the associated evaluation map is onto
and 1-1.
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Proof. We start with claim 1. Let us consider the equation

x1v1 + x2v2 + · · ·+ xrvr = w.

By definition, the vectors v1,v2, . . . ,vr span V if this equation has a solution for every
right hand side w ∈ V . Note, however, that the above equation can be rewritten as

evS







x1

x2
...

xr





 = w

which is solvable if and only if w has a preimage under the evaluation map. Thus it
is solvable for every right hand side w if and only if the evS is onto.

To prove claim 2, we consider the equation

x1v1 + x2v2 + · · ·+ xrvr = 0.

This equation can be rewritten as

evS







x1

x2
...

xr





 = 0

q.e.d.

Definition 6.14. A linear map that is onto and 1-1 is called an isomorphism.

Theorem 6.15. The inverse of an isomorphism is linear. (Since the inverse is auto-
matically onto and 1-1 by Proposition 6.12, we see that the inverse of an isomorphism
is an isomorphism.)

Proof. Let ϕ : V → W be an isomorphism; and let ψ : W → V be an inverse map
for ϕ. First, we check that ψ is additive. For w1,w2 ∈W , we have

ϕ(ψ(w1)) + ϕ(ψ(w2)) = w1 + w2

Thus, by linearity of ϕ:

ϕ(ψ(w1) + ψ(w2)) = ϕ(ψ(w1)) + ϕ(ψ(w2)) = w1 + w2.

Hence ψ(w1) +ψ(w2) is a preimage of w1 +w2. Since such a preimage is unique and
given by the inverse map, we find

ψ(w1) + ψ(w2) = ψ(w1 + w2) .

As for scaling, we consider s ∈ F and w ∈ W . By linearity of ϕ, we find

ϕ(sψ(w)) = sϕ(ψ(w)) = sw.

Thus, sψ(w) is the unique preimage of sw, whence

sψ(w) = ψ(sw) . q.e.d.
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Definition 6.16. Let V be a basis of V , i.e., a finite sequence of linearly independent
vectors v1,v2, . . . ,vm that span V . Then the evaluation map evV : Fm → V is linear
by Proposition 6.10, and it is onto and 1-1 by Theorem 6.13. Thus, the evaluation map
for a basis is an isomorphism. Its inverse isomorphism is called the coordinate map
and denoted as follows:

[]V : V −→ Fm

v 7→ [v]V

The coordinate vector [v]V ∈ Fm associated to a vector v ∈ V is characterized by:

[v]V =




r1
r2
...

rm


 ⇐⇒ r1v1 + r2v2 + · · ·+ rmvm = v.

Note that the coordinate map is linear by Theorem 6.15, i.e., we have for any v,w ∈ V
and any r ∈ F:

[v + w]V = [v]V + [w]V
[rv]V = r[v]V
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6.3 The Basis Selection Algorithm

Strong Expansion Lemma 6.17. Suppose v1,v2, . . . ,vi are linearly independent.
Then for any vector vi+1, we have

vi+1 6∈ span{v1,v2, . . . ,vi}
if and only if

v1,v2, . . . ,vi,vi+1 are linearly independent.

Proof. We will actually prove the following equivalent statement:

vi+1 ∈ span{v1,v2, . . . ,vi}
if and only if

v1,v2, . . . ,vi,vi+1 are not linearly independent.

So assume first vi+1 ∈ span{v1,v2, . . . ,vi}. Then there are scalars r1, . . . , ri such that

r1v1 + · · ·+ rivi = vi+1.

In this case, we have
r1v1 + · · ·+ rivi − vi+1 = 0,

which shows that the vectors v1,v2, . . . ,vi,vi+1 are not linearly independent.
For the other implication, we assume that v1,v2, . . . ,vi,vi+1 are not linearly in-

dependent, i.e., that

x1v1 + x2v2 + · · ·+ xivi + xi+1vi+1 = 0

has a non-trivial solution. Note that in this solution xi+1 cannot be 0: if it was, we
could drop the last summand and obtain a non trivial solution to

x1v1 + x2v2 + · · ·+ xivi = 0

which would imply that v1,v2, . . . ,vi are not linearly independent contrary to our
hypothesis.

Since xi+1 6= 0, we can solve for vi+1:

vi+1 = − x1

xi+1

v1 − x2

xi+1

v2 − · · · − xi

xi+1

vi

and this shows
vi+1 ∈ span{v1,v2, . . . ,vi}

as predicted. q.e.d.

Algorithm for Finding a Basis within a Spanning Set 6.18. Let V be a vec-
tor space. Suppose that

S = (v1,v2, . . . ,vr)

is a finite spanning set for V .
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To select a basis from this spanning set proceed as follows: working from lower
indices to higher indices, check for each vj whether it is in the span of its predecessors.
If so, drop vj, if not, keep vj. The basis V consists of the vectors you keep.

Here is a more formal description of the method. Put

V0 := {0}
V1 := span{v1}
V2 := span{v1,v2}
V3 := span{v1,v2,v3}

...

Vr := span{v1, . . . ,vr}

Then
V := {vj vj 6∈ Vj−1}

is a basis for V .
This algorithm is biased in favor of low indices: if an initial segment of the se-

quence v1,v2, . . . ,vr is a linearly independent set of vectors, it will be included as an
initial segment in the basis.

Proof of correctness. We have to argue that the output is a linearly independent
spanning set for V .

Before we start, note how V0 = {0} prevents the algorithm from (erroneously)
including the zero-vector 0 in its selection.

As for spanning V , note that the algorithm drops exactly those vector vj that are
contained in the span of their preceding segment. Thus these vectors are redundant
and do not contribute to the span. Therefore, the selection that the algorithm put
out will be a spanning set for V .

As for linear independence of the output, we use the Expansion Lemma. As the
algorithms walks through the spanning set, pondering whether it should keep vector
vj or throw it out, it has already compiled a list of preceding vectors that it decided
to keep. Assume for a moment that the algorithm did not screw up earlier, i.e.,
assume that the list is has compiled so far is linearly independent. Then the vector
vj get added only if it is not contained in the span of the vectors vi for i < j. Since
the compiled list does not contain any higher indices, we see that if vj is added
it was not contained in the subspace spanned by the vectors on the list. Thus,
by the Expansion Lemma 6.17, the extended list (with vj included) stays linearly
independent.

So, if the algorithm starts with a linearly independent compilation, it will keep
it that way. Formally, the algorithm starts with an empty list. This is considered
linearly independent. If you feel uneasy about that, think of the first vector that is
added. Just observe that it has to be non-zero. Therefore, when the algorithm pick
the first vector, it creates a list of one linearly independent vector: a set of one vector
is linearly independent if and only if the vector is non-zero.
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Finally the bias statement also follows from the Expansion Lemma 6.17. However,
this time the other direction of the equivalence is used: Since the vectors in the initial
segment are linearly independent, the later are not contained in the span of their
predecessors. Thus, the algorithm will keep them. q.e.d.

Theorem 6.19. Let V be a vector space. Suppose that

S = (v1,v2, . . . ,vr)

is a finite spanning set for V . Then S contains a basis for V . (In fact, any maximal
linearly independent subset of S is a basis for V .)

Proof. Let algorithm 6.18 select a basis from the spanning set. q.e.d.

Theorem 6.20. Suppose V has a finite basis v1,v2, . . . ,vm. Then every set of lin-
early independent vectors w1,w2, . . . ,wr can be extended to a basis for V .

Proof. Consider the sequence

w1,w2, . . . ,wr,v1,v2, . . . ,vm.

This sequence is a spanning set for V since the vi already span V . Now use algo-
rithm 6.18 to select a basis from this list. Since the initial segment w1,w2, . . . ,wr

consists of linearly independent vectors, the algorithm will keep these vectors: recall
that the Basis Selection Algorithm is biased towards lower indices. Hence, the output
of the algorithm will be a basis extending the list w1,w2, . . . ,wr. q.e.d.
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6.4 Basis Selection in Standard Vector Spaces

Proposition 6.21 (Basis Selection in Rm). Let V ⊆ Rm be a subspace spanned
by the vectors v1,v2, . . . ,vr ∈ Rm. Then the Basis Selection Algorithm 6.18 boils
down to a single row-reduction: Let A be the matrix formed by the columns:

A =
[
v1 v2 · · · vr

]

Put A into reduced row-echelon form A∗. Keep exactly those vj for which the j-column
of A∗ has a leading 1.

Proof by example. We find a basis for the subspace V ⊆ R4 spanned by the
vectors

v1 =




0

0

3

6


 , v2 =




1

0

4

7


 , v3 =




2

0

5

8


 , v4 =




−1

2

0

1


 , v5 =




3

1

2

1


 , v6 =




1

3

−1

−3


 .

We have

A =




0 1 2 −1 3 1

0 0 0 2 1 3

3 4 5 0 2 −1

6 7 8 1 1 −3




The following sequence of row-operations reduces A:

R1 ↔ R3

1/3R1 → R1

−6R1 +R4 → R4

R2 ↔ R3

1R2 +R4 → R4

1/2R3 → R3

−4/3R2 +R1 → R1

−4/3R3 +R1 → R1

1R3 +R2 → R2

We obtain the reduced row-echelon form:

A∗ =




1 0 −1 0 −4 −11/3

0 1 2 0 7/2 5/2

0 0 0 1 1/2 3/2

0 0 0 0 0 0




So, the Proposition predicts that the Basis Selection Algorithm will choose v1,v2,v4

as a basis for V .
To verify this prediction, we walk through the algorithm:
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ponder about v1: We have to check whether v1 is the zero-vector. Well, we can
read that off from A as well as from the reduced row-echelon form A∗. The
leading 1 in the first column of A∗ says that v1 is non-zero. Therefore the Basis
Selection Algorithm will include v1 in the basis, as predicted.

ponder about v2: The Basis Selection Algorithm will keep v2 if and only if v2 6∈
span{v1}, i.e., if and only if the inhomogeneous linear equation

x1v1 = v2

has no solution. Writing out the equation, we obtain the linear system

∥∥∥∥∥∥∥∥

0x1 = 1

0x1 = 0

3x1 = 4

6x1 = 7

∥∥∥∥∥∥∥∥

Of course, we can eyeball easily that this is an inconsistent system, however, we
can also deduce this from the reduced row-echelon form A∗: Apply the sequence
of row-operations reducing A to the matrix

A1,2 :=




0 1

0 0

3 4

6 7




which encodes the linear equation above. The sequence of row-operations will
yield:

A∗1,2 :=




1 0

0 1

0 0

0 0




as the reduced row-echelon form for A1,2. The leading 1 in the RHS column tells
us that the system is inconsistent. Thus the leading 1 in the second column of
A∗ shows that the Basis Selection Algorithm will keep v2 on the list.

ponder about v3: Here is what the Basis Selection Algorithm does: Check whether

v3 ∈ span{v1,v2}

If “yes”, throw it out, if “no” keep it.

To decide whether
v3 ∈ span{v1,v2}

we have to see whether
x1v1 + x2v2 = v3
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has a solution. The matrix encoding this system is

A1,2,3 =




0 1 2

0 0 0

3 4 5

6 7 8




and the same sequence of row-operation that we already used will reduce it to:

A∗1,2,3 =




1 0 −1

0 1 2

0 0 0

0 0 0




Now, the RHS column does not have a leading 1. Instead we can read off that

−v1 + 2v2 = v3.

Thus, the fact that the third column of A∗ does not have a leading 1 tells us
that the algorithm will drop v3, as predicted.

ponder about v4: Now the question is whether

x1v1 + x2v2 + x3v3 = v4

has a solution, and the first four columns of A encode this linear system:

A1,2,3,4 =




0 1 2 −1

0 0 0 2

3 4 5 0

6 7 8 1




Again, we use the same sequence of row-operations and obtain the reduce row-
echelon form

A∗1,2,3,4 =




1 0 −1 0

0 1 2 0

0 0 0 1

0 0 0 0




The leading 1 in the RHS column (corresponding to the fourth column of A∗)
tells us that the system is inconsistent, whence the algorithm includes v4. A
leading 1 forces inclusion.

ponder about v5: The algorithm needs to know whether

x1v1 + x2v2 + x3v3 + x4v4 = v5
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has a solution, and the matrix

A∗1,2,3,4,5 =




0 1 2 −1 3

0 0 0 2 1

3 4 5 0 2

6 7 8 1 1




encodes the pertinent linear system. Our beloved sequence of row-operation
works on this one just fine. We get: the reduced row-echelon form:

A∗1,2,3,4,5 =




1 0 −1 0 −4

0 1 2 0 7/2

0 0 0 1 1/2

0 0 0 0 0




Now, the RHS column (that is the fifth column of A∗) does not contain a leading
1. Therefore, v5 is in the span of the first four vectors, and the algorithm will
drop this redundant vector from the list.

ponder about v6: Finally, the matrix A itself encodes the linear equation

x1v1 + x2v2 + x3v3 + x4v4 + x5v5 = v6

The sixth column of its reduced row-echelon form A∗ corresponds to the RHS. It
does not contain a leading 1. Therefore, the equation has a solution (which we
can read off, if we are so inclined). This tells the algorithm that v6 is redundant
and shall be dropped.

The example illustrates how we can use the same sequence of row-reductions to solve
all the individual decision problems that the Basis Selection Algorithm requires us
to tackle. That is the reason that we can combine all those computation in one big
row-reduction. q.e.d.

It may be surprising, but now we are actually set to attack the following:

Theorem 6.22. The reduced row-echelon form of any matrix is unique, i.e., there
is only one possible result of row-reduction regardless of the sequence of elementary
row-operations that one might choose.

Proof by reusing the example. The key idea is to exploit the significance of
the reduced row-echelon form for the Basis Selection Algorithm. Again let A∗ be a
reduced row-echelon form for A – we are assuming there might be more than one.

First note that the columns of A∗ that have leading 1s correspond to the vectors
that the Basis Selection Algorithm will select. Now that sequence is well-defined.
Thus the output of the Basis Selection Algorithm can conversely be used to predict
the columns with leading 1s in A∗. This settles the stair-case pattern of A∗.

In order to show that the remaining entries also are determined, we need to find
interpretations of those numbers. The interpretation is: the numbers in the i-column
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of A∗ are the coordinates of vi relative to the basis V selected by the Basis Selection
Algorithm. Thus, these numbers are uniquely determined by the sequence of column
vectors forming A. q.e.d.

Another consequence of our understanding of how the Basis Selection Algorithm
interacts with row-reduction is the following:

Theorem 6.23. 1. Every linearly independent set of vectors in Rm has at most
m elements.

2. Every spanning set of Rm has at least m elements.

3. Every basis of Rm has exactly m elements.

4. Every spanning set for Rm contains a basis.

5. Every linearly independent set of vectors in Rm can be extended to a basis.

Proof. Let v1,v2, . . . ,vr be a list of column vectors in Rm. We form the m×r-matrix

A =
[
v1 v2 · · · vr

]

and we denote its reduced row-echelon form by A∗.
Assume v1,v2, . . . ,vr are linearly independent. Then the Basis Selection Algo-

rithm must keep all the vectors. Thus every column in A∗ has a leading 1. Therefore,
the matrix must have at least as many rows as it has columns, i.e, we have m ≥ r.
This proves the first claim.

Assume v1,v2, . . . ,vr span Rm. Then every row in A∗ has a leading 1. Hence A∗

must have at least as many columns as it has rows. Therefore, r ≥ m. This proves
the second claim.

The third claim is now immediate: a basis is a set of linearly independent vectors,
hence it has at most m vectors; on the other hand, a basis must span Rm and then
it contains at least m vectors.

The last two claims just restate Theorems 6.19 and 6.20. q.e.d.
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6.5 The Dimension of a Vector Space

Theorem and Definition 6.24. Let V be a vector space. If V has a finite basis

V = (v1,v2, . . . ,vm)

consisting of m vectors, then every other basis also has exactly m vectors. The number
m of vectors in a basis for V is thus well-defined and called the dimension of V and
denoted by dim(V ). If V does not have a finite basis, we say that V is of infinite
dimension: in this case, you can find finite independent sets of any size inside V .

Definition 6.25. A linear map that is onto and 1-1 is called an isomorphism.

Proposition 6.26. Let ϕ : V −→W be linear.

1. If ϕ is onto, then it takes spanning sets for V to spanning sets for W ; i.e., if
v1,v2, . . . ,vr spans V then ϕ(v1) , ϕ(v2) , . . . , ϕ(vr) spans W .

2. If ϕ is 1-1, then it takes linearly independent sets in V to linearly independent
sets in W ; i.e., if v1,v2, . . . ,vr is a linearly independent set of vectors in V
then ϕ(v1) , ϕ(v2) , . . . , ϕ(vr) is a linearly independent set of vectors in W .

Thus isomorphisms preserve the notions of spanning sets and linear independence.
In particular the coordinate map []V : V −→ Rm and its inverse, the evaluation

map, evV : Rm −→ V of a vector space with a finite basis V preserve the notions of
spanning sets and linear independence.

Proof. We start with part 1. So assume ϕ : V → W is onto and that v1,v2, . . . ,vr

is a spanning set for V . We have to show that ϕ(v1) , ϕ(v2) , . . . , ϕ(vr) is spanning
set for W , i.e., we have to show that every vector w ∈ W can be written as a linear
combination of the vectors ϕ(v1) , ϕ(v2) , . . . , ϕ(vr) . So consider your favorite w ∈ W .
Since ϕ is onto, there is a vector v ∈ V with ϕ(v) = w; and since v1,v2, . . . ,vr spans
V , there are scalars r1, r2, . . . , rr ∈ F such that

v = r1v1 + r2v2 + · · ·+ rrvr.

Now, we remember that ϕ is linear. We get:

w = ϕ(v)

= ϕ(r1v1 + r2v2 + · · ·+ rrvr)

= ϕ(r1v1) + ϕ(r2v2) + · · ·+ ϕ(rrvr)

= r1ϕ(v1) + r2ϕ(v2) + · · ·+ rrϕ(vr)

This, however, represents w as a linear combination of the vectors ϕ(v1) , ϕ(v2) , . . . , ϕ(vr)
just as required.

Now for part 2. Here, we assume that ϕ is 1-1 and that the vectors v1,v2, . . . ,vr

are linearly independent. We have to show that their images ϕ(v1) , ϕ(v2) , . . . , ϕ(vr)
are linearly independent. The crucial claim is the following:
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Any solution (x1, x2, . . . , xr) to the equation

x1ϕ(v1) + x2ϕ(v2) + · · ·+ xrϕ(vr) = 0W

is also a solution to the equation

x1v1 + x2v2 + · · ·+ xrvr = 0V .

Given this claim, we see immediately that if the later equation only has the trivial
solution, then so has the former. Thus linear independence of the vectors v1,v2, . . . ,vr

implies that the vectors ϕ(v1) , ϕ(v2) , . . . , ϕ(vr) are linearly independent. To check
the claim, we use that ϕ is 1-1: Let (x1, x2, . . . , xr) be a solution to the equation

x1ϕ(v1) + x2ϕ(v2) + · · ·+ xrϕ(vr) = 0W .

Now consider the vector

v := x1v1 + x2v2 + · · ·+ xrvr ∈ V.

We know that

ϕ(v) = ϕ(x1v1 + x2v2 + · · ·+ xrvr)

= ϕ(x1v1) + ϕ(x2v2) + · · ·+ ϕ(xrvr)

= x1ϕ(v1) + x2ϕ(v2) + · · ·+ xrϕ(vr)

= 0W

Since ϕ is 1-1, the zero-vector 0W has only one preimage: the zero-vector 0V . Thus,
we infer

0V = v = x1v1 + x2v2 + · · ·+ xrvr.

This proves that (x1, x2, . . . , xr) also solves the equation

x1v1 + x2v2 + · · ·+ xrvr = 0V

as promised. q.e.d.

Proof of Theorem 6.24. As in the theorem, we assume that V has a finite basis
V = (v1,v2, . . . ,vm) . The associated coordinate map

[]V : V −→ Rm

v 7→ [v]V

is an isomorphism, i.e., it is linear, onto, and 1-1. Thus, []V takes any basis of V is
taken to a basis of Rm. However, bases in Rm all have exactly m elements. Hence
the same holds for the bases in V . q.e.d.

Theorem 6.27. Let V be a vector space of finite dimension m. Then the following
hold:
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1. V is isomorphic to Rm. (There is essentially but one vector space for each
dimension.)

2. Every basis of V has exactly m elements.

3. Every linearly independent set of vectors in V has at most m elements and can
be extended to a basis.

4. Every spanning set of V has at least m elements and contains a basis.

5. Every subspace S ⊆ V has finite dimension and dim(S) ≤ m.

Proof. Fix a basis V for V . Then the coordinate map

[]V : V −→ Rm

is an isomorphism. This proves the first claim. Except for the very last statement, the
other claims now follow from their counterparts aboutRm which have been established
in Theorem 6.23.

As for the last claim, just observe that any linearly independent subset of S is a
linearly independent subset of V and, therefore, can be extended to a basis. Thus m
is an upper bound for the size of any linearly independent set in S. q.e.d.

Theorem 6.28. Let ϕ : V −→W be linear.

1. If ϕ is onto, then dim(W ) ≤ dim(V ) .

2. If ϕ is 1-1, then dim(W ) ≥ dim(V ) .

In particular, if ϕ is an isomorphism, we have dim(V ) = dim(W ).

Proof. In the first claim, the inequality is only a restriction if V is of finite dimension.
Thus, we may assume that V has a finite basis v1,v2, . . . ,vm where m = dim(V ).
Then, ϕ(v1) , ϕ(v2) , . . . , ϕ(vm) is a spanning set for W since ϕ is onto. Thus m ≥
dim(W ) since the size of any spanning set for W is at least dim(W ).

As for the second claim, we may assume that W has finite dimension (otherwise
the claim is vacuous). Let v1,v2, . . . ,vm be a linearly independent set of vectors in V .
Since ϕ is 1-1, the vectors ϕ(v1) , ϕ(v2) , . . . , ϕ(vm) form a linearly independent set in
W . The size of such a set is bounded from above by dim(W ). We infer m ≤ dim(W ).
Thus, dim(W ) is an upper bound for any linearly independent set in V . Hence the
dimension of V cannot exceed the dimension of W . q.e.d.

Exercise 6.29. Let V ⊆ P4 be the set of all polynomials p(t) = a4t
4 + a3t

3 + a2t
2 +

a1t+ a0 satisfying the following conditions simultaneously:

1. p(−1) = 0.

2. p(3) = 0.

3. p′(1) = 0.

Show that V is a subspace of P4 and determine the dimension of V .
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7 Matrix Algebra

7.1 Matrix Multiplication

Example 7.1 (Input/Output tables for Bread). Here is a table showing two of
my bread recipes:

Wheat Rye

wheat flour (oz) 24 16

rye flour (oz) 0 8

butter (tb) 1 1.5

milk (oz) 0 5

water (oz) 5 0

salt (tb) 0.5 0.5

suggar (tb) 1 2

yeast (tb) 1 1

eggs 3 3

And here is a table showing some prices (totally fictional):

w. flour r. flour butter milk water salt sugar yeast egg

$ 0.03 0.03 0.20 0.15 0.00 0.01 0.01 0.20 0.20

There is an obvious way to combine these data to obtain the prices for my breads:
The price for a wheat bread is

0.03×24+0.03×0+0.20×1+0.15×0+0.00×5+0.01×0.5+0.01×1+0.20×1+0.20×3

and the total price for a rye bread is

0.03×16+0.03×8+0.20×1.5+0.15×5+0.00×0+0.01×0.5+0.01×2+0.20×1+0.20×3

We can display this in another table:

Wheat Rye

$ 1.735 2.595

Definition 7.2 (Matrix Multiplication). Let A and B be two matrices. The
product AB is defined whenever the number of columns in A matches the num-
ber of rows in B. In this case, the product has the same number of rows as the first
factor (A) and the same number of columns as the second factor (B). Then entry of
AB in row i and column j is:

r∑

k=1

ai,kbk,j.

Here, r is the number of columns in A (and the number of rows in B).

Preliminary version, do not cite, do not distribute. [ c© Kai-Uwe Bux, 2005–2008] 64



7.1 Matrix Multiplication mar17.pdf

Example 7.3 (Matrix Multiplication).




2 3

−2 1

−1 0




[
2

3

0

4

−1

1

−1

1

]
=



∗ ∗ ∗ ∗
∗ ∗ (−2)× (−1) + 1× 1 ∗
∗ ∗ ∗ ∗




Theorem 7.4. Let A and A′ be r × s matrices, let B and B′ be s× t matrices, and
let C be an t× u matrix. Then

1. (AB)C = A(BC)

2. (A+ A′)B = AB + A′B

3. A(B +B′) = AB + AB′

I postpone the proof until we have some better tools. However, I shall give a reason
why matrix multiplication ought to be associative.

Example 7.5 (Bread Revisited). Suppose someone commissions 3 wheat breads
and 4 rye breads. There are two obvious ways of computing the total price of this
order:

1. We can first compute the total ingredients for this order:

wheat flour (oz) 24× 3 + 16× 4 = 136

rye flour (oz) 0× 3 + 8× 4 = 32

butter (tb) 1× 3 + 1.5× 4 = 9

milk (oz) 0× 3 + 5× 4 = 20

water (oz) 5× 3 + 0× 4 = 15

salt (tb) 0.5× 3 + 0.5× 4 = 3.5

suggar (tb) 1× 3 + 2× 4 = 11

yeast (tb) 1× 3 + 1× 4 = 7

eggs 3× 3 + 3× 4 = 21

And now, we can compute the total price:

[
0.03 0.03 0.20 0.15 0.00 0.01 0.01 0.20 0.20

]




136

32

9

20

15

3.5

11

7

21




=
[
15.585

]
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Note, that this amounts to computing the triple matrix product

[
0.03 0.03 0.20 0.15 0.00 0.01 0.01 0.20 0.20

]







24 16

0 8

1 1.5

0 5

5 0

0.5 0.5

1 2

1 1

3 3




[
3

4

]




2. We can use the precomputed table of prices:

Wheat Rye

$ 1.537 2.397

Now, we get the total price by this matrix multiplication:

[
1.735 2.595

] [
3

4

]
=

[
15.585

]

And this amount to:



[
0.03 0.03 0.20 0.15 0.00 0.01 0.01 0.20 0.20

]




24 16

0 8

1 1.5

0 5

5 0

0.7 0.7

1 2

1 1

2 2







[
3

4

]

Since both ways ought to compute the total price, they better yield the same results.
This is, why associativity should hold.

Remark 7.6. Don’t be fooled by Theorem 7.4! Matrix multiplication is wicked.

1. Matrix multiplication is not commutative:

[
0 1

1 0

] [
1 1

0 1

]
=

[
0 1

1 1

]

[
1 1

0 1

] [
0 1

1 0

]
=

[
1 1

1 0

]
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2. To make things even worse, the product of two non-zero matrices can be the
zero-matrix. Even the square of a non-zero matrix can vanish:

[
0 0

1 0

] [
0 0

1 0

]
=

[
0 0

0 0

]
.

Example 7.7 (Directed Graphs). A directed graph consists of vertices and ar-
rows connecting them. Here is an example with four vertices:

A B

C D

We can encode the information about this directed graph within a matrix as follows:
We order the vertices. Then the entry ai,j represents the number of edges going from
vertex i to vertex j. When A is the first, B is second, C is third, and D is the last
vertex, we obtain the matrix

A =




0 2 0 0

1 0 0 1

0 0 0 0

1 0 1 1




For instance, the first row says that A has exactly two outgoing edges, and both
point towards B. The third row says that C has no outgoing edges at all. The Third
column says that C has exactly one incoming edge, which issues from D.

Here is a remarkable fact: the power An computes the number of directed edge
paths of length n. E.g., if you want to know how many routes there are from A to
D of length exactly 100, you compute A100 and look at the entry in the first row and
the fourth column.

Exercise 7.8. Compute A4 and verify the above claim for some pairs of vertices.
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7.2 The Matrix of a Linear Map

Observation 7.9. For any m× n-matrix A, the map

λA : Fn −→ Fm

x 7→ Ax

is linear. In fact, given the definition of matrix multiplicatin, this map is no other
than the linear map from Proposition 4.7.

Consequently, Proposition 4.10 implies that every linear map from Fn to Fm is of
the form λA for some matrix A. q.e.d.

Theorem 7.10. Let A be an m× n-matrix with reduced row echelon form A∗. Then
the following hold:

1. The linear map λA : Fn is onto if and only if the columns of A span Fm, i.e.,
each row in the reduced row echelon form A∗ has a leading 1, i.e.,

2. The linear map λA : Fn is 1-1 if and only if the columns of A are linearly inde-
pendent, i.e., each column in the reduced row echelon form A∗ has a leading 1.

Proof. Let a1, . . . , an ∈ Fm be the columns of A. Note that ai = Aei where ei is the
ith standard basis vector. Then the map λA takes the standard basis to a spanning
set for its image. Hence λA is onto if and only if the columns of A span Fm.

Similarly,

ker(λA) =







x1
...

xn


 x1a1 + · · ·+ xnan =




0
...

0








which is trivial if and only if the columns ai are linearly independent. q.e.d.

7.3 Matrix Multiplication and Composition of Linear Maps

Compositions of linear maps are linear:

Proposition 7.11. Let F be a field. Let V,W, and U be F-vector spaces. Let ϕ :
V → W and ψ : W → U be linear maps. Then the composition

ψ ◦ ϕ : V −→ U

v 7→ ψ(ϕ(v))

is linear.

Proof. We show compatibility with addition. for v1,v2 ∈ V , we have:

(ψ ◦ ϕ)(v1 ⊕V v2) = ψ(ϕ(v1 ⊕V v2)) definition of composition

= ψ(ϕ(v1)⊕W ϕ(v2)) ϕ is linear

= ψ(ϕ(v1))⊕U ψ(ϕ(v2)) ψ is linear

= (ψ ◦ ϕ)(v1)⊕U (ψ ◦ ϕ)(v2) definition of composition
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It remains to argue that ψ ◦ϕ is compatible with scalar multiplication. For v ∈ V
and r ∈ F, we have

(ψ ◦ ϕ)(r ¯V v) = ψ(ϕ(r ¯V v)) definition of composition

= ψ(r ¯W ϕ(v)) ϕ is linear

= r ¯U ψ(ϕ(v)) ψ is linear

= r ¯U (ψ ◦ ϕ)(v) definition of composition

q.e.d.

Theorem 7.12. We have
λA ◦ λB = λAB.

Proof. Exercise: you have to show that

(λA ◦ λB)(x) = (AB)x = A(Bx) = λAB(x)

for each column vector x. This is just a big mess with many indices: for concreteness

let A = (aij) be an r× s-matrix, let B = (bjk) be an s× t-matrix, and let x =



x1
...

xt


.

We compute the left hand:

(AB)x =




∑t
k=1

(∑s
j=1 a1jbjk

)
xk

...∑t
k=1

(∑s
j=r a1jbjk

)
xk




and we compute the right hand:

A(Bx) =




∑s
j=1 a1j

(∑t
k=1 bjkxk

)
...∑s

j=1 arj

(∑t
k=1 bjkxk

)




Those are visibly equal. q.e.d.

Corollary 7.13. Matrix multiplication is associative.

Proof. Matrix multiplication corresponds to composition of functions. Composition
of functions is associative. q.e.d.
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7.4 Matrices for Abstract Linear Maps

Let V andW be two vector spaces with bases V = (v1, . . . ,vn) andW = (w1, . . . ,wn) ,
and let ϕ : V → W be a linear map. The composition

Fn evV−−→ V
ϕ−→ W

[]W−−→ Fm

is linear and hence given as matrix multiplication λA for some matrix A. This matrix
is the coordinate matrix of ϕ relative to the basis V and W . Then, we have the
following commutative diagram of vector spaces and linear maps:

V
ϕ //

[]V
²²

W

[]W
²²

Fn
λA

//

evV

OO

Fm

evW

OO

Proposition 7.14. The columns of the coordinate matrix are [ϕ(ei)]W .

Proof. Exercise. q.e.d.
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7.5 Realizing Row Operations

We describe some basic types of matrices and investigate the effects of multiplying
by these matrices on the left.

Definition 7.15. We call a square matrix X a row-op matrix if left-multiplication
by X realizes a row-operation.

This section is entirely devoted to establishing the following:

Proposition 7.16. There are enough row-op matrices: every row operation can be
realized via left-multiplication by a matrix (which then will be a row-op matrix).

Since there are three types of row-operations, we will have to describe three different
types of row-op matrices.

7.5.1 Permutation Matrices

Definition 7.17. A square matrix is called a permutation matrix if each row and
each column has exactly one 1 and all other entries are 0.

Example 7.18. Here is a complete list of all 2× 2 permutation matrices:

(
1 0

0 1

)
,

(
0 1

1 0

)
.

Example 7.19. The complete list of 3× 3 permutation matrices is here:




1 0 0

0 1 0

0 0 1


 ,




1 0 0

0 0 1

0 1 0


 ,




0 1 0

0 0 1

1 0 0


 ,




0 1 0

1 0 0

0 0 1


 ,




0 0 1

1 0 0

0 1 0


 ,




0 0 1

0 1 0

1 0 0


 .

Exercise 7.20. Show that, for every r, there are exactly

r! := r(r − 1)(r − 2) · · · 1

permutation matrices of shape r × r.

Example 7.21. Use your fingers to verify:




0 1 0

0 0 1

1 0 0







2 4 0 1

4 −6 1 2

3 1 −1 0


 =




4 −6 1 2

3 1 −1 0

2 4 0 1




P A PA

.

Let us call the 3× 3 permutation matrix on the left P . Now observe how the 1 in the
first row of P picks the second row of the other factor in this matrix product (let us
call that matrix A). The 0-entries in the first row of P are crucial in that they ensure
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that the first and third entry of each column in A gets ignored when computing the
first row of the product.

Similarly, the second row of P is carefully designed so that the second row of the
product will match the third row of A.

Finally the last row of P has its 1 in the first slot. Hence it copies the first row of
A into the third row of the product.

We summarize the gist of this example computation:

Observation 7.22. Left multiplication by a permutation matrix rearranged the rows
of the other factor. Any rearrangement can be realized by an appropriately chosen
permutation matrix. In particular, the row operation of swapping two rows can be
realized via left-multiplication by a permutation matrix.

Exercise 7.23. Show that the set of all r × r permutation matrices is a group with
respect to the binary operation of matrix multiplication. Hint: Since matrix multipli-
cation is associative in general (not only for permutation matrices), you do not need
to check this axiom.

Remark 7.24. For r ≥ 3 the group of all r× r permutation matrices is not abelian.
We illustrate this for r = 3:




1 0 0

0 0 1

0 1 0







0 1 0

0 0 1

1 0 0


 =




0 1 0

1 0 0

0 0 1







0 1 0

0 0 1

1 0 0







1 0 0

0 0 1

0 1 0


 =




0 1 0

0 0 1

1 0 0




7.5.2 Elementary Matrices

Definition 7.25. A square matrix is called an elementary matrix if all diagonal en-
tries are 1 and at most one off-diagonal entry is non-zero. Note that the identity
matrices are elementary.

Example 7.26. Here is are some elementary matrix:




1 0 0

0 1 −2

0 0 1


 ,




1 0 0

0 1 0

1 0 1


 ,




1 −1 0

0 1 0

0 0 1


 .

We want to understand what happens when we hit a matrix with an elementary
matrix from the left. An example will enlighten us:
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Example 7.27. Again, use your fingers and check:



1 0 0

0 1 −2

0 0 1







2 4 0 1

4 −6 1 2

3 1 −1 0


 =




2 4 0 1

−2 −8 3 2

3 1 −1 0




E A EA

Note how the first and last row of E just issue copy operation: they ensure that the
first and the last row of the product EA match their counterparts in A exactly.

The second row of E is a little more tricky. Its 1-entry on the diagonal wants to
just copy the second row from A, however the −2 in the third column interferes and
we end up with a second row in the product EA where twice the third row of A got
subtracted from its second row.

Take all effects and you see that this is just the row operation R2 − 2R3 → R2.

We generalize:

Observation 7.28. The row-operation Ri+CRj → Ri is realized via left-multiplication
by the elementary matrix that has C in row i and column j.

You should convince yourself by doing some more examples. Use your fingers!

7.5.3 Diagonal Matrices

Definition 7.29. A square matrix is called a diagonal matrix if all its off-diagonal
entries are 0.

Example 7.30. Here are some 3× 3 diagonal matrices:



0 0 0

0 0 0

0 0 0


 ,




1 0 0

0 1 0

0 0 1


 ,




2 0 0

0 1
2

0

0 0 1


 ,




3 0 0

0 −2
5

0

0 0 −8


 .

Example 7.31. Time to use your fingers. Please check:



2 0 0

0 1
2

0

0 0 1







2 4 0 1

4 −6 1 2

3 1 −1 0


 =




4 8 0 2

2 −3 1
2

1

3 1 −1 0




D A DA

As you can see, the effect is rather predictable: every row of A gets multiplied by the
corresponding diagonal entry from D.

Observation 7.32. Left-multiplication by a diagonal matrix rescales every row by
the corresponding diagonal entry. In particular, the row operation

CRi → Ri

is realized by the diagonal matrix whose entry in row i and column i is C and whose
other diagonal entries are 1.
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7.6 Inverting Square Matrices

Definition 7.33. Let A be an m×m square matrix. We say that an m×m matrix
L is a left-inverse for A if LA = Im. Similarly, we say that R is a right-inverse if
AR = Im.

Observation 7.34. Assume that L is a left-inverse for A and that R is a right-
inverse. Then

L = LI = L(AR) = (LA)R = IR = R.

In particular, if a matrix has left- and right-inverses, all those inverses coincide and
the matrix has a unique (two-sided) inverse. q.e.d.

Algorithm 7.35. To find the inverse of a m×m square matrix A, do the following

1. Form the matrix [A|I].
2. Apply row-operations to put the composite matrix into reduced row-echelon form.

3. If the reduced row echelon form looks like [I|B] then B is an inverse for A.
Otherwise, A has neither a right- nor a left-inverse.

Proof. First, assume that the algorithm terminates successfully, i.e., the reduced row
echelon form has an identity matrix in the left block.

We begin by showing that in this case, the matrix B is a left-inverse for A. Let
X1, X2, . . . , Xr be the row-op matrices realizing the sequence row-ops used to reduce
A to I. This means:

I = Xr · · ·X2X1A.

Since B is obtained from applying these row-ops to I, we find

B = Xr · · ·X2X1I = Xr · · ·X2X1.

Thus:
I = BA

which implies that B is a left-inverse.
Now, we shall see that B is also a right-inverse for A. To see this, we interpret

the ith columnt bi of B: delete all other columns from the right square block and
apply the sequence of row-operations X1, . . . , Xr to the matrix [A|ei]. The reduced
row echelon form is [I|bi]. Hence b is the unique solution to the equation

Ax = ei,

i.e., we have
Abi = ei.

Combining these identities for all columns, yields

AB = A[b1 · · ·bm] = [e1 · · · em] = I.

q.e.d.
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Theorem 7.36. Let A be an m×m square matrix. Then the following are equivalent:

1. The linear map λA : x 7→ Ax is an isomorphism.

2. The reduced row echelon form of A is the identity matrix.

3. A has a right-inverse.

4. A has a left-inverse.

If any of these equivalent conditions is satisfied, the Algorithm 7.35 terminates suc-
cesfully and finds the inverse (which is unique by Observation 7.34).

Proof. We shall prove that all conditions are equivalent to the first. For the second,
we have already seen this.

Also, the first conditions implies the last two: if λA is an isomorphism, then λA

has an inverse, and this inverse is a linea map. The matrix B describing the inverse
map will be a left- and a right-inverse to A.

Now assume that A has a right-inverse R. Then, the composition of functions λI =
λAR = λA ◦ λR is onto, which implies that λA is onto and therefore an isomorphism
(see Theorem 7.10).

Finally, assume that A has a left-inverse L. Then, the composition of functions
λI = λLA = λL ◦λA is 1-1, which implies that λA is 1-1 and therefore an isomorphism
(see Theorem 7.10). q.e.d.
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7.7 Rank and Nullity

Definition 7.37. Let A be an m× n-matrix. The column-span of A is the subspace
col-span(A) ≤ Fm spanned by the columns of A. The row-span of A is the subspace
row-span(A) ≤ Fn spanned by the rows of A.

Observation 7.38. Elementary row-operations do not change the row-span of a ma-
trix. Hence, every matrix has the same row-span as its reduced row echelon form. In
particular, the dimension of the row-span of any matrix is the number of leading 1s
in its reduced row-echelon form. q.e.d.

Observation 7.39. The basis-selection algorithm will select a basis for the column-
span of a matrix. Hence the dimension of the column-span of any matrix is the number
of leading 1s in its reduced row-echelon form. q.e.d.

This has a surprising consequence:

Corollary 7.40. The row-span and the column-span of any matrix have the same
dimension. q.e.d.

Definition 7.41. Let A be an m× n-matrix. Recall that A defines a linear map

λA : Fn −→ Fm

x 7→ Ax

1. The rank of A is defined as the dimension of the image of λA:

rk(A) := dim(im(λA))

2. The nullity of A is defined as the dimension of its null-space, that is the kernel
of λA:

null(A) := dim(ker(λA))

Observation 7.42. The rank of a matrix A is the dimension of its column-span,
since the column-span is the image of the linear map λA. q.e.d.

Observation 7.43. The nullity of an m× n-matrix A is the number of free variable
in the homogeneous system of equations Ax = 0. Since the rank is the number of
dependent variables, we find that the sum of rank and nullity is the total number of
variables (number of columns): rk(A) + null(A) = n. q.e.d.

This extends to abstract linear maps:

Theorem 7.44. Let ϕ : V → W be a linear map and assume that V and W have
finite dimension. Then, dim(V ) = dim(im(ϕ)) + dim(ker(ϕ)) .
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Proof. Choosing bases V and W for V and W , we can represent ϕ by a matrix A:

V
ϕ //

[]V
²²

W

[]W
²²

Fn
λA

//

evV

OO

Fm

evW

OO

Now, the image of ϕ is isomorphic to the image of λA and the kernel of ϕ is isomorphic
to the kernel of λA. Thus, the theorem follows from Observation 7.43. q.e.d.
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8 The Determinant

8.1 Defintion of the Determinant

Definition 8.1. Let A be an r×r square matrix. The determinant det(A) is defined
recursively as follows:

r = 1: We put
det

(
a
)

:= a

r > 1: We put

det



a1,1 · · · a1,r
...

. . .
...

ar,1 · · · ar,r


 :=

r∑
i=1

(−1)i+1ai,1 det(Ai,1)

= a1,1 det(A1,1)− a2,1 det(A2,1) + · · · ± ar,1 det(Ar,1)

where Ai,j is the minor of A obtained by deleting the ith row and the jth column.

Note how the problem of computing a 3× 3 determinant is reduced to 2× 2 determi-
nants (albeit three of them).

Example 8.2. For small matrices, it is easy to spell this out:

det

(
a b

c d

)
= a det(d)− c det(b) = ad− cb

det



a b c

d e f

g h i


 = a det

(
e f

h i

)
− d det

(
b c

h i

)
+ g det

(
b c

e f

)

= a(ei− hf)− d(bi− hc) + g(bf − ec =

= aei− ahf + dhc− dbi+ gbf − gec

Observe that each summand has r factors and the factors are taken from different
rows and columns. (For those who play chess: each the summands correspond to the
non-threatening rook configurations on an r × r board.)

That half of the summands occur with a negative sign is some black magic. (If
you make all the signs positive, you obtain the so called permutant, which is by and
large meaningless and for which no efficient way of computing it is known.)

8.2 Computing Determinants via Row-Reduction

We shall study how the determinant of a matrix A changes when we subject A to
elementary row operations.
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Exercise 8.3. The determinant is linear in each row. That means that if all but one
rows of a matrix are fixes, the determinant is a linear function in the remaining row.
So, let R1, . . . , Rr, R

′
i be row vectors and let r and s be scalars, then:

det




R1
...

rRi + sR′i
...

Rr




= r det




R1
...

Ri
...

Rr




+ s det




R1
...

R′i
...

Rr




Lemma 8.4. Let A be an r × r matrix.

1. Swapping two rows in A changes the sign of the determinant.

2. Multiplying a row of A by the scalar r multiplies the determinant by r.

3. Adding a multiple of a row in A to another row does not affect the determinant.

Proof. Let A be an r × r-matrix and let A′ be obtained from A by the row-swap
Ri ↔ Rj. Then

det(A′) =
r∑

k=1

(−1)1+ka′k,1 det
(
A′k,1

)

q.e.d.

Corollary 8.5. Let X be an r× r-matrix describing a row-operation. Then, for any
r × r-matrix A, we have det(XA) = det(X) det(A) .

Proof. A row-op-matrix is obtained by applying the row-op to the identity matrix,
which has determinant 1. Hence, Lemma 8.4 implies:

• If X describes a row-swap, then det(X) = −1.

• If X rescales a row by r 6= 0, then det(X) = r.

• If X adds a multiple of a row to another row, then det(X) = 1.

Now, we apply Lemma 8.4 to the matrix A and obtain:

• If X describes a row-swap, then det(XA) = − det(A) = det(X) det(A) .

• If X rescales a row by r 6= 0, then det(XA) = r det(A) = det(X) det(A) .

• If X adds a multiple of a row to another row, then det(X) = det(A) =
det(X) det(A) .

This proves the claim in all three cases. q.e.d.
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Corollary 8.6. Let A be an r × r-matrix and let X1, X2, . . . , Xr be a sequence of
row-op-matrices row-reducing A so that A∗ := Xr · · ·X2X1A is in reduced row-echelon
form. Then:

1. If A is not invertible, then det(A) = 0.

2. If A is invertible, then det(A) = 1
det(X1) det(X2)··· det(Xr)

6= 0.

Proof. Corollary 8.5 implies:

det(A∗) = det(Xr) det(Xr−1 · · ·X1A)

= det(Xr) det(Xr−1) det(Xr−2 · · ·X1A)

= · · ·
= det(Xr) det(Xr−1) · · · det(X1) det(A)

Now the claim follows from the observation that the reduced row echelon form A∗ is
the identity matrix if and only if A is invertible (in this case, A∗ has determinant 1). If
A is not invertible, the reduced row echelon form has a row of 0s and its determinant
vanishes. q.e.d.

8.3 Multiplicativity of the Determinant

Theorem 8.7. Let A and B be two r× r matrices. Then det(AB) = det(A) det(B) .

Proof. If either A or B are not invertible, then the product is not invertible and both
sides of the identity vanish.

So now assume that A and B are both invertible. LetX1, X2, . . . , Xr be a sequence
of row-op-matrices row-reducing A and let Y1, Y2, . . . , Ys be a sequence of row-op-
matrices row-reducing B. Note that the sequence X1, X2, . . . , Xr reduces AB to
Xr · · ·X2, X1AB = B. Hence the sequence X1, X2, . . . , Xr, Y1, Y2, . . . , Ys row-reduces
AB and we obtain from Corollary 8.6

det(AB) =
1

det(X1) · · · det(Xr) det(Y1) · · · det(Ys)

=
1

det(X1) · · · det(Xr)

1

det(Y1) · · · det(Ys)

= det(A) det(B)

as claimed. q.e.d.

8.4 The Meaning of the Determinant: Area in the Plane

Let us consider an example in dimension 2 first. The following parallelogram is easily
seen to have area 10 by chopping it into various triangles (two vertical cuts suffice
yielding two triangles and an “easy” parallelogram).
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Here, we shall demonstrate a different method that generalizes to higher dimensions.
We will change the parallelogram and keep track of changes to its volumes along
the way. In the end, we will obtain the unit square whose volume, we know, is 1.
Row-operations will be our friend once again.

Note that the parallelogram above is spanned by two vectors:
[
3 1

]
and

[
2 4

]
.

We put those as row-vectors in one matrix:

[
3 1

2 4

]

Now, we row-reduce. Let us see what happens:
1
2
R2 → R2

[
3 1

2 4

]

1
2
R2 → R2

[
3 1

1 2

]
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Clearly, the area is cut in half.

R1 ↔ R2

[
3 1

1 2

]

R1 ↔ R2

[
1 2

3 1

]

The area does not change, in fact, the parallelogram stays the same, just the
order of the defining vectors changed.

3R1 +R2 → R2

[
1 2

3 1

]

3R1 +R2 → R2

[
1 2

0 −5

]

All that happens is that the parallelogram is sheared: the area does not change.
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−1
5
R2 → R2

[
1 2

0 −5

]

−1
5
R2 → R2

[
1 2

0 1

]

Area changes by a factor of 1
5

= | − 1
5
|.

−2R2 +R1 → R1

[
1 2

0 1

]

−2R2 +R1 → R1

[
1 0

0 1

]

Again a row operation that does neither change area nor orientation.

Thus, overall, we changed orientation twice, cut the area in half once, and at one
time, the area got multiplied by 1

5
. Thus, the original area is 10 times the final area,

which is clearly 1. Hence, we started with an area of 10.

8.5 Three and More Dimensions

Looking back at the example above, we can formulate the underlying principles that
allowed us to compute oriented area via row operations.
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Observation 8.8. Let A be an n × n-matrix and let P ⊂ Rn be the parallelepiped
spanned by the rows of A.

1. A row swap Ri ↔ Rj does not change the volume of P .

2. A row operation CRj +Ri → Ri does not change the volume of P .

This is apparent from the following picture:

Note how the base and height do not change. (One may think of this as shearing
a deck of cards. The shape of the card is given by the parallelogram that is
spanned by all rows but Ri. In the picture, it is the bottom.)

3. A row operation CRi → Ri multiplies the volume by |C|.
This is apparent from the following pictures. First the case C > 0.

And now for C < 0.

q.e.d.
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Remark 8.9. Compare this to Theorem 3.2. As you can see, the determinant obeys
the very same rules as oriented volume. Since these rules enable us to compute
oriented volumes (see the example in two dimensions), the determinant and oriented
volume coincide (this also happened in the example above).
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9 Inner Product Spaces
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10 Eigenvalues and Eigenspaces

In this section, all vector spaces have finite dimension.

Definition 10.1. Let ϕ : V → V be an endomorphism (i.e., linear from a vector
space to itself). For each scalar λ ∈ F, we define the subspace

Eϕ(λ) := ker(ϕ− λ idV ) = {v ∈ V ϕ(v) = λv} .

If Eϕ(λ) contains a non-zero vector, we call λ an eigenvalue of ϕ with associated
eigenspace Eϕ(λ). The non-zero elements of Eϕ(λ) are called eigenvectors.

Since every r × r-matrix A describes a linear map

µA : Fr −→ Fr

x 7→ Ax

we apply the notions eigenvalue, eigenspace, and eigenvector to matrices. E.g., λ is
an eigenvalue for A if there is a non-zero column vector x ∈ Fr with Ax = λx.

Example 10.2. The kernel of ϕ is Eϕ(0). Hence ϕ fails to be 1-1 if and only if 0 is
an eigenvalue of ϕ.

10.1 Finding Eigenvalues: the Characteristic Equation

Definition 10.3. For a linear map ϕ : V → V where V has finite dimension, the
determinant

χϕ(t) := det(ϕ− t idV )

is a polynomial in t of degree dim(V ). It is called the characteristic polynomial of ϕ.

The following observation yields a method for determining eigenvalues:

Observation 10.4. For ϕ : V → V as above, a scalar λ ∈ F is an eigenvalue
of ϕ if and only if it is a root of the characteristic polynomial, i.e, if and only if
χϕ(λ) = 0. (This is immediate since a vanishing determinant detects a non-trivial
kernel.) q.e.d.

Definition 10.5. The equation χ(ϕ) = 0 is called the characteristic equation of ϕ.
Since eigenvalues of ϕ arise as roots of the characteristic polynomial, we can borrow
the algebraic notion of multiplicities of roots: the multiplicity of an eigenvalue λ of

ϕ is the the maximum exponent k so that (t− λ)k divides evenly into χϕ(t).

Example 10.6. Find the eigenvalues of the matrix

[
. . .

]

Also, determine their multiplicities and find bases for the associated eigenspaces.
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10.2 Dimensions of Eigenspaces

Proposition 10.7. Let ϕ : V → V be an endomorphism. Let v1,v2, . . . ,vr be eigen-
vectors with eigenvalues λ1, λ2, . . . , λr. Assume that for each eigenvalue, the corre-
sponding eigenvectors in the above list are linearly independent. Then the list as a
whole is a linearly independent set of vectors.

Proof. We use induction on r.

Induction start: For r = 1, we have only a single vector v1. We need to show
that this vector is non-zero (that is linear independence for a single vector). However,
eigenvectors are by definition non-zero.

Induction step: Assume the lemma is true for a list of r eigenvectors. We want to
show that it also holds for lists of size r+1. So let v1,v2, . . . ,vr,vr+1 be such a list of
eigenvectors with eigenvalues λ1, λ2, . . . , λr, λr+1. Since we assume that v1,v2, . . . ,vr

are linearly independent, it suffices to show that vr+1 is not contained in the span of
v1,v2, . . . ,vr. So let us assume to the contrary that

r1v1 + · · ·+ rrvr = vr+1.

To continue the argument, we fix a basis of V that extends the linearly independent
list v1, . . . ,vr and all coordinates below are relative to this basis. In particular, we
have

vr+1 =




r1
...

rr

0
...

0




We also can compute the coordinates of

ϕ(vr+1) = ϕ(r1v1 + · · ·+ rrvr)

= r1ϕ(v1) + · · ·+ rrϕ(vr)

= r1λ1v1 + · · ·+ rrλrvr

and since ϕ(vr+1) = λr+1, we have

λr+1




r1
...

rr

0
...

0




= λr+1vr+1 = ϕ(vr+1) =




r1λ1
...

rrλr

0
...

0
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This shows that only those ri can be non-zero, for which λi = λr+1. That, however,
implies that vr+1 is in the span of those vi with associates eigenvalue λr+1. The
lemma assumes that in the given list, eigenvectors to the same eigenvalue are linear
independent. So, we have a contradiction. q.e.d.

Corollary 10.8.
∑

λ

dim(E(λ)) ≤ dim(V ) .

Exercise 10.9. Show that dim(E(λ)) does not exceed the multiplicity of the eigen-
value λ. Hint: choose a basis for V that extends a basis for E(λ) and note that
the matrix describing ϕ has a diagonal part. Note that this yields another proof of
Corollary 10.8 since the degree of a polynomial is an upper bound for the sum of the
multiplicities of its roots.

10.3 Diagonalizability and Diagonalization

If ϕ : V → V is a diagnonalizable endormorphism and V = v1,v2, . . . ,vm is a basis
for V that consists of eigenvectors (with λi being the eigenvalue associated with vi),
we have the following diagram:

vi
ϕ // λivi = ϕ(vi)

[]V

²²

V
ϕ // V

[]V
²²

Fm
µD

//

evV

OO

Fm

ei

evV

OO

µD

// λiei = Dei

Thus, the matrix D representing ϕ relative to a basis of eigenvectors is diagonal and
features the eigenvectors along the diagonal.

Theorem 10.10. Let ϕ : V → V be an endomorphism. Then, the following condi-
tions are equivalent:

1. V has a basis relative to which ϕ is represented by a diagonal matrix.

2. V has a basis that consists entirely of eigenvectors for ϕ.

3. The inequality from Corollary 10.8 attains equality:
∑

λ dim(Eϕ(λ)) = dim(V ) .

Proof. If is clear that the first two conditions are equivalent and that the second
implies the last. The remaining implication follows immediately from Proposition 10.7
since the basis for the different eigenspaces taken together yield a linearly independent
set of size

∑
λ dim(Eϕ(λ)) = dim(V ) whence it is a basis. q.e.d.
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Definition 10.11. An endomorphism satisfying one (and hence all) conditions from
Theorem 10.10 is called diagonalizable.

Exercise 10.12. Show that an endomorphism is diagonalizable if its characteristic
polynomial has dim(V ) distinct roots. Note: this is not and “if and only if”.

If the characteristic polynomial χϕ(t) has dim(V ) distinct roots, then ϕ is diagonaliz-
able: each eigenspace has dimension at least 1 and there are dim(V ) of them. Thus,
their dimensions at up to (at least) dim(V ). q.e.d.

10.4 Endomorphisms of Standard Vector Spaces

We know that every linear map from Fm to Fn is given as multiplication by a matrix
of size n×m with coefficients in F. For endomorphisms, the source and target vector
space conincide. Hence, the matrix is a square matrix.

It is straight forward to specialize all previous notions and results to the case of
an endomorphism that is given as left-multiplication by an r × r square matrix A:
An eigenvector x with associated eigenvalue λ satisfies Ax = λx. The characteristic
polynomial of A is χA(t) = det(A− tIr) and its roots are the eigenvalues of A. The
eigenspace EA(λ) associated to λ is the null space of A − λIr and a basis for this
eigenspace can be found by row-reduction.

Assuming that Fr has a basis V that consists of eigenvectors x1, . . . ,xr for A, we
get the following diagram:

xi
µA // λixi = Axi

[]V

²²

Fr
µA // Fr

[]V
²²

Fr
µD

//

evV

OO

Fr

ei

evV

OO

µD

// λiei = Dei

Moreover, we know that the evaluation map evV itself is given as multiplication by a
matrix whose columns are exactly the basis vectors (this is because the evaluation
map sends the standard basis vector ei to xi and that has to be equal to Pei). Thus,
the diagram core becomes:

Fr
µA // Fr

µP−1

²²
Fr

µD

//

µP

OO

Fr

and we deduce: P−1AP = D or equivalently A = PDP−1. Thus:
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Proposition 10.13. A diagonalizable matrix A is of the form A = PDP−1 where
D is a diagonal matrix. In this case, D features the eigenvalues for A along its
diagonal and the columns of P give a basis for Fr that consists of corresponding
eigenvectors. q.e.d.
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