Gewöhnliche Differentialgleichungen

Sommersemester 2025

Übungsblatt 10

(37) Sei u die 1-periodische Funktion, die auf [0,1) durch u(x)=x(1-x) definiert ist. Skizzieren Sie u und berechnen Sie die Fourierreihe für u. Was können Sie zur Konvergenz sagen?

(4 Punkte)

(38) Sei P der Raum der (reellen) Polynome auf dem Intervall [0,2] vom Grad ≤ 2 mit dem Skalarprodukt

 $\langle p \mid q \rangle = \int_0^2 p(x)q(x)dx$.

Berechnen Sie eine ON-Basis für P und bestimmen Sie das Polynom $p \in P$, welches die Bestapproximation für $f(x) = e^x$ liefert.

Illustrieren Sie das Resultat.

(4 Punkte)

(39) Betrachten Sie das Randwertproblem

$$u'' - u' - 2u = 0$$
, mit $u(0) + u'(0) = 1$ und $u(1) = 0$.

- (a) Bestimmen Sie ein Fundamentalsystem der (homogenen) DGL.
- (b) Zeigen Sie, dass es eine eindeutige Lösung des RWP gibt und finden Sie diese Lösung.

(3 Punkte)

(40) Es sei J = [a, b] und seien $a_2(x) \in C^2(J)$, $a_1(x) \in C^1(J)$ und $a_0(x) \in C(J)$. Betrachte der Differentialausdruck

$$Au := a_2(x)\frac{d^2u}{dx^2} + a_1(x)\frac{du}{dx} + a_0(x)u.$$

Man nennt dann

$$A^*u := \frac{\mathrm{d}^2}{\mathrm{d}x^2} (a_2(x)u) - \frac{\mathrm{d}}{\mathrm{d}x} (a_1(x)u) + a_0(x)u$$

zu A adjungiert. A heißt selbstadjungiert, wenn A koeffizientenweise mit A^* übereinstimmt.

- (a) Zeigen Sie, dass A selbstadjungiert ist genau dann wenn $a_2'(x) = a_1(x)$ auf J ist.
- (b) Zeigen Sie, dass $Lu := (p(x)u')' + a_0(x)u$ selbstadjungiert ist.

(3 Punkte)

Abgabe bis Freitag, 20.06.2025, 12 Uhr, beim Tutor.