Fakultät für Mathematik, Universität Bielefeld

Mathematische Methoden der Biowissenschaften III Übungsblatt 1

(1) Wiederholen Sie die folgenden Themen mit Hilfe ihrer Vorlesungsunterlagen oder Lehrbüchern: komplexe Zahlen, Riemann-Integration, Konvergenz von Reihen.

(0 Punkte)

- (2) Stellen Sie die folgenden komplexen Zahlen in kartesischen und in Polarkoordinaten dar:
 - (i) $\left(\frac{1+i}{1-i}\right)^3$.
 - (ii) $\cos\left(\frac{\pi}{4}\right) i \sin\left(\frac{\pi}{4}\right)$.
 - (iii) $\left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^{2023}$.

(1+1+1 Punkte)

- (3) (a) Sei a > 0 und sei f eine Riemann-integrierbare Funktion auf dem Intervall [-a, a]. Zeigen Sie, dass
 - (i) $\int_{-a}^{a} f(x) dx = 0$, falls f ungerade ist.
 - (ii) $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$, falls f gerade ist.
 - (b) Berechnen Sie die folgenden Integrale:
 - (i) $\int_{-\pi}^{\pi} \cos(nt) \sin(mt) dt$ $(m, n \in \mathbb{N})$ (ii) $\int_{-\pi}^{\pi} \cos(nt) \cos(mt) dt$ $(m, n \in \mathbb{N})$

 - (iii) $\int_{-\pi}^{\pi} \sin(nt) \sin(mt) dt$ $(m, n \in \mathbb{N})$

(1+1+1+2+2 Punkte)

- (4) Überprüfen Sie die folgenden Reihen auf Konvergenz und absolute Konvergenz:
 - $(i) \sum_{n=1}^{\infty} \frac{2^n}{(1-2i)^n},$
 - (ii) $\sum_{n=1}^{\infty} \frac{\mathbf{i}^n}{n}$,
 - (iii) $\sum_{n=1}^{\infty} \frac{(3z)^n}{n!}$ mit $z \in \mathbb{C}$.

(2+2+2 Punkte)

Abgabe Mittwoch, 18.10.2023, 12:00, im Postfach des Tutors