Christian Wiesel
Faculty of Mathematics
Bielefeld University

Probability Theory I - Exercise Sheet 12

Due date: Friday, July 14, 11:00 h

Solutions to the assigned problems must be deposited in your tutors mailbox (Katharina von der Lühe: 186, Peter Kuchling: 197, Timo Krause: 59) located in V3-128 no later than 11:00 h on the due date.
Solutions must be completely legible, on A4 paper, in the correct order and stapled, with your name neatly written on the first page.

In the following, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
Exercise 12.I (8 pts)
a) Make use of characteristic functions to determine the distribution of $X_{1}+X_{2}$, where X_{1} and X_{2} are independent random variables, satisfying
i) $X_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right), X_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$;
ii) $X_{1} \sim \operatorname{Poi}\left(\lambda_{1}\right), X_{2} \sim \operatorname{Poi}\left(\lambda_{2}\right)$.
b) Let X_{1}, X_{2}, \ldots be i.i.d. real valued random variables with distribution μ and let N be a random variable with $N \sim \operatorname{Poi}(\lambda)$, independent of X_{1}, X_{2}, \ldots
Determine the characteristic function of the random sum $S=\sum_{i=1}^{N} X_{i}$.

Exercise 12.II (8 pts)
Let μ be a probability measure on \mathbb{R} and $\varphi(t)=\int e^{i t x} \mu(\mathrm{~d} x)$ its characteristic function. Prove the following statements:
a) Discrete FOURIER-inversion: $\quad \mu(\{x\})=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} e^{-i t x} \varphi(t) \mathrm{d} t \quad$ for $x \in \mathbb{R}$.
b) Plancherel equality: $\quad \int_{\mathbb{R}} \mu(\{x\}) \mu(\mathrm{d} x)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|\varphi(t)|^{2} \mathrm{~d} t$.
c) If $\mathbb{P}(X \in h \mathbb{Z})=1$ for $h>0$, then it follows that $\varphi(2 \pi / h+t)=\varphi(t)$, and therefore

$$
\mathbb{P}(X=x)=\frac{h}{2 \pi} \int_{-\pi / h}^{\pi / h} e^{-i t x} \varphi(t) \mathrm{d} t \quad \text { for } x \in h \mathbb{Z}
$$

Exercise 12.III (8 pts)

a) Let X be a real valued random variable with characteristic function $\varphi_{X}(t)$.

Show that $\varphi_{X}(t)$ is real valued, if and only if X and $-X$ have the same distribution.
b) Let X_{n} be normally distributed with expectation value γ_{n} and variance $\sigma_{n}^{2}>0$ for all $n \in \mathbb{N}$. Assume that $X_{n} \Rightarrow X$ to some random variable X, as $n \rightarrow \infty$.
Show that there are $\gamma \in \mathbb{R}$ and $\sigma^{2} \in[0, \infty)$ s.t. $\gamma_{n} \rightarrow \gamma$ and $\sigma_{n}^{2} \rightarrow \sigma^{2}$, as $n \rightarrow \infty$.
Assuming now that $\sigma^{2}>0$, show that X is normally distributed with expectation value γ and variance σ^{2}.
c) Assume that X_{n}, Y_{n} are independent for $1 \leq n \leq \infty$ and satisfy $X_{n} \Rightarrow X_{\infty}$ and $Y_{n} \Rightarrow Y_{\infty}$, as $n \rightarrow \infty$. Show that $X_{n}+Y_{n} \Rightarrow X_{\infty}+Y_{\infty}$, as $n \rightarrow \infty$.

Exercise 12.IV (8 pts)
a) Let $\left(\mu_{i}\right)_{i \in I}$ be a tight family of measures, i.e. $\sup _{i} \mu_{i}\left([-M, M]^{\mathrm{C}}\right) \rightarrow 0$, as $M \rightarrow \infty$.

Show that the corresponding characteristic functions $\left(\varphi_{i}\right)_{i \in I}$ are uniformly equicontinuous, i.e. for every $\varepsilon>0$ there is a $\delta>0$, s.t. for all h with $|h|<\delta$ we have: $\left|\varphi_{i}(t+h)-\varphi_{i}(t)\right|<\varepsilon$.
b) Show that: If $\mu_{n} \Rightarrow \mu_{\infty}$ for $n \rightarrow \infty$, then the characteristic functions $\left(\varphi_{n}\right)_{n}$ converge uniformly on every compact set to some function φ_{∞}, i.e. for every compact set $K \subset \mathbb{R}$ we find: $\sup _{s \in K}\left|\varphi_{n}(s)-\varphi_{\infty}(s)\right| \rightarrow 0$, as $n \rightarrow \infty$.

