Christian Wiesel
Faculty of Mathematics
Bielefeld University

Probability Theory I - Exercise Sheet 13

Due date: Friday, July 21, 11:00 h

Solutions to the assigned problems must be deposited in your tutors mailbox (Katharina von der Lühe: 186, Peter Kuchling: 197, Timo Krause: 59) located in V3-128 no later than 11:00 h on the due date.
Solutions must be completely legible, on A4 paper, in the correct order and stapled, with your name neatly written on the first page.

In the following, let $\left(X_{i}\right)_{i \in \mathbb{N}}$ be a sequence of i.i.d., real valued random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $S_{n}=\sum_{i=1}^{n} X_{i}$.

Exercise 13.I (8 pts)

Let φ be the characteristic function of X_{1}. Show that:
a) If $\varphi^{\prime}(0) \equiv i a$ for some $a \in \mathbb{R}$, then S_{n} / n converges in probability to a, as $n \rightarrow \infty$.
b) If S_{n} / n converges in probability to some $b \in \mathbb{R}$, as $n \rightarrow \infty$, then $\varphi(t / n)^{n}$ converges to $e^{i b t}$, as $n \rightarrow \infty$.

Exercise 13.II (8 pts)
Making use of the general central limit theorem, show that

$$
\lim _{n \rightarrow \infty} e^{-n} \sum_{k=1}^{n} \frac{n^{k}}{k!}=\frac{1}{2}
$$

Hint: Interpret the r.h.s in terms of the distribution of the sum of n independent, Poi(1)distributed random variables.

Exercise 13.III (8 pts)
i) Let $\left(Y_{n}\right)_{n}$ and $\left(Z_{n}\right)_{n}$ be sequences of random variables, s.t. $Y_{n} \Rightarrow Y$ and $Z_{n} \Rightarrow c$, where Y is a random variable and c is a constant.
Show that $Y_{n}+Z_{n} \Rightarrow Y+c$, as $n \rightarrow \infty$.
ii) Assume that $X_{i} \geq 0, \mathbb{E}\left[X_{i}\right]=1$ and $\operatorname{var}\left(X_{i}\right)=\sigma^{2} \in(0, \infty)$ for all $i \in \mathbb{N}$. Show that

$$
\sqrt{S_{n}}-\sqrt{n} \Rightarrow \frac{\sigma}{2} \mathcal{X}, \quad \text { as } n \rightarrow \infty
$$

where \mathcal{X} is a $\mathcal{N}(0,1)$-distributed random variable.

In the following, let $\left(Y_{i}\right)_{i \in \mathbb{N}}$ be a sequence of independent, real valued random variables on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $T_{n}=\sum_{i=1}^{n} Y_{i}$.

Exercise 13.IV (8 pts)
a) Assume that $\mathbb{P}\left(Y_{m}=m\right)=\mathbb{P}\left(Y_{m}=-m\right)=m^{-2} / 2$ and for $m \geq 2$

$$
\mathbb{P}\left(Y_{m}=1\right)=\mathbb{P}\left(Y_{m}=-1\right)=\left(1-m^{-2}\right) / 2, \quad m \in \mathbb{N}
$$

Show that $\operatorname{var}\left(T_{n}\right) / n \rightarrow 2$, as $n \rightarrow \infty$, but nevertheless $T_{n} / \sqrt{n} \Rightarrow \mathcal{X}$, as $n \rightarrow \infty$, where \mathcal{X} is a $\mathcal{N}(0,1)$-distributed random variable.
b) Assume that $\left|Y_{i}\right| \leq M$ and $\sum_{i} \operatorname{var}\left(Y_{i}\right)=\infty$.

Show that $\left(T_{n}-\mathbb{E}\left[T_{n}\right]\right) / \sqrt{\operatorname{var}\left(T_{n}\right)} \Rightarrow \mathcal{X}$, as $n \rightarrow \infty$, where \mathcal{X} is a $\mathcal{N}(0,1)$-distributed random variable.

