Dawid Kielak

Wissenschaftlicher Mitarbeiter (Postdoc), Bielefeld University

I am a Postdoc at the Faculty of Mathematics of the Bielefeld University.

I am a member of the research group of Prof. Kai-Uwe Bux, and am supported by my own grant within the Schwerpunktprogram `Geometry at Infinity' of the DFG.

My research interests lie within the area of (broadly understood) Geometric Group Theory.

I am a member of the Bielefeld Graduate School in Theoretical Sciences.

A photo

Preprints and publications:

  • On Kazhdan's property (T) for $\mathrm{Aut}(F_n)$ and $\mathrm{SL}_n(\mathbb Z)$ (with Marek Kaluba and Piotr Nowak)

    We prove that $\mathrm{Aut}(F_n)$ has Kazhdan's property (T) for every $n \geqslant 5$. Our proof relies on relating the Laplace operators of $\mathrm{SAut}(F_n)$ for various $n$ via symmetrisation by torsion. The key step involves a computation in the group ring of $\mathrm{SAut}(F_5)$. The method works also for $\mathrm{SL}_n(\mathbb Z)$ and for $n \geqslant 3$ yields a new proof of the fact that $\mathrm{SL}_n(\mathbb Z)$ has property (T).

    Additionally, in both families of groups we show that it is enough to study the ball of radius $4$ in the usual Cayley graphs to conclude that the groups have property (T).

    We also provide explicit lower bounds for the Kazhdan constants of $\mathrm{SAut}(F_n)$ (with $n \geqslant 6$) and of $\mathrm{SL}_n(\mathbb Z)$ (with $n \geqslant 3$) with respect to natural generating sets. In the latter case, these bounds improve upon previously known lower bounds whenever $n\geqslant 6$.

    preprint
  • Residually finite rationally-solvable groups and virtual fibring

    We show that a finitely generated residually finite rationally solvable (or RFRS) group $G$ is virtually fibred, in the sense that it admits a virtual surjection to $\mathbb{Z}$ with a finitely generated kernel, if and only if the first $L^2$-Betti number of $G$ vanishes. This generalises (and gives a new proof of) the analogous result of Ian Agol for fundamental groups of $3$-manifolds.

    arXiv
  • Agrarian and $L^2$-invariants (with Fabian Henneke)

    We develop the theory of agrarian invariants, which are algebraic counterparts to $L^2$-invariants. Specifically, we introduce the notions of agrarian Betti numbers, agrarian acyclicity, agrarian torsion and agrarian polytope. We use the agrarian invariants to solve the torsion-free case of a conjecture of Friedl-Tillmann: we show that the marked polytopes they constructed for two-generator one-relator groups with nice presentations are independent of the presentations used. We also show that, for such groups, the agrarian polytope encodes the splitting complexity of the group. This generalises theorems of Friedl-Tillmann and Friedl-Lück-Tillmann. Finally, we prove that for agrarian groups of deficiency $1$, the agrarian polytope admits a marking of its vertices which controls the Bieri-Neumann-Strebel invariant of the group, improving a result of the second author and partially answering a question of Friedl-Tillmann.

    arXiv
  • The Bieri-Neumann-Strebel invariants via Newton polytopes

    We study the Newton polytopes of determinants of square matrices defined over rings of twisted Laurent polynomials. We prove that such Newton polytopes are single polytopes (rather than formal differences of two polytopes); this result can be seen as analogous to the fact that determinants of matrices over commutative Laurent polynomial rings are themselves polynomials, rather than rational functions. We also exhibit a relationship between the Newton polytopes and invertibility of the matrices over Novikov rings, thus establishing a connection with the invariants of Bieri-Neumann-Strebel (BNS) via a theorem of Sikorav.

    We offer several applications: we reprove Thurston's theorem on the existence of a polytope controlling the BNS invariants of a 3-manifold group; we extend this result to free-by-cyclic groups, and the more general descending HNN extensions of free groups. We also show that the BNS invariants of Poincaré duality groups of type F in dimension 3 and groups of deficiency one are determined by a polytope, when the groups are assumed to be agrarian, that is their integral group rings embed in skew-fields. The latter result partially confirms a conjecture of Friedl.

    We also deduce the vanishing of the Newton polytopes associated to elements of the Whitehead groups of many groups satisfying the Atiyah conjecture. We use this to show that the L2-torsion polytope of Friedl-Lück is invariant under homotopy. We prove the vanishing of this polytope in the presence of amenability, thus proving a conjecture of Friedl-Lück-Tillmann.

    arXiv talk in Urbana-Champaign and Warwick
  • On the smallest non-abelian quotient of $\mathrm{Aut}(F_n)$ (with Barbara Baumeister and Emilio Pierro)

    We show that the smallest non-abelian quotient of $\mathrm{Aut}(F_n)$ is $\mathrm{PSL}_n(\mathbb Z/2 \mathbb Z)=\mathrm L_n(2)$, thus confirming a conjecture of Mecchia-Zimmermann. In the course of the proof we give an exponential (in $n$) lower bound for the cardinality of a set on which $\mathrm{SAut}(F_n)$, the unique index $2$ subgroup of $\mathrm{Aut}(F_n)$, can act non-trivially. We also offer new results on the representation theory of $\mathrm{SAut}(F_n)$ in small dimensions over small, positive characteristics, and on rigidity of maps from $\mathrm{SAut}(F_n)$ to finite groups of Lie type and algebraic groups in characteristic $2$.

    arXiv talk in Wrocław
  1. On the smallest non-trivial quotients of mapping class groups (with Emilio Pierro)

    We prove that the smallest non-trivial quotient of the mapping class group of a connected orientable surface of genus at least $3$ without punctures is $\mathrm{Sp}_{2g}(2)$, thus confirming a conjecture of Zimmermann. In the process, we generalise Korkmaz's results on $\mathbb C$-linear representations of mapping class groups to projective representations over any field.

    arXiv To appear in Groups Geom. Dyn.
  2. Appendix (with Damian Sawicki) to "Warped cones, (non-)rigidity, and piecewise properties" by Damian Sawicki

    We prove that if a quasi-isometry of warped cones is induced by a map between the base spaces of the cones, the actions must be conjugate by this map. The converse is false in general, conjugacy of actions is not sufficient for quasi-isometry of the respective warped cones. For a general quasi-isometry of warped cones, using the asymptotically faithful covering constructed in a previous work with Jianchao Wu, we deduce that the two groups are quasi-isometric after taking Cartesian products with suitable powers of the integers.

    Secondly, we characterise geometric properties of a group (coarse embeddability into Banach spaces, asymptotic dimension, property A) by properties of the warped cone over an action of this group. These results apply to arbitrary asymptotically faithful coverings, in particular to box spaces. As an application, we calculate the asymptotic dimension of a warped cone, improve bounds by Szabó, Wu, and Zacharias and by Bartels on the amenability dimension of actions of virtually nilpotent groups, and give a partial answer to a question of Willett about dynamic asymptotic dimension.

    In the appendix, we justify optimality of the aforementioned result on general quasi-isometries by showing that quasi-isometric warped cones need not come from quasi-isometric groups, contrary to the case of box spaces.

    arXiv To appear in Proc. Lond. Math. Soc.
  3. Appendix to "Amenability of groups is characterized by Myhill's Theorem" by Laurent Bartholdi

    We prove a converse to Myhill's "Garden-of-Eden" theorem and obtain in this manner a characterization of amenability in terms of cellular automata: "A group G is amenable if and only if every cellular automaton with carrier G that has gardens of Eden also has mutually erasable patterns."

    This answers a question by Schupp, and solves a conjecture by Ceccherini-Silberstein, Machì and Scarabotti.

    An appendix by Dawid Kielak proves that group rings without zero divisors are Ore domains precisely when the group is amenable, answering a conjecture attributed to Guba.

    arXiv To appear in J. Eur. Math. Soc.
  4. Nielsen realisation for untwisted automorphisms of right-angled Artin groups (with Sebastian Hensel)

    We prove Nielsen realisation for finite subgroups of the groups of untwisted outer automorphisms of RAAGs in the following sense: given any graph $\Gamma$, and any finite group $G \leqslant \mathrm{U}^0(A_\Gamma)\leqslant \mathrm{Out}^0(A_\Gamma)$, we find a non-positively curved cube complex with fundamental group $A_\Gamma$ on which $G$ acts by isometries, realising the action on $A_\Gamma$.

    arXiv Proc. Lond. Math. Soc. (2018) poster
  5. Alexander and Thurston norms, and the Bieri-Neumann-Strebel invariants for free-by-cyclic groups (with Florian Funke)

    We investigate Friedl-Lück's universal $L^2$-torsion for descending HNN extensions of finitely generated free groups, and so in particular for $F_n$-by-$\mathbb Z$ groups. This invariant induces a semi-norm on the first cohomology of the group which is an analogue of the Thurston norm for $3$-manifold groups. We prove that this Thurston semi-norm is an upper bound for the Alexander semi-norm defined by McMullen, as well as for the higher Alexander semi-norms defined by Harvey. The same inequalities are known to hold for $3$-manifold groups. We also prove that the Newton polytopes of the universal $L^2$-torsion of a descending HNN extension of $F_2$ locally determine the Bieri-Neumann-Strebel invariant of the group. We give an explicit means of computing the BNS invariant for such groups. As a corollary, we prove that the Bieri-Neumann-Strebel invariant of a descending HNN extension of $F_2$ has finitely many connected components. When the HNN extension is taken over Fn along a polynomially growing automorphism with unipotent image in $\mathrm{GL}(n,\mathbb Z)$, we show that the Newton polytope of the universal $L^2$-torsion and the BNS invariant completely determine one another. We also show that in this case the Alexander norm, its higher incarnations, and the Thurston norm all coincide.

    arXiv Geom. Topol. (2018) poster talk in Bonn and Cambridge
  6. Nielsen realisation by gluing: Limit groups and free products (with Sebastian Hensel)

    We generalise the Karrass-Pietrowski-Solitar and the Nielsen realisation theorems from the setting of free groups to that of free products. As a result, we obtain a fixed point theorem for finite groups of outer automorphisms acting on the relative free splitting complex of Handel-Mosher and on the outer space of a free product of Guirardel-Levitt, as well as a relative version of the Nielsen realisation theorem, which in the case of free groups answers a question of Karen Vogtmann. We also prove Nielsen realisation for limit groups, and as a byproduct obtain a new proof that limit groups are CAT(0). The proofs rely on a new version of Stallings' theorem on groups with at least two ends, in which some control over the behaviour of virtual free factors is gained.

    arXiv Michigan Math. J. (2018)
  7. Outer actions of $\mathrm{Out}(F_n)$ on small right-angled Artin groups

    We determine the precise conditions under which $\mathrm{SOut}(F_n)$, the unique index two subgroup of $\mathrm{Out}(F_n)$, can act non-trivially via outer automorphisms on a RAAG whose defining graph has fewer than $\frac 1 2 \binom n 2$ vertices.

    We also show that the outer automorphism group of a RAAG cannot act faithfully via outer automorphisms on a RAAG with a strictly smaller (in number of vertices) defining graph.

    Along the way we determine the minimal dimensions of non-trivial linear representations of congruence quotients of the integral special linear groups over algebraically closed fields of characteristic zero, and provide a new lower bound on the cardinality of a set on which $\mathrm{SOut}(F_n)$ can act non-trivially.

    arXiv Algebr. Geom. Topol. (2018)
  8. The 6-strand braid group is CAT(0) (with Thomas Haettel and Petra Schwer)

    We show that braid groups with at most $6$ strands are CAT(0) using the close connection between these groups, the associated non-crossing partition complexes and the embeddability of their diagonal links into spherical buildings of type $A$. Furthermore, we prove that the orthoscheme complex of any bounded graded modular complemented lattice is CAT(0), giving a partial answer to a conjecture of Brady and McCammond.

    arXiv Geom. Dedicata (2016) open access photo of the authors
  9. Groups with infinitely many ends are not fraction groups

    We show that any finitely generated group $F$ with infinitely many ends is not a group of fractions of any finitely generated proper subsemigroup $P$, that is $F$ cannot be expressed as a product $PP^{−1}$. In particular this solves a conjecture of Navas in the positive. As a corollary we obtain a new proof of the fact that finitely generated free groups do not admit isolated left-invariant orderings.

    arXiv Groups Geom. Dyn. (2015)
  10. Low dimensional free and linear representations of $\mathrm{Out}(F_3)$

    We study homomorphisms from $\mathrm{Out}(F_3)$ to $\mathrm{Out}(F_5)$, and $\mathrm{GL}(m,K)$ for $m<7$, where $K$ is a field of characteristic other than $2$ or $3$. We conclude that all $K$-linear representations of dimension at most $6$ of $\mathrm{Out}(F_3)$ factor through $\mathrm{GL}(3,\mathbb Z)$, and that all homomorphisms from $\mathrm{Out}(F_3)$ to $\mathrm{Out}(F_5)$ have finite image.

    arXiv J. Group Theory (2015)
  11. Outer automorphism groups of free groups: linear and free representations

    We study the existence of homomorphisms between $\mathrm{Out}(F_n)$ and $\mathrm{Out}(F_m)$ for $n > 5$ and $m < n(n-1)/2$, and conclude that if $m$ is not equal to $n$ then each such homomorphism factors through the finite group of order $2$. In particular this provides an answer to a question of Bogopol'skii and Puga. In the course of the argument linear representations of $\mathrm{Out}(F_n)$ in dimension less than $n(n+1)/2$ over fields of characteristic zero are completely classified. It is shown that each such representation has to factor through the natural projection from $\mathrm{Out}(F_n)$ to $\mathrm{GL}(n,\mathbb Z)$ coming from the action of $\mathrm{Out}(F_n)$ on the abelianisation of $F_n$. We obtain similar results about linear representation theory of $\mathrm{Out}(F_4)$ and $\mathrm{Out}(F_5)$.

    arXiv J. Lond. Math. Soc. (2013)
  • Habilitation thesis "Free groups, RAAGs, and their automorphisms" defended at the Bielefeld University
    thesis
  • Doctoral thesis "Free and linear representations of outer automorphism groups of free groups" supervised by Prof. Martin R. Bridson at the University of Oxford

    For various values of $n$ and $m$ we investigate homomorphisms $\mathrm{Out}(F_n) \to \mathrm{Out}(F_m)$ and $\mathrm{Out}(F_n)\to \mathrm{GL}_m(K)$, i.e. the free and linear representations of $\mathrm{Out}(F_n)$ respectively.

    By means of a series of arguments revolving around the representation theory of finite symmetric subgroups of $\mathrm{Out}(F_n)$ we prove that each homomorphism $\mathrm{Out}(F_n) \to \mathrm{GL}_m(K)$ factors through the natural map $\pi_n \colon \mathrm{Out}(F_n)\to \mathrm{GL}(H_1(F_n,\mathbb Z))\cong \mathrm{GL}_n(\mathbb Z)$ whenever $n= 3,m <7$ and $\mathrm{char}(K)\not\in \{2,3\}$, and whenever $n >5,m <\binom {n+1} 2$ and $\mathrm{char}(K) \not\in \{2,3,...,n+ 1\}$.

    We also construct a new infinite family of linear representations of $\mathrm{Out}(F_n)$ (where $n >2$), which do not factor through $\pi_n$. When $n$ is odd these have the smallest dimension among all known representations of $\mathrm{Out}(F_n)$ with this property.

    Using the above results we establish that the image of every homomorphism $\mathrm{Out}(F_n) \to \mathrm{Out}(F_m)$ is finite whenever $n= 3$ and $n < m <6$, and of cardinality at most $2$ whenever $n >5$ and $n < m < \binom n 2$. We further show that the image is finite when $\binom n 2 \leqslant m < \binom{n+1} 2$.

    We also consider the structure of normal finite index subgroups of $\mathrm{Out}(F_n)$. If $N$ is such then we prove that if the derived subgroup of the intersection of $N$ with the Torelli subgroup $\overline{\mathrm{IA}}_n < \mathrm{Out(F_n)}$ contains some term of the lower central series of $\overline{\mathrm{IA}}_n$ then the abelianisation of $N$ is finite.

    thesis

Currently supervised students:

I am not teaching this semester.

Contact:

dkielak@math.uni-bielefeld.de
Office V4-204
Fakultät für Mathematik
Universität Bielefeld
Postfach 100131
D-33501 Bielefeld
Germany