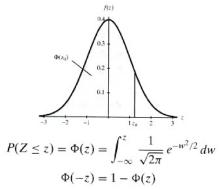
Fakultät für Mathematik, Universität Bielefeld

Wahrscheinlichkeitstheorie und Statistik


Sommersemester 2024

Ergänzungsstunde: Normalapproximation

- (1) Sei Z standardnormalverteilt, dass heißt, $Z \sim \mathcal{N}(0,1)$. Geben Sie die folgenden Wahrscheinlichkeiten an:
 - (a) $\mathbb{P}(Z > 3)$
 - (b) $\mathbb{P}(-1.63 \le Z \le 1.63)$

- (2) Sei X normalverteilt $(X \sim \mathcal{N}(\mu, \sigma^2))$, mit $\mu = 11$ und $\sigma^2 = 2.25$. Geben Sie die folgende Wahrscheinlichkeit an:
 - (a) $\mathbb{P}(10.2 < X < 12.4)$

- (3) Von einer gezinkten Münze ist bekannt, dass das Verhältnis der Würfe von 'Kopf' zu 'Zahl' 1 zu 4 beträgt. Diese Münze wird 5000 Mal in unabhängiger Folge geworfen. Die Zufallsvariable K sei dabei die Anzahl der Würfe, in denen 'Kopf' gefallen ist. Geben Sie die folgenden Wahrscheinlichkeiten approximativ an:
 - (a) $\mathbb{P}(900 \le K \le 1100)$
 - (b) $\mathbb{P}(K \ge 1200)$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000		0.5080	0.5120	0.5160			0.5279		0.5359
0.1	0.5398	0.0	0.5478	0.5517	0.5557			0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948		0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217 0.6591	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
		0.0391	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389		0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703		0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749		0.8790	0.8810	0.8830
1.2	0.8849		0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554		0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641		0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830°	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
-										

Abbildung 1: Werte der Verteilungsfunktion $\Phi(z)$ der Standard-Normalverteilung für typische Werte von z sowie α -Quantile z_{α} für typische Werte von α