• Any inner product $\langle \cdot \mid \cdot \rangle$ on a vector space V defines a norm on it, given by:

$$\|v\| \coloneqq \sqrt{\langle v \mid v \rangle}$$

• For any inner product, the Cauchy-Schwarz inequality holds: for any $v, w \in V$:

$$\langle v \mid w \rangle \le \|v\| \|w\|.$$

• For $a, b \in \mathbb{R}$, C([a, b]) is the set of continuous (real or complex, depending on the context) functions on [a, b]. Continuous (real or complex) functions on a compact set are bounded, therefore have a finite L_2 -norm. For the sake of exercise (14), it's only important that the expressions all make sense.