Spatial decay and spectral properties
of rotating waves in parabolic
systems

Der Fakultit fiir Mathematik der Universitiat Bielefeld eingereichte
Dissertation
zur Erlangung des akademischen Grades

Doktor-Mathematik (Dr.-Math.)

vorgelegt von

Dipl. Math. Denny Otten

Bielefeld, im Dezember 2013



1. Gutachter: Prof. Dr. Wolf-Jiirgen Beyn
2. Gutachter: Prof. Dr. Giorgio Metafune

Dissertation eingereicht am: 17. Dezember 2013
Datum der miindlichen Priifung: 07. Februar 2014

Im Zuge der Verodffentlichung wurde die vorliegende Dissertation redaktionell kor-

rigiert.

Bielefeld, 20. Februar 2014



Contents

Introduction and main result 1
1.1 Introduction . . . . . . . . ... 1
1.2 Assumptions and main result . . . . .. .. ..o 6
1.3 Decomposition of linear differential operators . . . . . . . . . .. .. 12
1.4 Detailed outline of the thesis . . . . . . . .. ... ... ... .... 14
1.5 A guide through the present work . . . . . . .. ... .. ... ... 17
1.6 Extensions and further results . . . . . . .. .. ... .. ... ... 17
1.7 Acknowledgments . . . .. ... 21
Applications and origin of the Ornstein-Uhlenbeck operator 23
2.1 Rotating waves in reaction diffusion systems . . . . . . .. ... .. 23
2.2 The origin of the Ornstein-Uhlenbeck from stochastic ODEs . . . . 30

2.2.1  From ODE to first-order PDE . . . . . . .. ... ... ... 31

2.2.2  From SODE to second-order PDE . . . . . . .. ... .. .. 32
2.3 The real-valued Ornstein-Uhlenbeck operator in function spaces . . 36
Notations and definitions 39
3.1 Special Euclidean group SE(d) . . . . . . . ... ... ... ... .. 39
3.2  Exponentially weighted function spaces . . . . . . . .. .. ... .. 42

Heat kernel for operators of Ornstein-Uhlenbeck type in complex

systems 45
4.1 Complex-valued Ornstein-Uhlenbeck kernel . . . . . . .. .. .. .. 46
4.2 Some properties of the Ornstein-Uhlenbeck kernel . . . . . . . . .. 54
4.3 Some useful integrals . . . . .. ... 63
The complex Ornstein-Uhlenbeck operator in LP(R? CV) 67
5.1 Application of semigroup theory . . . . . . ... ... ... 70
5.2 Exponential decay . . . . . .. ..o L oL 78
5.3 A core for the infinitesimal generator . . . . . . .. ... ... ... 80
5.4 Resolvent estimates . . . . . . . .. ..o oo 90
5.5 The LP-dissipativity condition . . . . . . . . .. .. ... ... ... 102
5.6 The maximal domain (Part 1) . . . . ... ... ... ... ... .. 112
5.7 Cauchy problems and exponential decay . . . . .. ... ... ... 115
5.8 The maximal domain (Part 2) . . ... ... ... ... ... .. .. 119
Constant coefficient perturbations in LP(R? CV) 123
6.1 Application of semigroup theory . . . . . . . .. .. ... ... .. 124

6.2 Exponential decay . . . . . . ... oL 130



v Contents
7 Variable coefficient perturbations in LP(R% CV) 131
7.1 Application of semigroup theory . . . . . . . . ... ... ... ... 133
7.2  Exponential decay for small perturbations . . . .. ... ... ... 136
7.3 Exponential decay for compactly supported perturbations . . . . . . 138
7.4 Essential spectrum and analyticity . . .. ... .. ... ... ... 140
8 Nonlinear problems and complex Ornstein-Uhlenbeck operators 153
8.1 Proof of main theorem . . . . . . . .. .. ... ... ... 153
8.2 Application to complex-valued systems . . . . . .. ... ... ... 156
9 Eigenvalue problems for the linearized differential operator 159
9.1 Classical solutions and spectral stability . . . . ... ... .. ... 160
9.2 Point spectrum and the shape of eigenfunctions . . . . . ... . .. 161
9.3 Exponential decay of eigenfunctions and of the rotational term . . . 172
9.4 Essential spectrum and dispersion relation of localized rotating waves 175
9.5 Essential spectrum and dispersion relation of nonlocalized rotating
WAVES .« o v v e e e e e e e e e e e e 176
10 Freezing approach and numerical results 185
10.1 Equivariant evolution equations . . . . . . .. .. .. .. ... ... 188
10.2 Freezing method for single-structures . . . . . . . .. .. ... ... 196
10.3 Numerical examples of single-structures . . . . . . . . .. ... ... 205
10.4 Numerical computations of the essential and the point spectrum . . 216
10.5 Decompose and freeze method for multi-structures . . . . . . . . .. 231
10.6 Numerical examples of multi-solitons . . . . . . ... .. ... ... 236
Bibliography 253
List of Symbols 261

Index 267



1 Introduction and main result

1.1 Introduction

The field of nonlinear waves has been extended over the last decades. Nonlinear
waves are solutions of time dependent partial differential equations that are posed
on an unbounded domain, [35, Chapter 18|. In many cases these equations possess
symmetry properties which, depending on their type, allow traveling waves, rotating
waves or phase-rotating waves. A common feature to all these solutions is that they
are completely characterized by a time independent profile which travels, rotates
or oscillates at constant velocity. Such solutions arise in different applications
from physical, chemical and biological sciences. Equations that exhibit these types
of solutions are for instance the complex Ginzburg-Landau equation (see: [64],
[76]), the A-w system (see: [61], [80]), the Barkley model (see: [10], [11]), the
Schrodinger equation (see: [33], [112]) and the Gross-Pitaevskii equation (see: [44]).
One important focus of research is to study nonlinear stability of such solutions
and relate it to spectral properties of the linearization at the nonlinear wave. For
the numerical approximation it is crucial to study truncations to bounded domains.
Proving exponential decay of waves is an important issue in this field, since it implies
exponentially small truncation errors. This is one major step before investigating
further errors caused by spatial and temporal discretizations.
In the present thesis we deal with systems of reaction-diffusion equations

uy(z,t) =AAu(x,t) + f(u(z,t),t >0,z €R, d > 2,
u(z,0) =up(x)  t=0,2 R

(1.1)
where A € RMV is a diffusion matrix, f : RY — R is a sufficiently smooth
nonlinearity, ug : R? — R are the initial data and u : R? x [0, co[— R denotes a
vector-valued solution which is sought for.

We are mainly interested in rotating wave solutions of (1.1) which are of the form

(1.2) u(r,t) = v (e ), t >0, r € R d =2

with space-dependent profile v, : R — RY and skew-symmetric matrix S € R%?.

As an example we discuss in this work the cubic-quintic complex Ginzburg-
Landau equation (QCGL), cf. (2.1), where such solutions occur and are called
spinning solitons. For more information on spinning solitons see [28|. Figure 1.1(a)
shows the real part of a spinning soliton v, in two space dimensions. The range of
colorbar reaches from —1.6 (blue) to 1.6 (red). Figure 1.1(b) shows the isosurfaces
of the real part of a spinning soliton in three space dimensions. The isosurfaces
have the values —0.5 (blue) and 0.5 (red).
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Figure 1.1: Spinning soliton of QCGL (2.1) for d = 2 (a) and d = 3 (b)

Rotating waves from (1.2) are completely characterized by their time invariant
profile v, and a skew-symmetric matrix S € R%?. The skew-symmetry of S implies
that e™* is a rotation matrix. Therefore, such a solution u, rotates at constant
velocity while it maintains its shape. Note that rotating waves always come in
families: If u, from (1.2) solves (1.1), then so does the function v, (e *¥(R™!(z —
7))) for every (R,7) € SE(d), where SE(d) denotes the special Euclidean group.
Furthermore, the profile v, is called localized, if it tends to some constant vector
Voo € RN as || — oo, and nonlocalized otherwise.

Transforming (1.1) via u(x,t) = v(e " z,t) into a co-rotating frame we obtain
the evolution equation

vi(x,t) =AAv(x,t) + (Sz, Vou(z,t)) + fv(z,t),t >0, z € R, d > 2,

(1:3) v(z,0) =ug(x) ,t=0, 2R
with drift term

d
(1.4) (Sz,Vu(x)) = Z(sx)iz)w(x).

Now, the pattern v, itself is a stationary solution of (1.3), meaning that v, solves
the steady state problem

(1.5) ANv (x) + (Sz, Vu(z)) + flv(2)) =0, 2 € R d > 2,
that involves the Ornstein-Uhlenbeck operator
(1.6) [Lov] (x) := AAv(x) + (Sz, Vo(z)), = € R

An important issue is to investigate the nonlinear stability (also called stability
with asymptotic phase) of rotating waves, i.e. to show that for any initial data
ug sufficiently close to v, there exists (R, 7o), (R(t), 7(t)) € SE(d) such that the
solution u(t), t > 0, of (1.1) satisfies u(t) — v, (e " (R(t) " (x — 7(t)))) — 0 in a
suitable topology and (R(t),7(t)) = (R, Too) as t — 00. A well known task is to
derive nonlinear stability from linear stability of the linearized operator

(1.7) [Lv] (x) := [Lov] (x) + Df (v,(2)) v(x), 2 € R
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By Linear stability (this will be called strong spectral stability in Chapter 9) we mean
that the essential spectrum and the isolated eigenvalues of L lie strictly to the left
of the imaginary axis except those that are caused by the SE(d)-group action (see
Chapter 9 for these eigenvalues). A nonlinear stability result for two dimensional
localized rotating patterns was proved by Beyn and Lorenz in [15]. Their proof
requires three essential assumptions: The profile v, of the rotating wave and their
partial derivatives up to order 2 are localized in the above sense. Furthermore, the
matrix D f(vs) is stable, meaning that all its eigenvalues have a negative real part.
And finally, strong spectral stability in the sense above is assumed. Their result
shows that the decay of the rotating wave itself and the spectrum of the linearization
are both crucial for investigating nonlinear stability of localized rotating waves. A
corresponding result on nonlinear stability of nonlocalized rotating waves, such as
spiral waves and scroll waves, is still an open problem. However, the spectrum of
the linearization at a spiral wave is well-known and has been extensively studied
by Sandstede, Scheel and Fiedler in [92], [38] and [93].

For numerical computations it is essential to truncate equation (1.1) and (1.3)
to bounded domains, see Section 1.6. This is motivated by the fact that numerical
approximations, e.g. with finite elements, require that the original equation is
posed on a bounded domain. The truncation error, that arises by the truncation
process, depends on the boundary conditions. Assuming that a rotating wave is
(exponentially) localized, we can expect the truncation error to be (exponentially)
small as well. For this reason, the exponential decay of rotating waves plays a
fundamental role in the field of truncations and approximations of rotating waves
on bounded domains.

The basic step before investigating truncations is to study the rotating waves of
(1.1) on the whole RY. This is the topic of the present thesis. For the behavior on
bounded domains there are a lot of numerical simulations but the analysis of the
limit as R — oo is an open problem, see Section 1.6.

The main theme of this work is to derive suitable conditions guaranteeing that
every localized rotating wave of (1.1) is already exponentially localized. To be
more precise, the main theorem states that every rotating wave that falls below a
certain threshold at infinity and that satisfies in addition v, € LP(R? RY) for some
1 < p < o0, decays exponentially in space, in the sense that v, belongs to some
exponentially weighted Sobolev space VVQ1 P(RY RY).  Afterward, we extend this
result to complex-valued systems. This is motivated by the exponentially localized
spinning solitons arising in the complex Ginzburg-Landau equation, see Figure 1.1.

We follow Mielke and Zelik, [114], and define the exponentially weighted Sobolev
spaces W, P(R%, RY) for some weight function § € C'(R% R) of exponential growth
rate. The main suggestion for our result comes from [15]. In [15, Remark 5|, the
authors conjecture that the stability of the matrix D f(v,), i.e. Reo (D f(v)) < 0,
implies the exponential decay of the rotating wave as |r| — oo. Assuming in
addition that v, is localized, they believe that one can also deduce that its partial
derivatives up to order 2 are localized. For traveling waves in dimension d = 1
such results are well known. There one usually considers x as the time variable,
transforms the steady state problem to a first order ODE and applies the theory of
exponential dichotomies. But the procedure does not carry over directly to d > 2.
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Therefore, we develop in this thesis a new approach that allows to prove exponential
decay in higher space dimensions.

Our approach works as follows: In the first step we compute a (complex-valued)
heat kernel Hy for the differential operator L£y. Using this kernel, we introduce the
associated semigroup (7p(t)),., on an appropriate state space X, e.g.
X = LP(RELCN), X = C,(R4,CNY) or X = C(RY, CY). We verify that the semi-
group is strongly continuous on X (or possibly on a certain subspace of X), which
justifies to introduce the infinitesimal generator and to apply semigroup theory, see
e.g. Engel and Nagel, [34]. The generator itself can be considered as the abstract
version of the formal differential operator £y. To investigate their relation we must
solve the identification problem, which on the one hand yields an explicit represen-
tation for the maximal domain and on the other hand shows that the abstract and
the formal differential operator coincide on this domain. The identification problem
was solved for the scalar real-valued case by Metafune, Pallara and Vespri in [73]
for X = LP(R% R) and by Da Prato and Lunardi in [29] for X = C,(R% R) and
X = C*(R% R).

For investigating the asymptotic behavior of solutions of (1.5) we decompose

D f(vi(x)) as follows

(1.8) Df(v.(z)) = Df(vs) + Qc(2) + Qe(z), v € RY,

for some small perturbation Q. € L*(R% RMY) and for some perturbation
Q. € L=(R4 RMN) with compact support. Then we show that it suffices to analyze
solutions of the linear operator

[Lov] () + (D f (veo) + Qe(x) + Qo)) v(z) = 0, z € R

For this reason, we apply semigroup theory to study constant coefficient perturba-
tions as well as small and compactly supported variable coefficient perturbations
of Ly.

We are faced with different problems in this work: The main problem is that
the rotational term (Sz, Vu,(x)) has unbounded coefficients. Therefore, this term
cannot be treated as a lower order term on unbounded domains. Moreover, since
we consider complex-valued systems, we have to transfer many results, that are
only known for the scalar real-valued case, to complex systems. Furthermore, due
to the unbounded coefficients of (Sz, Vu,(x)) it turns out to be hard to solve the
identification problem for £;. And finally, there is the question about a suitable
state space X.

Furthermore, we investigate the eigenvalue problem for the linearization (1.7) at
a localized rotating wave v,. We determine the eigenvalues located on the imaginary
axis and caused by the SE(d)-group action as follows

(19) O'(S) U {)\1 + )\2 | )\1,)\2 c O'(S), )\1 7é )\2} - Opoint(‘c)-

And we derive the shape of the corresponding eigenfunctions v : R¢ — CV, which
are of the form

v(z) = <Cr0tx + O, Vv*(x)> ,x e R
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for some explicitly given skew-symmetric C™' € C4? and C'" € C9¢, where (-,-)
is defined as in (1.4). In particular, the result shows that for every space dimen-
sion d > 2 the eigenvalue A = 0 belongs to opeint (L) with associated eigenfunction
v(z) = (Sz, Vu,(x)). Another application of our main theorem shows that eigen-
functions of the linearized operator decay exponentially in space, provided the
corresponding eigenvalues are sufficiently close to the imaginary axis. In addition
to eigenvalues, we identify a certain part of the essential spectrum,

(1.10)

{—)\(w) - ianal | ny € Z, Mw) € 0(w?*A— Df(vs)), w € ]R} C 0ess(L),

=1

where +i0q,...,£i0; denote the nonzero eigenvalues of S. For this purpose we
derive a dispersion relation for localized rotating patterns. All these studies are
motivated by [15] and |71] and are necessary to investigate nonlinear stability of
rotating waves in higher space dimensions.

3 3 s - : .,
2 2 RTTEY L P
. od’” :...- * 5
.‘. XN ..r. :.-0'.....‘} . %
“\.o "o-‘ o°® e *
1 o 1! Rod gl o
Wy e "
0 o o el Tmf 2 oo po
o ‘#-ﬁ ._',.’°""" s o
-1 —1Met T NeewlTL® oo
" gl “-..,-".’& "
- — * ®e - ... - X 5
2 2 . '.-'\...:’..: T . s 5
1- EAXTY
- —Qle e - 0
3 3rs | " - X, 0 X,
-15 -1 -0.5 0 -15 -1 -0.5 0 5-5
(a) (b) (c)

Figure 1.2: Essential and point spectrum (a), numerical spectrum (b) and two isofurfaces
of eigenfunction corresponding to the eigenvalue 0 (c) for the three-dimensional
spinning soliton of QCGL (2.1) from Figure 1.1(b)

Figure 1.2(a)-1.2(b) illustrates the spectral behavior of the QCGL when lin-
earized at the spinning soliton from Figure 1.1(b). The red lines in Figure 1.2(a)
correspond to the part of the essential spectrum from (1.10). They form a zig-zag
structure that is parallel to the imaginary axis. The distance of two neighboring
tips of the cones equals the rotational velocity o; = 0.68576. The blue circles
correspond to the part of the point spectrum from (1.9), that is caused by the
SE(3)-group action. Each of these isolated eigenvalues has multiplicity 2. Figure
1.2(b) shows a numerical approximation of the full spectrum. Red dots approximate
the essential spectrum, blue circles the known eigenvalues on the imaginary axis,
and blue crosses the remaining point spectrum. Figure 1.2(c) illustrates an approx-
imation of the eigenfunction (Sx, Vv, (x)) that corresponds to the zero eigenvalue.
The isosurfaces have values —1.5 (blue) and 1.5 (red). Note that the eigenfunction
coincides with our drift term and decays exponentially in space.
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Finally, we numerically investigate the interaction of several spinning solitons in
the cubic-quintic complex Ginzburg-Landau equation in two space dimensions. We
are mainly interested in the fate of the single shapes and velocities when solitons
collide or repel each other. In order to analyze the interaction of multi-solitons we
extend the decompose and freeze method from Beyn, Thiimmler and Selle, [17],
to higher space dimensions. It writes the solution of (1.1) as a superposition of
finite number of solutions (given by the number of patterns) which solve a system
of coupled nonlinear partial differential algebraic equations.

20
15
10
5 ‘ .
5
-10
-15
29,

(a) (b)

N

w

N

Figure 1.3: Interaction of three spinning solitons in the QCGL (2.1) with d = 2 and their
positions of centers

Figure 1.3(a) shows the real part of the sum of three spinning solitons of the
QCGL for d = 2, cf. Figure 1.1(a). Each of these solitons is located on a different
vertex of an equilateral triangle and rotates at constant velocity. After some time
they collide into a single spinning soliton that rotates at their common velocity.
Figure 1.3(b) shows the time evolution for the positions of the 3 spinning solitons,
that are obtained from the decompose and freeze method for multi-solitons. Each
of the colors represent the motion of a single soliton with a pointer at the end which
indicates the current phase position. For a detailed description we refer to Section
10.6.

1.2 Assumptions and main result

Below we give a more technical outline of the basic assumptions and the main result
of this thesis:
Consider the steady state problem of the form

(1.11) ANv(z) + (Sx, Vo(x)) + f(v(z)) =0, 2 € R d > 2,

with diffusion matrix A € KV and a function f : KY¥ — K* for K € {R,C}.
The drift term is defined by a matrix 0 # S € R%? as

d d
(1.12) (Sx,Vu(x)) == ZZS”%DU

i=1 j=1
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where D; = =. The operator AAv(z)+(Sx, Vu(x)) is usually called the complex
Ornstem-Uhlenbeck operator, [107].
Our interest is in skew-symmetric matrices S = —S7, in which case (1.12) is a

rotational term containing angular derivatives

(1.13) (Sz, Vo(x Z Z — x;D;) v(x).

We look for different types of solutions, which satisfy at least v € LP(RY, K") for
some 1 < p<ooand NV €N.

Under appropriate conditions our main result states that a solution v, of (1.11)
and its first order derivatives decay exponentially in space as the radius |z| goes to
infinity.

Investigating steady state problems of this type is motivated by the stability
theory of rotating patterns in several spatial dimensions, [15]. There one considers
reaction diffusion equations

wy(2,t) =AAu(x,t) + f(u(z,t),t >0,z eR, d > 2,

(1.14) u(z,0) =up(x) ,t=0,2 R

where A € KM is a diffusion matrix, f : KV — K" a nonlinearity and u a solution
that maps R? x [0, co[ into K.
We define a rotating wave solution u, of (1.14) in the following sense:

Definition 1.1. A function u, : R? x [0, 0o[— K¥ is called a rotating wave (or
rotating pattern) if it has the form

(1.15) u(x,t) = v (e ¥ (x —,)), € RY ¢ €0, 00],

with profile (or pattern) v, : R? — KV a skew-symmetric matrix 0 # S € R%4
and z, € RY. A rotating wave u, satisfying

‘l‘lm el v, (2) — vso| = 0 for some vy, € KN and n > 0

T|—00
for n = 0 is called localized and nonlocalized, otherwise. Moreover, a localized
rotating wave u, is called exponentially localized (with decay rate n) if n > 0.

The vector x, € R? can be considered as the center of rotation for d = 2 and as
the support vector of the axis of rotation for d = 3. In case d € {2,3}, S can be
considered as the angular velocity tensor associated to the angular velocity vector
w € R™T containing Sij, i =1,...,d—1,j=i+1,...,d.

A transformation into a co-rotating frame shows that if u(z,t) solves (1.14)
then v(x,t) = u(ex + x,,t) solves

vy(x, 1) =AAv(x,t) + (Sx, Vo(z,t)) + f(v(z, ), t >0, 2 € RY, d > 2,

(1.16) d
v(z,0) =ug(x) ,t=0,z€R%

where the drift term is given by (1.13). Conversely, if v(x,t) solves (1.16) then
u(x,t) = v(e ¥ (z — x,),t) solves (1.14).
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Note that v, is a stationary solution of (1.16), meaning that v, solves the nonlin-
ear problem (1.11). In Section 2.1 we illustrate such rotating patterns by a series
of examples.

In order to investigate exponential decay of the profile v,, we list a series of
assumptions that will be important in the sequel. Throughout, let K € {R, C}:

Assumption 1.2. For A € KM consider the following conditions:

(A1) A is diagonalizable (over C),  (system condition)

(A2) Reo(A) >0 (ellipticity condition)
where o(A) denotes the spectrum of A,

(A3) 384 >0: Re (w,Aw) > aVw € KY, |w| =1, (accretivity condition)
where (u,v) 1= v denotes the standard inner product on KV,

(A4) case (N=1,K=R): A=a >0,
cases (N 22, K=R) and (N >1, K=C):

-2
pi(A) > L |

where p11(A) is the first antieigenvalue of A.

for some fized 1 < p < oo (LP-antieigenvalue condition)

The assumptions (A1)—(A4) satisfy the obvious relations:
(A4) = (A3) = (A2).

Condition (A1) ensures that all results for scalar equations can be extended to sys-
tem cases. It is completely independent of (A2)—(A4). Assumption (A2) guarantees
that the diffusion part AA is an elliptic operator and requires that all eigenvalues
A of A are contained in the open right half-plane C; := {\ € C | Re A > 0}, where
o(A) denotes the spectrum of A. A matrix C' € KM that satisfies Reo(C) < 0 is
called a stable matrix. Thus, (A2) states that the matrix —A is stable. In partic-
ular, (A2) implies that the matrix A is invertible. Condition (A3), states that A is
an strongly accretive matrix, which is more restrictive than (A2). Assumption
(A4) postulates that the first antieigenvalue of A, defined by, [48],

. . Re (w, Aw) . . Re (w, Aw)
A = f —_— = R S —
(4) wlenKN |w]|| Awl weky  JAw|
w#0 |w|=1
Aw#0 Aw#0

is bounded from below by a non-negative p-dependent constant. This is equivalent
to the following p-dependent upper bound for the (real) angle of A, [47],

Pg(A) :=cos™* (1 (A)) < cos™ (\p ; 2‘) €]o0, g], 1 <p< oo
Condition (A4) imposes additional requirements on the spectrum of A and is more
restrictive than (A3). For some special cases, the constant ju;(A) can be given
explicitly in terms of the eigenvalues of A. In the scalar complex case A = a € C,
assumption (A4) leads to a cone condition which requires « to lie in a p-dependent
sector in the right half-plane. In the scalar case condition (A4) coincides with the
LP-dissipativity condition from [26].
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Assumption 1.3. The matriz S € R%? satisfies
(A5) S is skew-symmetric, i.e. S = —ST, S € s0(d,R) (rotational condition,).

Assumption (Ab5) guarantees that the drift term (1.12) contains only angular
derivatives, see (1.13). Our main result will be formulated for the real-valued case.

Assumption 1.4. The function f : RN — RY satisfies
(A6) f e C*(RY RY)  (smoothness condition).
Later on we apply our results also to complex-valued nonlinearities of the form
f:CY =Y f(u) =g (Juf’)u,

where g : R — CMV is a sufficiently smooth function. Such nonlinearities arise
for example in Ginzburg-Landau equations, Schrodinger equations, A — w systems
and many other equations from physical sciences, see Section 2.1. Note, that in
this case, the function f is not holomorphic in C, but its real-valued version in R?
satisfies (A6) if ¢ is in C?. For differentiable functions f : RY — RY  Df denotes
the Jacobian matrix in the real sense, see the following conditions (A8) and (A9).

Assumption 1.5. For v, € RN consider the following conditions:

(AT) f(vso) =0 (constant asymptotic state),
(A8) A, Df(vs) € RMY are simultaneously diagonalizable (over C)

(system condition),

(A9) 0(Df(vse)) CC_:={A e C|ReX <0} (spectral condition).

Condition (A7) states that v, is a zero of the nonlinearity f. Note, that by (AS8)
assumption (A1) is automatically satisfied. Condition (A9) states that the matrix
D f(v) is stable.

Definition 1.6. A function v, : RY — K% is called a classical solution of (1.11)
if

(1.17) v, € C*(RY, KY) N Cp(RY, KY)
and v, solves (1.11) pointwise.

Equation (1.17) requires v, to be C?-smooth and bounded, see Section 3.2 for
general function spaces. For a matrix C € K¥" we denote by ¢(C) the spec-
trum of C, by p(C) := maxyc,(c) |A| the spectral radius of C' and by s(C) :=
maxyco(c) Re A the spectral abscissa (or spectral bound) of C. Using this
notation, we define the constants

rnin == (p (A_l))*1 , ag = —s(—A),
Amax =p(A), by := —s(Df(vs0))-

Our main tool for investigating exponential decay in space are exponentially
weighted function spaces, which we introduce in Section 3 in detail. An essential
ingredient for these function spaces is the choice of the weight function, which

follows [114, Def. 3.1]:

(1.18)
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Definition 1.7. (1) A function # € C(R% R) is called a weight function of
exponential growth rate n > 0 provided that

(W1) O(z) >0Vr cRY

(W2) 3Cy > 0: O(x+y) < Cob(x)e™ Va,y e R

(2) A weight function § € C(R% R) of exponential growth rate n > 0 is called
radial provided that

(W3) 3¢ :[0,00[=R: 0(z) =¢(z|) Vo€ R

(3) A radial weight function # € C'(R¢, R) of exponential growth rate n > 0 is called
non-decreasing (or monotonically increasing) provided that

(W4) 0(z) < 0(y) Yo,y € R with |z < |yl.

Note, that radial weight functions satisfy 6(x) = 6(y) for every z,y € R? with
|z| = |y|. Standard examples are

01(z) = exp (—pl|x|) and 6Oy(z) = cosh (u|z|),

as well as their smooth analogs

05(z) = exp (—m/|x|2 + 1) and f4(x) = cosh (WW + 1) ,

for 4 € R and « € R%. Obviously, all these functions are radial weight functions of
exponential growth rate n = |u| with Cyp = 1. Moreover, 6y, 03 are non-decreasing
and 6o, 0, are non-decreasing if ;1 < 0. Note, that for 4 = 0 the examples include
the weight function 6(z) = 1. Furthermore, Definition 1.7 includes (radial) tableau
functions, e.g.

Nt Jal
) {exp(—ﬂ(m—m) ol

for some R > 0, where the constant Cy depends on the size of the support, but not
on the growth rate 7.

Associated with weight functions of exponential growth rate are exponentially
weighted Lebesgue and Sobolev spaces

Ly(RY,KY) :={u € Lioo(R", KY) | [|0ul] , < o0},
WP (R KY) :={u € L5(RY,KY) | DPu e AR KNV |8] < kY,

for every 1 < p < oo and k € Ny. Our main result is the following:

Theorem 1.8 (Exponential decay of v, ). Let the assumptions (A4)—(A9) be sat-
isfied for some 1 < p < oo and K = R. Then for every 0 < v < 1 and for
every radially nondecreasing weight function § € C(RY,R) of exponential growth
rate n = 0 with

2 2 a,obo

0<n? <=
" 3 a2, .p?
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and amax, ao, by from (1.18), there exists a constant K1 = K1 (A, f, V00, d, p,0,19) > 0
with the following property:
Every classical solution v, of

(1.19) ANv(x) 4+ (Sz, Vo(z)) + f(v(z)) =0, € RY,
such that v, — v € LP(RYRY) and

(1.20) sup |ve(2) — voo| < Ky for some Ry > 0

lz|>Ro
satisfies
Uy — Voo € Wy P(RE,RY).

Roughly speaking, Theorem 1.8 states that every classical solution v, which sat-
isfies v, — Vo € LP(RY RY) and which is sufficiently close to the steady state vy,
at infinity, see (1.20), must already decay exponentially in space. The exponential
decay is expressed by the fact, that v, — v, belongs to an exponentially weighted
Sobolev space. Moreover, the theorem gives an explicit bound for the exponential
growth rate, that depends only on p, the spectral radius of A and the spectral
abscissas of —A and D f(vs).

In the following we outline several implications and extensions of this result.

Complex valued equations. Later on we apply Theorem 1.8 to complex systems
with nonlinearities of the form

O =Y fu) =g (Jul?)u,

where g : R — CM is a sufficiently smooth function. For this purpose, we trans-
form the N-dimensional complex-valued system into a 2/ N-dimensional real-valued
system and show how assumptions on the real-valued version of f translate into
the complex case.

Relation to the one-dimensional case. As we will see in Section 1.3, the proof
of Theorem 1.8 is fundamentally different from the proofs of exponential decay
towards limits at oo for traveling waves in one space dimension. Consider the
one-dimensional reaction-diffusion equation

ur(z,t) = uge(x,t) + f(u(z,t)), € R, t >0,

where f : RY — RY is a given nonlinearity and u : R x [0, co[— R¥ denotes the
solution we seek for. Assume a traveling wave solution u,(z,t) = v,(x —ct) for some
0 # ¢ € R, then the profile v, : R — R is a stationary solution of the co-moving
frame, i.e. v, solves

(1.21) 0 = vge(x) + cv.(z) + f(v(x)), z € R.

Note that in the one-dimensional case the steady-state equation is an ordinary
differential equation. An essential tool for investigating exponential decay and
nonlinear stability of traveling waves are exponential dichotomies, [35, Chapter 18
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(Sandstede)|. This requires to cast the second-order ODE into a first-order system:
Defining Vi (z) := v(x) and Vi(z) := v,(z), then V(x) = (Vi(z), Va(x))T satisfies

)= (1200) = (Contr Tron) = (o Hnap) = FOO

for every x € R. Let f € CY(RY,RY) and v € R be such that f(vI) = 0
and Reo(Df(vE)) < 0, then F € CYR?*N, R*) and VZ := (vE,0)T € R*" are
hyperbolic fixed points, i.e. F(VE)=0and o(DF(VZ))NiR = (). Now, the theory
of exponential dichotomies yields some constants K= = K*(f,v%) > 0 such that

every solution v, € C*(R,RY) N Cy(R,RY) of (1.21) with
|ve(@) — v | + |vep(z)| < K* for every z > ) (z < z.)

satisfies v,(z) — vE and v, () — 0 exponentially fast as x — +oo, cf. [100,
Theorem II1.7 (2)] for a time-discrete version.

To explicate the analogy, let us consider the Ornstein-Uhlenbeck operator Lyv
instead of v, + cv,. The smoothness assumption for f now corresponds to as-
sumption (A6). If we consider v, instead of v, we see that f(vi) = 0 and
Reo(Df(vE)) < 0 is expressed by assumption (A7) and (A9), respectively. The
threshold condition now corresponds to (1.20). Finally, we emphasize that in the
general case with Av,, instead of v,,, compare (1.21), the assumptions (A2), (A8)
and (A9) imply the hyperbolicity condition o(DF(VE)) NiR = .

A common feature of the one- and multi-dimensional case is that one considers
small and compactly supported perturbations in both situations.

1.3 Decomposition of linear differential operators

In the following we explain the decomposition of the linear differential operators
that leads to the proof of Theorem 1.8.

Far-Field Linearization. Consider the nonlinear problem
ANv, (x) + (Sz, Vo (z)) + flu(z)) =0, z € RY, d > 2.

Let v, € RY be the constant asymptotic state satisfying (A7). Assume that
f e CHRN RY) as in (A6), then Taylor’s theorem yields

J/

f(o(2)) = f(vso) +/ D f (Voo + t(v5() — vo0))dt (v4(7) — Voo), © € RY,
&

-~

=:a(x)

where a € CL(RY, RMY) since v, € CL(RY,RY) and v, is a classical solution. Since
Voo € RY is constant, the difference w(z) = v,(z) — v, satisfies the linearized
equation

ANw(z) + (Sz, Vw(z)) + a(z)w(z) =0, z € RY, d > 2.
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In order to study the behavior of solutions as |z| — oo we decompose the variable
coefficient. In the following we decompose a rather than D f(v.(x)) in a fashion
similar to (1.8). For a direct application of (1.8) see Chapter 9.

Decomposition of a. Let a(z) = D f(vy) + Q(x) with @) defined by

Ox) = /0 Df (0o + tw(x)) — Df (v0) dt, € RE.

This yields Q € Cy,(R? RMN) and
ANw(z) + (Sz, Vw(x)) + (Df(vse) + Q(x)) w(z) =0, z € RY, d > 2.
Decomposition of Q. Let Q(z) = Q.(z) + Q.(z), where Q. € Cp(R? RNY) is

small w.r.t. |||, and Q. € Cp (R, RYY) is compactly supported on R%, see Figure
1.4. Then we arrive at

(1.22)  ALw(z) + (Sz, Vw(z)) + (Df(ve) + Qe(x) + Qu(x)) w(z) = 0, z € R™

If we omit the term Q. + Q. in (1.22), the equation (1.22) is called the far-field
linearization.

> || =R

R()

Figure 1.4: Decomposition of () with data Ry and K7 from Theorem 1.8

Perturbations of Ornstein-Uhlenbeck operator. In order to show exponential
decay for the solution v, of the nonlinear steady state problem (1.11), it is sufficient
to analyze the solutions of the linear system (1.22). Abbreviating B := —D f(v),
we will study the following linear differential operators:

[Lov] () = ADv(x) + (Sz, Vu(x)) — Bu(z) + Q:(z)v(x) + Q.(x)v(z),
[Lo.v] () = ADv(x) + (Sz, Vu(x)) — Bo(z) + Q. (x)v(z),

[Loov] () = ADv(z) + (Sz, Vou(z)) — Bu(x),

[Lov] (z) = ADv(z) + (Sz, Vo(z)) .

The Ornstein-Uhlenbeck operator L,, is the sum of the diffusion term
[L3v] (z) = AAv(z) and the drift term [£{""0] () = (Sz, Vo(z)).The drift
term has unbounded (in fact linearly increasing) coefficients. Later on, it will be
convenient to allow complex coefficients for the operators Ly, L, Lg. and Lg.
Therefore, we rewrite the assumptions (A8) and (A9) as follows:
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Assumption 1.9. Let B € KMV be such that

(A8p) A, B € KM are simultaneously diagonalizable (over C), i.e.
3Y € CVV jnvertible: Y YAY = Ay and Y 'BY = Ap
where A4 = diag ()\’14, e )\]‘4\1,) ,Ap = diag ()\119, ey )\ﬁ) e CVN
(system condition,),
(A9p) Reo(B) >0 (spectral condition).

In this context by is defined by by := —s(—B), cf. (1.18). Note that in case of
B = 0 assumption (A8p) coincides with (Al).

1.4 Detailed outline of the thesis

In Chapter 2 we recall the derivation of the real scalar Ornstein-Uhlenbeck operator
from an underlying stochastic ordinary differential equation (SODE). After that
we motivate the complex Ornstein-Uhlenbeck operator in scalar and system cases.
In the second part of Chapter 2 we give a series of examples from physical and
biological sciences, where the Ornstein-Uhlenbeck operator appears in the theory
of rotating patterns. Further, we give a short summary of known results concerning
the real-valued Ornstein-Uhlenbeck operator.

In Chapter 3 we discuss the special Euclidean group, 37|, and the exponentially
weighted Lebesgue and Sobolev spaces, [114], as well as some general notation that
will be used throughout this work.

Complex-valued Ornstein-Uhlenbeck kernel. In Chapter 4 we extend the
approach from [14], [4] and [22] and use assumptions (A1), (A2), (A5) and (A8g)
to determine a heat kernel of the complex-valued operator L., for the case, where
A and B are complex simultaneously diagonalizable matrices. This leads to the
following heat kernel matrix

H(z,£,t) = (4ntA)~% exp (—Bt — (4tA) ety — 5\2)

of L, which we will denote later by H,. The choice B = 0 provides us with
a heat kernel, denoted by Hj, for the complex Ornstein-Uhlenbeck operator L.
Further, we show that H satisfies a Chapman-Kolmogorov formula, needed for the
subsequent semigroup theory. In the remaining section we prove some integral
properties for the modified kernel K (¢,t) = H(z, ez —1),t), which will be needed
in the sequel for the exponential decay and the application of semigroup theory.

Ornstein-Uhlenbeck semigroup. Assuming (A1), (A2) and (A5) we will study
in Chapter 5 the Ornstein-Uhlenbeck semigroup (7y(t)),, defined by the heat ker-
nel of Ly as

[To(t)vo] (z) := y Ho(x, &, tyuo(£)dE, t >0, x € RY.

Here we show that the semigroup (7p(t)),., (also known as the transition semi-
group) is strongly continuous in LP(R? CY) for every 1 < p < oo. Hence, we
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can define the infinitesimal generator A, of (7y(t)),.,. Using abstract semigroup
theory, [34], we derive solvability and uniqueness results for the resolvent equation
and resolvent estimates. Moreover, we show that the Schwartz space § is dense
in the domain of A, with respect to the graph norm of A, for every 1 < p < oc.
This shows that A, and £ coincide on S. To prove that A, is indeed the maximal
realization (extension) of Ly in LP(RY,CV) for 1 < p < oo, we must restrict p to
1 < p < oo and require in addition (A3) and the LP-antieigenvalue condition (A4)
for L. Then, we derive some resolvent estimates for L in

DY (L) == {v € WZP(RY,CN) N LP(RY, CN) | Lov € LP(RY, CM)}

loc loc

for 1 < p < oo, |73]. This enables us to conclude that the maximal domain
D(A,) of A, is equal to D}, (Ly) and that A, and L, coincide on D} (L) for every
1 <p<oo.

Using exponentially weighted Sobolev spaces with radial weight functions of ex-
ponential growth, we then obtain exponential decay of the solutions for the resolvent
equation and its derivatives up to order 1, even if (A3) and (A4) are not satisfied.
In order to show that the maximal domain of the Ornstein-Uhlenbeck operator
Loy = LI+ £ coincides with the intersection of the domains of its diffusion and
drift term, i.e.

D (Lgiﬁ + Lgrift) —D (Eglff) N D (ﬁgrift) 7

we analyze the homogeneous and inhomogeneous Cauchy problem for £y, following
the approach in [73| for the scalar real-valued case, and show for 1 < p < oo that
the domain D} (L) coincides with

Db (Lo) i= {v € W2 (R CY) | (S-, Vo) € LP(R,CV)}.

Constant coefficient perturbations. In Chapter 6 we perturb the Ornstein-
Uhlenbeck operator £y by adding the term Bu(x) with constant coefficients, that
leads us to the operator L. To find a realization of L, we assume (Al), (A2),
(A5) and perturb the generator A, by adding the operator E,v := —Bv. Then
the bounded perturbation B, := A, + E,, equipped with the same domain as A,,
generates a C%-semigroup (T(t)),5, on LP(R?,CY) for 1 < p < oo. If we require
in addition the assumptions (A3) and (A4), then the infinitesimal generator B, is
indeed the maximal realization of L., in LP(R4, CY) for 1 < p < oo and the domain
equals DI (Ly). Note, that in general we do not have an explicit formula for the
semigroup (Tio(t)),5, any more. But if A and B satisfy in addition to (A1), (A2),
(Ab) the assumption (A8g), we are able to derive an explicit representation for the
new semigroup (74 (t)),, given by

[T ()] (z) = | Huo(z,& ve(6)dE, t >0, z € RY

Rd

Here, the function H,, coincides with the heat kernel for £, computed in Section
4. Again, under the assumptions (A1), (A2), (A5) and (A8p) we are able to derive
solvability and uniqueness results for the resolvent equation and resolvent estimates.
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In particular, assuming (A9p), we can derive an explicit representation of Green’s
function for B, as the time-integral over the heat kernel,

G(z,€&) = —/0 Hoo(x,&, s)ds,

cf. [4] for such a representation. If in addition (A3) and (A4) are satisfied, this
turns out to be also a Green’s function for £.,. Again, we can prove exponential

decay of solutions of the resolvent equation for B, and its derivatives up to order
1.

Small and compactly supported variable coefficient perturbations. Per-
turbing the operator L., by adding the term Q(z)v(z) with variable coefficients
Q € L>®(RY,CMN), leads us in Chapter 7 to the operator Lg. In order to find a
realization of Lg, we assume (Al), (A2), (A5), (A8p) and perturb this time the
generator B, and obtain the new generator C, = B, + F,, F,v := Quv, for the
full C%semigroup (T4 (t)),, on LP(R?, CY) for 1 < p < co. Again, if we require in
addition assumptions (A3) and (A4), then the infinitesimal generator C,, is the max-
imal realization of L¢ in LP(RY, CV) for 1 < p < oo and its domain equals D (Ly).
Under the assumptions (A1), (A2), (A5), (A8p) and arbitrary Q € L>(R% CMV),
we derive solvability and uniqueness results for the resolvent equation and resolvent
estimates in weighted spaces. We then apply this theory to perturbations @) = @),
where (). is assumed to be small with respect to ||| ;-, and to perturbations of the
form Q) = Q. + Q., where (). is compactly supported.

Finally, assuming in addition (A3), (A4) as well as

esssup |Q(z)|, = 0 as R — oo,
|z|>R

and following [15] and [71], we compute the essential spectrum of the operator L in
LP(R?, CY) for every 1 < p < oo. This shows that neither Lo nor C,, is sectorial in
LP(RY CV) and (Tg(t)),., does not generate an analytic semigroup in LP(R?, CV)
for 1 < p < o0.

t=0

Spatial decay of rotating waves. In Chapter 8 we analyze the steady state
problem (1.11) and prove the main result from Theorem 1.8, stating that v, — v
and its derivatives up to order 1 decay exponentially in space at a certain rate,
whenever v, is a classical solution of (1.11). Afterward, we extend Theorem 1.8 to
complex systems.

Spectral properties of linearization at rotating waves. Generalizing [15]
from d = 2 to d > 2, we investigate in Chapter 9 the linearization of the nonlinear
problem (1.11) of the Ornstein-Uhlenbeck operator on R%. We analyze the point
spectrum and determine the eigenvalues on the imaginary axis, that are caused
by the SE(d)-action, as well as an explicit expression for their associated eigen-
functions. Further, we prove that, whenever an isolated eigenvalue is sufficiently
close to the imaginary axis, the corresponding eigenfunction and its first order
derivatives decay exponentially in space. As a byproduct we conclude that also
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the rotational term has an exponential decay in space. Moreover, we compute the
essential spectrum for exponentially localized rotating patterns.

Freezing method and numerical results. In Chapter 10 we introduce some
general theory about equivariant evolution equations following [25], [39] and [43].
Afterward, we introduce the well known freezing method, see [18] and [16]. The
main idea of this method is to approximate relative equilibria such as rotating
waves in reaction-diffusion systems. We then apply this method numerically to
compute the profiles and the velocities of rotating waves for a series of examples.
Moreover, we also investigate numerically the spectra of linearizations at rotating
waves. Finally, we introduce the decompose and freeze approach, see [17] and [16].
The main idea of this approach is to approximate profiles and velocities of multi-
structures, such as multi-solitons. At the end of the chapter, we apply this method
to investigate numerically interaction processes of several spinning solitons in the
two-dimensional cubic-quintic complex Ginzburg-Landau equation, see [78|.

1.5 A guide through the present work

The three main results of this work are classified into spatial decay of rotating
waves, spectral properties of rotating waves and numerical results. These issues
can be found in the following sections:

Spatial decay: Chapter 3, Chapter 4, Section 5.1-5.6, Chapter 6,
Section 7.1-7.3, Chapter 8,

Spectral properties: Section 7.4, Chapter 9,

Numerical results: Section 2.1, Chapter 10.

Of course, these topics are closely related, but the material in the corresponding
sections can be read more or less independently. The Sections 2.2 and 2.3 serve as
background material for the Ornstein-Uhlenbeck operator. The Sections 5.7 and
5.8 provide a useful preparation for the theoretical part of Sections 10.1, 10.2 and
10.5.

1.6 Extensions and further results

Next we summarize some extensions of our theory, which so far have only partially

be completed. Details of these results have been left out in order to keep the size

of the present thesis within reasonable bounds.

Extension to the space of bounded continuous functions. A reasonable

state space, suggested by the work [29], is the following, cf. Section 3.2,
C’rub(Rd,KN) ={ue C’ub(Rd,KN) | lim Hu(ets-) — u()}

t—0

C})(Rd,KN) - 0}7

where Cyp, (R4 KY) denotes the space of bounded uniformly continuous functions.
Let the assumptions (A1), (A2) and (A5) be satisfied and consider the Ornstein-
Uhlenbeck semigroup (7p(t)),-, on the function spaces

Crun(R%, CY) C C (R4, CY) C O (R, CN),
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that are introduced in Section 3.2. Then (Ty(?)),., generates a semigroup on every
of these function spaces. The semigroup (Tp(t)),, is discontinuous on C(R?, CV),
weakly continuous on Cyp,(R?, CV) and strongly continuous on Cy, (R, CV), in fact
(To(t)) 0 is neither strongly continuous on Cp,(R?%, CY) nor on Cyy,(R?, CV). There-
fore, we consider the semigroup (7(t)),, only on the closed subspace Ciy,(R?, CV).
Introducing its infinitesimal generator A : Cryp (R4, CV) D D(Ay) — Crupn (RE, CV),
we obtain the unique solvability of the resolvent equation for A, in C’rub(Rd, CcM)
by application of semigroup theory. Moreover, the semigroup (7y(t)),, is not an-
alytic in Cpy,(R%, CY). All these facts were observed in [29] for the first time, but
only for the scalar real-valued case. In order to investigate the relation between
the Ornstein-Uhlenbeck operator £y and the infinitesimal generator A.,, we must
solve the identification problem in C,, (Rd, C™): Defining

loc

D>®(Ly) := {v € Cop(RL,CY) NWEP(RY,CV)Vp = 1| Lov € Crp(RY, CY)}

we believe that D(A) = D>®(Ly) holds with A,,v = Lyv for every v € D(Ay),
i.e. A, is the maximal realization of Ly in Ciy,(R?%, CY). This result is proved
in [29, Proposition 3.5] for the scalar real-valued case, where the authors use local
elliptic regularity to verify D(As) € D*(Ly) and a maximum principle to show
D(Ax) 2 D*(Ly). The perturbation theory for A, is straightforward and works
in a way similar to the LP-case. We think that Theorem 1.8 extends to Chy, (R, CV)
if vy — Voo € Cryp (R, CV) and without assumptions (A3) and (A4). The result will
then be

Vs — Voo € Crap(R%,CY) N CLL(RY, CY) N CL »(RY, CY),
but the details have not been fully worked out yet.

Fourier-Bessel method on unbounded domains. We next present a fur-
ther possibility to determine a heat kernel and a Green’s function of the complex
Ornstein-Uhlenbeck operator for skew-symmetric matrices S. Consider the steady
state problem

(1.23) [Loov] () == alv(z) + (Sz, Vu(z)) — Bu(z) = g(x), = € R?,

where A= a € C, B=p3¢€C, g:R?>— Cis continuous, N = 1 and d = 2.
The matrix 0 # S € R*»? is assumed to be skew-symmetric and thus we have
+ioy € o(S) for some o1 € R. Equation (1.23) reads in polar coordinates

(1.24) o {aw + %ar + %aw] o(r, ¢) — 01050(r, @) — Bo(r, ¢) = §(r, 9),

for r > 0 and ¢ € [—7, 7|, where +io; € o(S). Representing © and § by a complex
Fourier series w.r.t. ¢

[e.e] [e.e]

(1.25) W)= 3 )™, )= 3 gur)em

n=—oo n=—0oo
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and inserting (1.25) into (1.24), a comparison of the Fourier coefficients yields

(1.26) « (U,Z(T) + %v;(r) — Z—zvn(r)) — (B4 inoy) v, (r) = gu(r), r >0, n € Z.

This can easily be transformed into a modified Bessel equation. Let us define
the left hand side in (1.26) as [Loonvs) () and let w, € C be the square root of
a (B + inoy) with Re w, > 0 (using assumptions (A2), (A5) and (A9p)), then
one can show that the Green’s function for L., is given by

Gutris) = =s [ gzewp (~(8-+ ot - S 1 (25
0

2at 4ot 2at

for 0 < r,s € R with r # s, where I,,(z) denotes the modified Bessel function of the
first kind, [111]. The Green’s function for L., in polar coordinates turns out to be

1
4ot

~

G(r, ), (5.¢)) = —s / N

r? 4 s? s
—pt — — —oqt — dt
eXp ( b 4ot + 20t COS( ot +¢ cp))

which in Cartesian coordinates corresponds to

B >~ 1 1 'S 2
G(z,8) = /o 47rateXp( Bt 40475‘6 x §‘)dt.

Therefore, the solution of (1.23) can be represented by

oe) = [ Gl Lglde, « € B,

In particular, we observe that the Green’s function of L., coincides with the time-
integral of the heat kernel of L, [4],

(1.27) Gla,€) = — /0 " Hw, & bt

Moreover, using an orthogonal transformation for the skew-symmetric matrix S into
several planar polar coordinates, we expect that this approach extends to d > 2
and N > 1.

Fourier-Bessel method on circular domains. An essential advantage of the
Fourier-Bessel approach is that it can be applied to bounded domains, which is
an important issue when investigating truncations. Consider the boundary value
problem

(1.28a) [Leo rVr| (x) := alvg(x)+ (S, Vug(x)) — fvr(z) =gr(z), x € éR(O),

(1.28b) ‘li‘mo Voug(x) -z =0,
(1.28¢) avg(x) + bgian(x) =br(z), x € 0BR(0),
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where Bg(0) := {x € R? | |z| < R} and Br(0) = Bx(0)\{0} for some R > 0,
A=aeC, B=p¢€C, S e R*»? skew-symmetric, g : Bg(0) — C continuous,
br : OBg(0) — C continuous and a,b € C with |a|* + [0]*> > 0. The condition
(1.28b) guarantees that the solution is bounded as |x| — 0. Moreover, the Robin
boundary condition from (1.28¢c) contains Dirichlet (¢ = 1, b = 0) and Neumann
(a = 0, b = 1) boundary conditions. Using (Ab), equation (1.28) reads in polar
coordinates

1 1 R . N .
(1.29a) o |0 + ;871 + ﬁa@b Or(r, @) — 010,0r(r, @) — BOR(r, ¢) =gr(r, @),

(1.29b) lim 8, 05(r, 6) =0,
(1.29¢) cin(6) 4 | 5hon(ri )| =bnlo),
n r=R

for 0 < r < R and ¢ € [—n, n[, where +io; € o(S). Representing g, §r and by by
complex Fourier series w.r.t. ¢

0r(r,0) = > vra(r)e™, Gal(r6) = Y gaalr)e™,
(]‘30) n:O;OO n=—oo
BR(‘b) = Z bRnelw

and inserting (1.30) into (1.29), a comparison of Fourier coefficients yields

1 n? .
(1.31a) a <v}§/7n(r) + ;v}?,n('r’) — T—Qvn('r’)> — (B4 ino1) vea(r) =grn(r),
(1.31b) lgrg)rv}%’n(r) =0,
(1.31c¢) aVrn(R) + D0, (R) =bpn,

for every n € Z, where (1.31a) holds for 0 < r < R. Similar as above, (1.31a) can
be transformed into a modified Bessel equation. For the general theory of Bessel
functions and related material see [111] and [81]. Once more, we define the right
hand side of (1.31a) by [Leo rnUrn) () and requiring (A2), (A5) and (A9p) we
choose w, € C with Re w,, > 0 as above, then one can show that the Green’s
function G, and the Poisson kernel Ppg, for L r, are given by

Gra(r,s) =Gy,(r,s) + EFRm[n(wn'r’)[n(wns), 0<r#s<R,

. ::aRKn(wnR) — bw, RK,11(w, R) + bn K, (w,R)
" aRI,(w,R) + bw, Rl 1 (w,R) + bnl,(w,R) ’

B I, (wy,r)

al, (W R) + 222 (I1 (W R) + Lnia (W, R))

where [,,(z) and K,(z) denote the modified Bessel function of the first and second

kind, respectively, and G,,(r, s) denotes Green’s function of L, from above on the
whole domain [0, co[. The solution of (1.31) is now given by

Prn(r) ,0<r <R,

R
Vpn(r) = / Grn(7,8)9rn(s)ds + Pry(r)br,, 0 <r < R.
0
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Thus, the Green’s function and the Poisson kernel for £, g in polar coordinates
are

(1.32) Grl(r, 9). (s, 0)) =G((r.9). (s,))

1
a9 - inp  —ing
+ o :Z FR,n[n<wnr>[n<wnS>€ 996 ,
(1.33) Pr((r,0),¢) = Z Pro(r)eimee=in?,

Therefore, the solution of (1.29) can be represented by

3 / / Cr((r.0). (5. 9)i(s. )dpds + 5~ / Pal(r,6), )bn(p)ds.

In contrast to the Fourier-Bessel method on the whole R?, it is not possible to find
closed expressions for the Fourier series from (1.32) and (1.33). It remains as an
open problem to derive suitable estimates of Gr and Py which hold uniformly in
R. A relation, similar to (1.27), between the heat kernel and the Green’s function
as well as the Poisson kernel for £ g, seems not to be known in this case.

Phase-rotating waves and space-state-dependent nonlinearities. We cur-
rently extend the theory to include phase-rotating (or oscillating) waves

u(x,t) = e “o(z), v € R t € [0, 00,

with phase velocity 0 # w € R.

Such phase-rotating waves arise for instance in cubic-quintic complex Ginzburg
Landau equations, but also in Schrodinger equations (see: [44], [45], [33], [112])
and Gross-Pitaevskii equations (see: [44]). Note that in the latter equations z-
dependent potentials occur. This suggest still another extension to state dependent
nonlinearities f(z,u).
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2 Applications and origin of the
Ornstein-Uhlenbeck operator

2.1 Rotating waves in reaction diffusion systems

In Section 1.2 we have already motivated the nonlinear steady state problem (1.11)
for the complex Ornstein-Uhlenbeck operator by the existence of rotating wave
solutions. Such rotating waves arise in many applications from physical, chem-
ical and biological sciences. In the following, we list a set of examples, where

such rotating wave solutions exist. All the computations where done with Comsol
Multiphysics™, [1].

Example 2.1 (Ginzburg-Landau equation). Consider the cubic-quintic complex
Ginzburg-Landau equation (QCGL), [64],

(2.1) w = alu+u (p+ B lul’ +7ul*)

with u : R? x [0,00[— C, d € {2,3}, a, 3,7, € C and Rea > 0. The real-valued
version of this equation reads as

(U1) N ( 1 2) = (U1) " (U1)
U9 . 9 aq U9 U9
with

f <U1) _ ((Ulﬂl — Ufty) + (u1 By — usf) (Ui + u3) + (uryr — uy2) (uf + U%)Q)
U (wrtz + uapir) + (wrBa + uaB) (ud +ud) + (wrye + usm) (uf +ud)* /)’

U= up At iug, @ = ag +iqg, f = B+ iy v =7 + 17 and w;, qp, B5,7 € R
for ¢+ = 1,2. This equation describes different aspects of signal propagation in
heart tissue, superconductivity, superfluidity, nonlinear optical systems, see [79],
photonics, plasmas, physics of lasers, Bose-Einstein condensation, liquid crystals,
fluid dynamics, chemical waves, quantum field theory, granular media and is used
in the study of hydrodynamic instabilities, see [76]. It shows a variety of coherent
structures like stable and unstable pulses, fronts, sources and sinks in 1D, see [109],
[102], [6] and [106], vortex solitons, see [27|, spinning solitons, see [28], rotating
spiral waves, propagating clusters, see [84], and exploding dissipative solitons, see
[101] in 2D as well as scroll waves and spinning solitons in 3D, see [77].

Let us discuss the assumptions (A1)—(A9): Assumption (A1) is satisfied for every
a € C, assumptions (A2) and (A3) if Rea = a; > 0 and (A4) if

2v/p—1

),forsome1<p<oo.
Ip—2|

larg o] < arctan <
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The condition (Ab) is satisfied with

0 512 0 512 Sl3
(22) S = _g 0 and S = —512 0 523
2 —S13 —S23 0

for d = 2 and d = 3, respectively. In the examples below we specify the entries Ss,
Si3, So3 € R and the point z, € R?, that will be the center of rotation if d = 2
and the support vector of the axis of rotation if d = 3. All these informations
come actually from a simulation. First we simulate the original system for some
time then we switch to the freezing method, which then yields the profile v, as
well as the values for the rotational and translational velocities. This will be done
in Example 10.9, 10.10 and 10.11. For general theory about the freezing method
we refer to [16], [18], [20], [19] and [103|. The specific values of these variables
will be given in the examples below. Note that in case d = 2 we have a clockwise
rotation, if Sjo > 0, and a counter clockwise rotation, if Sjo < 0. Assumption (A6)
is obviously satisfied. Using, for instance, v, = (0,0)7 then assumption (A7) is
satisfied. Then, we have

D f(v:0) = (“1 ‘“2)

M2 H

and assumption (A8) is also satisfied. Assumption (A9) is only satisfied if Re i < 0.
The bound for the rate of the exponential decay from Theorem 1.8 reads

2Rea (—Reyp)

2.3 0<n? <o
%) T by

for some 0 < ¥ < 1. Let us now consider some specific examples:
(1): For the parameter values

11 5 1 1
2.4 Sl Si B=24i oyl —i g -

2 2 2
this equation exhibits so called spinning soliton solutions for space dimensions
d =2 and d = 3, see Figure 2.1.

Figure 2.1(a)-2.1(c) shows the spinning soliton in R? as the solution of (2.1) on a
circular disk of radius R = 20 centered in the origin at time ¢t = 150. For the com-
putation we used continuous piecewise linear finite elements with maximal stepsize
Az = 0.25, the BDF method of order 2 with absolute tolerance atol = 107, rela-
tive tolerance rtol = 10~* and maximal stepsize At = 0.1, homogeneous Neumann
boundary conditions and initial data

2 2
xg +x2)

1 .
udP (z1,20) = : (w1 + imy) exp (— 10

Figure 2.1(d)-2.1(f) shows the spinning soliton in R?® as the solution of (2.1)
on a cube with edge length L = 20 centered in the origin at time ¢ = 100. For
the computation we used continuous piecewise linear finite elements with max-
imal stepsize Az = 0.8, the BDF method of order 2 with absolute tolerance
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atol = 1074, relative tolerance rtol = 1072 and maximal stepsize At = 0.1, ho-
mogeneous Neumann boundary conditions and (discontinuous) initial data

UgD(l’la T, x3) == ugD(x17 x?)

for |z3] <9 and 0 otherwise.

20, — — 20, —— = = = 15
/ e -
15 yZ 15 y’ 15 \\
py \ 1
Yy Yy y N
1o / \ 1 1o / 1o / \
/ y N
/ \ / Y 05
5 i 5 i 51
| | \ |
&0 ‘ | &0 ' o ‘ o
. LY - L7 "
\ ! 5|\ / \ !
51 J 51 J 5 \ // s
/ \ / \ /
10 \\ J 10| \\ 10
4 N
15 \ 4 15 \ 4 15 // !
~ ~ ~ -
- - -~

—-05

(d) Reu(xy,x2,x3) (e) Imwu(xy,x2,x3) () |u(xy, z2,23)|

Figure 2.1: Spinning soliton of QCGL for d = 2 (above) and d = 3 (bottom)

The parameter values (2.4) satisfy our assumptions (A1)—(A9) for every p with
4 e 4
2+v2 T

e.g. p=2,3,4,56. At time t = 400 we have the rotational velocity Sis with center
of rotation x, given by

1.1716 =

~ 6.8284,

512 = 1027, Ty = <

—0.016465
—0.002849

in case d = 2 and the rotational velocities S, S13, Se3 with support vector x, given

by

Sio 0.6855 0.179489
Sis | = | —0.01558 | , =z, = | 0.191649
Sas 0.01086 —0.007199

at time ¢ = 500 in case d = 3, compare Example 10.9. The solitons are localized in
the sense of Theorem 1.8 with the bound

1
0<y’ <¥

3—p2 < 3—192 for p 6]4 — 2\/5,4+2\/§[
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(2): For the parameter values

1 1 13 1 1
2.5 S Si B=24 y= 1 —i = —=

this equation exhibits so called rotating spiral wave solutions, see Figure 2.2.

20 10 10 20
X

(a) Reu(zr, z2) (b) Tm (a1, 22) (©) Ju(ar, o)
Figure 2.2: Rotating spiral wave of QCGL for d = 2

Figure 2.2(a)-2.2(c) shows the spiral wave in R? as the solution of (2.1) on
a circular disk of radius R = 20 centered in the origin at time ¢ = 150. For
the computation we used continuous piecewise linear finite elements with max-
imal stepsize Azx = 0.25, the BDF method of order 2 with absolute tolerance
atol = 107?, relative tolerance rtol = 10~* and maximal stepsize At = 0.1, homo-
geneous Neumann boundary conditions and initial data u2P from above.

The only difference in the choice of parameters in (2.5) when compared to (2.4),
is the real part of 3, which is now slightly larger. The parameter values satisfy our
assumptions (A1)-(A9) also for p €]4 — 2v/2,4 + 2v/2[. At time ¢ = 400 we have
the rotational velocity Sio with center of rotation x, given by

—0.007763
S1p = 1.323, @, = (—0.019773) '

The spiral wave seems not to be localized in the sense of Theorem 1.8 since condition
(1.20) is not satisfied. We observe that enlarging /5 from g to % generates a pattern
with a higher rotational velocity.

(3): For the parameter values
(2.6) a=1, pf=—-1+1i), =0, p=1

this equation exhibits so called twisted and untwisted scroll wave as well as
scroll ring solutions, see Figure 2.3.

Figure 2.3(a)-2.3(c) shows the untwisted scroll ring in R?® as the solution of
(2.1) and (2.7), respectively, on a cube with edge length L = 40 centered in the
origin at time ¢ = 150. For the computation we used continuous piecewise linear
finite elements with maximal stepsize Ax = 1.6, the BDF method of order 2 with
absolute tolerance atol = 1073, relative tolerance rtol = 1072 and maximal stepsize
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At = 0.5, homogeneous Neumann boundary conditions on the lateral surfaces,
periodic boundary conditions on the faces for 3 = 20 and (discontinuous) initial
data

1 ; i +a3 . 2nz
USD(SL’l,:CQ’x?)) =5 (x1 4 ixg) exp (- 1 2 LK )

9 NI
for |z3] < 16 with winding number K = 1 and edge length in z3-direction
L,, = L = 40 and 0 otherwise. Due to the periodic boundary conditions on

the x3-slices the untwisted scroll wave can be considered as an untwisted scroll ring
on a torus.

20 20

(a) Reu(xy,z2,x3) (b) Imu(zq, 22, x3) (¢) |u(z1, 22, x3)]|

Figure 2.3: Untwisted scroll ring of QCGL and of the A-w system for d = 3

The parameter values (2.6) satisfy only the assumptions (A1)-(A8) for every
1 < p < oo but not condition (A9), since the real part of p is not negative. In this
case the pattern is not localized in the sense of Theorem 1.8. At time ¢ = 850 we
have the rotational velocities Sis, S13, S23 with support vector x, given by

Sio —0.8934 0
S| =1 0002114 |, z.,=10
Sos —0.001088 0

Example 2.2 (A\-w system). Consider the A-w system, [61], [80],
(2.7) up = alu+u (A (Ju]?) +iw (Jul?))

with u : R? x [0,00[— C, d € {2,3}, a € C, A : [0,00[— R and w : [0, co[— R. The
real-valued version of this equation reads as

()= @ ) e )+ ()

f <u1) _ <u1)\ (u? + ul) — uow (u? + u%)) ’

Us ww (u? 4 u3) + ug\ (ud + ul)

with

U = up + s, @« = ay + 1a and u;, ; € R for ¢+ = 1,2. This equation describes
chemical reaction processes, see [61] and [60], physiological processes in the study
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of cardiac arrhythmias, time evolution of biological systems, see [80], and is often
used to analyze the mechanism of pattern formation as well as to study the onset
of turbulent behavior. An example of an emerging technological application based
on pattern forming systems is given by memory devices using magnetic domain
patterns. This model exhibits rotating spirals as well as scroll wave and scroll ring
solutions, see [32] and [36].

Let us again discuss the assumptions (A1l)-(A9): Assumption (Al) is satisfied
for every a € C, assumptions (A2) and (A3) if Rea = a; > 0 and (A4) for some
l<p<ooif

24/p—1
larg a| < arctan | ———— | .
p—2|

The condition (Ab) is satisfied with S from (2.2). Assumption (A6) is satisfied if
A\, w € C?([0,00[, R). Since the assumptions (A7)—(A9) depends on the choice of A
and w, we explain these conditions in the following example.

(1): For the parameter settings
(2.8) a=1 A(ul’) =1=[ul w(ul’)=—luf

this equation exhibits so called rigidly rotating spiral wave solutions, see Figure
2.4, as well as twisted and untwisted scroll wave and scroll ring solutions, see
Figure 2.3 for an untwisted scroll ring.

5o 0 50
X

(a) Reu(xy,x2) (b) Imu(zq, 22) (¢) Ju(zy, 2z2)]
Figure 2.4: Rigidly rotating spiral wave of A-w system for d = 2

Figure 2.4(a)-2.4(c) shows the spiral wave in R? as the solution of (2.7) on
a circular disk of radius R = 50 centered in the origin at time ¢ = 150. For
the computation we used continuous piecewise linear finite elements with stepsize
Az = 0.5, the BDF method of order 2 with absolute tolerance atol = 107%, relative
tolerance rtol = 1073 and stepsize At = 0.1, homogeneous Neumann boundary
conditions and initial data

1

Uo(%?/) = % ($1,9€2)T

For a discussion about the scroll ring from Figure 2.3(a)-2.3(c) we refer to Example
2.1(3).
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The parameter values (2.8) satisfy only the assumptions (A1)—(A8) for every
1 < p < oo and with vy, = (0,0)7 but not condition (A9), since Df(0,0) has the
eigenvalue 1 with algebraic multiplicity 2. In this case the pattern is not localized
in the sense of Theorem 1.8. The rotational velocity S, and the center of rotation
x, of the spiral are

Sy = 00001, z, = (—0.001770)

0.000650

at time ¢ = 550. Since the A-w system (2.7) equipped with the parameter-values
(2.8) is indeed a special case of the cubic-quintic complex Ginzburg-Landau equa-
tion (2.1), namely for § = —(1+14), v =0 and pu = 1, compare (2.6), we refer for a
discussion about the assumptions also to Example 2.1(3).

Example 2.3 (Barkley model). Consider the Barkley model, [10], [11], [12]

e ()= (o p)o (i) (mhrs)

with u = (ug,u9)T, u : R x [0,00[— R? d € {2,3},0< D << 1,0 < e << 1,
0 <abeR, g: R— R. This equation describes excitable media, oscillatory
media, see[10], catalytic surface reactions, see [9], the interaction of a fast activator
u and a slow inhibitor v (in this case g(u) describes a delayed production of the
inhibitor) and is often used as a qualitative model in pattern forming systems (e.g.
Belousov-Zhabotinsky reaction). This model exhibits rotating spiral wave and scroll
wave solutions, see [11], [18] and [103].

Let us discuss the assumptions (A1)-(A9): Assumption (A1) is satisfied for every
D € R, assumption (A2) and (A3) if D > 0 and (A4) for every

2(D + 1) o 2(D + 1)
2D+ D+1 b —2/D+D+1

Condition (A4) doesn’t hold for D = 0. The condition (Ab) is satisfied with
S € R*? from (2.2). Specific values for Si5 will be given in the example below.
Assumption (A6) is satisfied if g € C?*(R,R). The zeros of the nonlinearity are
(0,9(0)), (1,9(1)) and another one. Using, for instance, v, = (0,¢(0))” then
assumption (A7) is satisfied and (A8) holds for D = 1. Since the eigenvalues of
Df(vs) are % and —1, condition (A9) is equivalent to % < 0,ie. g(0) < —b.
Analogously, using v, = (1, ¢(1))” then assumption (A7) is satisfied and (A8) holds

for D = 1. Since the eigenvalues of D f(v.,) are 5’(12# and —1, condition (A9)

g(1)+b—a
a2

, with 0 <D < 1.

is equivalent to < 0,ie g(1) < a—0b. Let us now consider some specific

examples:
(1): For the parameter values

1 7 1
2.10 D=0 E— e _
( ) ) € 507 a 107 1007 g<u1> Uy
this equation exhibits so called rigidly rotating spiral wave solutions, see Figure
2.5.
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a0 20 0 20 40
X

(a) u1(z1,z2) (b) uz(z1,72) (c) |u(x1,z2)|

Figure 2.5: Rigidly rotating spiral wave of Barkley model for d = 2

Figure 2.5(a)-2.5(c) shows the rotating spiral wave in R? as the solution of (2.9)
on a circular disk of radius R = 40 centered in the origin at time ¢ = 150. For
the computation we used continuous piecewise linear finite elements with stepsize
Az = 0.5, the BDF method of order 2 with absolute tolerance atol = 107°, relative
tolerance rtol = 1072 and stepsize At = 0.1, homogeneous Neumann boundary
conditions and initial data

1 1 ,l‘>0 2 a ’y>0
ué’<x,y>={o oo Wwy=2

The parameter values (2.10) satisfy the assumptlons (Al) (A6) since 9 is twice
continuously differentiable, (A7) for vy, = (0,0)7, T and ( ) At time
t = 650 we found the rotational velocity S for the matnx S fr ( 5) and the

center of rotation z, given by

—1.1717

All other assumptions are not satisfied. D =0 Violates assumption (A2), (A3), (A4)
and (A8). For v, = (0,0)” condition (A9) needs % < 0, which is not satisfied, and
for ve = (1,1)” assumption (A9) needs 54 < 0 which is not true in this case.

Assumption (A9) is also not satisfied for v, = (a%l, rbl)T with the parameters
above.

2.2 The origin of the Ornstein-Uhlenbeck from
stochastic ODEs

In this section we recall the origin of the Ornstein-Uhlenbeck operator from stochas-
tic differential equations. For this purpose we consider a stochastic ordinary dif-
ferential equation (SODE) and derive a second-order partial differential equation
(PDE), that is called the Kolmogorov equation. For a detailed treatment about the
transformation of a single SODE to a second-order PDE we refer to [55, Chapter
24], [56, Section 5.7|, [57, Section 4.8] and |70, Section 2.8]. The corresponding dif-
ferential operator of the Kolmogorov equation is called the Kolmogorov operator,



2.2 The origin of the Ornstein-Uhlenbeck from stochastic ODEs 31

which comes originally from [58]. Different types of Kolmogorov operators were
treated in [3], [23] and [58]|. Applications of Kolmogorov operators in physics and
finance can be found in [63] and [82]. The Ornstein-Uhlenbeck operator, which is
an elliptic operator with unbounded linearly growing coefficients, is a special type
of a Kolmogorov operator. For a motivation of the Ornstein-Uhlenbeck operator
from SODE’s we refer to [66, Chapter 9]. Note that Section 2.2 and Section 2.3 are
not relevant to understand the following theory concerning the exponential decay
and thus they can also be skipped.

2.2.1 From ODE to first-order PDE

Let d € N and let u € C*°(R?,R?) be a function, which is at most linearly growing,
le.

3O >0: |ul2)|<C(1+|z)) VreRL
Then there exists a family
®(;x) : [0,00[—= R z € RY,
of unique smooth functions, satisfying the ordinary differential equation

9 p(t;0) = (B(1:0)), 1 € [0, 00, & € B,

O(0;z) = x.

(ODE)

The mapping ®(-;x) is known as the solution flow of (ODE) satisfying the flow
properties. These functions are co-times continuously differentiable with respect to
x for every fixed ¢ € [0, 0o, i.e.

d(t;) : R - R,z +— ®(t;2) is smooth V¢ € [0, oo|.

For a similar result we refer to [73, Lemma 3.1] and for its proof to |69, Section 2.1].
The family T(t) : Cy,(R%, R) — CL (R4, R), t € [0, 00], of linear operators defined by

[T(t)ug) (z) = uo (®(t; 7)), x € R t € [0, 00], up € Cp(R%R),

is called the transition semigroup of the (ODE). (T'(t)),., satisfies the semi-
group properties

T0)=1 and T(t1)T(ta) =T(t1 + t2) Vi1, t2 € [0, 00],
which follow immediately by the flow properties of ®, and it satisfies

T(H)CHRY R) C CFRY,R) Vt € [0,00[ Vk € NgU {o0}.
Let us fix ug € CL(R? R) and consider u : R? x [0, 0o[— R given by

u(z,t) = [T(t)ug) (z) = ug (®(t;2)), t € [0, 00[, z € RY,
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then u is the classical solution of the first-order linear PDE

(PDE:4) %u(w,t) N Zﬂz(x)%u(x,t) = (u(x), Vu(z,t)), v € RY, t € [0, 00,

u(zx,0) = u;(:p)

As we will see in Section 2.2.2, the forward advection equation (PDE;y) is a
special case of a Kolmogorov equation. In particular, the solution preserves the
smoothness of the initial data, i.e. for every k € NU {oco} with k < r

u(-,0) = up(+) € CERLR) = u(,t) € CFRYR)VE € [0, 00

Example 2.4 (Drift term of the Ornstein-Uhlenbeck operator). Let d € N and
p: R4 — R? with pu(z) = Sz for some 0 # S € R%4 then ®(-; ) : [0, co[— R? with
O(t;z) = ez, 2 € R4, t € [0, 00, is the unique smooth solution of

2CID(t;:c) = S®(t;2),t € [0,00[, x € RY,

ot
O(0;x) = x.

The corresponding transition semigroup is given by T'(t) : Cp,(R4, R) — C, (R, R),
t € [0, oo[, with

[T (t)uo] (x) := ug (”z), 2 € RY, t € [0,00], ug € C,(R%, R).
If we fix ug € CL(RY R), then u : R? x [0, 00[— R given by
u(z,t) = [T(t)uo) () = uo (e"x) , t € [0, 00[, z € RY,

is a classical solution of the first-order linear PDE

2u(ac t) = i (Sx) iu(ac t) =: (Sx, Vu(z,t)), z € R, t € [0, 00]
ot ' N ey : 8$‘Z ' o ’ ’ ’ ’ » b
u(z,0) = ug(x).

Later we consider skew-symmetric matrices S, in which case e’ describes rigid
rotations. We will denote the semigroup (7'(t)),,, that generates even a group, by
(R(t));so and call (R(t)),., the rotation group.

2.2.2 From SODE to second-order PDE

Let us consider d,m € N and two globally Lipschitz continuous functions
p € C*°(RYRY) and 0 € C*(RY, RE™), which are at most linearly growing, i.e.

3O >0: |u(2)|<C(1+|z)) VoeRY
3C>0: |o(z)| < C(A+]z]) VzeR

Furthermore, let (2, F,P) denote a probability space with a standard Brownian
motion

W [0,00[xQ = R™,  (t,w) — W(t,w).
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Then there exists a family
(-, x) 1 [0,00[xQ =R (tw) = B(t,w;z), xR
of solution processes of the stochastic ordinary differential equation

d®(t;z) = pu (O(t;2)) dt + o (P(t;2)) dW (L), t € [0, 00], 2 € RY,

0;z) = .

(SODE)

This is an abbreviating notation for the integral equation

O(t; x) :x+/0 u(@(s;x))ds+/0 o (P(s;x)) dW (s).

It is well known from [70, Section 2.3|, that the solution processes are unique up
to indistinguishability. As usual, we suppress the dependency on w € ) and write
®(t; x) instead of ®(t,w;x). Note, that the (SODE) describes for instance the
random motion of a particle in a fluid, [107]. The family 7'(t) : C,(R% R) —
Cy(R% R), t € [0, 00], of linear operators defined by

[T(t)uo] (x) := IE [ug (®(t;2))], x € R, t € [0, 00, up € Cp(R% R),

is called the transition semigroup of the (SODE). (T'(t)),, satisfies the semi-
group properties

T0)=1T and T(t,)T(ts) = T(t; + t2) Vi, ts € [0,00]
and
T(t)CW,(RY,R) C C(RY R) Vit €]0, 00l

Such smoothing properties were established by Hormander in 1967 under the Hor-
mander condition, [54]. This condition is for example satisfied, if

span {o1(z),...,0m(z)} = R4 V2 € R
Let us fix ug € CZ(R% R) and consider u : R? x [0, co[— R given by
u(z.t) = [T(t)ug] (z) = B [ug (8(5:2))] £ € [0, 00], = € R

If u(-,t) is smooth for all ¢ €]0, 0o, then u is the classical solution of the second-
order linear PDE

(PDEQM)

1 L 0
_uxt Zm +§ZZ waxaxj u(z, t),

i=1 j=1

=: (u(z), Vu(z,t)) + %tr (o(z)o” () D*u(z,t))
u(z,0) = up(x),
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for z € R? and t €]0,00[. The smoothness of u is guaranteed for instance by
[57, Theorem 4.8.6] assuming further properties on p, o and ug, or alternatively
by [66, Theorem 14.2.7] in case of a linear drift. (PDEg,4) is called the forward
Kolmogorov equation. The second-order differential operator

[Lxou| (z,t) := %tr (o(z)o” () D?u(, t)) + (u(z), Vu(z, 1)), « € R% t €]0, 00]

is called Kolmogorov operator with diffusion term $tr (o(x)o” (z) D*u(x,t))
and drift term (u(z), Vu(z,t)), z € R% ¢ €]0,00[. Note that the Kolmogorov
operator Lk, can be considered as the infinitesimal generator of the transition
semigroup of (SODE).

Example 2.5 (Ornstein-Uhlenbeck operator). Let m = d € N, p : R? — R with
p(x) = Sz for some 0 # S € R and o : R — R% with o(x) = /Q for some
symmetric and positive definite matrix Q € R%?, where 1/Q denotes the unique
symmetric and positive definite square root of ). Then o satisfies o(2)o” (z) = Q
for every x € RY. Furthermore, let (2, F,P) be a probability space with a standard
Brownian motion W : [0, co[x — R%. Then the family ®(-, ;) : [0, 00[xQ — R?
given by

t
O(t;x) = ez +/ AW (1), t € [0,00[, 2 € RY,
0

are the 'up to indistinguishability’ unique solution processes of

d®(t; z) = S(t; x)dt +/QdAW (t), t € [0, 00[, = € R,

The solution process (-, z) is called the Ornstein-Uhlenbeck process on R? and
the corresponding SODE is also known as the Langevin equation. A prototype
of this equation, u; = u + xu, + .., was considered by Ornstein and Uhlenbeck
in 1930, [107]. The corresponding transition semigroup, or sometimes called the
Ornstein-Uhlenbeck semigroup, is given by T(t) : CL(R4LR) — Ch(RY,R),
t € [0, 00|, with

[T (t)uo] (z) :=IE [ug (P(t; x))]
(@m) R (et Q) 7F fra e @ UDy(etx — g)dy £ >0,
uo(x) , 1 =0,
f]Rd (2, &, t)ve(§)dE ¢ >0,
uo(x) , =0,

for x € R4, ¢ € [0, 00[ and ug € Cp(R?, R) where

H(o, 6.0 = (1) (@et @) Foxp (- (€0 - (0 - €) )



2.2 The origin of the Ornstein-Uhlenbeck from stochastic ODEs 35

for z,£ € R?, t €]0, 00| and

_ tTS S\ T
Qt—/oe Q(e ) dr,

for ¢ €]0,00[. The explicit representation of (T'(t)),, is due to Kolmogorov, [58].
The function H : R? x R¥x]0,00[— R denotes the heat kernel of the Ornstein-
Uhlenbeck operator and is called the Kolmogorov kernel, or sometimes the
Ornstein-Uhlenbeck kernel. Since @ € R%? is symmetric and positive defi-
nite, the following relation holds between the heat kernel and the d-dimensional
Gaussian measure Ny, see [66, Chapter 9.1] and [13, Satz 30.4],

Na (e2,2Qr) (d€) = H(x, &, 1)d¢, x € RY, ¢ >0,
i.e. H(z,-,t) is the density function of the normal distribution Ny (e"*z,2Q;) with
respect to the Lebesgue measure. 2Q); denotes the covariance matrix and e*”z the

mean value vector. Let us fix ug € CZ(RY,R) and let us define u : R? x [0, co[— R
by

u(z,t) = [T(t)ug) (z) = IE [ug (®(t;2))], t € [0, 00[, z € RY,

then, if u(-, ¢) is smooth for all ¢ €]0, oo, u is the classical solution of the Kolmogorov
equation

= (Sz,Vu(z,t)) + %tr (QD*u(z,1)), z € R?, ¢ €]0, oo,
u(z,0) = ug(x).

The smoothness of u follows for instance directly from [66, Theorem 9.1.1] even if
ug € Cp(R4, R). The second-order differential operator

[Lovu] (x,t) := %tr (QD*u(z,t)) + (Sz, Vu(z, t))

is called the Ornstein-Uhlenbeck operator with diffusion term $tr (QD?u(x, t))
and drift term (Sz, Vu(z,t)). This operator can be considered as the infinitesimal
generator of the Ornstein-Uhlenbeck semigroup (7'(t)),.,. In addition, if @ is only
assumed to be symmetric and positive semidefinite, Loy is called the degenerate
Ornstein-Uhlenbeck operator. Several interpretations in physics and finance of
this operator or its evolutionary counterpart - the Kolmogorov-Fokker-Planck
operator Loy — 0; - are explained in the survey by Pascucci [82]. Finally, we
observe that for @ = 2I; we have 1tr (QD?u(z,t)) = Au(z,t), where A denotes
the Laplacian on RY.
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2.3 The real-valued Ornstein-Uhlenbeck operator
in function spaces

Before we start to investigate nonlinear Ornstein-Uhlenbeck problems in com-
plex systems, let us present some well-known results about the scalar Ornstein-
Uhlenbeck operator

[Lovu] (z) = %tr (QD?u(x)) + (S, Vu(z))

considered in real-valued function spaces, where Q € R%? with Q = Q7, Q > 0 and
0 # S € R4, Note, that the properties of the matrix S play a fundamental role in
the study of this operator.

The space LP(R? R). The Ornstein-Uhlenbeck semigroup (7'(¢))s=o on LP(R% R)
related to the Lebesgue measure is indeed a semigroup for every 1 < p < oco. A
general problem is to show that (T'(t));> is strongly continuous. On LP(R%, R) one
can verify that (T(t)):o is a C°-semigroup for every 1 < p < oo. A further problem
that occurs, caused by the unbounded coefficients in the drift term, is to give an
explicit representation for the domain of the infinitesimal generator A,, which can
be considered as the maximal realization of Loy in LP(RY,R) for 1 < p < oo. In
this context it was proved that the maximal domain is given by

DP (Loy) = {ve W*P(RYR) | (Sz, Vo(x)) € LF(RY,R)}

for every 1 < p < oo, which can be shown directly, [73|, or with the aid of the
Dore-Venni theorem, [83]. In case of p = 1 no such representation is available,
but it was proved that D'(Loy) is the closure of C°(R? R) with respect to the
graph norm |||z = /|2 + [ Lou-ll . ie. DM (Loy) = T “ov. Moreover, it
was established that the semigroup (7'(t))so is not analytic on LP(R¢, R) for every
1 < p < oo, if S # 0, which can be verified by analyzing the LP-spectrum of
Lou, [71]. It was shown that the spectrum of the infinitesimal generator A, of the
Ornstein-Uhlenbeck semigroup (7'());so considered on LP(R? R) is given by

o(Ap) = {z €C|Rez< _trf)}

for every 1 < p < o0, if 0(S) C Cy4, o(S) € C_ or S symmetric and @ and S
commute, [71]. Thus, since (T'(t))s0 is not analytic for every 1 < p < oo, the
parabolic equation v; = Loyv does not satisfy the standard parabolic regularity
properties on LP(R? R).

The space LP(R? R, ;). Under the additional assumption that o(S) C C_, which
is very interesting from the point of view of diffusion processes, the Ornstein-
Uhlenbeck semigroup (T'(t))s=o considered on LP(RY R, u) with uniquely deter-
mined invariant probability measure

ol

p(z) = (47)72 (det Qo) 2 e 4(@xw2)
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is a semigroup of positive contractions on LP(R? R, 1) for every 1 < p < oo and a
(C°-semigroup for every 1 < p < co. The maximal domain is given by

Dglax,,u(‘COU) :W27P(Rd7 R? lu)
={v e IP(R",R, ) | Dy, D;Dyv € LP(RY R, pu), 4,5 =1,...,d}

for every 1 < p < oo, [75], [68]. In case of p = 1 no such representation is available.
A major difference to the usual LP-cases is that (7(t));> is compact and analytic
on LP(RY R, i) for every 1 < p < oo, [41]. In [72], it was shown for 1 < p < oo that
the spectrum of the infinitesimal generator A, of the Ornstein-Uhlenbeck semigroup
(T(t))¢=0 considered on LP(R? R, ) is a discrete set, independent of p and given
by

‘7<Ap):{)\:an‘)\i|n¢€NO,i:1,...,r},

i=1

where Aq1,..., A\, denote the distinct eigenvalues of S. This is in strong contrast
to the LP-case. The eigenvalues are semisimple if and only if S is diagonalizable
over C. Moreover, the eigenfunctions of A, are polynomials of degree at most
SR(%))‘ In case p = 1 the situation changes drastically and the spectrum is given by

O'(Al) =C._ UiR.

The space C,(R?Y,R). The Ornstein-Uhlenbeck semigroup (T'(t))s0 is a semi-
group on C,(RY R). To guarantee the strong continuity of (7'(t))s=o one usually
considers the semigroup on the closed subspace Cy,(R?, R) if the operator has
constant or smooth bounded coefficients. But in case of the Ornstein-Uhlenbeck
operator this space leads only to a weakly continuous semigroup, since the rota-
tional term (Sz, Vu(z)) has smooth but unbounded coefficients, and hence, the
space Cyp(RY,R) is too large in order to guarantee strong continuity of (T'(t)):so.
One can show that T'(t)vy tends to vy in CL(RY R) as ¢ tends to 0F, if and only if
19 € Cop(R% R) and vy(e-) tends to vy uniformly in R? as ¢ tends to 0*. Hence,
(T(t))s0 is a C°-semigroup on the much smaller subspace

Cean(RY,R) := {f € Cp(RY,R) | f(e":) = f(-) as t — 07 uniformly in R?},
[29], [30, see 1.6]. The domain is completely characterized by

D(Lov) = {v € CoupRL,R) NWEP(RYR)Vp > 1| Loyv € Crup(RY, R)Y,
[29]. Therein, it was also observed that (T'(t));so in not analytic on Ciy,(RY, R)
and hence not analytic on Cy,(R?, R) and Cy,(R%, R). Further investigations of the
Ornstein-Uhlenbeck operator in spaces of Holder-continuous functions can also be
found in [29].

In Table 2.1, we summarize these facts. For a detailed treatment of the Ornstein-
Uhlenbeck operator we refer the reader e.g. to [66, Chapter 9].
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Table 2.1: Properties of the Ornstein-Uhlenbeck semigroup

T(t) semigroup | C’-semigroup analytic semigroup
LP(RY R) I1<p< 1<p< o no
LPRER, 1) | 1<p< oo I1<p<x l<p<oo, ifo(S) cC_
Cp(R%, R) yes no no

Cup(R%, R) yes no no

Ceun(R%, R) yes yes no




3 Notations and definitions

In this chapter we introduce the basic definitions and notations that we use through-
out the present thesis.

In Section 3.1 we summarize general facts about the special Euclidean group.
Details about the special Euclidean group can also be found in [37]. For general
theory about matrix analysis and matrix computations we refer to [53] and [42],
respectively.

In Section 3.2 we introduce the exponentially weighted Sobolev spaces, which
we will use for all estimates in the sequel. For the weight functions of exponential
growth rate, see Definition 1.7, and we follow [114, Section 3| for the exponentially
weighted Sobolev spaces.

3.1 Special Euclidean group SE(d)

We denote by N the set of positive integers, by Z the set of integers, by Q the set
of rational numbers, by R the set of real numbers and by C the set of complex
numbers. For an element z € C we denote by Re z the real part of z, by Im z the
imaginary part of z and by arg z the argument of 2.

Let d € N with d > 2 and let

SE(d) = SO(d) x R?
denote the special Euclidean group consisting of all pairs
g=(R,7) € SE(d), R € SO(d), T € R

with the group operation

g20 g1 = (Ra, 1) 0 (R, 1) = (RyRy, 72 + Rom),
the unit element (1;,0) and inverse element (R,7)~' = (R™!, —R™!'7). Here

SO(d) = {R e R* | R = R and det(R) = 1}

d(d+1)

denotes the special orthogonal group. SE(d) is a Lie group of dimension =5,

which is the sum of dim(SO(d)) = @ and dim(R?) = d. The associated Lie
algebra of SE(d), given by

se(d) = so(d) x RY,
is the product of R? and the space
so(d) = {S € R* | ST = S}
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of skew-symmetric matrices, which generate rotations by the exponential mapping.
The exponential mapping

exp : (so(d),+) — (SO(d),-), S +— exp(S) := — 97

is onto, i.e.
VR e SO(d)3S €s0(d) : exp(S) = R.
Thus, the inverse of the matrix R satisfies
R = (exp(S)) ™" = exp(—S) = exp (S7) = (exp(S)" .
and the determinant
det (exp(95)) = det(R) = 1.
Since multiplication with orthogonal matrices preserve the vector lengths we have
lexp(S)z| = |Rz| = |#| V€ RY

where |-| = ||-||, denotes the Euclidean norm. Moreover, note that the matrix ex-
ponential maps the unit element 0 € so(d) to the unit element I; € SO(d), i.e
exp(S + ST) = exp(0) = I;. Let ¢ € R? denote the I-th unit vector in R? for
[ =1,...,d. Defining the matrices [;; := e;e; T e R¥ for every i = 1,...,d — 1
and j =i+ 1,...,d with entry 1 in the - th row and j-th column and O other-
wise, the matrices Iij — I;; form a basis of so(d) from which we deduce the unique
representation

VS 650<d) = (Sl_])l 1,...,d— 1 cR: S= Z Z SZ] (A Z '

J=itLs i=1 j=i+1

This yields
-1 d
VR e SO(d) 3 (Sij)i=1,.a1 €ER: RZGXP( > Sij<[ij_[ji))

and we conclude

Later on, we also need the derivative of the matrix exponential in the following
form

d ! d
LX) 1-a)X(t) | 2 aX(t)
(3.1) e /0 e [th(t)] e dov.
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Note that for every real skew-symmetric matrix S € so(d) the eigenvalues lie on
the imaginary axis, i.e. ¢(5) C iR, and they appear in complex conjugate pairs.
Thus, for odd space dimensions d we have 0 € o(S). Let +ioy, ..., +io, denote the
nonzero eigenvalues of S, i.e. 0 # 0, € Rforevery j=1,...,kand 1 <k < LgJ
Since every real skew-symmetric matrix is a normal matrix, an application of the
spectral theorem yields that S is unitarily diagonalizable (over C), i.e.

(3.2) JU € C* unitary (i.e. UTU = UUT = 1): Ag = U SU,

with Ag = diag (A7, ..., A]) € C* and X, ..., \] € 0(S5). Because of o(S) C iR,
it is in general not possible to diagonalize S by a real-valued matrix U. However,
we can transform every S € so(d) into a block diagonal form by an orthogonal
transformation, i.e.

3 P € R* orthogonal matrix : S = PAY) 4P,

where +i0q,...,+i0;, denote the nonzero eigenvalues of S with oy,...,0, € R,
1<k< [,

AIS)‘lock = 0 € Rd,du Af = ( y ) 0(-]]) S R2727

0 0
for every j = 1,..., k. The singular value decomposition (SVD) of Af is given by
0 1 -1 0
AJS = LijR,]r, Zj = |0'j|]2, Lj = <1 0) s Rj = sgn(aj) ( 0 1)

and thus, the SVD for Af) . is

P 0
Ao = LER", := 2 € R4
block ™ ’ T 0
0 0
with orthogonal matrices
Ly 0 Ry 0
L= L , R = B
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This yields the singular value decomposition for any real skew-symmetric ma-
trix S € so(d)

(3.3) S=UxV" U:=PL, V:=PR.

3.2 Exponentially weighted function spaces

Sobolev Spaces. Let K € {R,C}, N € N, p € R with 1 < p < oo and let
6 € C(R% R) be a weight function of exponential growth rate n > 0 in the sense
of Definition 1.7. We define the exponentially weighted LP—spaces and their
associated norms by

LyRYKY) := {u € Lig(RY, K") | Jull » < oo},

Jallp = ( [ o |u<a:>|pda:)”, I <p<oo
R4

||U||Loo :=esssup f(z) |u(x)|, p = oc.
z€Rd
By definition (L§ (R4, KN), |- I;z) is a Banach space.
Let £ € Ny and 1 < p < oo, then we define the exponentially weighted
Sobolev spaces of order k with exponent p and their associated norms by

WrP(RYKY) = {u e LE(RY, KN) | DPu e LH(RY,KN) V |B] < kY,

bl = (3 N0l ) 1 < < o
1BI<k
”uHWk‘X’ = %i}]gHDﬁuHL‘X”p Q.

Let | € Ny, 1 < p<oo,T >0, Qp =RIx|0,T[, then we define the space-time
Sobolev space of order (2[,1) with exponent p and their associated norms by

WP (Qp KN i= {u € LP(Qp, KN) | |Jull e, < o0},

1

HU”W@H)J)(QT,KN) = < Z HDszuHin(QT,KN)>p’

0<2r+|8|<2!

62, p. 5, (1.4)]. The summation EO<2r+\6|<2l is taken over all nonnegative integers

r € Ny and all multiindices 3 € N? satisfying the condition 0 < 2r + |3] < 2/. In
the special case [ = 1 we have

||u||w<z,n,p(QT,Kw>=(||u|| ey F IDll g, vy + D IDFul 0 5o
|B]=1

1

p
T S L N
|6]=2
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Let Q =R%or Q = Qp and 1 < p < 00, then we define the local LP—spaces by

LP

loc

(Q,KY) := {u: Q — K" measurable | [wll o4 genvy < 00 VA C € compact}.

The local Sobolev space W;"?(R%, KV) can be defined in the same way.

loc

Spaces of continuous functions. Let K € {R,C}, N € N. We define the space
of bounded continuous functions and its associated norm by

Co(R%KY) = {u € CRLKY) | Jull g, rager) < o0},

Cp(RIKN) == o T :
[[ul = [|ull, == sup |u(z)|
z€eR4

By definition (C},(RY, KY), I/l ¢, (e evy) 18 @ Banach space.
Let k € Ny, then we define the space of k-times continuously-differentiable
functions, that are bounded up to order k, and its associated norm by

CFRY KY) := {u € CL,(RLKY) | DPu € C,(RL,KN) V |8] < k),

[ell o e ey = el o0 - _‘rgli%HD “ch(Rd,KN)'

Further, we define the space of bounded uniformly continuous functions
and the space of k-times continuously-differentiable functions, that are bounded
and uniformly continuous up to order k, by

Cop(REKY) := {u € Cp(RY, KY) | w is uniformly continuous on R},
C* (R KY) = {u € Cp,(RY, KY) | DPu € Cp(RY, KN) V |6] < k).
Then, (Cyp, (R, KY), 1Nl e ) (CF (R, KN, H"‘C{)“(Rd7KN)) are Banach spaces.
Let S € R%? be skew-symmetric, then we define the spaces
Coap(REKY) := {u € Cyp(RY, KV | hmHu B —
Ck

rub

ch(Rd KN) — 0},
(Rd7KN) = {U E Crub(Rd7KN) | Dﬁu E CI"Ub<Rd7KN) v |B‘ ~N k}

T

Then, (Conf 1), ). (CHa(RE ). o) s Banach spaces.
Let § € C(R% R) be a weight function of exponential growth rate n > 0. We

define the exponentially weighted space of bounded continuous functions
and its associated norm by

Cro(REKY) = {u € CyRLKY) | Nullg, ,mezyy < 00},
HuHCbﬁ(]Rd,KN) = HuHoo,e = ”euHCb(Rd,KN)'

and the exponentially weighted space of k-times continuously-differentiable
functions, that are exponentially bounded up to order k, by

CEy(RLKY) == {u € CE(RY,KY) | 0Du € CL(RY,KY) V |8] < kY,

HuHC{_j’G(Rd,KN) = [ully 000 = Bk HeDﬁ“ch(Rd,KN) '
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We define the space of smooth functions C*(R? K"), i.e. it contains func-
tions that are continuously differentiable of arbitrary order. Finally, we define
the space of bump functions C>®(R? K") ie. of all smooth functions hav-
ing a compact support. The support of a function u : R? — K is defined by

supp(u) := {x € R | u(x) # 0}.

Schwartz space. Let K € {R,C} and N € N. A function ¢ : R — KV
is said to be rapidly decreasing if it is infinitely many times differentiable, i.e.
¢ € C°(R% K"Y) and

(3.4) lim x*DP¢(z) =0€ KY Va,B € N

|| =00
The space
SRYLKY) :={¢ € C*(R",K") | ¢ is rapidly decreasing}

is called the Schwartz space, [34, VI.5.1 Definition|. When endowed with the
family of seminorms

|<;5|a75 = sup ‘xo‘Dﬁqﬁ(a:)‘

zeR4

the space S(RY, K”") becomes a Fréchet space containing C>°(R?, KV) as a dense
subspace.



4 Heat kernel for operators of
Ornstein-Uhlenbeck type in
complex systems

In this chapter we derive a complex-valued heat kernel matrix for the operator
(4.1) (L] () := AAv(x) + (Sz, Vu(z)) — Bu(z), v € RY, d > 2,

with v : R4 = CV, A, B € CNV, skew-symmetric S € R*? and N € N.

In Section 4.1 we extend the approach from [14], [4] and [22, Chapter 13] to
determine a heat kernel of L., where A and B are assumed to be simultaneously
diagonalizable matrices. Assuming (Al), (A2), (A5) and (A8p) for K = C, Theo-
rem 4.4 states that the heat kernel matrix of L., is given by

H(z, & t) = (47TtA)_% exp (—Bt — (4tA)™? ’etsx — §’2> cr,E €RY > 0.

To clarify the connection with the differential operator L., we denote the kernel in
the following chapters by H..,. For the choice B = 0, we denote the kernel by Hy and
the differential operator by Ly. In this context, Hj is called the complex-valued
Ornstein-Uhlenbeck kernel and £, the Ornstein-Uhlenbeck operator. In
general, having an explicit expression for the heat kernel of a differential opera-
tor, one can introduce the corresponding semigroup of the underlying differential
operator in a simple way. This will be the starting point in the next chapter.

In Section 4.2 we collect some necessary information about the heat kernel H
that are relevant to apply the semigroup theory to the associated semigroup. For
this purpose, we first show in Lemma 4.5 that H satisfies the Chapman-Kolmogorov
formula

H(:C’é, tl)H(éagutZ)dé = H(x7€7t1 + t2)7 ZC,f S Rd7 t17t2 > 07

R4

that is used in the next chapter to verify the semigroup properties. In Lemma 4.6
we derive exponentially weighted integral estimates involving the spectral norm of
the modified kernel K(v,t) = H(z, ez — ,t), that are used later on to prove
boundedness as well as strong continuity of the associated semigroup. The three
integrals calculated in Lemma 4.7 are used to verify that the Schwartz space is a
core for the infinitesimal generator of the semigroup.

In Section 4.3, we show in Lemma 4.8 some integral estimates, that are necessary
to prove exponential decay for solutions of the resolvent equation.
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4.1 Complex-valued Ornstein-Uhlenbeck kernel

We introduce the definition for a heat kernel of L., [22, Section 1.2[:

Definition 4.1. A heat kernel (or a fundamental solution) of L., given by
(4.1) is a function

H:R*xR*x R% — CVN (2,6,t) — H(x,&,)
with R :=]0, oo such that
(H1) H € C**(R? x R? x R, CMY),
(H2) %H(m,{,t) = LooH(z,6,1) Va,6 eRY >0,
(H3) lim H (z, €, 1) = 0,(&) I Vz,&eRY,
where the convergence in (H3) is meant in the sense of distributions and

0.(€) = §(x — &) denotes the Dirac delta function. A heat kernel H with N > 1 is
called a heat kernel matrix (or matrix fundamental solution) of L.

The next theorem provides an explicit representation for the heat kernel of £
in the scalar complex-valued case. The proof contains a formal derivation of this
heat kernel, which could also be of interest for the computation of heat kernels
for more general complex-valued heat operators. For the scalar real-valued case a
formal derivation of this kernel can be found in [14], [4] and [22, Section 13.2].

Theorem 4.2 (Scalar case). Let the assumptions (A2) and (Ab) be satisfied for
K = C and N =1, then the function H : R x R x R — C defined by

(4.2) H(x, & t) = (47rat)_% exp (—5t — (dot)”! ez — £}2>
is a heat kernel of Lo, given by
(4.3) [Loov] (z) := alv(x) + (Sz, Vo(z)) — dv(z).

Remark. In the scalar case N = 1 we write a and ¢ instead of A and B, respec-
tively.

Proof. Before we verify that the heat kernel from (4.2) satisfies the properties
(H1)-(H3) we discuss a formal derivation of this kernel. To compute the heat
kernel (4.2) of (4.3) we generalize the approach from [14], [4] to the complex case
and use the complexified ansatz

(4.4) H(2,€.1) = (1) - exp (-% <M<t> ( : ) | ( : )>)

where

p: Ry = C, t— p(t),
M :R% — C**24 5 M(t)
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have to be determined and (u,v) := T’ v denotes the Euclidean inner product on
C?. Note at this point that it is sufficient to determine the symmetric part of the
complex-valued matrix M which we denote by N, i.e.

o= (40 50
A,B,C,D R} — C™ ¢t A(t), B(t),C(t), D(t).

DO | =

N Ry — C* ¢ N(t) ==

Note that N is a symmetric but in general not a Hermitian matrix. In particular
A and D are symmetric and BT = C. Since z,¢ € R? we have

H(x,£,1) = p(t) - exp <—% <M(t) ( ¢ ) | < : )>)
(ko (£). ()
= (t) - exp (‘% <N(t) ( ¢ ) | ( : )>)

Since the heat kernel must satisfy (H2) we introduce the extended matrices
P=(60) 5= (0h) e

and obtain from the general Leibniz rule, the chain rule and the symmetry of N

Hi(x, &) = H(z, &) {Zt((:)) -3 <Nt<t> ( 353 ) ’ ( z )>] ’

(\V]
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(

(

(

(

(
(&) 7 0s(2))]
— _H(x gt)< (STN(tHN(t)S)(z),(z»,

for every i = 1,...,d. Therefore, we end up with

<5t>[¢ tr (A() +

+<(—% (1) — GN (PN + SN<)+;N<t)5)(§),(f)>]

Thus, the kernel satisfies (H2) if the following differential equations hold

(4.5) @i(t) = — (atr (A(t)) +6) o(t) >0,
(4.6) N,(t) = —2aN(t)PN(t) + STN(t) + N(t)S > 0.
Since (4.5) depends on the solution of (4.6), we will first solve the matrix-Riccati
equation (4.6), se [5 3 1] It is obvious that the solutions of (4.5) and (4.6)
re not unique but o 1 ct a pp opriate initial values, see [14] and [4].
Let us first elimina t l in (4.6) by the following transformation

N(t) = Xp( tST) N(t) exp s)

:<exp(5tST) ;)) g ( p(O—tS) I(Z)
t) ex (
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Differentiating N with respect to ¢ and using (A5), N = NT and (4.6) we obtain

Ny(t) = — ST exp (—téT) N(t) exp (—tS)
+ exp (—tST> N, (#) exp (—tS)
— exp (—tST) N(t)S exp (—tS)
— — 2aN(t) exp (tS) Pexp (tST) N(t)
and hence
(4.8)  N,(t) = —2aN(t) exp (tg) Pexp (th) N(t) 1> 0.
Writing this equation blockwise

Ny(t) = —2aN(t) exp (t§> Pexp (t ( N(t)

")
- At)exp (t (S + 57)) A(
=2 ( Gl (54 ST A

i ) doeoluls B0 )
C(t)exp (t (S+ ST t) C(t)exp (t (S+ST)) B(t)

B ( —2aA%(t)  —2aA()B(t) \ < At) By(t) )
\ —2aC(t)A(t) —2aC(t B T\ Gi(t) Dy(t)

we arrive at the matrix ODE systems

(4.9) Ay(t) = —2aA%(¢t) >0,

(4.10) By(t) = —2aA(t)B(t) >0,

(4.11) (1) = —2aC(t) A(t) >0,

(4.12) Dy(t) = —2aC(t)B(t) 1> 0.

Note that A = AT, D = DT and BT = C due to the corresponding properties
of A,B,C and D. Therefore, solving (4.10) gives us automatically a solution of
(4.11). Now we will successively solve the equations (4.9)—(4.12):

A

. —1
(4.9): Using the transformation A(t) = (A(t)) we obtain

A(t) = % (An) " =~ (4w) "~ A (dw) "
—om (fl(t))_l (A@))Q (A(t)>_1 — 2al,

Componentwise integration of both sides from 0 to ¢t w.r.t. ¢ yields

A(t) — Ay = At) — A(0) = / CA(s)ds = / Sal,ds = 2t

Using the transformation once more yields the solution of (4.9)

~

At) = (2atl; + Ag) ™', t > 0.
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Note that the initial data Ay € C4 must fulfill the relation Ay = Al due to the
symmetry of A(t) for ¢t > 0.

(4.10): Obviously, the general solution of (4.10) is of the form B = AB, for some
constant matrix By € C%? and hence

B(t) = (2atl; + Ay) " By, t > 0.
(4.11): Thanks to the condition that BT = (' we easily obtain the general solution
of (4.11) by transposing B and using the symmetry of Agy

C(t) = BT (2atl; + Ay) ™", t > 0.
(4.12): Finally, the general solution of equation (4.12) has the form BOTAQO + Dy

for some constant matrix Dy € C%¢ with Dy = D! due to the symmetry of D. This
can be easily seen by rewriting the system as follows

Dy(t) = —2aC(t)B(t) = —2aBI A%(t)B,.
Hence, we obtain
D(t) = BY (2atI; + Ay) ' By + Dy, t > 0.

As in [14] and [4], we now choose Ay = 0, By = —I; and Dy = 0 which will
guarantee (H3). Inserting the solutions into (4.7) yields

~ 1 I, —1,;
N(t) = —
®) 2&t<—[d Iy )
Transforming N to N, cf. (4.7), we obtain by (Ab)

N(t) = exp (tST) N (t) exp (tg)
_(exp(tST)A(t) exp(tS) exp(tST)B(t)
e - (e b )
1 Iy —exp(tST)
~ oat ( — exp(t9) 1, ) ’
Thus, tr (A(t)) = 5% and (4.5) can be written as

oi(t) = — (a tr (Z(t)) + 5) o(t) = — (2% + 5) o(t)

Hence, the general solution of (4.5) is given by

1) o0 =Con (- [ (&+0)ar)=cow(~§u -o) =crtes
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where C' € C. Below we choose C' € C such that the normalization condition

(4.15) 11%1 H(z,&,t)déE =1 VaoeR?

holds. First note that from

(3 (ot ) (E)() =aabe

we obtain
2
H(z,6,0) ~Ct- e 0 ele-ef
Now, integrating over R? w.r.t. £, we obtain from the transformation theorem and

assumption (A2)

/ H(:L’,é,t)dé:Ctge&/ e_%u‘etsl’—f‘ df
Rd RA

:Ctge&/ e et Uy = Ot e ‘”H/ e~ w " da
Rd

j=1v7=°
d
2

—Ct e (Arat)2 = C (47‘(‘&)% A= e (4rar)

Nl

!
= 1.

Hence, we choose C' = (47‘(‘&)_% such that (4.15) is satisfied. Here o~ % denotes
the principal root (main branch) of a~?. Finally, we obtain the heat kernel (4.2)
from (4.13) and (4.14). The properties (H1) and (H2) follow directly from the
construction of the heat kernel. It remains to verify property (H3). For this we use
the integral

o0 zi
(4.16) / P e dr = —
0 2l (3)
which holds for n € R with n > 0 and z € C with Rez > 0, [2|]. Using the
transformation theorem (with transformations for d-dimensional polar coordinates
and ®(¢) = 27142 (e®z —¢)) and formula (4.16) (with n = d and z = a™!) we
obtain, similarly to the proof of [22, Prop. 3.4.1], for every ¢ € C*(R? C)

w3

lim H(x,€,1)(0) = lim | FI(z, € 1)0(€)de

10 10

= ltijg (47?0415)_% exp (—5t — (dat) ™" ez — §’2> P(&)dE

=lim (47?0475)7% (4t)% / exp (=0t —a™! |1/1|2) (e x — Zt%@/))dd)
tl0 Rd
~ (ra)”? / exp (~a” ") dvo(a)

— oy fartr (5) ot o

it

Note that Rez = Re (a™!) =

DO | &

w\&
vl

= 2T

[\l IsY

) 2 = 6(2) = 5.(6)(0).

_ Rea

> ( is true by assumption (A2). O
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The next statement yields a heat kernel representation of L., for complex-valued
diagonal matrices A and B. This follows from an application of Theorem 4.2.

Theorem 4.3 (Case of diagonal matrices). Let Ay, Ag € CNV be two diagonal
matrices and let the assumptions (A2) and (Ab) be satisfied for K = C, then the
function H : R? x R? x R* — CNVN defined by

(417)  H(w,6,t) = (4mtA )" % exp (—ABt — (A ) e — 5\2)
1s a heat kernel of L, given by
(4.18) [Loov] (z) == AgDAv(x) + (Sz, Vou(x)) — Apv(z).

Remark. In case of diagonal matrices we write A4 and Ap instead of A and B,
respectively.

Proof. Let v = (v1,...,vy) € CV, Ay = diag (A\{,...,\y) € C¥Y and Ap =
diag (A?,..., A¥) € CMV. Since the matrices A4 and Ap are diagonal, the compo-
nents of the operator L., from (4.18) are decoupled, i.e.

[Loot], (2) = A\ Avg(2) + (Sz, Vup(z)) — Mog(x), k=1,...,N.

Using (A2) and (A5) we infer from Theorem 4.2 that
Hi(z,€,1) = (4mtAD) % exp (—)\kBt — (A et — 5}2)

is a heat kernel for the k-th component of L. Indeed, an easy computation shows
that H(x,&,t) .= diag (Hi(x,&,t), ..., Hy(x, &, t)) is a heat kernel of £, from (4.18)
that coincides with H from (4.17). The properties (H1)-(H3) for the heat kernel
H of L, follow directly from those of Hy, for k =1,..., N. O

The following theorem is an extension of Theorem 4.3 and provides a heat kernel
of L., for complex-valued simultaneously diagonalizable matrices A and B. Note
that assumption (A8g) implies (Al) and that they coincide for B = 0.

Theorem 4.4 (Case of simultaneously diagonalizable matrices). Let the assump-
tions (A1), (A2), (A5) and (A8p) be satisfied for K = C, then the function
H:R? x R? x R* — CNN defined by

(4.19) H(z,£,t) = (4ntA)~% exp (—Bt — (4tA) ety — 5\2)

1s a heat kernel of L, given by

(4.20) [Loov] (z) == ADv(x) + (Sx, Vu(z)) — Bu(z).



4.1 Complex-valued Ornstein-Uhlenbeck kernel 53

Proof. Let us define the diagonalized operator £ := Y 1LY with Y from (A8p).
Multiplying (4.20) from left by Y ! and wusing the transformations
A =YA,Y ! and B = YAgY ™!, the substitution u(z) := Y 'v(x), the prop-
erty Y1 (Sz, Vu(x)) = (Sz, VY lv(z)) we obtain

[ﬁwu] () = [V LoYu] () = Y [Lot] (2)
=Y 1 (AAv(x) + (Sx, Vo(z)) — Bu(z))
=AY ' Av(z) + Y (Sz, Vo)) — AgY to(x)
= A Au(z) + (Sz, Vu(z)) — Apu(x)
In this way we have decoupled the operator L., from (4.20). Since Ay, A € CNY

are diagonal matrices, 0(Ay) = 0(A) C {A € C|Re X > 0} by (Al) and (A2) hold,
we deduce from Theorem 4.3 that

H(x, &t) = (47TtAA)_% exp (—ABt — (4tA )™ }etsx — §’2>

is a heat kernel of L. Again, an easy computation shows that H(z,¢&,t) =
YH(x,&t)Y ™! is a heat kernel of £, from (4.20) that coincides with H from
(4.19):

H(ZL‘,S,t) :Yf{(xvg t)Y_l
=Y (47tA4) 5y~ Y exp ( Apt — (4tA4) 71 ‘etsx — §‘2> y—!

=(4nt)” 2YA ty- exp( Y(ABt— (4tA 4) 1‘etsx §‘2> Y_l)
—(4rt) Y APy exp( Y AY U — (4) VALY e — 5\2)
—(

=(4mtA)” 2 exp ( 4tA) " |ePr — ¢ ) .
The properties (H1)-(H3) for the heat kernel H of L., follow again directly from
those of H. 0

Simultaneous diagonalization of A and B. Note that the condition (A8p) in
Theorem 4.4 is crucial. For arbitrary matrices A, B € CM" satisfying only (A1) and
(A2) the heat kernel of (4.20) is in general not given by (4.19), as we will see later
in Theorem 6.1 and Theorem 6.2. To extend Theorem 4.4 for arbitrary matrices
A, B € CMV_ one can try to use the Hadamard lemma or the Baker-Campbell-
Hausdorff formula. But in this case one can expect at most a series representation
for the heat kernel. This seems to be an open problem.

Ellipticity assumption. As mentioned above, the assumption (A2) in Theorem
4.2, 4.3 and 4.4 states that L., is an elliptic differential operator. Using the weaker
assumption Reo(A) > 0, which includes coupled parabolic-hyperbolic differential
operators as for instance the Barkley model from Example 2.3, no heat kernel
representation seems to be known.

Generalized heat kernel ansatz. For the computation of heat kernels with more
general operators, Beals used in [14, (2)| - instead of (4.4) - the generalized ansatz

H(z,&,t) = o(t) exp (~Qu(x,€)) , t > 0, 2,6 € R?
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where (); is a quadratic form of 2d variables. This formula is motivated by the
Trotter product formula and the Feynman-Kac formula, [70, section 2.8]. Such a
general ansatz was also used in |22, (13.2.14)] for the construction of heat kernels
for degenerate elliptic operators.

Generalized Ornstein-Uhlenbeck operator. Let the assumptions (Al), (A2),
(A8p), Q € R* Q >0, Q = QT and S € R%4 be satisfied for K = C and consider

the generalized N-dimensional complex-valued Ornstein-Uhlenbeck operator

[Louv] (z) =Atr (QD*v(z)) + (Sz, Vu(z)) — Bu(z)

d d d d
:AZ Z QijDiDjv(x) + Z Z Syz;Dyv(x) — Bo(z), z € RY,

i=1 j=1 i=1 j=1

Then one can show that

(det Q)2 exp (=Bt — (44)7(Q; M (e"5x — ), (¢S — )

ol

H(z,&,t) = (4mA)~

with
Q= / | exp (15) Qexp (7S7) dr
0

is a heat kernel of Loy. This is true, even if (A5) is not satisfied.

Heat kernel via Fourier-Bessel method. The Fourier-Bessel method, [15],
which is summarized in Section 1.6, provides a further possibility to determine
a heat kernel for £, on R2?. There one computes Green’s function of £, and
discovers that Green’s function equals the time integral over the heat kernel. This
method can easily be extended to circular disks (bounded domains) with Dirichlet,
Neumann and Robin boundary conditions, see Section 1.6.

Heat kernel for the diffusion operator. Let us emphasize that all results are
also valid for S = 0 and B = 0, which provides us a heat kernel for the diffusion
operator [L3Tv] (z) = AAv(z).

4.2 Some properties of the Ornstein-Uhlenbeck
kernel

The heat kernel satisfies the following Chapman-Kolmogorov formula, which plays
an important role for the generation of semigroups, |66, Proposition C.3.2|. This
formula can be understood as the semigroup property on the basis of heat kernels.

Lemma 4.5 (Chapman-Kolmogorov formula). Let the assumptions (Al), (A2),
(A5) and (A8p) be satisfied for K = C. Then

H(xaga tl)H(éf,tQ)dé: H(z, &t +19) Va, & €RY Vit > 0.

Rd
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Remark. For the proof we need the following integral

/00 exp (—01 (a — w)Q —c (Y — b)2) dv)

1
s 2 C1Co 2
= exp | — a—2b
<01+CQ) p( Cl—|—62< ))

for a, b, c1,co € C with Recy > 0, Recy > 0.

(4.21)

Proof. First let us prove the assertion for the diagonalized kernel
ﬁ(:p,f,t) = (47TtAA)_% exp <—ABt — (4tA4)7t }etsx — 5}2) .

Because of (A5) we have |e'z| = |z| and hence

/H H(E € t)dé

d
2

(4.22) = (4rtiAa) "2 (AntaAa) "2 exp (—Ap(t + 1))

. / exp <_ (461A4) " |etrSz — gf — (4taAa) " \g_ e—tQng) dé
R4

From (A2) we deduce that ReA? > 0 and hence Re ()\34)7 = Re

| A\Q
J

> ( for

every j = 1,...,N. Using formula (4.21) componentwise with ¢; = (4t1)\3-4) ,
= (4t ) w:@-, a= (etlsx)i, b= (e‘thf)i, i=1,...,d we obtain

/_Oo exp | — (4t1Aq)7" ((etlsx)z‘ - él)
= (47t A0)? (4tah )2 (A7 (8 + to) Ag) 2
- exp <_ (4 (ts +t2) Aa)™" ((e"%), - (e_tQSg)i)Q)

2 B <4t2AA)71 <é@ _ (etgsg)i)Q) déi

1

D= N

Using this integral and again ‘ets x‘ = |z| we are able to compute the latter integral
n (4.22)

fLow (- em o) g
Rd

e (z [~ (5, -

— (A7 (& - (%)) } )d& e d

:/OO /OO f[exp ( — (4t1A4) 7" ((etlsx)z - é@)2

2
ey — f‘ — (4taAa)”
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_H/ exp ( (4t A4)~ <(etlsx)i — g})Q — (4t,A )7 (é — (e—tQSg)i)Q) dé;

=17

[Mll8
vl

= (47Tt1AA) (47Tt2AA) (471' (tl + f}g) AA

) g
" (e5a), - (ew%)i)?)

i=1

. exp (_ (4(t +t2) Ay) ™"
= (47‘('751/\,4)% (471’152/\14)g (47T (tl + tg) AA)_%
- exp (_ <4 (t1 +t2)AA)_1 }e(tﬁrtz)sx . £}2>

Using this in (4.22) we obtain

FI(ZL‘,g, tl)f{(gagatZ)dg
Rd
= (47 (1 + t2) Aa) "7 exp (—Ap(t + t2)) exp (‘ (4(t +t2) Aa) ™ |15 — §’2>
—H(z, 6t +ty) Yo, & eRY Vi, ty > 0.

Let us now consider the general case: Since H(x,&,t) = YH(z,&,t)Y ! with YV
from (A8p) we obtain

H(l‘, ga tl)H(ga f, t2)dg

R4

=Y f{(l‘,g, tl)ﬁ(gvgatQ)de_l

Rd
=Y H(x, 6t +1)Y L = H(z, &ty + 1) Va6 € R Vi, ty > 0.

The first two partial derivatives of H with respect to x are given by

D;H(x,&,t) = — (2tA)” <etsx et e,>H x, &, 1),
D;D;H (z,&,t) = (— (2tA) "' 655 + (2tA <etsx ¢ e¥e) (e¥r — €, e'e;))
H(x, &, t)
fori,j =1,...,d, where we used (A8p) once more. Let us define the kernels
(423)  K(u,t) = (4mtha) % exp (—Apt — (4tA4) " [0]),
(4.24) K(y,t) :=H(z, ez — 1, t) = YK(b, )Y

= (47#14)*% exp (=Bt — (4tA) " |y)?),
) = — (2tA4) " {0, e5e)) K(3,1)
) o= [DiH (2,6, )]s,y = Yf(i(w,wY*
(2tA)” <1/1,e 61>K
(4.27) K1) = ( (2tA4) 72 (b, e ) (3, 6t56]> (2tA4) " 6;5) K(,1),
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(4.28) KﬁwJ%:U)Dfﬂxfﬂkewvw:YKﬂw,)
= ((2tA)” <1p etsel> (1, ets€]> (2tA)" 6;;) K(u,1).

To prove boundedness of the associated semigroup in exponentially weighted
function spaces, that we will both perform in the next chapter, we need some
upper bounds of the exponentially weighted integrals over the kernels K, K* and
K7t

Lemma 4.6. Let the assumptions (Al), (A2), (Ab) and (A8g) be satisfied for
K =C, p,n € R and let K, K', K7 be given by (4.24), (4.26), (4.28) for every
1,7 =1,....d, then

(1) / P K (o, )], dib < Ci (1) 0,
Rd

(2) / e K (4, 1)], di < Cal) 0,
Rd

(3)b/ e | KT, )|, dip < Ca(t) >0,
]Rd

where |-|, denotes the spectral norm and the functions are given by
d 1 r@+) 1 d+1 3
Cy(t) =M™ | Fy (S5 =ikt ) + 222 (kt)2  F) | ——; 21kt
1() 2e 141 2727"{‘ =+ (g) ) 141 92 727’% )

[r«%) A (4 L)

757"{‘

d+1

Co(t) =M "2 e (tapym)~

r)

r(s)
d
Cs(t) — M5 ot (tamin)_l [F ( P )1F1 <—27 57 /it)
2

(43 d+3 3 8ij d 1

2 2 0z Fy [ —=: =kt LMY ==kt

+ Kt)? 4 1( 5 727H)+2 1 1<2727H)
d

NI

+2

'

D(&)
+5ijM71 F((;)) (:‘it)a 1F1 (i, ;,Hjt) :|,
2

with M = S > 1 and Kk = %’72”2 > 0. Note that Cyyp/(t) T GO L

Amin@0

t — 00 and Cryg/(t) ~ % ast—0 for every |B] = 0,1, 2.

Remark. The function | Fj(a;b; z) denotes the Kummer confluent hypergeometric
function M (a, b, z) and satisfies the formula

o0 2 1 1 11 72
/S”es”sds:—F nt 1Fy nt ;_;r_

0 2 2 2 24

B n 3 r?
—F( 1) Fl=+1=—
+ 5 2+ 1 1<2+ 5 4)

(4.29)
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for r € R with » > 0 and n € C with Ren > —1, see [2], that we need to prove
Lemma 4.6. Moreover, in Lemma 4.8 we will need the connection formula

(4.30) 1Fi(a;b;2) = €1 Fy (b — a; by —x)

for a,b,x € C with b # 0, —1,—2,... (see [81] 13.2.39) and the integral

* 1
(4.31) / t te ™ By (a;b; —t) dt = ¢ °T (a) o F) (a, a; b; ——)
0 C

for a,b,c,a € C with b # 0,—1,-2,..., Rea > 0 and Rec > 0 (see [81] 16.5.3)
where o F (a1, as; by; z) denotes the generalized hypergeometric function. To verify
the asymptotic behavior of the function 1 F} (a, b, z) at infinity we need the limiting
form

L'
(4.32) 1F1 (a, b, z) ~ %zabez, as z — 00, |arg z| < g

for = € C and a,b € C\{0,—1,—2,...} (see [81] 13.2.4 and 13.2.23). Observe
that 1 F} (a;0;0) = 1 and oF} (a1, a2;b1;0) = 1 which induce a simplification of the
constants in Lemma 4.6 in case of n = 0.

Proof. First note that by (A8p), (4.24),(4.26),(4.28) it hold

(433) K], = [YEI @Y | =[] = max |Kfw.1).

for every multi-index 3 € N¢ with | 3] < 2. Note that K?(¢,t) € CN is diagonal.
(1): Using (4.23) a simple computation shows that

g _d  —pot—

(4.34) max Kkk(@/),t)‘ < (Amtam,) 2 e e,

.....

le

for every ¥ € R? and t > 0. From (4.33) with |3] = 0, (4.34), the transfor-
mation theorem (with transformations for d-dimensional polar coordinates and

1
O(r) = (4ta2° )2 r) and formula (4.29) (since (A2) is satisfied) we obtain

max

[ el v
bot—

_d — —20 |2
g/ eVl (4rtay,) 2e 0 @ exal dip
R4

d
_d 22 o a9 .2
:(47Ttamin) ge_bot (;)/ réte” 4m2 Jmprdr
2

2

d 5 292\
2 2 oo 2 (4amax77 Pt )
a _ 2 s+ s E
(=) ), ) s = i),
2

Amin@o (
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(2): Using (4.25) for every i = 1,...,d, v € R? and ¢t > 0 we obtain
(435) mase | K (1)) < (Gtain) ™ [(0,e%er)| max | Rig(w,1)].

From (4.33) with || = 1, (4.35) with (4.34), Cauchy-Schwarz inequality with as-
sumption (A5) (|(, €' ez>‘ < |[¥]|e¥¥e;| = |4]), the transformation theorem (with
transformations from (1)) and formula (4.29) we obtain

/Rd eIyl }Ki(z/), t)}g dp

.....

o0 __a 2 "
:<2tamin)_1<47rtamin)_%€ T (d) / rde Hofax i dr
5) Jo

(S

d+1

9 s 00 2 M
— (Lma" ) e‘b"t—2d (tamin)é/ sle +( "0 ) “ds = Cy(t).
r(3) 0

Aminao

(3): Using (4.27), the triangle inequality and Cauchy-Schwarz inequality with as-
sumption (A5) (see (2)) yield for every 4,5 =1,...,d, ¥ € RYand t > 0

(4.36)  max_ ]K,gk W, )’g((Qtamm)_Q [ + (2tam) " 0) max | Ki(y )]

From (4.33) with |5| = 2, (4.36) with (4.34), the transformation theorem (with
transformations from (1)) and formula (4.29) we obtain

/ eIyl }Kji(w’ t)}g di
Rd

b 273 - 2 2 —1 d—1 2+npr
(drtam) 2e” - / ((2tamm) 7% 4+ (2tamin) 523)7” e i, d
I'(5) Jo
2 % o0 2 4amaxn2p t %
— (7ama" ) e_b(’t—Qd (ta/min)_l/ s4tle ° +( @0 ) ds
AminQgQ P (5) 0

2

$ 2 2 5
ar2nax 2 1 _ © ., =82+ w s
+ 0y (_ ) € bOtF (g) (tamin) 1/ st e ( 0 ) ds = Cs(t).
2 0
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To show that the Schwartz space is a core for the infinitesimal generator of the
Ornstein-Uhlenbeck semigroup we need the following lemma.

Lemma 4.7. Let the assumptions (A1), (A2) and (A8p) be satisfied for K = C
and let K be given by (4.24), then for everyi,j=1,...,d andt > 0 we have

1) | K@)y =e",

Rd
(2) R K(’ll), t)'ll)zd’ll) = 07
e BIA =
(3) | Kty {0 oy

Remark. Throughout this proof we will use d-dimensional polar coordinates: Let
xr € R4, Q:=]0, 00[x[0,27[x[0, 7]¢ and (r, ¢, 0y, ...,04_2) € Q, then we define

d—2

x1 =P1(r, 0,01, ...,049) := rcosqusinGk,
k=1
d—2

(4.37) xo =Do(r, 0,01, ...,04_9) :=rsing¢ H sin 6,

k=1
d—2

x; =P;(r,¢,01,...,042) :=1rcosb;_ H sinf,, 3 < i <d.

k=i—1

The transformation @ : 2 — R? is a C*°-diffeomorphism, [8, X.8.8 Lemma), satis-
fying ®(Q) = R? and

d—2
detD®(r, ¢, 01, ..., 04—2) = (=1)"r* ' ] (sin 6p)" .
k=1

Proof. First note that (A2), (A8p) and componentwise integration yields for every
n>—1

o 1,2 * —ly—1,.2
/ Tnef(zltA) " dr = / T,nefY(éltAA) Y~—1r dr
0 0

(1): From (4.24), (4.38) (with n = d — 1), the transformation theorem (with
d-dimensional polar coordinates) and (A8g) we directly obtain for ¢ > 0

K, t)dy = (471’1514)_g e Bt / e_(4t14)_1|¢|2d¢

R4 R4

4 o
:(47rtA)7% e B 2 / pd=le=WA) 2 g,
0

()
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ol

I(
) 2

(2): Now we must use d-dimensional polar coordinates. From the transformation
theorem we obtain

/ e~ (AT VI o)
Rd

d-2 . ,
rcos¢ [[_isinf, ,i=1
— —1,2 . d—2 . .
:/e (aeA)=r® rsin¢ [ [_] sin 0y ,i=2
Q

rcosf;_o HZ;?A sinf, ,3<i<d—2
. |d6tD(I)(T‘, gb, 01, c. ,6’d_2)| drdgf)d@l ce ded_g
TcosngZj sin 6y, yi=1

(4tA) 12 . = . :
:/ e~ WA rsm¢Hi:§ sin 6y, ,i=2
@ rcost;_o HZ;?_l sinf, ,3<i<d—2

pt 2T %l)

I (

ol

—Bt

= (47?7514)_g e

(4¢A)

N
I
9

d—2
it H Isin 0 |" drdodb, - - - dfs_s

([ [

cos ¢ [[0 2 sin 0, [0 [sin6[* =1
sin @ [0 sin 0 [[1—" [sin 6" i =2 dpdfy - - - dy s
cosb; o [1022  sin 6, [[0=7 |sin 6" ,3<i<d—2

~.
Il

In case of i = 1 and ¢+ = 2 the ¢-integrals vanishes and in case of 3 <7 < d — 2 the
0; _o-integral vanishes, since using for example

n

sina” = 523> () eos (=20 (0= 5)) e

we obtain
(4.39) /7r cos 0;_o |sin 9i,2|i_2 df;,_s = /7r cos ;o (sin Gi,Q)i_Q df,_o = 0.
0 0
Hence, we have for every i = 1,...,dand t > 0
/ K (b, )dip = (AntA)~% =Bt / ) e~ WA Ry oy = 0,
R

(3): Finally, let us use d-dimensional polar coordinates once more. Similar to (2)
from the transformation theorem we obtain

/ —(4tA)” \w\2¢¢dw
R4

o) 21 T ™
:< / Tdﬂe@tm-lrzdr) [ [
0 0 0 0
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cosngk 151110]C )0
sm(bl_[k:1 sin 6y, )0
cos 0;_o HZ;?_l sinf;,

i d—2
i
3
cos ¢ HZ;? sin 6, ] =
J
3

1
2 H \smek\k

<i<d—2 ) k=1

sin ¢ HZ;? sin 6y, ]
cos 0;_o Hi;?fl sinf,
B {% A =
- i
Accept the last equality, we first deduce from (4.38) with n =d + 1

1
p dodo, - -~ dfy s
J

o

d+)

2

o0 r
(4.40) / pdtle— (A2 g
0

Moreover, for Rel > —1, a,b € Ny with a < b it holds

b 1 T L b—at1 L QT-H
(4.41) H/ (sin 6)' H QTEHQg:F 2 PE%;

l=a 2

(4tA)+

_l’_
—_

[\

Let is first consider the cases ¢ = j = 1 and ¢ = j = 2. Here we must use

2 27
/ (cos )’ do =, / (sin )’ dp = 7
0 0

and (4.41) with e =3 and b=d

d—2 .x d—2 .n d ™
H/ (sin 0),)” |sin 04" d6, = H/ (sin6)*2 dg = H/ (sin6)' do
k=1 0 k=1 0 =3 0

Tl
r(ss) )
Now, let us consider the case 3 < i = j < d. Here we can deduce from (4.41) (with
a=1landb=1—3, a—b—z—2 =b=idaswellasa=1i+1and b=d)

i—=3

i—3 T i—3 T ) P(l) 7T
Isin 0, |" d6y, = / (sin§)* do = T -
ol 1, P T

/ (COS 02‘_2)2 |sin 02‘_2|i_2 dei_g = / (1 — (sin 02‘_2)2) (SiIl Hi_g)i_Q dei_g
0 0

= /07r (sinf) > dh — /07T (sinf) df = 72 (FF(E?)) — ; EZ;) ,

H/ sm@k \smek\ do;, = H/ SIH9k+2d9

k=i—1 k=i—1

i ot

l=i+1

to




4.3 Some useful integrals 63

2w
/ ld¢p = 2.
0

Multiplying these four terms with (4.40) and using I'(x + 1) = 2I'(z) we obtain

d
% (4tA)%+1. Next, we consider the cases 3 <i < j<dand 3 <j <i<d Let
w.l.o.g. i < j, then the term from (4.39) vanishes. For all the other cases exactly
one term vanishes, namely

27
/sinqﬁcos¢d¢:(), if(i=1,7=2)or (i=2,5=1),

0

27
/Cowdcb:o’ if (i=1,3<j<d)or3<i<dj=1),
0

2w
/sin¢d¢:O, if(i=23<j<dor(3<i<d,j=2).
0

4.3 Some useful integrals

LR

Using the notation from Section 1.2 and assuming (A2) we define
p d 1 L) o d+1 3 v

Cy(t) =CoMze ™" |\ Fy | =32kt | +2—2L (k)2 1 Fy | ——; = Kt
4(1) 0 € [1 1<2727/‘€)+ T(%) (kt)2 1 F} 5 ,27"4 )

I (4 d+1 1
C5(t> :C(;M%efbot (tamm)_%[ ( )1F1< ; 7§7Ht)

o)
r(422)

the constants are given by Cyyg/(t) with p for every || = 0,1, 2. Moreover, in
case of p = 1 it holds Cyyg/(t) = CoCi4 8/

In order to show that the solutions of the steady state problem for the Ornstein-
Uhlenbeck operator decay exponentially, see Theorem 5.8, we need the following

lemma. The upper bound for n? can be considered as the maximal decay rate.

- Jp— a’?nax R a?naxn2p2 —
W1thM._—>1,/<;._7a0 >0, 1<p<ooandn > 0. In case of p = 00
=1
t).
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Lemma 4.8. Let the assumption (A2) be satisfied for 1 < p < oo and K = C.
Moreover, let 0 < ¥ < 1, © € R, w := @0 — by, A € (C with ReX > w and
0<n*< ﬁw then we have

p
>0 C
1 *Re)\t < 7
1) [ et < gt
(2) / e RN () dt < Cs -
0 (ReA —w)?

2
D) (1N T(E) a1l
Ch=Cold (m) (r(g) 2F1<‘§’§’§"ﬂ)

Proof. (1): From ¢y := Re) — w, Holder’s inequality (with %+$ = 1 and

1 < p < o0), the transformation theorem (with transformation (1) a?“a’;ifp%),
formula (4.30) (witha =%, b=1 2 =35 and a=% b =3 1z =s)and formula
(4.31) (With a=1,c= 7“062?;(%17&’;"2”2, a=—-% b=z and a= %, c= 7‘106212;:5;;’;2%2,
a=—%2 b =2 - note that because of (A2), co > 0 and 7% < 223 we have

Rec > 0) we obtain

/ e RNy (1)dt
0
a
_ /‘OO Cg a?nax 2 7COt Fl C_i 1 a?naxn2p2t
0 Amin Qo 272’ ag

d+1 2 2 5
F( 3 ) ( maxnpt) Fl <d+1’37amaxnpt):| dt
I (5) ag 2 2 ag

d 1
2 2 [ af [ d 1 2t
<Cg ( a’max ) </ e—Cotdt) ! (/ e—cotlFI (_ - amaxn p ) dt
Amindo 0 0 272’ ag
r d+1 oo 2 2 2t % d 1 3 2 2 2t 1
+ 2 ( 3 ) / (amaxn p ) G_COtlFl < + 2 Amax’l™ P ) dt) P
r'4) Jo ag 2 '2" a
2 2,2\ —1 poo age
:CGM% <l) ( (M) / 67a?na2”%P281F1 <g7 1; 5) ds
Co Qg 0 2°2
d

d+1 2 2,2\ ~1 poo age v
_'_ 2F ( 2 ) amaxn p / S%e_a?nain%P2SIF1 E, §7 S dS ’
(%) ag 0 2 2

+2

Qe
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1 2 2,2\ "1 poo _ 0% _1)s d—11
o (3) ((528) [ (4525
0 0Co 0
D (1) /g2 22\ "0 oo | (e ), d—2 3 z
_'_2 P( ?l)) (amaxn p ) / sze (amaxn2p2 ) 1F1 (_—._._8> dS)
5 apCo 0
2

1
1 2 2.2
:Ce % <_) ( G,QZQ _ 2) B amax’z p - 2)
Co ApCo — UpaxT1°P ApCo — A ""P

2
1 1
(T (4L az. n*p? 2 d—2 33 az 2P P
= max I . 2.2 max )
+ 72 g < ) 2471 < ) 27 2a ) )

2 22 2 2,12
apCo — Amax""P ApCo — ApmaxT"P

N

=
/J\
)
/T\
‘Q.
Do ||
—_
=
| =

Finally, to obtain C7; we must use that oF} is strictly monotonically decreasing in
] — 00, 0] as well as the inequalities

e 1 az . . n*p? 9
(4.42) 0°0 < and L .
apco — az,.n*p*> " 1 -1 apco — a2, n*p? ~1—-10
(2): From ¢y := Re A — w, Holder’s inequality (Wlth + 2 =1land 1 < p < 00),
the transformation theorem (with transformation (¢ ) = %pt), formula (4.30)
witha =9 b=1 r=sand a = <2, b= 2, v = 5) and formula (4.31) (with
2 2 2 2
a—%0:%%%%5a=—%b—%wda=lc=%%%%ia:—%%
b = 2 - note that because of (A2), ¢g > 0 and 7? < 2z we have Rec > 0) we
obtain
/ e RNy (1) dt
0

da+1

00 2 R I (4L d+1 1 a2 1ot
:/ Ce @ B*COt (tamln)—% (fi)lFl + ’ _’ amax’r] p
0 Amin@o I (4) 2 79 ao

2

U (T2) (a2 nPp*t\? d+2 3 a2, )]
+2—2 1F1 2 dt
(%) ap 2 2 ag

2 00 1
<Ce (ﬂ) a;i%n (/ t—%e—cotdt) q
Amindo 0
(&L ) d+1 1 a2 2,24
. ( 3 ) / t*%efcotlFl + : 2 Amax™l™ P dt
r (5) 0 2 2 Qg

o d+2 3 a, n*t\ \7
P
/ ecot1F1< + = Amax’l™ P )dt)

%
-
AR

d+1 -1 00 anc
(T (@) [ e p (ELLY
(Ql) ap 2 2
B 0
1
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1
2 2,2\ "2 o0 — 20°% __1)s
AP / S_%e (a?naxn2p2 1) P _C_i; l; —5 | ds
) apCo 0 22
1 1
2 2,2\ "2 oo _ a0 1) - P
<amaxn p ) / e (a%lax’f]2p2 1) 1F1 (_27 §’ _S) ds) P
apCo 0 2 2
TR an B
CL%- QpCo — ar2naxn2p2

(P(dizl) F< d 11 a1 P )
: 241 _575757_

2 212
apCo — Apax™"D

(5
Lo L(5) 2’ (=13 an >
U (5T (9) \aoco —a?p?) “ 7\ 2 772" ageo— a2, ?p?) )

B =

Finally, to obtain Cs we use again that 5 F] is strictly monotonically decreasing in
| — 00, 0] and the inequalities (4.42). O



5 The complex Ornstein-Uhlenbeck
operator in LP(R? CV)

In this chapter we apply semigroup theory to the Ornstein-Uhlenbeck operator
[Lov] (z) := AAv(z) 4 (Sz, Vo(z)), 2 € RY, d > 2,

in LP(RY, CY) for 1 < p < oo, where v : R? — CV, A € CMV, S € R¥ gkew-
symmetric and N € N.

In Section 5.1 we introduce the Ornstein-Uhlenbeck semigroup (7y(¢))
heat kernel of L, as

by the

t20

[To(t)v] (z) == [ Hy(z, & t)v(€)dé, t >0, z € RY
R4
Assuming (A1), (A2) and (A5) for K = C, we show in Theorem 5.1-5.3 that
(To(t)) s is a strongly continuous semigroup in LP(R? CV) for every 1 < p < oco.
Hence, we can define A4, : D(A,) C LP(RY,CY) — LP(R? CV), the infinitesimal
generator of (Ty(t)),., for every 1 < p < oo. Assuming (Al), (A2) and (A5) for
K = C, we prove in Corollary 5.7 that the resolvent equation for A,, which is

()\[_AP)U =9,

admits a unique solution v, € D(A,) for every g € LP(RY,CN) and A € C with
Re X > 0. This follows from some applications of abstract semigroup theory, [34,
I1.1].

In Section 5.2 we derive a-priori estimates for the resolvent equation for A, in
exponentially weighted LP-spaces. Assuming (Al), (A2) and (A5) for K = C,
we prove in Theorem 5.8 that the solution v, belongs to I/Ve1 PR, CN) for ev-
ery g € LH(R? CV) and A € C with ReX > 0. In particular, we conclude that
D(A,) C WhP(RY, CN) for every 1 < p < oo.

In Section 5.3-5.6 we analyze the relation between the abstract Ornstein-Uhlen-
beck operator A, and the formal Ornstein-Uhlenbeck operator £, and derive a
precise characterization of the maximal domain D(A,), which means that we solve
the identification problem for the Ornstein-Uhlenbeck operator in LP(RY, CY) for
1 < p < oo. This approach comes originally from [71] and [73|, where such a result
was proved for the scalar real-valued Ornstein-Uhlenbeck operator. The procedure
is structured as follows:

In Section 5.3, assuming (Al), (A2) and (A5) for K = C, we prove in Theorem
5.10 that the Schwartz space S(RY CV) is a core for the infinitesimal generator
(A,,D(A,)) for every 1 < p < oo. The main idea of the proof comes from |71,
Proposition 2.2 and 3.2 and partially from [34, 11.2.13].
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In Section 5.4 we consider the formal complex-valued Ornstein-Uhlenbeck oper-
ator Lo : D (Ly) C LP(RY, CV) — LP(RY, CY) on its domain

D (Lo) :={v e WZP(RY,CV)n LP(RY,CY) | Lov € LP(RY,CY)}, 1< p< oo
Assuming (A3), (A4) and (A5) for 1 < p < oo and K = C, we prove in Theorem
5.13 that the resolvent equation for Ly, which is given by

(M — Lo)v =g,

admits a unique solution v, € D (L) for every g € LP(R?,CY) and X\ € C with
ReA > 0. The main idea of the proof comes from |73, Theorem 2.2 and Remark
2.3| for the scalar real-valued case. But we refer also to [15, Theorem 3.1] for the
special case d = 2 with A € R™¥. In contrast to [73] and [15], our proof requires an
additional LP-dissipativity condition stating that for fixed 1 < p < oo there exists

some positive constant v4 > 0 such that
(5.1)  |2]*Re (w, Aw) + (p — 2)Re (w, 2) Re (z, Aw) > va|z|*|w|? ¥ z,w € CV.

This condition seems to be new in the literature and guarantees that the operator
Ly is a dissipative operator in LP(R? CV).

In Section 5.5 we derive a complete characterization of the LP-dissipativity con-
dition (5.1) in terms of the antieigenvalues of the diffusion matrix A. Assuming
A e KV for K € {R,C}, we prove in Theorem 5.18 that (5.1) is satisfied if and
only if

5.2 A) = inf >

Aw#0

1 <p<oo,

for N > 2 if K =R)and N > 1 (if K = C), where u1(A) denotes the first
antieigenvalue of A, see [47]. The antieigenvalue condition (5.2) for the matrix A
is nothing but a p-dependent lower bound for the first antieigenvalue of A. In case
of N =1 and K = R, condition (5.1) is equivalent to A > 0. The main idea of the
proof is to apply the Lagrange multiplier method twice, first in the z component
and afterwards in the w component. Concluding, for normal matrices A and for
Hermitian positive-definite matrices A we specify well known explicit expressions
for p1(A) in terms of the eigenvalues of A. These representations come originally
from [49, Theorem 5.1] for normal matrices A and from [53, 7.4.P4| for Hermitian
positive-definite matrices A.

In Section 5.6, assuming (A1)-(Ab) for 1 < p < oo and K = C, we prove that
the abstract and the formal Ornstein-Uhlenbeck operator A, and Ly, respectively,
coincide on D(A,) and that the maximal domain D(A,) equals D}, (Ly). The main
idea for the first part of the proof comes from |71, Proposition 2.2 and 3.2|, where
such a result was proved for the scalar real-valued case.

In Section 5.7-5.8 we derive a second characterization of the maximal domain
D(A,), which even contains second order derivatives. We stress that this additional
characterization is not necessary to prove the main result from Theorem 1.8, but
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later in Section 10.1 we will apply the result for equivariant evolution equations.
The approach is based on the results from Section 5.3-5.6 and comes originally
from [73]. The procedure is structured as follows:

In Section 5.7 we investigate abstract Cauchy problems

v(t) =Av(t) + f(t), t €]0,T7,
v(0) =vp, t=0,

in L?(RY,CY), 1 < p < oo, for the infinitesimal generator A,. Recall that A,
coincides with Ly if we require the assumptions (Al)—(A5) for 1 < p < oo and
K = C. Assuming (A1), (A2) and (A5) for 1 < p < oo and K = C and considering
vg € LH(RY,CY) and a time-independent inhomogeneity f € L5(R?, CV), we prove
in Theorem 5.22 and Theorem 5.23 spatial Lj-regularity results for the mild solu-
tion of the homogeneous and inhomogeneous Cauchy problem. Their proofs follow
directly from Theorem 5.1. Assuming (A1)—(Ab) for 1 < p < co and K = C, we
prove in Theorem 5.24 a time-space LP-regularity result for the mild solution of the
inhomogeneous problem. The main idea of the proof comes from |73, Theorem 3.4]
for the scalar real-valued case and is based on an application of |67, Proposition
6.1.3] and [62, IV. Theorem 9.1].

In Section 5.8 we derive a further and even stronger characterization of the max-
imal domain D(4,) = DY (Ly). Recall the decomposition Lov = LTy + LAy of

loc
the Ornstein-Uhlenbeck operator into diffusion and drift term

(L") (z) := ADv(z), (L5 ] () == (Sz, Vu(z))
with domains
Db (L51) =W (R, CY),
DF (L3 = {v € LP(RY, CN) | (S-, Vo) € LP(RY,CY)}
for 1 < p < oo, where (S, Vv) is meant in the sense of distributions. Assuming
(A1)—(A5) for 1 < p < oo and K = C, we prove in Theorem 5.25 that the maximal

domain D} (L) of the Ornstein-Uhlenbeck operator coincides with the intersection
of the domains of its diffusion and drift part

Dﬁ)c(co) = Dﬁwx(c()) = Dﬁlax(ﬁgiﬂ) N DP (Cg.rift)

i.e. Df (L) coincides with
D2 (Lo) = {v € WPP(RE,CY) | (5., V) € L7(RA,CY)}

The main idea of this result comes from [73, Theorem 1] for the scalar real-valued
case. Assuming (A1l)—(A5) for 1 < p < oo and K = C and considering the norms

HU”AP = ”APU”LP(Rd@N) + ”UHLP(Rd,cN) = ”‘COUHLP(Rd,(CN) + HU|’LP(Rd7CN) )
oz, = ”UHW247(Rd,tCN) +[1{S", VU>HLP(]Rd,(CN) ’
for v € D? . (L), we prove in Corollary 5.26 that these norms are equivalent, i.e.

there exist C7, C'y > 1 such that

Crlvllz, < lvlla, < Callvlly, Vo€ Dha(Lo).
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Requiring the same assumptions, we prove in Corollary 5.27 that the unique solution
v, € DP. (Ly) of the resolvent equation for Ly with g € LP(R? CV) satisfies

||U*||W2’P(Rd,(CN) <C ||9||Lp(Rd,<cN) ,IKS, vv*>||LP(]Rd,(CN) <C ||g||LP(Rd,(CN) :

For the sake of completeness note that, assuming (A1)—(A5) for 1 < p < oo and
K = C, every A € C of the form

k
A=—-\w) — ianal, mEZ, weR, MNw)€oow?d),
=1

belongs to the essential spectrum o (Lo) of Lo in LP(RY CN). Hence, L is not
sectorial in LP(R?,CY) and (Ty(t)),., is not analytic on LP(R? CV), whenever
S # 0. These results will be proved later in Section 7.4 for more general perturbed
Ornstein-Uhlenbeck operators. Their proofs combine and extend the results from

[71] and [15].

5.1 Application of semigroup theory

Let us consider the Ornstein-Uhlenbeck kernel of £y from Theorem 4.4 (with
B =0)

_4d —11 ¢S 2
Hy(z,&,t) = (4mtA) 2 exp (— (4tA) ’e T — f’ )
and the family of mappings (Ty(t)),, given by

Jpa Ho(z, & t)o(§)ds >0

.z € R?
v(x) ,t=0

(5-3) [To(t)v] (x) := {

on the (complex-valued) Banach space (LP(R?,CV),|[-||;,), 1 < p < co. In the
scalar real-valued case, formula (5.3) is due to Kolmogorov, [58|. The next three
theorems show that the family of mappings (7o(t)),., defined in (5.3) generates
a strongly continuous semigroup on LP(RY,CV) for every 1 < p < oo. In order
to show exponential decay of the solutions of the resolvent equation via a-priori
estimates, we have to prove the boundedness of Ty and its derivatives up to order
2 in exponentially weighted function spaces.

Theorem 5.1 (Boundedness on L) (R CV)). Let the assumptions (A1), (A2) and
(AB) be satisfied for 1 < p < oo and K = C. Then for every radial weight function
0 € C(RYR) of exponential growth rate n > 0 and for every v € Lh(RY, CN)

(54) ITo(6)o s ey < Calt) ol gmacry 220,
(55 IDT@lgeeen < GO lggoes,  2t>0,i=1,..d
(56)  IDDTo (00l gmacny < Co®) 0l oy 1> 0,65 =1,..,d,
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where the constants Cyyip(t) = Cuyip(t;00 = 0) are from Section 4.3 for every

18] = 0,1,2, i.c.
1 d+1 3 »
02 P | —— Skt
(/{)11( 9 72af{'):|7

S =

p d 1 I (4
C4(t; bo = 0) :CQMQ |:1F1 (5 2 t) + 2 T (é))

C5(t; by = 0) =Co M5 (tain) 2 [PF(E)lFl (d; L %; m)
L) (42 2) |

Ces(t; 00 = 0) =CyM BN (s {Ff(g) 1 Fy (d;Q; %;/ﬁt)
42 F(E) (50)F 1 F (?;g;m) + %Ml I (g; l,m)
+ 5ijM1FF(§) (kt)? 1 F} (% g nt) } ’

In case p = oo they are given by Cayp(t; b = 0) with p = 1, where M := G >

Gmin @0
plBLEHBIZ1 xg

and K = "‘a;:p > 0. Note that Cyyip(t) ~ t 2 er’ ast — oo and
Cyqp|(t) ~ % ast—0 for every |B] = 0,1, 2.

Proof. Let v € LY(RY, CY). In the following 3 € N& denotes a d-dimensional multi-
index with || < 2 and we will use the notation

v 7|B|:O HO 7|/8|:0 K 7|/8|:0
D% ={Dw  |8=1,D°Hy=qD;Hy  |B|=1,Ks=qK' [5]=1

where 7,57 = 1,...,d. Note that Hy(x,{,t) = H(x,&,t) since we have B = 0.
Moreover, in this proof K, K" and K" are given by (4.24), (4.26) and (4.28)
with B = 0. To show (5.4), (5.5) and (5.6) for 1 < p < oo we use (5.3), the
transformation theorem (with transformation ®(§) = e*z—¢ in &, ®(z) = e¥x —
in ), (4.24), (4.26), (4.28), the triangle inequality, Holder’s inequality (with ¢ such
that % + é = 1), Fubini’s theorem, (W1)-(W3), Lemma 4.6 (1),(2),(3)

1D Tty = (/R o [P ot (o dx)l
= (L] Lo pdx);
:(/Rdep(x) e pdx>%
<([ ([ o lm*w.ol, ot - o) dw)pdx)%
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Al

5 |KP (. 1)), dw) ‘ /R |KP (0, 1)], (0(2) [v(e®z — )|)" dzpdx>

(L

- ([ w000 );(AJKW““@/;WWHMJ%—wHVMMQ;
(Lol B“Q;<4JKﬁ Ol [, o tsy+w»w@mn@wﬁi
( [P (1, 1) ‘2d¢);<Angenpw‘K5 o, [ o dydw)l
gQ(AJK%wm“MY%(éfwwmﬂ !w>|mm

SCapig (b0 = 0) vl 2

fort > 0,if || = 0and for t > 0, if |5| = 1 or || = 2. Similarly, to show (5.4), (5.5)
and (5.6) for p = oo we use (5.3), the transformation theorem (with transformation
P(¢) =e¥r — € in € and ®(z) = ez — ) in 1), (4.24), (4.26), (4.28), the triangle
inequality, (W1)-(W3), Lemma 4.6 (1),(2),(3) and obtain

HDBTo(t)UHLoo =esssup 0(z ‘Dﬁ To(t)v] (2)]

rER?

=esssup () / [DP Hy(z,¢,t)] df’
r€R R4

=esssup f(z KB (Y, )v(e®z — dw’
r€R

<esssup/ 0(x) }Kﬁ(w,t)}z ’v(et x—w)’dw
r€R R4

g/ esssup 6(x }Kﬁ (1, 1) } ’ (e"z — )’d?/)
Rd  zeRd

:/ ‘Kﬁ(q/;,t)‘Qesssqu(e_tS(y+ID)) lv(y)|dip
Rd yeRd

<Co ([ K20, 0)1,00 ) Dol < Conpntitn =0) ol

O

Theorem 5.2 (Semigroup on LP(R? CN)). Let the assumptions (Al), (A2) and
(A5) be satisfied for 1 < p < oo and K = C. Then the operators (1y(t)),, given by
(5.3) generate a semigroup on LP(RY CN), i.e. Ty(t) : LP(RY,CN) — LP(R4, CV)
15 linear and bounded for every t > 0 and satisfies the semigroup properties

(5.7) To(0) = I,
(5.8) To(t)To(s) = To(t + s), ¥Vs,t = 0.

Proof. The boundedness of Ty(t) in LP(RY, CY) for every ¢ > 0 can be deduced
from (5.4) (with § =1, n = 0, Cy = 1). The linearity of Ty(¢) and property (5.7)
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follow from the definition of Ty(¢) in (5.3). Property (5.8) can easily be verified
by using (5.3), Lemma 4.5 (with B = 0, i.e. with H, instead of H) and Fubini’s
theorem

[To(t) (To(s)0)] (x) = [ Ho(x,€, 1) [To(s)v] (€)dE

R4

= [ Ho(a,&t) [ Ho(E,&, s)v(€)dedE

R4 Rd

=[] Holw 0 Ha(E g 9o
Rd JRd

= [ Hy(x, &t + s)v(€)dE = [To(t + s)v] (x), v € RY
Rd

O

The next theorem states that the semigroup (74(t)),-, is strongly continuous on
LP(R?, CV) for every 1 < p < oo, which justifies to define its infinitesimal generator.

Theorem 5.3 (Strong continuity on LP(R? CY)). Let the assumptions (A1), (A2)
and (A5) be satisfied for 1 < p < co and K = C. Then (Ty(t)),s, is a C°-semigroup
(or strongly continuous semigroup) on LP(RY, CN), i.e.

(5.9) ltifgl 1To(t)v — || p(racvy =0 Vv € LP(RY, CM).

Proof. 1. Let us define the (d-dimensional) diffusion semigroup (Gaussian
semigroup, heat semigroup)

[G(t,0)0] (y) == | Ho(e "y, & t)u(€)de
(5.10) e

:/Rd (47rtA)7% exp (— (4tA)71 ly — §‘2) v(§)d§

then we have [Ty(t)v] (z) = [G(t,0)v] (e®x). Let 1 < p < oo. Motivated by [29],
we consider the decomposition

ITo()v — vl <|[IG e —v(e® )|, + [Ju(e®) —v ()|,
=: ||v1(-, )HLP + 2 )l o
Here and in the sequel of the proof we abbreviate ||| ., ga cxy by ||l o-

2. First we compute the vi-term. Therefore, we use the transformation theorem
with ®(z) = ez and consider the decomposition

lor (Ol = [[[G(E 0)0] () = v(e™ )|, = IIG(£, 0)0] () = v ()l
HO(G_tS'v ga t) ('U(g) - U()) dg < e HO(G_tS'a 57 t)df - ]N> U()

Rd
=:los( Ol + lval, Ol

+

<’
Lr

Lp
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3. Let us consider the vy-term. Using the transformation theorem (with transfor-
mation ®(§) =y —¢) and Lemma 4.7 (1) (with B = 0), we obtain
lva s Ol

~([|( ], e ae - 1) <>pdy);

:(/Rd ( (47t A)” 26Xp( (4tA) " |y — &%) df—IN) v(y)
([ 5000 1) ot ,,dy)%

==

p
dy)

K, t)dy — Iy

:|]N —IN|2 vl —O for ¢>0.

IIUIILp

4. The vs-term is much more delicate: First we need the following integral for
by = 0 and some constant dy > 0, compare proof of Lemma 4.6,

/ K (0, 1)), i
[4|=d0

b

_d  —pot——20 |2
</ (47tamim) 2 € Tt V! dv)
[¥[>do

PRy

_ ( max ) —bot

= e p
Aminao r (5)

where we used the transformation theorem (with transformations for d-dimensional
1

polar coordinates and ®(r) = <4th )57“). Note, that C(t,dy) — 0 ast — 0

for every fixed dp > 0. Using the transformation theorem (with transformations
®(&) =y — ¢ and P(y) = y — ), the triangle inequality, Holder’s inequality (with
g such that % + % = 1), Fubini’s theorem, the LP-continuity from |7, Satz 2.14(1)],
(4.24) and Lemma 4.6(1) (with n = 0 and by = 0) we obtain

[, ] o

([ | e sv6.0 w6 - vt pdy)’l’

[ Ay exp (= @ea)™ 1y = ¢F) (o©) = o)

[ K@) (- 0) ~ olv) dy)g

/(/ K1), oty >—v<y>\dw)pdy)%

2
Atathax

/(OO ag )%50 st e ds =: C(t,00)

B =
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< ( [ ([ oa)” [ onko-o- v<y>\pdwdy>
-(/, |K<w,t>|2dw); ([ 1w, [ 1ot -0 = otp dydw);
-( /Rdww,mzdw) ([ 1w llot- >_U<.>ngd¢)%
-/, |K<w,t>|2dw) ( /M K@D, o~ ) — o)}, di

o L =) O w)’
<( [t ona) (] el

T L A A

<(/Rd|K(1/f,t)|zd1/1) <€0/ K (¥ \de+2p/|wl>60|K(1/1,t)|2d¢HU”Lp>

<CY (1) (5C1(1) + 2°C (8, o) l0ll7)

Al

=

Hence, limy_q [|vs(-, £)]| . < 0C1(0) = egM 2. Now, choose gy > 0 arbitrary small.
5. Finally, let us consider the vo-term. Let € > 0. Since C>*(R?, C") is dense
in LP(RY,CY) wrt. [, for every 1 < p < oo, see |7, Satz 2.14(3)], we can
choose . € C°(R?, CN) such that [[v — ¢, < 5. Since ¢. € CP(RY,CY), ¢, is
uniformly continuous on supp(e.), i.e
Veg > 0309 = do(g0) > 0V, 29 € supp(pe)
with |z — 20| < do 1 |pe(x) — @e(20)| < €0

tSy we have

Elt():to(é()) >O‘v’0<t<t0 }etsx—x’ <50

Choosing xg := e

Thus, choosing gy := ¢ (3 \supp(<p€)|%> and combining this facts yields

loae) = ()], = ( [ et - %(x)!p)” <o VO<t< o)
supp(pe)
This implies

[ (-, ) 1o = [[0(e) = 0()]]
) = ()| 1 + l@=(e) = 0 ()| 1y + =) = v ()l o
—c V0 <t <o)

lo(

NN

) =
_'_

Wl ™M™
OJI(‘V)

£
3

Hence, lim,_¢ ||v2(+,2)]|;, < €. Now, choose € > 0 arbitrary small. O
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Strong continuity on spaces of continuous functions. Note, that the original
Ornstein-Uhlenbeck semigroup is also strongly continuous in certain subspaces of
bounded uniformly continuous functions and certain subspaces of Holder spaces.
These function spaces were analyzed in [29] for the first time.

Strong continuity on exponentially weighted function spaces. We suggest
that the Ornstein-Uhlenbeck semigroup (7 (%)), is also strongly continuous on the
exponentially weighted spaces Lj(R?, C) for every 1 < p < oo and for every radi-
ally weight function 6 € C'(R%, R) of exponential growth rate > 0. Moreover, one
can prove that the Ornstein-Uhlenbeck semigroup is strongly continuous on certain
exponentially weighted subspaces of bounded uniformly continuous functions.

Now, the infinitesimal generator A, : D(A,) C LP(R?,CV) — LP(RY,CN) of
the Ornstein-Uhlenbeck semigroup (Ty(t)),., in LP(R? CV) for 1 < p < oo, short
(Ap,D(A,)), can be defined by, [34, I1.1.2 Definition],

T _
Ayv = lim M

1<p<
tiO t 9 \p 0.9

for every v € D(A4,), where the domain (or maximal domain) of A, is given by

D(A,) = {v c LP(R¢,CY) | 1}&1% exists in Lp(Rd,(CN)}
={ve L’(R",CY) | A € LP(R%,CY)}.

Note that D(A4,) is a linear subspace of LP(R% CV).
An application of [34, I1.1.3 Lemma, 11.1.4 Theorem| yields the following result:

Lemma 5.4. Let the assumptions (A1), (A2) and (Ab) be satisfied for 1 < p < oo
and K = C.

(1) The generator A, : D(A,) C LP(RY,CN) — LP(RY, CN) is a linear, closed and
densely defined operator that determines the semigroup (Ty(t)),, uniquely.

(2) For every v € D(A,) andt > 0 we have

To(t)v € D(A,)

d
aTo(t)U = To(t)Apv = AT (t)v

(3) For every v € LP(RY,CN) and every t > 0 we have

/t To(s)vds € D(A,)

(4) For every t > 0 we have
¢
To(t)v — v :Ap/ To(s)vds , forve LP(RY, CY)
0

t
:/ To(s)Apvds , forv e D(A,)
0
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Since (A,, D(A4,)) is a closed operator on the Banach space LP(R4, CV) for every
1 < p < 00, we can introduce

og(A,) :={X € C| A\ — A, is not bijective} spectrum of A,
p(4,) =C\o(4,) resolvent set of A,
R\ AY) =\ — A", for A € p(A,) resolvent of A,.

In particular, (D(Ap), ||‘||A,,) is a Banach space w.r.t. the graph norm of A4,

10]l4, = [ Ap0ll o ga ey + 10l oacry s v € D(Ay),
see [34, B.1 Definition]|. The next identities follow from [34, I1.1.9 Lemma|.
Lemma 5.5. Let the assumptions (A1), (A2) and (Ab) be satisfied for 1 < p < o0
and K = C. Then for every A € C and t > 0,
t
e MTy(tv —v = (A, — )\I)/ e Ty(s)vds , forv € LP(RY, CY),
0
¢
:/ e Ty(s) (A, — M) vds , forv e D(A,).
0

By (5.4) from Theorem 5.1 (with § =1, n = 0 and Cy = 1) we have
(5.11) Juwp € R A IMy 21 | To(0)l g oy < Moe™™ Vit =0,

d
where M, := (@) * and wp := 0. For the next statement we refer to [34, 11.1.10

Gmin @0

Theorem|.

Theorem 5.6. Let the assumptions (Al), (A2) and (A5) be satisfied for1 < p < oo
and K = C.

(1) If X € C is such that R(\)v := [~ e **Ty(s)vds eists for everyv € LP(R?,CV),
then

Aep(4,) and R(NA,) = R(N).
(2) If A € C satisfies Re A > wy, then
A€ p(A), ROA) = R

and
M,

IR Ap)ll 2,10y < Re) —wpy'

Theorem 5.6(2) states that the complete right half-plane Re A > wy belongs to
the resolvent set p(A,). Therefore, the spectrum o(A,) is contained in the left
half-plane Re A < wy. The spectral bound s(A,) of A,, [34, I1.1.12 Definition],
defined by

—00 < 5(A,) == sup Red <wy=0<+o0
A€o (Ap)
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can be considered as the smallest value w € R such that the spectrum is contained
in the half-plane Re A\ < w. This value is an important characteristic for linear
operators.

A direct consequence of Theorem 5.6 is the following:

Corollary 5.7 (Solvability and uniqueness in LP(R? CV)). Let the assumptions
(A1), (A2) and (AD) be satisfied for 1 < p < oo and K = C. Moreover, let A € C
with Re A > wy. Then for every g € LP(RY, CVN) the resolvent equation

(M—=A)v=yg

admits a unique solution v, € D(A,), which is given by the integral expression

v, = R(\)g :/ e M Ty(s)gds
0

- / e / Ho(-,€, 5)g(€)déds.
0 R4

Moreover, the following resolvent estimate holds

My
||U*||Lp(Rd,tcN) < Re ) — wo ||g||LP(Rd,(CN) :

5.2 Exponential decay

In this section we prove a-priori estimates for the solution v of the resolvent equation
(M — A,)v = g in exponentially weighted LP-spaces. We show that the solution
v, € D(A,) decays exponentially (at least) with the same rate as the inhomogeneity
g. Note, that this result needs neither an explicit representation for the domain
D(A,) nor for the infinitesimal generator A,. The proof requires only the integral
expression for v, from Corollary 5.7.

Theorem 5.8 (A-priori estimates in Lj(RY, CV)). Let the assumptions (A1), (A2)
and (Ab) be satisfied for 1 < p < oo and K = C. Moreover, let 0 < ¥ < 1
and A € C with Re A > wy. Then for every radially nondecreasing weight function
0 € C(RY R) of exponential growth rate n > 0 with 0 < n? < ﬁw and for
every g € LH(RL, CN) we have v, € Wy (R, CN) with

Cy
(5.12) [0l Lo e o) <m 191l Lo e cvy »
Cy .
(5.13) ”Dw*|’L§(Rd7CN) <m Hg”Lg(Rd,cN) yi=1,....4d,
]

where v, € D(A,) denotes the unique solution of (A\[ — Ay)v = g in LP(RY,CN)
and the A-independent constants C7, Cys are given by Lemma 4.8 (with by = 0 and
w = wp).
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Proof. By Corollary 5.7 we have the representation

(5.14) v*(:p):/O e » Hy(z,&,t)g(&)dedt,

where Hy(x,&,t) = H(x,&,t) since we have B = 0. In the following we make use of
the notation from Theorem 5.1 once more. To show (5.12) and (5.13) for 1 < p < 00
we use (5.14), the transformation theorem (with transformation ®(¢) = ez — ¢ in
€ and ®(x) = e —1) in x), (4.24) and (4.26) (with B = 0), the triangle inequality,
Holder’s inequality (with g such that % + % = 1), Fubini’s theorem, (W1)-(W4),
Lemma 4.8 (with by = 0 and w = wy) and obtain for every 8 € N¢ with |3] € {0, 1}

1

[D%.]],, = (/ () \D%*(x)\pdx)p

[D° Ho(,€,t)] g(€)dedt

Rd

pdx)%
/0 [ K0 - Py )
<[ e of o) s
Lo (L (L oo
</0°°e—Re” (Ad25<t>4d’Kﬁ(¢’t)’2( ) |g(e¥z —)|)" d¢dx) dt

:/OooeReAtzé(t)< » }Kﬁ(w,t)b/d (0(x) }g(etsx_w)’)pdl’dlp)%dt
:/Ome_mz ( K w0, / Sy ) lgly )\)pdydw);dt

< [Temrzio ([ e (K wal, [ o0 s ) a
:/ e ReX(y, (/ ‘Kﬁ(z/;,t)‘de/;) ’ (/ e"’””\Kﬁ(w,t)bdw)pdt!\g!hg
0 R4 Rd

o0 . C-
< [Nt = )it gl < ——

Kﬁ<w7 t)g<€ T —

R4

(Re A —wy) "2 gl
— Wo

where we used the abbreviation
Z(t) := / |KP (4, 1)], dop.
]Rd
O

A superset of the domain of A,. An application of Theorem 5.8 for §# = 1 (with
n =0 and Cy = 1) shows that

D(A,) C WHP(RY CN), for every 1 < p < oo.



80 5 The complex Ornstein-Uhlenbeck operator in LP(R%, CV)

Second order derivatives. With the procedure as in the proof of Theorem 5.8
it is in general not possible to specify also an estimate for [|D;Divy|[ s ga ey since
0 ’

Cuyp|(t) ~ ' ast — 0, cf. Theorem 5.1, and consequently we have the sin-
gularity =% at t = 0 for |3| = 2. In Holder spaces, for instance, there one uses
interpolation theory to derive estimates for the second order derivatives, [67].

A-priori estimates for £,. We suggest that if we require additionally 1 < p < o0,
assumption (A3) and the LP-antieigenvalue condition (A4), then we can actually
replace A, by Lo and D(A,) by DI (L) in Theorem 5.8, compare Theorem 5.19
below.

5.3 A core for the infinitesimal generator

In the next three sections we investigate the relation between the formal Ornstein-
Uhlenbeck operator £y and the abstract Ornstein-Uhlenbeck operator A, and
derive a precise characterization of the maximal domain D(A,), that is necessary
to prove our main result. The approach is motivated by [73] and [71]|, where this
was performed for the scalar real-valued Ornstein-Uhlenbeck operator.

In general, it is very difficult to identify maximal domains of infinitesimal gener-
ators, such as D(A,). In the case of the Ornstein-Uhlenbeck operator (on R?) we
suggest that there arises an additional complication caused by the unbounded (in
fact linearly growing) coefficients, that are contained in the drift term.

A useful concept to analyze subspaces of D(A,) is the following, see [34, 11.1.6
Definition]|.

Definition 5.9. A subspace D C D(A,) of the maximal domain D(A,) of the
linear operator A, : D(A,) C LP(RY,CY) — LP(R? CV) with 1 < p < oo is called
a core for (A,,D(A,)) if D is dense in D(A,) with respect to the graph norm of
A

P
HU”AP = HApU”Lp(Rd,cN) + HUHLP(Rd,cN)a v € D(A).

The next theorem states that the Schwartz space S(RY, C") is a core for the in-
finitesimal generator (A,, D(A,)) of the Ornstein-Uhlenbeck semigroup (To(t)),-,-
Moreover, it turns out that the formal Ornstein-Uhlenbeck operator £y and the ab-
stract Ornstein-Uhlenbeck operator A, coincide on the Schwartz space S(R?, CV).
This is an extension of the real-valued scalar result in |71, Proposition 2.2 and 3.2]
to complex valued systems.

Theorem 5.10 (Core for the infinitesimal generator). Let the assumptions (Al),
(A2) and (Ab) be satisfied for 1 < p < oo and K = C. Then:

(1) S € LP(RY,CV) is dense w.r.t. the LP—norm [l £o ra, oy -

(2) S is a subspace of D(A,), i.e. S C D(4,), and

Ay = Lo¢ for every ¢ € S.
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(8) S is invariant under the semigroup (To(t)),sq, i-e-
To(t)S C S for every t > 0.
(4) S C D(A4,) is a core for (A,, D(A,)), i.e.
PA) =T
Proof. (1): Due to the inclusion
C>(RY, CN) c S(RY, CN) ¢ LP(RY, CN)

and since C2°(R?, CV) is dense in LP(R?Y, CV) w.r.t. ||+, for every 1 < p < oo, we
deduce that S(R?, C") is also dense in LP(RY, CN) w.r.t. ||-||,, for every 1 < p < oc.
(2): Let ¢ € S(R?, CV) be arbitrary. In order to prove S C D(4,) we must show
that

¢ € LP(RY,CN), Lo¢ € LP(R?, CY), 1&3% (To(t)p — ¢) exists in LP(RY, CN).

1. Since S(RY CV) is a subspace of LP(RY,CY) for 1 < p < oo, we deduce
¢ € LP(R? CN). Therefore, it is sufficient to show Ly¢ € S(RY CV). Then we de-
duce Ly¢ € LP(R4, CN) by the same argument. Since ¢ € S(RY, CV) C C=(R¢,CV)
and since Ly has smooth coefficients we infer that Ly¢ € C°°(R%, CV). Considering
the operator

[Log] (x) = ANG(x) + (Sz, V(@ AZD% ZZ ;D
and

d d
D?[Lod] (x AZanﬁD2¢ ZZ 2 x; DD (x)

for a, B € N¢ and using the fact that ¢ is rapidly decreasing, we conclude from
(34) with a = a, g = B+ 2 and a = &+ e, B = B + e;, that every term on
the right hand side vanishes as |z| goes to infinity. Hence, Ly¢ € S. It remains to
verify that the limit exists in LP(R9, CV).

2. We first give a motivation how the limit looks like: Using the heat kernel
properties (H2) and (H3) with B = 0, in this case we have H(x,&,t) = Ho(z,&,t)
and Lo, = Ly, a formal computation shows

[4,4] (z) ::lu%l [To(t)¢] (f) —¢(z) _ ltifgl {w] o(2)

-[Gnwaw] | [ Gt noe]

_ lﬁo [ e t)qﬁ(f)dﬁ] =5 | se(@po(6de = (£t (@)

t=0
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This suggests that the limit tends (pointwise) to A,¢(x) = Lod(x) € LP(RY, CN),
provided that all steps in the calculation are justified. We next prove that the limit
even exists in LP(R?,CV) w.r.t. ||-||,,, which is indeed much more involved, |71,
Proposition 2.2 and 3.2].

3. Our aim is to apply Lebesgue’s dominated convergence theorem in L? from |7,
Satz 1.23| with

[To(®)¢] () — (=)

t Y
to deduce that f;, f € LP(RY,CV) for t > 0 and f;, — f in LP(RY,CY) as t | 0.
We then directly conclude ¢ € D(A,), thus S(RY,CY) € D(A,). In particular, we

have A,¢ := Ly¢ for every ¢ € S(R?, CV). To justify the application of dominated
convergence we must show that

fi(x) =

f(z) = [Log] (v)

(a) fi(x) — f(z) pointwise for a.e. z € R? ast | 0,
(b) |fi(x)| < g(z) pointwise for a.e. x € R? and for every 0 < t < to,
(c) g € LP(R% R),

where the function g will be determined during the proof. Before we start to verify
the properties (a)—(c) we simplify the term f;, [71, Proposition 2.2 and 3.2|: Since
¢ € S(R? CV), Taylor’s formula up to order 2 yields

d
O(e"r = ¥) =p(x) + Y (2 =@ = ¥), Dig(x)

for z := e!¥x — 1) satisfying
(5.15) |Ruo (2 — )| < C3C4 |z — x|,

where Cj := Elﬁ\:i%é and Cy = max)g)=3 SUp,cpd |DP¢(y)|. Thus, using (5.3),

the transformation theorem (with transformation ®(¢) = ez — ¢) and (4.24) with

B = 0 we obtain

) OO =D 2 e g o) — o)

’ t
:% [ /R K06 (¢S —v) du - ¢<x>]
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- [ [ K0y - IN} o)+ [ K@ > (Fr -z =), Dig(a)dv

d d
—1—% RdK(w,t)ZZ% eSr—x— v, (etsx—x—w)ijD@(fU)dw

i=1 j=1

4
b0 [ KO OR (r—a—0) = Y Ti(a), > 00
i=1

th

Ty: Using Lemma 4.7 (1) with B = 0 the term 7} vanishes for every ¢t > 0

1
T(x,t) = m { dK(w,t)d@/) — IN] o(x) =0.
R
T5: A decomposition of T, leads to

ety = [ K.
Rd

-

(¢'2 — 5 — ), Dig(x)dy

i=1

d d
1 [ Kw0as Y (@ = a) Do) - 1 3 [ K owdeDiots)
=1 i=1

:g (dsxt— x)iDias(x)

for every t > 0, where we used Lemma 4.7 (1) with B = 0 for the first and Lemma
4.7 (2) with B = 0 for the second term.
T5: Similarly, a decomposition of T3 leads to

1 d d
Ty(z,t) = - K W 1)> > = (

i=1 j=1

Sy —x — )Z (etsx —z— @Z))] D;D;¢(x)dy

l\DI»—t

d
3> [ K(.0gsdy D; Dig(a)
i=1 j=1
1
+§ZZ/ K(y,t d@[)(e :L‘—l‘) (e $—ZE) D;D;¢(x)
i=1 j=1
d d

‘%ZZ [ K. (e = 2), 9 + (€152 — 2), 04| dwD; Dig(x)

) E NN ety — eSr—
=5 Z 2LAD? () + = 5 Z . ADjDiﬁb(x)
1 { J

=1 j=

d

— %jz { 5 K, ) dip(e®x — x); + / ) K, t)hidyp(e®z — a:)]} D;Di¢(x)
a5 () (%57) o

i=1 j=1
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for every t > 0, where we used Lemma 4.7 (3), (1) and (2) with B = 0 for the first,
second and third term, respectively.
This yields a simplified representation for f;(x) for every ¢ > 0 given by

t
i=1
(5.16) t <& Sy — Sy —
' e () (57 po
i—1 j—1 i j
+ % /Rd K(,t)R, Q(etsx —x —Y)dy

(a): Using limyg 1 ("2 — z) = Sz we deduce that

an t tw

—ANG(x +hmZ(e ‘”_”j)pm(x)
v ZZ <e x—x)z (etsxt_x)ijDicb(x)

i=1 j=1

+ lim 1 . K (4, t)Rya(ex — x —)dy

=ALG(x) + (Sx, Vo(x)) = [Lod] (z) = [(2),

i.e. fi(r) = f(z) pointwise for a.e. z € R? as t | 0, provided that the last limit
tends to zeros. This can be seen as follows: Using (5.15), the inequality

(}etsx — x’ + |@/)|)3 <4 (}etsx — x’g + |¢|3)

and

[

(5.17) / |K (i), 8)], [0)]" = MEe bt (4aan01ax) Pr(g)

2

t5,1>0, k€N,

with M = @ , B=0for k=0 and k = 3, we obtain

’% xQeSx—x— dw’

<! tS

? )|y |Rep(es — 2 — )| dy)

CC

<4;f/\KWJmkﬁx—x—w%w
Rd

CsC. 3

<=2 [ K0l (e -] + o))" d
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CsC
AL [ o |es =o'+ [ (K0l ol do]
Rd

5 N Fr(g) (4&;;39() : t;]

tS

eSr —x

t

—4C5C,M? [ﬁ

for every t > 0. Therefore, using limtw% (e xr — SL’) = Sz once more, the right
hand side vanishes for a.e. € R% as t | 0. Note, that the inequality above follows
from a discrete version of Holder’s inequality. The equality (5.17) can be proved in
the same way as in Lemma 4.6.

(b): Given some £ > 0 we choose t = to(c) > 0 such that |1 (¢"5 — I;)| < |S|+¢
for every 0 <t < ty. Then (5.16) yields

i) <A |Doa) 9(@)

d
t 6 —Id
S plet ]wwjpmn

i=1 j=1

+ '1 K, t)Ryo(e®x — x — ¢)d¢’

th

d
(5.18) <AZ}D2 |+ (1S +2) |2] |1 Dig()]
" d d -
+§ZZ S|+ ) |zf* |D; Di(x))|

‘ / xQeSx—x— dw‘

for every 0 < t < ty5. Now the first three terms do not depend on ¢ any more.
In particular, since ¢ € S(R? CV), the first three terms belong to LP(R? CV).
Therefore, it remains to estimate the last term in such a way, that the bound
doesn’t depend on t any more and belongs to LP(RY, C") as a function of x. For
this purpose, we must handle the last term very carefully.

% K (1, t)R$72(€tSZL' -z — @/})d@/}'
R4

— [rwo X o [0 r - o)

b Jra s P
\BI 5
|K (¢, t)], |(z — x) T) ’Dﬁgb(:p+7(z—x))}d7d@/}
Iﬁ\ 3 / i ’/
4@3/ |K (¢ ‘e :c—a:‘ + || )Iaa§Ts€%p]‘D5¢ (x+7(2z—1x)) ‘dz/z
_4Cs

|K (¢, t)], (}etsx—x’3+ || )max sup }Dﬁgb (x+7(z—2)) ’dw,

t Ja 181=3 ref0,1
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where z 1= ez — ¢, C5 = Z| Bl=3 é We now must distinguish between four cases:
Let R > 1 be arbitrary.

Case 1: (|z| > R, |¢| < |m|) In this case we use ¢ € S(RY,CV), i.e. that ¢ has
nice behavior in the far-field. Given € > 0 we now choose ty = ty(¢) > 0 such
that both H (e — Id)’ < |S|+ € and ¢ (|S| +¢) < 3 is satisfied for every
0 <t < tg, then we have

’x+7‘(et5x—x—@/))} 2|x|—7"etsx—x}—7|¢|>|x|—’etsx—x}—|@/}|

e — Iy [Ed] \ |37\
> (1= )l = 101> (1= e(151+ ) bl = o1 > 5]~ ol >
Moreover, since ¢ € S(R? CV), we have

Va,3€NI3CLp>0: ‘yO‘D6¢(y)‘ < CopVyeRY,
and therefore, for arbitrary Ry > 0
(5.19) |D%6(y)| < Caply| ™ Vy e RY, |y > Ry
Thus, using (5.17) with B = 0 for k = 0 and k = 3, we obtain, z := "z — 1)
1y

|K (¢, )], (}etsx x’ + |¥] ) max ’Dﬁgb (x+7(z—2x)) }d@/}
E Sl et

2 €tS—[d 3 1 3
<ACy [ K@Dl (€[] [af*+ 5 [
l|<

-max sup Caﬁ‘l‘+7( S:E—x—w)r'a‘dd)
181=3 r€[0,1]

<4C K@, 0], [ (5] + ) |z]> + ¢ maXC alol |z~ 1ot gy
B i<k 2 8
YI<F

<4Hg,e, {tz (1S] + £)* ||~ /Rd K (4, 1)y dv

I B 3
#rlel ! [ K@ 0L s

¥

T
=410 M3 |2 (1S] +€)? |07 g g3 [ 7 r((

)

o

R NE)

1] (&3 4
<aeHlo,c M t3(|5|+6)3+t§ﬁ ( 2 ) ( amax)

wiw N[N

r@) \ a

for every 0 < t top and |x| > R, where Cy := maxg—3 C, 3. Here, we must
choose |af > ¢ 4 1 3 to guarantee the LP-integrability of h;(z) in |z| > R, since

n —

o] 1-n
(5.20) / sds = 2 1,n€Nwithn>1,a€RWitha>0,

and

d
2

/ 2] (o9 gy — 2T /  —((lal-3p—(d-1)) .
2>k I (5) Jr




5.3 A core for the infinitesimal generator 87

Case 2: (|z| = R, |¢| > %) In this case we must use that K(-,t) € S(RY,CV), i.e

the kernel K(-,t) is a Schwartz function and therefore, it has nice behavior
in the far-field. First of all, using e’ e S(R,R), i.e

VmeNyVR>03Cry >0: |6 | < Crumls| ™ V|s| =R

and (5.20), we deduce

/le>

KWL < [ (rta) e wha gk a
| I 15k

o o __ag 2
:(ZJL7T15(]Jmin)_g L)/ ré-le 4ta,2?,ax rEdr

2 — 9 0
<( amax ) (4tam1n)§ / Sd_1+k_md$

4
dbk k 1 —(m—d—k)

S (m—d—k)T (4) |\ 4ta?

max

whenever m > d + k + 1. Therefore, we obtain for 0 < t < tg, z := ez — ¥

4C
—£ |K (¢, 1)), (’etssc—:c} + || ) max }Dﬁqﬁ (z+7(z—x))|dy
t Syl Sl
4 tS 7 3
<%%/‘me4ﬁi—lsz)Ww
[1>%
4C;5C,
S ol Gt} GO
¢>
<4CBC¢ (23 +1) de 2 | (m—d-3)
<10,y (£ 1) e et
<4030 §+ to x|~ s ha()

for every 0 < ¢t < ty and \:c| R, where Cy := maxg_3 Sup,cga | D70 (y)|-
Here, we must choose m > £ ’ 4+ d+3 to guarantee LP-integrability in 2| > R.

Case 3: (|z| < R, |¥] > |m|) In this case we use that Schwartz functions, as e.g.

¢ and their derivatives, are bounded on compact sets, e.g. on Bg(0). Using
(5.17) with B = 0 for k = 3, we obtain with z := ez — ¢

ic,

| K (¢, )], (‘etsx :c‘ + || ) max |D%¢ (x4 7 (2 — 2))| dp
b Szt

TG[O 1]
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4C3C, et —
< K (@, 1), (t?’ +|w|>
> 12!
ACsCy (4P
< id)(g*l)/ K@, 1)), [vl dy
pl> L2l
4C5C, (4
SO (G+1) [ R0l a0
R4
3 4a : F(w) 1
103, ( 5+ 1) bt ( max) 1)y
22 w ) T
43 s (4a2, \? T (42) 1
<4CC0y (= + 1 | M2 | —nex 2218 = h
5¢>(23+) (CLO) F(g) 0 3

for every 0 < ¢ <t and |z| < R, where Cy := maxgj—3 sup,cga | D?é(y)|.

Case 4: (|z| < R, || < ‘x‘) This case is similar to case 3. Using (5.17) with
B =0 for k =0 and k = 3, we obtain for z := ez — )

4C
- |K (¢, 1)], (‘etsx —:1:‘3 + \1/1\3) max ‘Dﬁqﬁ (x4+7(z—2x) ‘dz/z
b i<y Jé‘[m
) etS . Id 3 5 3
e I e e T R

<40, |51+ [ K0+ 1 [ IR OLI0F a0

=
1

.| T (4£3) /4 :
:4050¢M5 t3(|5|—|—8)R3+ ( ) ( amax) "

(5) \ a0

r
F (d 3) 4amax : 3
09) (s ] s,

(5)

for every 0 < ¢ < to and |z| < R, where Cy := maxg—3 sup,cga | D?é(y)|.

[SIISHIN

<ACCy M5 |12 (S| + ) R® +

_l’_

[CIISHIN]

Now choosing |a| = % +4 and m = ;?l + d + 4 and defining
hiROS R, h(r) = R had - Ie]
mac{h(z), ho (@)}, J2]

we deduce from (5.18)

@)l <A |Dio()] + D (5] + ) [l [Dig(=)]
+§°ZZ S| + &) |z | D; Di ()| + h(z) =: g(x)

i=1 j=1

~
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for every 0 < t < .
(¢): Using the decomposition

T —— /| o [l
r|Z>

|z|<R

and (5.19) since ¢ € S(R?, CV), we deduce g € LP(R?,R) and the application of
dominated convergence is justified.

(3): The proof can partially be found in [34, I1.2.13]. Let ¢ € S := S(R¢,C").

1. Recall the (d-dimensional) diffusion semigroup (G(t,0)),., from (5.10)

[G(1,0)0] (y) :== | Ho(e "y, & 1)b(€)dE

Rd

= [ amt) Fexp (- () Iy - €) o)
and recall the kernel K from (4.24) with B = 0
K(3,1) = (4ntA) "% exp (— (4tA) " o),

which satisfies K (-,t) € S for every t > 0, see [34, VI1.5.3 Example|. Then we have

[To(t)6] () = [G(t,0)0] (¢5x),  [G(t,0)6] (x) = [K(1) * 6] (x)
and hence
(5.21) To(H)é] (x) = [G(t,0)0] (¢57) = [K(t) * 6] (¢*Sx).
2. First we show that

(5.22) [Fo(e)] (&) = [Fo()] (¥€) Vo eS,

where F¢ denotes the Fourier transform of ¢ € §. From the transformation the-
orem (with transformation ®(x) = e“z), (A5) and the definition of the Fourier
transform [34, VI.5.2 Definition| we obtain

FoleS)] (€)= [ e oeSaptn = [ o)y

Rd

= [ e e Do)y = (P %),
3. Next we show that
(5.23) (FTo(t)¢] ()] (€) = [FE(, )] ("€) - [Fo] (e"€).
From (5.21) and (5.22) we obtain for every ¢ > 0

[F [To(t)g] ()] (€) = [F[K(t) + 6] ()] (&) = [F K () * ] (-)] (°€)
=[(FE1) () - (Fo) ()] (°€) = [FE (1) (e"¢) - [Fo] ().
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4. Since ¢ € S it follows that [F¢] (-) € S and thus [F¢] (') € S for every t > 0.
Analogously, since K(-,t) € S for every t > 0 it follows that [FK(t)](-) € S
and hence [FK(t)](e®:) € S for every t > 0. Using (5.23) we deduce that
[F[To(t)é] ()] (-) € S for every t > 0 (since S is closed under pointwise multi-
plication), i.e. F (To(t)S) C S for every ¢ > 0 and hence Ty(t)S € F~1(S) = S for
every t > 0, see [90, I1.7.7 The inversion theorem|. The case ¢t = 0 follows directly
from the definition of 7} in (5.3), that gives 7'(0)S = S.

(4): Using Theorem 5.10 (1)-(3) the assertion can be deduced by [34, I1.1.7 Propo-
sition]. O

Remark. Indeed, one can show that also C2°(R? C") is a core for (A,, D(A,)), but
not with the same argument as before. Since C®(R? CV) is not invariant under
the semigroup (7o()),-, we cannot apply [34, I1.1.7 Proposition|. In this case one
must perform a direct proof as in |71, Proposition 3.2].

5.4 Resolvent estimates

In this section we prove resolvent estimates for £y in LP(R? CV) for 1 < p < oo.
For this purpose, we consider the formal Ornstein-Uhlenbeck operator

[Lov] (z) = AAv(z) + (Sz, Vo(z)), x € R?
in LP(RY,CV) for 1 < p < oo and define the domain
(Lo) = {v e WZPRL,CN) N LP(RY,CN) | Ahw +(S-, Vo) € LP(RY, CY)}
={v e WZP(R%,CN)n LP(RL,CN) | Lov € LP(R,CN)}.

loc

1oc

The following lemma states that Ly : DI (L) € LP(RY,CN) — LP(RY, CY) is a
closed operator in LP(R?, CV) for every 1 < p < oo, which justifies to define the
resolvent of Ly. A proof for the real-valued case can be found in [74, Lemma 3.1],
that uses a local elliptic LP-regularity result from [40, Theorem 9.11].

Lemma 5 11. Let the assumption (A3) be satisfied for K = C, then the opera-
tor Ly : (Lo) C LP(RY,CN) — LP(RY, CN) is closed in Lp(Rd CM) for every
1 <p<oo.

loc

Proof. Let (v,),cy be such that v, € D (Ly) converges to v € LP(R? C") and
Lov,, converges to u € LP(R?,CY) both w.r.t. ||||,,. To show the closedness of L,
we must verify that v € Df (Lo) and Lov = u in LP(RY, CV).

Let Q C R? be an open bounded set. From Lyv, — u in LP(RY, CV) we infer
that Lov,|g — ulg in LP(Q, CY) and therefore, (Lovn|a), oy is @ Cauchy sequence
in LP(Q, CY). Analogously, we deduce from v, — v in LP(R?, CV) that v,|q — v|q
in LP(Q,CN) and thus (vn|a), oy is a Cauchy sequence in LP(Q,CY). Since Sz is
bounded in Q by the boundedness of €, [40, Theorem 9.11| yields that for every
' CC Q there exists some constant C' = C(2,Q,p, A, S,d) > 0 such that

[vnlor — vm|Q’||W2’P(Q’,(CN)

<C (vl = vmlallo@ex) + | £otale = Lovmlal oo ) < &
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Therefore, (v,]0/), oy is @ Cauchy sequence in W*P(€', CY) and consequently, there
exists some v € W2P(Q), CN) such that v,|o — v in W2P(,CV) and hence
in particular in LP(',CY). Moreover, since v, — v in LP(R% CY) we deduce
Unlor — vl in LP(Y,CN). Therefore, v¥ = v|g in LP(€,CN) and we further
infer that v,|o — v]g in W2P(QY,CY) and v|g € WP(Q,CV).

Now, by the arbitrariness of Q and Q' we deduce that v € W>P(R% CN). More-
over, v,lar — vlgr € W2P(Q,CY) implies Lov,|or — Lov]or in LP(Q,CY) and
hence Lov|or = ulg in LP(Y,CYN). By arbitrariness of Q and € we deduce
Lov =u € LP(RY,CN) and thus v € DI (Ly). O

Since (Lo, DL .(Lo)) is a closed operator on the Banach space LP(R? CY) for

loc
every 1 < p < 0o, we can introduce

o(Ly) :={N € C| A\ — Ly is not bijective} spectrum of Ly,
p(Ly) :=C\o(Ly) resolvent set of Ly,
R\, Lo) == (M — Lo)™", for X € p(Lo) resolvent of L.

The following Lemma 5.12 is crucial in order to derive an optimal LP-dissipativity
condition as well as resolvent estimates for £y. This is a complex-valued version of
[73, Lemma 2.1].

Lemma 5.12. Let the assumption (A3) be satisfied for K = C. Moreover, let
Q c R? be a bounded domain with a C?-boundary or Q = R? 1 < p < oo,
v e W2P(Q,CN)NWyP(Q,CN) and n € CL(Q,R) be nonnegative, then

—Re/n@TMpzAAv
0
. d
>(p— 1)Re/n|v\p2ZDjv ADjvlg,z01 + Re /ET\UPD_QZDJ-?]AD]»U
Q o 0

j=1
d
R L KIS AD;v1 (0.
Q =

Re (Djv'v) 7" — ol Dyo"

Remark. For the parameter regime 2 < p < oo Lemma 5.12 follows directly
from the integration by parts formula and therefore, the estimate is satisfied with
equality. In this case, the real parts in front of the integrals can also be dropped
and the assumption (A3) is not used. If 1 < p < 2, then Lemma 5.12 is satisfied
only with inequality, which is a direct consequence of Fatou’s lemma. In particular,
in this case we need the assumption (A3) that yields positivity of the quadratic
term, that is necessary for the application of Fatou’s lemma.

Proof. We only provide the proof for 2 C R? bounded. In case £ = R? integration
by parts yields no boundary terms due to decay at infinity and thus it can be treated
in an analogous way but without boundary integrals. Let Q C R? be bounded with
C?-boundary 0.
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Case 1: (2 < p < 00). Multiplying —AAw from left by no” [v[’~?, integrating over
() and using integration by parts formula we obtain

d
—/n@TMpzAAv: —Z/n@TW\pzAD?U
Q paile!
d d
:Z/(D]?])ET|’U‘I)2AD]U+Z/TID](ET|’U‘I)2)AD]’U
=179 j=1"9
d d .
:Z/(Djn)ﬁTMpzADjij(p— 1)Z/n\v|p2Djv AD vl g0y
=179 j=1"¢
: —T ——T
+(p—2) Z / n|v[P~* [Re (Djv" v)o" — [v|*Djv } AD vl gyz0y
j=179
. d
=(p — 1)/77|v\p22Djv AD;jv1gy 0y +/ET\v|p_QZDj77ADjv
Q j=1 Q 7j=1

=2 [ty

Now applying real parts we deduce the desired estimates with equality. In the
computations above we used the following auxiliaries: The relation
2+ 72 = 2Re z yields

Re (D—jvTv> 7 — [w2Dyu" | ADjul sy

D; (") = D; ((Iv3)¥) = £ (1) * 7 ; (jvf?) = Slol~2D;(5"™)

- - —T
(5.24) :g\v|p’2 [DjvTv +ETD]»U] = §|v\p’2 [DjvTv + DjvTv

=p|v|P*Re (D—jvTv)

for every v € CV, p > 2 and j = 1,...,d. This formula remains valid for
every p = 0 and v # 0. Using the formula (5.24) we obtain for every v # 0
and p > 2

D; (@ |v[~?) = Dy’ [P~ + 57 D; (Jv]?)
=Dy ol + (p — 27" o *Re (Djo"v)

(o~ DloP D" + (o - 2P [Re (Dp"0) o7 — 0P D]

Case 2: (1 < p < 2). This case is much more involved and one has to be very
careful, since the expression |v|” is not differentiable at v = 0 for 1 < p < 2.
We prove the assertion in three steps.
1. First we consider v € C%(Q,CY)NC.(Q, CY). Multiplying —AAwv from left
by vt (Jv|? + 5)%_1 for some € > 0, integrating over {2 and using integration
by parts formula we obtain
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d
— /QT)ET (Jo]* + 8)571 ANv = — Z/QnGT (Jo]* + 5)%71 AD?v
j=1

/ & GﬁT (Mz * 5)3*1) ADjv = / v’ (‘U|2 + E)gil ADj’Ul/de]
“ o0

<
Il
-

o

D
2

/ijmﬂ (jof? + <)

ADjv + / nD; (@T (lv]? + 5)§*1> ADjv
Q

<
Il
-

o

77(|v\2—|—5)%72 ((p—1)|v|* +¢) Z

I
S~

+/ T (Jv)* +¢) ZDJnAD v
Q

J=1

p

+0-2) [0 (oP+e)t
Q

M&

[Re (Djv v v)o! — |v[*Djv ]ADjv.

Jj=1

The boundary integral vanishes because from v € C,(§2, CV) follows v(x) = 0
for every x € 0€). Moreover, we used the relations

Dy (o +)*") = (5 = 1) (1wl +)*7* Dy (1o +)
~(p = 2) (jv +2)* " Re (Dju"0).
of. (5.24) for p =2, and

D, (5 (o2 +2)5 1) = D" (w2 + ) 97D, (o +)F )
=D0" (jol* +2)* "+ (= 2) (jof +2) ¥ 7 Re (Djo"v)
= (o) +e)? [D—T (o2 + &) + (p — 2)5" Re (D—jv%)}
= (W2 +e)*  (p— VP +¢) Dyv'

+ (vl +2) " (0~ 2) [Re (Dv"v) 7"~ [u?Dy0" |

Note that both formulas are valid for 1 <p <2, v € Cand j=1,...,dif
e>0andforl<p<2,v#0and j=1,...,dife=0.

2. We now apply Lebesgue’s dominated convergence theorem, see [7, A1.21]:
Putting the last two terms of the equation from step 1 to the left hand side,
taking the limit ¢ — 0 and applying dominated convergence twice we obtain

o
2

w=1) [ b PN D AD; L

7j=1

U

) p_
= lim Qn(|v|2+5)2 “((p— 1)) +¢) Z
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= —lim [/n@T (|v|2+5)51AAv+/ (|v|2+€ ZDﬂ?AD v
0 0

e—0

+(p— 2)/Q (Jo]* +¢) g2i [Re (D v v) — [v|*Djv ] ADjv

Jj=1

—/QnET|v|p_2AAv—/QET|U|”_QZDJ»77ADJ»U

Jj=1

—(p—2) /Qn|v|p_4i [Re <D v v) — [v|*Djv } AD;v1 gz

To justify the applications of Lebesgue’s theorem, we discuss the assumptions
in both cases: First, we define

U

fo=n (Jo+2) 27 (=)o’ +¢) Z

d
_ — T
J == Dnlo>> Do’ ADw.
j=1

Using v € C2(Q, CN) N Co(,CN), 5 € Co(QR) and (v + &) " < |ufp—2t
for k=1,2 and 1 < p < 2 we obtain that f. is dominated by g as follows

fel =

d
n ((p —2)v? (Jv]* + 5)%72 + (v)* + e)gfl) ZD—]'UTAD v
j=1

d
_ 2
<[nl (Ip =2/ + 1) [o]"2A] Y [Djol
j=1
=|p = 3[|Al|n[[v [V |* 1oy
-2 2

<lp = 3l AL [l 0I5~ VIS Lwzoy =2 g-

Since v is compactly supported, i.e. 1y,.q is compact, g belongs to LY, R).

In particular, f. — f pointwise a.e. as ¢ — 0. Thus, by dominated conver-
gence, fo, f € LY(Q,CN) and f. — f in L*(Q,CV) as ¢ — 0. Next, consider

d
fo =0T (v + 5)§_1 (nAAv + Z DjnADﬂ))

7j=1

d
+(p—2)n(jv]*+e) §72Z [ ( U v) o7 — |v|2D—jvT} ADjv.
7j=1
f ::ET|U|p—2 (nAAv + Z DjT]ADjU)
d]:1
+(p— 2)n|v|p_4z [Re (D v v) — [v|*Djv ] ADjv

J=1
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p
2

Using v € C%(Q, CY) N C.(Q,CN), n € CHQLR) and (Jv] +¢e)2 " < |vfp=2*
for k=1,2 and 1 < p < 2 we obtain that f. is dominated by g as follows

d
p_g
ol <ol (Jo]* +¢) <|?7||AHAU\ +14]) \DmHDjv|>

J=1

M=~

P_9 —T
+1p =2l (o2 +2)* > [[Re (B30"v)| o] + o1 Dsol] 1411 Dyv

=1

<[o[”! <|?7||AHAU\ + A1 IDmHDﬂJ\> Liort0y

J=1

ST
Il

d
+2[p = 2[nllol Y 1D;0* AL (o0

Jj=1

-1
< {\A| 1Mo W IIS ™ 1A + dlA] ]l o 10117 o0

-2 2
2d|p = 2|| Al 7l vl HUHLOO] Livroy =2 9-

Since v is compactly supported, we deduce once more that g belongs to
LY, R). In particular, f. — f pointwise a.e. as ¢ — 0. Thus, by dom-
inated convergence, f., f € LY(Q,CV) and f. — f in L'(2,C") as e — 0.

3. Now let v € W?P(Q,CN) N WyP(Q,CN). In this case we use a density
argument and Fatou’s lemma, that yields the inequality. Note that we have
to take real parts on both sides in order to apply Fatou’s lemma. Since
C2(Q,CN) N C.(Q,CN) is a dense subspace of W2P(Q, CN) N W,7(Q,CN)
w.r.t. |||z, there exists a sequence v, € C2(Q,CN) N C.(2, CV) such that
v, = v wrt. |||z, as n — 00, n € N. Furthermore, there exists a subset
N’ C N such that v,, — v and Vv, — Vv pointwise a.e. asn — oo, n € N'. In
the following we consider this subsequence (v,)neny € C2(Q, CV)NCL(Q, CN):
Inserting v,, into the equation from step 2, taking real parts and the limit in-
ferior n — oo (n € N') on both sides and applying Fatou’s lemma on the left
hand side we obtain

d
_ —T
(p —1)Re /977|v|” QE Djv- ADjv1 {0y

J=1

d
. _ —T
:/Qgggo(p—l)mm” "Re Y Djv, ADjunliy, 20)

J=1

d
. . - T
- / liminf (p — Dloa[""*Re Y Dyvn AD;vaL s, 20y

j=1

d
. . - T
ghrrlggolf /Q(p — 1)77|vn|p 2Re Z Djv, ADjUn]l{v,ﬁéO}

j=1
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d
=liminf | — Re / N v P72 ANV, — Re /WT|vn|p_QZDjnADjvn
n—00 Q Q =
d —T —T
—(p—2)Re / n|vn|p_4z [Re (Djvn vn> Tn! — |va|*Djv, } ADjvnIL{Un#O}]
Q -
7j=1
d
= lim | — Re / N |va[P"2AAY, — Re / WT|vn|p_QZDjnADjvn
n—00 Q Q =

d
—(p—2)Re /Qn|vn|p_4z [Re (DjvnTvn> Tnt — |vn|2DjvnT} ADjvnIL{Un#O}]

Jj=1

:—Re/n@T|v|p_2AAv—Re/ ol |l ZZD]’I]ADU
Q

J=1
d

—(p— 2)Re /QWPHZ [Re (Dj0"0) 0" = [0l Djv" | ADjvLjusoy.

J=1

In the first equality we used the fact that v, — v and Vv, — Vv pointwise
a.e. asn — oo, n € N. The last equality can be accepted as follows:
Let f, — f in L? and g, —)ginL”with%+% =1, ie q= z%’ then
[ fagn — [ fg by Hélder’s inequality, since

[thg=19= [Ga= Do+ [ 16.-0)

<o = Fllza lanll e + 111 2o lgn = 9l o = O

Thus,
T v P2 L ol [P, Alv, B AN,
Tn L |vp|P 2 LK o7 [P, ADjv, L AD;v,

_ ——T \ __p 19 _ —T \ _ LP

v, [P*Re (Djvn vn> Un! 5 [v[P*Re (Djv v) ol ADjv, = AD;v,
P S— Jpe— LP

|vn|? ZDjvn = |vf? 2Djv , ADjv, = AD;v,

together with n € CL(R? R) yields the last equality in the above equation. It
remains to justify the application of Fatou’s lemma, |7, A1.20]: Consider

d
fn = (p— 1)nlva.[P*Re Z TADJ"Un]l{Un#O}, neN.

By Hélder’s inequality we have already seen that liminf,, ., f, < oo is satis-
fied. Moreover, f,, > 0 pointwise a.e., since A satisfies assumption (A3) and
n is nonnegative. Finally, f, € L*(Q, R), since v, € C*(Q,CN) N C.(Q,CY)
and n € CL(R? R). Thus, by Fatou’s, liminf, .., f, € L'(€,R) and

/ lim inf f,, < liminf / I,
q N n—00 0
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that proves the lemma. Note, that it is in general not possible to apply
Lebesgue’s theorem in case of v € W2P(Q,CN) N W,?(Q,CN), since one
cannot determine a n-independent bound for |f,| < g a.e. for every n € N'.
In fact, we only know positivity of f,, due to (A3), that justifies the application
of Fatou’s lemma and generates an inequality for 1 < p < 2.

O

We are now able to prove sharp resolvent estimates for the formal Ornstein-
Uhlenbeck operator Ly in LP(R?,CY) for 1 < p < oo, which then yield the unique
solvability of the resolvent equation for Ly in D} (Ly). The main idea of the
proof comes from |73, Theorem 2.2, Remark 2.3| for the scalar real-valued case
and from [15, Theorem 3.1] for d = 2. In our situation, the proof requires the
additional LP-dissipativity condition (5.1), that seems to be new in the literature.
This condition seems to be the optimal choice in order to derive resolvent estimates
for £y in LP(RY,CV) for 1 < p < co. It contains an additional, more restrictive
requirement of the spectrum of the diffusion matrix A, even through it looks slightly
complicated. We show later on in Theorem 5.18 that the LP-dissipativity condition

(5.1) is equivalent to the LP-antieigenvalue condition (A4).

Theorem 5.13 (Resolvent Estimates for £y in LP(R?, CV) with 1 < p < 00). Let
the assumptions (A3), (A4) and (Ab) be satisfied for 1 < p < oo and K = C.
Moreover, let A € C with Re X > wy and let v, € D}, (Ly) denote a solution of

loc
(M —Ly)v=g
in LP(R?, CN) for some g € LP(R*,C"). Then v, is the unique solution in DY, (L)
and satisfies the resolvent estimate

1
||U*||Lp(Rd,tcN) < Re ) — wo ||9||Lp(Rd,<CN)'

In addition, for 1 < p < 2 the following gradient estimate is satisfied
1
dr

1 1 ||9||Lp(Rd,<CN)'
Re )\ —wyp)?

|v*|W1,p(Rd’CN) <

Y

v

Remark. (1) Note that the proof deals with cut-off functions. These are necessary
because v € W2 (R?, CV) implies only that Av € LP (R4 CN). What this really
means is that v is not p-integrable over the whole R? and therefore, we must restrict
the solution to a bounded domain.

(2) The gradient estimate is proved only for 1 < p < 2 but not for p > 2. Its proof
is based on Holder’s inequality that requires exactly 1 < p < 2.

(3) An LP-dissipativity condition for the operator VI (QVv) + (b, Vo) + av in
LP(Q,C) with 1 < p < oo can be found in [26], namely for constant coefficients
Q€ C¥ beCl aec C with Q C R? open in [26, Theorem 2|, and for variable
coefficients Q,;, b; € C1(Q,C), a € C°(Q2, C) with Q C R? bounded in [26, Lemma
2.
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Proof. Assume v, € D} (L) satisfies
(5.25) (M —Ly)ve=yg

in LP(R?,C") for some g € LP(R?,CV) with 1 < p < co. Let us define

el <1
x
ma(z) =n (ﬁ) , ne€CXRLR), n(r) =< €[0,1], smooth 1< |z|<2.
0 |zl =2

1. Multiplying (5.25) from left by n?v, T v, [P~ with 1 < p < oo, integrating over
R? and taking real parts yields

Re/ 02 v, P~ 200 (Re)\)/ ni\v*\p—Re/ 2! o, |7 2 AN,
R Rd
d
—Re/ T O Z(Saz)ijv*.
J=1

2. Using (A5), i.e. —S = ST, then integration by parts formula and (5.24) imply
1 a 1
O:—/ 2 S v*p:—/ 2div (Sx) |v, |
p Rdn (; J]>| | p Rdn (Sz) |vy]
1 a 1o
_: D ((Sx);) | [v.]P = = / 2D; ((Sx);) |v. |
K (Z 5 m)w =2 [ D (0 e
:——2/ () (S2); \w\p——Z/nﬂSz ()
2 —T _
25 [ D P = [ (e Re (D)
P Jrd =1 /R

d

d
2
= /Rd Mo [0el” Y (Dj) (S); — Re /R Mt [P D (S); Do
j=1

7j=1

3N

An application of Lemma 5.12 (with = R? and 1 = ?) yields
Re [ oot aty
Rd

>(Re )\)/ n? |v*|p+Re/ 20,057 o, [P 2ZDmnAD Uy
R4

7j=1
2 d
©(p— 1R / 20 S Dy ADyv, + 2 / ol 3 (D1 (S);
j=1 P Jgd j=1
d
-2 [ g2l [Re (Do) w7~ 0 fDw ] AD
]Rd

J=1
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3. Putting the 2nd and 4th term from the right hand to the left hand side yields

O A e L S Dy D,
]Rd

7j=1
’ — —T
+(p—2)Re/ ni|v*|p_4z [Re (Djv* v*) %! — |v)?*Djv, | ADjv,
Rd X
Jj=1
<Re/ n? o [P g — Re/ 20,057 |0, |P™ ZZDﬂlnAD U,
R4
7j=1
5 d
== [ mlvl” ) (D) (Sz);
p/]Rd ’ ; ’

For the 1st term on the right hand side we use Rez < |z| and Holder’s inequality
(with ¢ such that 11) + E =1)

Re/ n? |v*|”_2v_*Tg=/ n [0.P 7 Re (77"g)
Rd Rd

p—1

, ) 2p—1) ) E\ P 2 PN p
< [ lerial< ( (nn—” 0, ]? ) (/ <nr‘i \g|))
R4 Rd Rd

P

—1 1
P P
_ ( / 72 |v*|p) ( / . |g|p)
Rd ]Rd

For the 2nd term we use Rez < |z|, Holder’s inequality (with p = ¢ = 2) and
Cauchy’s inequality (with € > 0)

— Re / 20,057 |v, P~ 2 Z D;n, AD;v,
Rd

j=1

p—1 d 2‘A| ”nHl,oo . p—1
<21 [ o7 3Dl 1D € TS [ Dy
R : : R

2A 3 3
| \HnHmZ(/ |D»v*|2|v*|“) (/R |v*|p)

ST 2l
Z/ 21Dy 4+ cm A e [

Rd

Here we used that for every x € R? and j = 1,....d

| Dy ()| = ‘Di (77 (%))‘ = % }(Dﬂl) (%)} < ! max max |D;n(y)| = 1701100

n j=1,...d yeRd n

For the 3rd term we use that n,(z) = 0 for |z| > 2n and n,(x) = 1 for |z| < n
Hence D;n,(z) = 0 for |z| < n and we obtain

2
-2 / o 0. ]? Z 1) (S2); Z / o [0u]? |(S),| |1 Dy
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d

4d|8| Il
= / o [oul? [(S2), | | Dy] < 2 Moo / P
pj:l n<|z|<2n p n<|z|<2n

The last inequality is justified by 7, (x) < 1 and

X

(D) ()] < 218let [0 ()

(Sl IDyma(a)] =~ [(S),]

S
gu( sup m),max max | D;n(y)] = 211 9] -

\ nglz|<2n j=1,..d ye

Altogether, combining the 2nd and 3rd term on the left hand side and using the
notation (u,v) :=u’v for the Euclidean inner product on CV, we obtain

d

Re) [ttt [ ey [wRe (Do, ADy)
Rd Rd

j=1

+ (p — 2)Re (Djv,, v,) Re (v, ADﬂg}}

p—1

v 204 Il e &
P P 1,00 —
<(/ nﬁle’) </ nﬁlg|p) ) /ﬁing‘wFlwpo
Rd Rd n = Rd

2d[ Al [0l o Ad S|l o0
p e [ oy S [
4dne Rd P n<|z|<2n

4. The LP-antieigenvalue condition (A4) yields some constant 74 > 0 such that
|z]*Re (w, Aw) + (p — 2)Re (w, z) Re (z, Aw) > va|z)*|w]* V z,w € CV

(see Theorem 5.18 below), which guarantees positivity of the term appearing in
brackets [---]. Therefore, putting the 2nd term from the right hand to the left
hand side in the latter inequality from step 3 we obtain

d
2141 7]l ¢ ]
ex) [l + 3 [ (3= T Dy
Rd =1 Rd n
d
<(Re) / RAC / KA [wRe (Djvs, ADjv,)
j=1

2| A el
+ (p —2)Re <DJ'U*7U*> Re (v, ADJU*ﬁ - 14 HZHLOO E / 77r2L |Djv*‘2 ‘U*‘piz
j=1 /R

p—1

1
z v 2d[A]Inll;
<([Loapr) ([ i) 2550
Rd R4 ne Rd

Ad |ST|nll;
4+ —bx / v, |7
p n<|z|<2n

5. Choosing € > 0 such that v, — > () for every n € N, using wy = 0
from (5.11), i.e. ReA = Re A — wy, and taking the limit inferior for n — oo, an

2[AllImll1,008
n
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application of Lebesgue’s dominated convergence theorem and Fatou’s lemma yield
d
(Re A = wp) [[oull} macny < (ReA) / 0P+ 94y / D0, 2 [, P2
R — JRr
J=1
d
2|A €
—(Re \) / lim 72 |v, " + Z/ lim infn? (%4 — %) 1D, o, |72
Rd n—oo = Rd n—oo n
d
2|A €
<lim inf [(Re )\)/ n? |v.|? + Z/ n (%4 - %) |Djv*|2 |U*|p2}
n—oo Rd = Rd n

P

-1 1
» 2d|A
ctmant [ ([ i) ([ )"+ 25 e g
n— o0 R4 Rd 4”6 Rd

4d S]] o
+ 1, / |v*|p}
p n<|z|<2n

p—1

1
e P 2d|A 1
:</ lim'r]fl\v*|p>p </ hmnan)p—i-M/ lim — |v, [’
Rd n—oo Rd n— 45 Rd n—oo N,

Ad |ST|nll;
+—1’/ m v, |” Lipgio<ont
p Rdn%oo

P

p—1 1
P
= (/ \U*\p) (/ \g\p) = [0l g oy 190 o e ey -
Rd Rd

Finally, using Re A — wg > 0 the LP-resolvent estimate follows by dividing both
sides by Re A—wp and ||v.||7, Rd (cny- Indeed, we must check that the assumptions of
Lebesgue’s theorem and Fatou s lemma are satisfied. We suggest that first one must
apply Lebesgue’s theorem, which then yields that the assumptions of Fatou’s lemma
are satisfied. For the application of Lebesgue’s theorem we have the pointwise
convergence 72 [v.[P — [v,]P, n2|g|P — 9], 2|ve|P —= 0 and [v,]” Ljngjzi<ony — 0 ace.
as n — oo. Furthermore, they are dominated by |n?|v.[?| < |vil?, |m2|g/P| < |gl?,
Lo [P < P, [oel” Lingjej<any < |v.fP and the bounds belong to L'(RY,R) since
v,,g9 € LP(RY,CN). For the application of Fatou’s lemma we observe that n?|v,|?
%> |Djv.|* |v,]P 2 belong to L'(R% R), are positive and the

limit inferior of their integrals is bounded by Lebesgue’s theorem.
6. To show uniqueness in D} (Ly), let both wu,, v, € D} (Ly) be a solution of

i (11

(M = Lo)u, =g and (M —Lo)v, =g

in LP(RY,CY). Then w, := v, —u, € DI (L) is a solution of the homogeneous

problem (A — Ly) w, = 0in LP(R4,C"). From the LP-resolvent estimate we obtain

|yl < 0, hence u, and v, coincide in LP(R? CN). Since u,,v, € DI (Ly) and
Dy (Ly) C Lp(Rd CN) we deduce that v, = u, in DI (Ly).

7. From step 5 we obtain for every j =1,..., N

loc

2
/ D0, ol ||v*|| Uigl,y
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Using the LP-resolvent estimate, we deduce from Hoélder’s inequality for 1 < p < 2

||Djv*||ip(Rd,(CN) :/ |DjU*|p:/ |Djv*|p|v*
R4 R4

5 2 1
< D"U 2 U p=2 / U p < _— .
\</Rd| sl o ) ( o T E (Red —wp)? g 1olzmacm

Taking the sum over j from 1 to d and the pth root we end up with

p(2—p) p(2—p)
DjU*|

Dmol@‘

B =

d 1
dr
‘U*‘WLP(Rd,(CN) = < E |’Djv*”ip(md7<czv) ) < I ”gHLP R4,CN) -
—1 vi (Re X — wo)

O
Recall the following definition of a dissipative operator, [34, I1.3.13 Definition]|.

Definition 5.14. The operator Ly : DL (Lo) € LP(RY,CYN) — LP(R?, CV) with
1 < p < 00, is called LP-dissipative (or dissipative in LP(R? CY)) if

1A = Lo) vll pogacry 2 Aol pogaceyy,  VA> 0o € Dy (Lo).

A direct consequence of Theorem 5.13 is that the Ornstein-Uhlenbeck operator
Ly is a dissipative operator in LP(R?, CV) for 1 < p < oo,

Corollary 5.15. Let the assumptions (A3), (A4) and (AD) be satisfied for
1 <p<ooand K =C. Then, Loy : DI (Ly) C LP(RY,CY) — LP(RY,CN) is
LP-dissipative.

5.5 The LP-dissipativity condition

In this section we give a complete characterization of the optimal LP-dissipativity
condition (5.1) for the complex-valued Ornstein-Uhlenbeck operator L, in
LP(R4,CN) for 1 < p < co. For this purpose, recall the following definitions.

Definition 5.16. Let A € KM with K € {R,C} and N € N, then A is called

e accretive, if inf Re (w, Aw) =0
wekK
|w|=1
e strongly accretive, if inf Re (w, Aw) >0

wekN
lw|=1

e dissipative, if sup Re (w, Aw) <0
it

e strongly dissipative, if sup Re (w, Aw) < 0

wekN
|w|=1

For selfadjoint matrices A, replace accretive and dissipative by positive and neg-
ative, respectively.
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Definition 5.17. Let A € KM with K € {R,C} and N € N. Then we define by

. . Re (w, Aw) . . Re (w, Aw)
( ) /~L1< ) wlenKN ‘U}||AU}| wlenKN \Aw\

w#0 |w|=1

Aw#0 Aw#0

the first antieigenvalue of A. A vector 0 # w € K" with Aw # 0 for which the
infimum is attained, is called an antieigenvector of A. Moreover, we define the
(real) angle of A by

Pgr(A) :=cos™ (1 (A)).

The Definitions 5.16 and 5.17 come originally from [47]. Related to the Definition
5.16, we suggest that the assumption (A3) is satisfied if and only if A is strongly
accretive. The following lower and upper bounds for the first antieigenvalue of A
are well known from [31]

Caccr (A) 1 1 Cdiss (A)
= — inf Re (w, Aw) < p1(A) < —— sup Re (w, Aw) = ,
AL gy e A S S g B A=y

where we call Cyee;(A) and Cyiss(A) the accretivity and dissipativity constant
of A, respectively. They describe the inner and outer real numerical radius of
A, respectively. In Definition 5.17, p;(A) measures the maximum (real) turning
capability of A. The expression for u;(A) is sometimes denoted by cos A and is
called the cosine of A. In [59] the expression for p;(A) is denoted by dev A and is
called the deviation of A.

The next theorem shows that the LP-dissipativity condition is equivalent to a
lower bound for the first antieigenvalue of the diffusion matrix A. Later, the theo-
rem is applied to b:=p—2 for 1 < p < o0.

Theorem 5.18 (LP-dissipativity condition vs. LP-antieigenvalue condition). Let
AcK VN for K=Rif N>2and K=C if N > 1, and let b € R withb > —1.
(a) Given some v4 > 0, then the following statements are equivalent:

(1) |2]?Re (w, Aw) + bRe (w, z) Re (z, Aw) > yalz|*|w]* Vw,z e KV,

(2) Re (w, Aw) + bRe (w, z) Re (z, Aw) > v4 Vw,z € KY, |2| = lw| =1,
b

(3) < 5) Re (w, Aw) — 1 ||A | > va Vwe KY, |w| = 1.

(b) Moreover, the following statements are equivalent

b b
(4) 3y4>0: (1—1—5) Re <w,Aw)—g\Aw\ >4 YweKY, |w| =1,
(2+0) Re (w, Aw)

3 1: . > KN A
(5) 304 > 0 il Au] 04 Vwe K", w+#0, Aw # 0,
2+5b
@)3d4>12(‘m)'ﬂﬂA)>5m
||
7 A) > ,

where py(A) denotes the first antieigenvalue of A in the sense of Definition 5.17.
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The scalar real case: Positivity. In the scalar real case A = a € R (with K =R
and N = 1) the statements (1) and (2) are equivalent, but they are in general not
equivalent with (3). In particular, there exists a constant v, with (2) if and only if
(1+b)a > 0.

The scalar complex case: A cone condition. In the scalar complex case
A=« € C (with K = C and N = 1) there exists a constant -y, with (3) if and
only if one of the following cone conditions hold

2v1+0

(8) |Imal < TRea,
2V/1+0
(9) |arga| < arctan <T|+) .

This conditions will be discussed below for normal matrices in more details.

First antieigenvalue and real angle. The statement (7) coincides with the LP-
antieigenvalue condition from (A4) and yields a lower p-dependent bound for the
first antieigenvalue of the diffusion matrix A

—2
pi(A) > P |€[0,1[, 1 <p<oo.
P

This implies an upper p-dependent bound for the (real) angle of A

Pg(A) :=cos™* (1 (A)) < cos™ (\p ; 2‘) €]0, g], 1 <p< 0.

In general, one cannot derive an explicit expression for the first antieigenvalue
p1(A) of a matrix A. However, for certain classes of matrices such as Hermitian
and normal matrices it is possible to derive a closed formula for 1 (A) as it is shown
in the following two remarks.

p1(A) for Hermitian matrices. If A is a Hermitian matrix, then p(A) from
(7) is given by

VA 2. /K
m(A)— N = =

TIOTAD) R T

A
where 0 < M < M < -+ < \{ denote the (real) eigenvalues of A and ky = /;—JIX

denotes the spectral condition number of A. In this case p;(A) is the quotient

of the geometric mean y/A{!\4 and the arithmetic mean % ()\f + )\ﬁ) of the smallest

and largest eigenvalue of A. In particular, the equality p1(A) = %

1 1
for the antieigenvector w = ()\ﬁ) 2 u1+()\f) 2 uy, where up, uy € KV are orthogonal

vectors with Au; = Mu; and Auy = My such that |w| = 1. This follows directly
from the Greub-Rheinboldt inequality, |53, (7.4.12.11)], and can be found in [53,
7.4.P4].

is satisfied
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If we define ¢ := @ for 1 < p < oo, see Figure 5.1(a), then ¢ € [0, 00[ and the
LP-antieigenvalue condition (A4) is equivalent with

2—q®>—2¢/1—¢? 2— ¢+ 21 —¢2
q 5 q</~€A< q 5 q,f0r0<q<1.
q q
Using the definition of ¢, this inequality implies
2 2
p*4+4dp—4 —4py/p —1 p*+4dp —4+4py/p — 1
Cr(p) == 5 Ka < 5 =: Cr(p),
(r—2) (p—2)
for 1 < p < oo and p # 2, that is a lower and upper bound for the spectral condition
A
number of A. Of course, since 0 < )\‘14 < )\gl < - K )\ﬁ not only Ky = ’)\\—IX but
1

A

also i—% must be contained in the open interval |C(p), Cr(p)] for every 1 < j < N.

The behavior of the constants C(p) and Cg(p) is depicted in Figure 5.1(b). In
particular, to satisfy this condition for arbitrary very large p, i.e. p near oo, the
matrix A must be of the form A = aly for some 0 < a € R.

2 10
8,
1.5}
=
s 6
@ O
S =
5 4
2

0 20 40 60 80 100 0 20 40 60 80 100
p P

(a) (b)
Figure 5.1: ¢ as a function on p (a) and constants Cf, (red) and Cr (blue) in dependence

on p (b)

p1(A) for normal matrices. If A is a normal matrix, then p;(A) from (7) is
given by p1(A) = min £ U F, where

a

E =< L

(i
2\/(%—%')(MWQ—%WIz) a; VAP = 20 M 4 [AA)

F = 5 . 0< - — L <
A=A (1M1 = A2 (ai = )

J

1<J<N},

L

1<4,7 <N,

N # N
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and )\3-4 = a; + tb; with a;,b; € R, 1 < j < N, denote the eigenvalues of A. In
particular, if
(5.27) pi(A) = U for some 1 <j <N,

[ 2]

then pq(A4) = 2 ‘%’U’?w) for an antieigenvector w € K" with |w;| = 1 and |w;| = 0

for 1 < < N with ¢ # j. Conversely, if

2\/(aj —a;) (az M~ |)\24|2>

A=

(5.28) w(A) = for some 1 < 4,5 < N, i # 7,

with |A/] # ’)\ﬂ, then y;(A) = 2¢ f%\w for an antieigenvector w € KV with

o X = 2 X g A
(1M1 = A7) (ai = ay)
a; | AP = 2a; A+ s A2

(M4 = ) (o = o)

and |wg| =0 for 1 <k < N with k£ # ¢ and k # j. This result can be found in [49,
Theorem 5.1], [50, Theorem 3.1], [97, Theorem 1.1] and [95, Theorem 1]. The proof
in [49, Theorem 5.1| is based on an application of the Lagrange multiplier method
in order to solve a minimization problem. Furthermore, in [31] it was proved that
the expression on the right hand side of (5.28) is an upper bound for u1(A). In [31]
one can also find a geometrical interpretation of this equality by a semiellipse.

If 11(A) is given by (5.27) for some 1 < j < N, then the LP-antieigenvalue
condition (A4) is equivalent with

2
|wil

Y

2
lw;|” =

lp — 2|

24/p—1

This leads to a cone condition which postulates that every eigenvalues of A is
even contained in a p-dependent sector ¥, in the open right half-plane, called a
conic section,

o ::{)\ e C||mA|p—2| <2vp— 1Re)\}
2vp—1
:{)\EC| larg A| < arctan <p7>}, 1 <p<oo,

lp — 2|

Re)\f> ’Im)\f}, 1<p<oo.

see Figure 5.2. The opening angle |p| is close to 0 for small and large p, i.e. p close
to 1 or oo, and it is § for p = 2. Indeed, this is the same requirement as in the
scalar complex case. In particular, to satisfy the cone condition for arbitrary very
large p, the matrix A must be of the form A = diag(ay,...,ay) for some positive

ai,...,ay € R.
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Im \

(a)

Figure 5.2: Sector for ellipticity assumption (A2) (a) and cone condition for antieigenvalue
assumption (A4) for normal matrices A (b)

If u1(A) is given by (5.28) for some 1 < 4,5 < N with ¢ # j, then the LP-
antieigenvalue condition (A4) is equivalent with

2\/(‘” —a) (PP - F) )y

> , 1 <p<oo.
B po I

that must be satisfied for every 1 < i,7 < N with [\ # [AZ]. We emphasize the
following equalities from [49, Section 6] and [31]

2\/(aj —a;) (ai !)\3-4|2 —a; |)\;4|2)

A=

5 \/M;*l (i) (IA_?I>_&} () (M)_L}
AT LAY A2 I A2 A2 A2

23/ (ripig — 15) (rypij — i) pig

2 9
pij — 1
here o 1 D2 CRe M w g ki
where pi; 1= 5x and r, := Re T = T or k=1,j.

p1(A) for arbitrary matrices. If A is an arbitrary matrix, then for p;(A) from
(7) there are only approximation results available. Such results are quite new and
can be found in [96, Theorem 2].
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Proof. The equivalence of (1), (2) and (3) is trivial for b = 0, so assume w.l.o.g.

b#0.
(1)<=(2): This follows directly by dividing both sides by |z|*|w]|?.
(2)<=(3): We distinguish between the cases K =R and K = C.

Case 1: (K=R) Let N > 2. In this case we show the equivalence of

(5.29)  (w, Aw) +b(w, z) (z, Aw) > va Vw,z € RY, |2 = Jw| =1,

b b
(5.30) <1+§) (w,Aw)—%|Aw| >4 YweRY, jw| =1,

for some 4 > 0 by minimizing (5.29) with respect to z subject to |z|? = 1.
Note that the minimum exists due to the boundedness of

[z, Aw) (w, 2)| < |2*|Aw||w] = [Aw].

Subcase 1: (w, Aw linearly dependent) Let w and Aw be linearly de-
pendent, then there exists A € R such that Aw = Aw. Since |w| = 1, we
conclude w # 0 and therefore, A € o(A). Applying (5.29) with z := w

0 < 7 < {w, Aw) +b(w, w) (w, Aw) = (1 + B)A
we deduce A > 0, since 1+ b > 0. In this case (5.29) and (5.30) reads as
(5.31)  Awl> + b (w, 2)> > va Vw,z € RY, |z = Jw| =1,

b b
(5.32) <1 + 5) A w|® — g AN |w| =v4 VYweRY, |w=1.

The aim follows by minimization of \b (w, z>2 with respect to z subject to
|22 = 1. If b > 0 then Ab > 0 and therefore, b (w, z)” is minimal iff (w, z)”
is minimal. Choose 2z € w* with |z| = 1 then the minimum is

min Ab (w, z)> = min Ab (w, z)* = 0.
) i

If b < 0 then Ab < 0 and therefore, Ab (w, z)* is minimal iff (w, z)* is maximal.
Choose z € {w, —w} then the minimum is

min Ab (w, z)* = \b < 0.
(=

Subcase 2: (w, Aw linearly independent) For this purpose we use the
method of Lagrange multipliers for finding the local minima of (5.29) w.r.t.
z. Consider the functions

f(w, 2) == (w, Aw) + b (w, z) (z, Aw) — a4,
g(z) =[] —-1=0

for every fixed w € RY with |w| = 1. The optimization problem is to minimize
f(w, z) wr.t. 2 € RY subject to the constraint g(z) = 0.
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1. We introduce a new variable u € R, called the Lagrange multiplier, and
define the Lagrange function (Lagrangian)

ARY xR =R, Az, p):= f(z,w) + pug(z).

The solution of the minimization problem corresponds to a critical point of
the Lagrange function. A necessary condition for critical point of A is that
the Jacobian vanishes, i.e. J(z, ) = 0. This leads to the equations

(5.33) b(z, Aw)w + b {(w, z) Aw +2uz =0,
(5.34) 1z|> =1 =0,

i.e. every local minimizer z satisfies (5.33) and (5.34).
2. Multiplying (5.33) from the left by 27 we obtain

0 = 2b(z, Aw) (w, 2) + 2u|z|* = 2baB + 2p,

and thus y© = —baf, where a := (z, Aw) and § := (w,z) are still to be
determined. Now, inserting y = —baf into (5.33) and dividing both sides by
b # 0 we obtain

(5.35) aw + fAw — 2afz = 0.

From (5.35) we deduce that if & = 0 then § = 0 and vice versa. If « = =0
then z € {w, Aw}" and the minimum of f(w, z) in z subject to g(z) = 0 is
(w, Aw) — v4.

In the following we consider the case a # 0 and  # 0 and we show that in this
case the minimum of f(w,z) in z subject to g(z) = 0 is even smaller. Note
that, assuming a # 0 and 8 # 0, (5.35) yields the following representation
for z

215 (aw + fAW) = %ij Aw

We now look for possible solutions for o and f.
3. Multiplying (5.35) from the left by w” and using |w| = 1 we obtain

(5.36)

(5.37) 0 = alw]* + B (w, Aw) — 2a8 (w, 2) = a + Bq — 2a5?,
where ¢ := (w, Aw). Multiplying (5.35) from the left by (Aw)” we obtain
(5.38) 0= af (Aw,w) + B (Aw, Aw) — 208 (Aw, 2) = aq + pr* — 2a°8,

where r := |Aw|. From (5.29) with z := w we deduce that ¢ > 0 since
1+ b > 0. Moreover, we have r > 0: Assuming r = |Aw| = 0 yields Aw =0
for some |w| = 1 which contradicts 4 > 0, compare (5.29). Since r > 0,

g > 0 and by assumption o« # 0 and § # 0, there exist four solutions of
(5.37), (5.38) given by

E{G /r<r2—q>’i\/?>’<i /r<r2+q>’i\/?>}.

(5.39)
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Note, that r + ¢ > 0 and therefore (o, 5) # (0,0). This follows from the
Cauchy-Schwarz inequality and |w| =1

+q < g = [{w, Aw)| < [wl|[Aw| = r.

Note that we have indeed a strict inequality since w and Aw are linearly
independent by our subcase.

4. Instead of investigating whether the Hessian of f at these points is positive
definite or not, we evaluate the function f at the points (5.36) with («, )
from (5.39) directly. First we observe that

(5.40) flw,z) = (w, Aw) + b{w, z) (z, Aw) —ya = q + bafS — V4.

We now distinguish between the two cases b > 0 and b < 0. If b > 0 then
the function f(w, z) is minimal if sgn o = —sgn § and if b < 0 then f(w, z) is
minimal if sgn o = sgn . Therefore, for the choice of

F/ 1D £ /) b >0,

(5.41) @A=\1, o
r(r+q s
+ 5 Ey/ 5l , b <0,

the term baf is negative and we have found the global minimum. Thus, for
b > 0 we obtain

o T = /T b b
(5.42) bOzﬁ— T q r—q :—%r+§q<0

and similarly for b < 0 we obtain

b
(5.43) baf = by /- Hq,/” :—|—2‘7’+§q<0.

Therefore, using (5.40), (5.42) and (5.43), the global minimum of f(w,z) in
z subject to the constramt g( ) = 0 is given by

b b
mmf(w z)—mm(q—i—baﬁ ya)=(1+ = q_UT_%
Z\E\Rl Z\E\Rl 2 2

for every fixed w € RY with |w| = 1. In particular, defining

(5.44) (2, i) = (%w + Aw baﬁ) with «, 8 from (5.41).

the above minimum is attained at z, from (5.44) since

b b
(5.45) fw) = f(w,2) = (1 ’ 5) q- %T — 74
for every fixed w € RY with |w| = 1. Now, (5.45) must be nonnegative for

every w € RY with |w| = 1, which corresponds exactly (3).
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Case 2: (K =C) In this case we apply Case 1 with K = R. For this purpose, we

write
CV 3w =wy +iwy = <w1) = wg € RN,
W2
CNoz=rz+in= (§1> = g € R,
2
CVN 35 A=A +iAd, & A =4 — Ap € R2V2N,
Ay A
From
(w, 2) = (wi, 21) + (W, 2) + 1 ((wr, 22) — (ws, 21))
we deduce

Re (w, z) = (wg, zr), Re (w, Aw) = (wg, Agwg), [Aw| = |Arwg].
Therefore,
Re (w, Aw) + bRe (w, z) Re (z, Aw) > ya  Vw,z € CY, 2] = |w| =1,
translates into
(wg, Apwgr) + b (wg, 2r) (2r, ARWR) =74 YVwg, 2z € R* | |2g] = Jwg| = 1.

Due to Case 1 this is equivalent to

b b
(1 + 5) (wr, ARWR) — % | Arwr| = Va Vwg € R™, [wg| = 1,

that translates back into

b b
(1+§) Re (w,Aw>—g|Aw| 2 7a VweC, |u[=1,

which proves the case K = C.
(4)<=(5): Multiplying (5) from the left by %\w||Aw| and using |w| = 1 we obtain

b b b b
<1 + 5) Re (w, Aw) > %\w||Aw|5A = %|Aw| + %\Aw\ (04 —1)
0] b 1 0]
> —|A — -1)==]4
for every w € KY with |w| = 1, where 4 = ‘_12)‘\,41—1| (04 —1). Here we used

] = A~ Aw] < |47 Aw].
(4)=(5): Dividing (4) by I%'\Aw\ we obtain

2 (14 %) Re (w, Aw) 2

= 117 +1 VUJEKN,‘U}|:1.
0] | Aw| 0] [Aw]
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Now, let w € K¥ with w # 0, then ‘ﬁ) = 1 and we further obtain

2 (1+ %) Re (w, Aw) - 2 v

>4 1=6,>1 VOAwecK".
|bf|w][ Aw| ] [A]

(5)<=(6): This follows by the definition of the first antieigenvalue of A.
(6)<=(7): trivial. O

5.6 The maximal domain (Part 1)

In this section we derive a characterization of the infinitesimal generator
A, : D(4,) C LP(RY,CY) — LP(RY,CV) and of its maximal domain D(4,) in
LP(RY,CN) for 1 < p < co. Problems of this type are also called identification
problems.

The next theorem shows that the maximal domain D(A,) coincide with D} (Lo)
and that the formal Ornstein-Uhlenbeck operator £, coincide with the infinitesimal
generator A, on D(A,), that can be considered as the abstract Ornstein Uhlen-
beck operator. Therefore, A, is called the maximal realization (or maximal
extension) of the complex-valued Ornstein-Uhlenbeck operator Ly in LP(R?, CV)
for every 1 < p < oo with maximal domain D(A,) = D} (Ly).

The main idea for the first part of the proof comes from |71, Proposition 2.2 and
3.2]. For the maximal domain of the scalar real-valued Ornstein-Uhlenbeck oper-
ator we refer to [73] and [83] for the LP-spaces and to [75] for the LP-spaces with
invariant measure. In particular, we suggest that in the proof we apply Theorem
5.10(4), which states that S(R? C") is a core for (A,, D(4,)), and Theorem 5.13,
which yields unique solvability of the resolvent equation for L.

Theorem 5.19 (Maximal domain, Part 1). Let the assumptions (Al)—(Ab) be
satisfied for 1 < p < oo and K = C, then
D(Ap) = Dre(Lo),

loc
where Dy, (L) is given by
DY (L) == {v e WZP(RY,CY) N LP(RY, CN) | ADv + (S-, V) € LP(RY,CY)} .
In particular,
A,v = Lyv for every v € D(A,),
i.e. A, is the maximal realization of Lo in LP(RY,CN).

Proof. C: Let v € D(A,). Since S is dense in D(A,) with respect to the graph
norm ||-||, by Theorem 5.10(4), we have

3 (Wn)pew €St lvn —v[[,, = 0as n — oo.
This yields

v, — V||, — 0 as n — oo.
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and using Theorem 5.10(2)
| Lovn — Apv[ o = | Apvn — Apvl|, — 0 as n — oo,

where A,v € LP(RY, CV) because v € D(A,). Since obviously S C DI (L), we have

loc

(Un)eny € DY .(Lo) and we deduce by the closedness of Lo : DY (L) — LP(R?,CV)

loc

from Lemma 5.11 that v € D} (Ly) and Lov = Apv.

loc
DO: Let v € D} (Ly). Choose A € C with Re A > wy and define g := (A — L) v,
thus g € LP(RY, CY). Then Corollary 5.7 yields a unique solution v, € D(A,) of
(M — A,)v, = g. Since v, € D(A,) C D (Ly) we conclude v, € DV (Ly) and

loc loc
Apv, = Lyv,. Thus, we have
(M —Ly)v, =g and (M —Ly)v=g.

From the uniqueness of the resolvent equation for £y from Theorem 5.13 we deduce
v =v, in LP(RY,CV) wrt. ||-],,. Recall D(A,) C D! (Ly) C LP(RY,CN). Since
v,v, coincide in LP(RY,CN) wrt. |||,,, v,v. € DI (Lo) and v, € D(A,), we

conclude v € D(A,) and Loyv = Ayv. O

A superset of the domain of L;. Combining Theorem 5.8, which yields
D(A,) € WH(RYCY) for 1 < p < oo, and Theorem 5.19, which yields
D(A,) =Dy (L) for 1 < p < 0o, we even obtain that

loc

DP (Lo) = D(A,) C W (R CY), 1 < p < oo,

loc

and therefore

Dp

loc

(Lo) = {v e WZP(RY,CV) n WP (R, CY) | Lov € LP(RT,CV)}, 1 < p < oo
Note that, in contrast to Theorem 5.8, Theorem 5.13 shows DL (Ly) € WP(R CV)
only for 1 < p < 2 but not for general 1 < p < oco.

Identification problem in L§(R? CV). As already mentioned after Theorem 5.3,
the Ornstein-Uhlenbeck semigroup (7(t)),, is strongly continuous on the expo-
nentially weighted spaces Lj (R4, CN) for 1 < p < oo, that justifies to introduce the
infinitesimal generator A,y. The identification of D(A4, ) is now much more com-
plicated, since on the one hand one must check that the Schwartz space S(R?, CV)
is a core for (A,9, D(A,p)) and on the other hand one must prove resolvent es-
timates for £y in exponentially weighted spaces Lf(R? CV) for 1 < p < oo with
domain

D} . o(Lo) = {ve W2P(RY, CN) N LH(RY, CN) | Lov € L (RY, cY)}.

loc

The complete theory from Section 5.1-5.6 is also satisfied for S = 0. However,
in this case we even have stronger results which are necessary for the next section.
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Diffusion semigroup in L?(R¢,C"). Consider the heat kernel
K (1) = (4t A) "2 exp (= (44) o)

for the differential operator [£§v] (z) := AAwv(z), compare (4.24) with B = 0.
Then we define the (d-dimensional) diffusion semigroup (Gaussian semi-
group, heat semigroup)

Joa K(z =& 0(Q)de  t>0
v(z) ot =

(5.46) G(¢,0)0] (z) == {

Requiring assumption (Al) and (A2), Theorem 5.1-5.3 (with S = 0) yield that
(G(t,0)),5, generates a strongly continuous semigroup in LP(R CN) for
1 < p < co. If we additionally require that the assumptions (A3) and (A4) are
satisfied, then Theorem (5.19) (with S = 0) states that the infinitesimal genera-
tor AS" of (G(t,0)),., coincides with the diffusion operator £§' on its maximal
domain given by

D (L") := {v e WZP(RY,CV) N LP(RY, CY) | ALw € LP(RY, CV)}
for 1 < p < co. In particular, the graph norm of AJ™ is given by

||U||Agif’f = ||U||Lp(Rd,<cN) + ||AA||LP(R‘1,(CN) ;U E D(ﬁgiﬂ)-
But in case S = 0, we even have maximal LP-regularity results, since the semigroup
(G(t,0)),5 is (in contrast to (To(t)),s, for S # 0) analytic: Using the assumptions
(A1)—(A4), we deduce from [67, Theorem 3.1.2 and 3.1.3] for the scalar complex-

valued case that £ is a sectorial operator in the sense of [67, Definition 2.0.1]
and its maximal domain is even given by

D (L§") == W>P(R?,CV)

for every 1 < p < oo with N = 1. By our assumption (A1), this result extends also
for N > 1. We further conclude from [67, Lemma 6.1.1] for every 1 < p < oo that
the graph norm is equivalent to ||-||;2,, i.e. there exists some Cyig > 1 such that

(5.47) Cd_iflf ||'U||W27P(Rd,(CN) < ||v||Lp(]Rd,(CN) + ||AAU||LP(Rd,(CN) < Cair ||'U||W27P(]Rd,(CN)
for every v € W2P(R? CV). Later, we still prove in Theorem 7.9 (with S = Q = 0)
{AeC|Neo(—wA), w € R} C oo (LGM).
in LP(R4,CV) for 1 < p < oo. Concluding we define the parabolic evolution family

(G(t, s)v] (x) :== {fRd Kz =&t —sju(e)de > , v € R%

v(x) ,t=s
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Rotation group in LP(R? CV). For any skew-symmetric matrix S € R%4 we
define the rotation group by

[R(t)v] () == v(e®z), t € R, = € R

Obviously, (R(t)),g is a strongly continuous group in W*?(R?, CV) for k =0, 1,2
and 1 < p < oo, compare proof of Theorem 5.3. The infinitesimal generator AJf
of (R(t)),cp coincides with the drift term [£3"0] (z) := (Sz, Vv) on its maximal
domain given by

D (ﬁgrift) — {v c LP(R*,CN) | (S-, V) € Lp(Rd,CN)}

for 1 < p < co. For a proof of these results we refer to [71, Proposition 2.2| and
suggest that these results trivially extends to complex-valued systems.

We stress the following relations that follows directly from the definitions of 7,
R and G:

(5.48) To(t) =R(t)G(t,0) Vit >0,
(5.49) G(t—s,0)R(s) =R(s)G(t,s) Vt=s

\VAR\Y

5.7 Cauchy problems and exponential decay
In this section we study the abstract Cauchy problem

50 w(t) =Apelt) + F11), £ €0.7],
v(0) =vp, t=0,

in LP(RY,CYN) for 1 < p < oo, where A, : D(4,) C LP(RY,CYN) — LP(RY CV)
denotes the infinitesimal generator of the strongly continuous semigroup (75(t)),~,
vg € LP(RY,CV) the initial data, f : [0,7] — LP(R? C") the inhomogeneity and
v: [0,T] — LP(RY,CN) the solution of (5.50). Our aim in this section is to derive
regularity results for the homogeneous and inhomogeneous initial value problem
(5.50). For this purpose we introduce mild and classical solutions of (5.50), [34,
Chapter VLT7].

Definition 5.20. Let the assumptions (Al), (A2), (A5) be satisfied for 1 < p < o0
and K € {R, C}. Moreover, let vy € LP(R, KY) and f € L'([0,T], LP(R? K")) for
some T' > 0. Then the function v : [0, 7] — LP(R? K") given by

(5.51) v(t) == To(t)vy + /t To(t — s)f(s)ds, t € [0,T],

is called the mild solution of (5.50) in [0,7]. A function v : [0, co[— LP(R4, KY)
is called the mild solution of (5.50) in [0, co[ if v|j ) is the mild solution of
(5.50) in [0, T] for every T' > 0.

Note that for vy € LP(RY, KY) and f € LY([0,T], LP(R? K")) the mild solution
of (5.50) is unique by its definition.
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Definition 5.21. Let the assumptions (Al), (A2) and (Ab) be satisfied for
1 <p<ooand K € {R,C}. Moreover, vy € D(A,) and f € L'([0,T], LP(R?, KY))
for some T > 0. Then the function v : [0,7] — LP(R% K") is called a classical
solution of (5.50) in [0, 7] if

v e O([0,T],D(A,) N C*(J0, T[, LF(RY, KY)) and (5.50) holds.

A function v : [0,00[— LP(RY,K") is called a classical solution of (5.50) in
0, oo if v|jo,7) is a classical solution of (5.50) in [0, 7] for every 17" > 0.

Assuming vy € LP(R? KY) and f € LY([0,T7], L?(R? K")) one can show that
every classical solution of (5.50) is also a mild solution of (5.50) and hence unique,
[34, Chapter VI.7, 7.10 Exercise].

The following spatial LP-regularity result for the mild solution of the homoge-

neous initial value problem (5.50), i.e. with f = 0, is a direct consequence of
Theorem 5.1.

Theorem 5.22 (A-priori estimates in LJ(R?, CN)). Let the assumptions (A1),
(A2) and (AbD) be satisfied for 1 < p < oo and K = C. Then for every radially
nondecreasing weight function § € C(R4,R) of exponential growth rate n > 0 and
for every initial data vy € LR, CN) we have v(t) € WP (R CN) for every t > 0
with

(5.52) (@l z < Ca(®) l[voll p g e , 120,
(5.53) D)l 1z < Cs() l[voll Lp e e ,t1>0i=1,....4d
(5.54) 1D Div@)] L < Co(t) [voll Ly a oy ,0>0,4,5=1,....d,

where v : [0,00[— LP(RY CN) given by v(t) = To(t)vy denotes the unique mild
solution of (5.50) in [0,00[ with f = 0 and the constants Cayip(t) are given by
Theorem 5.1 for every |B| = 0,1, 2.

Remark. In order to investigate the temporal regularity for mild solutions of (5.50)
with f = 0, one can show that

ve C(0,T], LP (R, CY)) n C(j0, T[, W*(R?,CV)) n C*(J0, T, L}, (R?, C)).
This statement was proved in [73, Theorem 3.3] for the scalar real-valued Ornstein-
Uhlenbeck operator.

The following spatial LP-regularity result for the mild solution of the inhomo-
geneous initial value problem (5.50) is an extension of Theorem 5.22 and follows
again directly from Theorem 5.1. The major difference to Theorem 5.22 is that we
are only able to prove that the mild solution of (5.50) belongs to W1P(R4, CV) for
t > 0.
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Theorem 5.23 (A-priori estimates in L)(R? CN)). Let the assumptions (Al),
(A2) and (Ab) be satisfied for 1 < p < oo and K = C. Then for every radially
nondecreasing weight function § € C(R4,R) of exponential growth rate n = 0, for
every initial data vy € LY(R?,CN) and for every inhomogeneity f € Lh(RY, CN) we
have v(t) € Wy P (R, CN) for every t > 0 with

(@)l s
[Div(t)l s

Calt) ool pqger oy + Colt) Il pacy -+t >0,

<

where v : [0, 00[— LP(RY,CN) given by (5.51) denotes the unique mild solution of
(5.50) in [0, 00[ and the constants Cyyp(t) and Coyip(t) are given by Theorem 5.1
and

t
Coris(t) 22/0 Cati|(s)ds,

respectively, for every || =0, 1.

Concluding, we prove a time-space LP-regularity result for the mild solution of
(5.50). For this purpose, we mimic the proof of [73, Theorem 3.4]. Note, that
one can identify LP([0, 7], LP(R¢,CN)) by LP(R? x [0,T],CY). In the following
we abbreviate Q7 := R4x]0,T[. Moreover, we suggest that the theorem requires
f e LP(Qp,CN) = LP([0,T], LP(R?, CV)) that belongs to L*([0,T], LP(R%,C"Y)) on
compact time intervals for every 1 < p < oo.

Theorem 5.24 (Regularity for mild solution). Let the assumptions (A1)—(A5) be
satisfied for 1 < p < oo and K = C. Moreover, let v given by (5.51) denote the
unique mild solution of (5.50) in [0,T] with vo = 0 and f € LP(Qp, CN), then

ve WEIP(Qp, V)

loc

and satisfies
U,V — <S, VU> s Dﬂ}, DJDZU S LP<QT, (CN)

Remark. Note that Theorem 5.24 does neither say that v; € LP(Qp, CV) not that
(S-,Vv) € LP(Qp,CY). Only their difference v; — (S-, Vo) belongs to LP(Qp, CV).

Proof. Let v be the unique mild solution of (5.50) with initial data vy = 0 and in-
homogeneity f € LP(Qg, CN) C LY([0,T], LP(R?,CY)). By Theorem 5.19 problem
(5.50) can be written as

v (t) =AAv(t) + (S-, V(b)) + f(t), t €]0,T],

(5.55) v(0) =0 L t=0.

From (5.51), (5.48), (5.49) and R(t)R(s) = R(t + s) for t,s € R we obtain

v(t) :/0 To(t —s)f(s)ds = /0 R(t — s)G(t — 5,0)f(s)ds
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t

R(t — s)G(t — s,0)R(s)R(—s) f(s)ds

t

R(t — s)R(s)G(t,s)R(—s)f(s)ds

t

Il
o— — S—

R(t)G(t, s)R(—s)f(s)ds = R(t)/o G(t,s)R(—s)f(s)ds, t € [0,T].

Defining h(t) := R(—t) f(t) for ¢t € [0, T] and

u(t) == /OtG(t, s)h(s)ds, t € [0,T7,

we further obtain the relation v(t) = R(t)u(t), i.e. u(t) = R(—t)v(t) for every
€ [0,7). f € LP(Qp,CN) implies h € LP(Qp, CN) C LY(]0, T[, LP(RY, CY)) and

hence u is the unique mild solution of

(5.56) uy(t) =AAu(t) + h(t), t €)0,T],
u(0) =0 =0

Note that v € VVIOC P(Qr,CY) is equivalent to u € V[/102C1 P(Qp, CN).
In the following we even prove that u € W&D»(Qp CN): Since h € LP(Qp, CN)
and since C®(Qp, CY) is dense in LP(Qp, CV), there exists h, € C=(Qp, CV),

n € N, such that h, — h in LP(Qp,CY) as n — oo. Let us define

up(t) := /OtG’(t, s)hn(s)ds, te€[0,T7,

then u, is the unique mild solution of (5.56) with inhomogeneity h,. Moreover,
from h, — h in L?(Qp,C") we deduce that u, — u in LP(Qp,CN) as n — oo
and hence u € LP(Qp, CV). Since AA : W2P(RY,CV) — LP(RY,CV) is a sectorial
operator in the sense of [67, Definition 2.0.1], an application of [67, Proposition
6.1.3| yields

u, € C([0,T), W**(RY,C™)) N ([0, T], L*(R?,CY)), n € N,

and hence, u, is even a classical solution of (5.56) with inhomogeneity h,, for every
fixed n € N. Moreover, an application of [62, ITV. Theorem 9.1] implies that there
exists some n-independent constant C' = C(A, d,p,T) > 0 such that

(5.57) HunHw(ll),p(QT,(cN) <C th”LP(QT@N) ,neN.

From (5.57) and h,, — hin LP(Qp, CV) we deduce that (u,),ex is a Cauchy sequence
in Wr(Qp CN). This follows from the fact that u, — u,, is a classical solution
of (5.56) with inhomogeneity h,, — h,, and thus using (5.57) we find for every € > 0
some Ny > 0 such that

Hun - umHW(?,l),p(QT7CN) < C ”hn — h’mHLP(QT,(CN) < 9 Vn,m 2 N().
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Consequently, u,, converges to some @& € W&DP(Qp CN) as n — oo. Since we
already know that u, — u in LP(Qp,CY) as n — oo, we conclude that u = @ in
LP(Qg, CN), thus u € WED»(Qp, CV). In particular, we deduce

[ullyy @ (Qr,CN) S Ju— un”w(2,1),p(QT,<cN) + HunHw(ll),p(QT,(cN)

<l = tnllyenppeny T C ol oo, cm

< lu - UnHW(?,l),p(QT,(cN) + C||hn — hHLP(QT,(CN)
+C HhHLP(QT,(CN)

for every n € N. Taking the limit as n — co, we obtain

[l ens@pevy < ClIAN g oy -
Using h(t) := R(—t)f(t) and v(t) = R(t)u(t) we obtain

d
(1ol + i = (5, ) oncn + 21D

d d
+ZZ |D., D,

j=1 i=1

’LF QT (CN)

hSal

rrarieny ) <1l

This proves that v € V[/102C1 P(Qz,CYN), meaning that v, — (S-, Vo) € LP(Qp, CV)
(QT, (CN) ]

but only v, (S-, Vv) € L{

Remark. Note that [62, IV. Theorem 9.1] holds only for the scalar real-valued
case, but it can be extended to the scalar complex-valued case, i.e. for N = 1. We
do not outline the proof here. Using assumption (A1), this result also extends to
complex-valued systems, i.e. with N > 1.

5.8 The maximal domain (Part 2)

In this section we prove a complete characterization for the maximal domain of the
complex-valued Ornstein-Uhlenbeck operator £, that is motivated by [73].

The next theorem states that the maximal domain of the Ornstein-Uhlenbeck
operator Ly coincides with the intersection of the domains of its diffusion L& and
drift part £37f i.e.

Dfie(Lo) = Di (L5 + L§™) = D, (L£5") N D}

max

(ﬁSrift) )

This was proved in [73, Theorem 1] for the scalar real case.

Theorem 5.25 (Maximal domain, Part 2). Let the assumptions (Al)—(Ab) be
satisfied for 1 < p < oo and K= C, then

10C(£0) max(‘CO)

where DP

max

(Lo) is given by
(Lo) := {v e W*PR%CN) | (S-,Vv) € LP(RY,CM)} .

max
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Proof. D: Let v € D?, (L), then we have v € W2P(R% CV) and v € LP(R%, CV)
since v € W2P(R?,C"). Moreover, v € W?P(R? C") implies AAv € LP(R? CV).
Thus, using (S-, Vv) € LP(RY, CN) we conclude Lov € LP(R?, CV).

C: Let v € DL (Ly), then g := Lov € LP(RY,CYN). Then w(t) = v is a classical

loc
solution of

%w(t) = Low(t) —g,te [OvT]

w(0) = v.

in the sense of Definition 5.21 and hence also a mild solution. On the other hand,
since v € LP(RY,CN) and g € LP([0,T], LP(R4, CN)) for every fixed T > 0, the
unique mild solution is given by

v=w(t) =Ty(t)v — /Ot To(t — s)gds =: w(t) +we(t), t € 0,77,

where w; is the mild solution of (5.50) in [0,7] with initial data vy = v and
inhomogeneity f = 0. Theorem 5.22 states that wi(t) € W2P(R%, CY) for every
t €]0,T]. Similarly, ws is the mild solution of (5.50) in [0, 7] with initial data vy = 0
and inhomogeneity f = —g. Because g € LP([0,T], LP(R?,CN)) = LP(Qp,CV),
Theorem 5.24 states that wy € LP(]0, T[, W2P(R?, CN)), i.e. wq(t) € W2P(R, CN)
for almost every t €]0, T[. If we consider such a t €]0, T, we can deduce that

v=uw(t)=To(t)v + /OtTo(t— s)gds = w1 (t) + wy(t) € WHP(RY, CN)

and thus we have AAv € LP(RY,CV). Consequently, using Lov € LP(R? CV), we
conclude

(S-,Vv) = Lov — AAv € LP(R?,CN),

that means v € D?__ (Ly). This completes the proof. For the identification of the

graph norm of A, we need additionally an estimate for v in W2P(R? CN): Let
0 < e < T be arbitrary. By Theorem 5.1 (with 8 = 1, Cy = 1, k = 0) there exists
a constant C'= C(A,d,p,e,T) > 0 such that

||w1||Lp([a7T},W2,p(Rd,<cN)) <0 ||U||Lp(Rd,<CN) :

Moreover, by the last inequality from the proof of Theorem 5.24 there exists a
constant C' = C(A,d,p,T) > 0 such that

1
P P
w2l 2o (e 7y w2r . o)) << > HDﬁwQHLP(QT,(CN)) < Ol poay.cm
181<2

=CT [|Lov]| 1p(ra ey -
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Combining these estimates we deduce

1
(T —¢)r HU”WM(RUI,CN) = ”UHLP([E,T],WM(Rd,CN))
< ||w1||Lp([57T},W2,p(Rd,(cN)) + ||w2||LP([57T},W2vP(Rd,(CN))

<C (I0)loqgacry + 100l ogga.cm)) -

To make the constant independent on 7" and ¢, we choose e.g. T"' =1 and ¢ = %
and conclude that there exists a constant C' = C(A,d, p) > 0 such that
(5.58) HUHW2,p(Rd,<cN) <C (HUHLP(RUZ,CN) + ”LOUHLP(Rd,(CN)) :

O

The following result yields an identification of the graph norm for A,. The same
result for the scalar real-valued case can also be found in [66, Proposition 9.4.2].
The techniques therein are based on bounded imaginary powers.

Corollary 5.26. Let the assumptions (A1)—(Ab) be satisfied for 1 < p < oo and
K = C, then the norms
HU”AP = ”ApUHLp(Rd,CN) + ”UHLP(Rd,cN) = ”LOUHLIJ(Rd,cN) + HU”LP(Rdch) )
[ollc, = olhyaagus cmy + 1057 Vo)l s ooy

are equivalent for v € DP (Ly), i.e. there exist C1,Cy > 1 such that

max

Crllvllz, < lvlla, < Callvll,

for every v € DP . (Ly).

max

Remark. Corollary 5.26 says that we can identify (A, |-, ) with (Lo, [||lz,)-

Proof. The second inequality in based on maximal LP-regularity for £3f: Using
the triangle inequality, (5.47) and defining Cy := Cgg > 1, we obtain

[0, = [1£ov]l Lo + [V]le = |ADV 4+ (S, V)| 1o + (0]l s
<ALl + [ollge + 165 Vol = llvll age + [[{S-, V)l 1o
<Caitt [[vllwer + (S Vo) 1
<Cai ([[Vllw2o + [1(S V)l 1) = Ca vl -

The first inequality follows from the characterization of the maximal domain from
Theorem 5.25: Using (5.47) and the elliptic estimate (5.58) we obtain

”UHLO = Hvaz,p(Rd,cN) + [[(S-, VU>HLP(R‘1,(CN)
< ||U||W2,p(Rd,tcN) + [[ALv + (S, V”)HLP(Rd,(CN) + ||AAU||LP(R‘1,(CN)
S Lovl| poa ey + (1 + Caier) |0l 2w maom)
<O+ Cam) + 1) (o0l oo emy + el oqgacm)) = Crllvl,

where C} := C(1+ Cqg) +1 > 1. O
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As a consequence of Corollary 5.26 we deduce resolvent estimates for v, in
W2P(RY,CN) and for (S-,Vv) in LP(R? CV). This is an extension of Theorem
5.13 and Theorem 5.7, respectively.

Corollary 5.27 (Resolvent Estimates for £y in LP(R? CV) with 1 < p < 00). Let
the assumptions (Al)—(Ab) be satisfied for 1 < p < oo and K = C. Moreover, let
A € C with Re\ > 0. Then for every g € LP(R?, CN) the resolvent equation

(M —Ly)v=yg

admits a unique solution v, € DP_ (Ly). Moreover, v, satisfies the resolvent esti-
mates

1
(5.59)  lvell po(gacvy < Ro\ 191 1o ra, ey -

L [1+]|Al
(5.60) ||U*||W2,p(Rd7(CN) < c (m + 1) ||g||Lp(Rd,<cN)>

Comax{1, ||} /14 |} &
(5.61)  [[(S" Vo)l pacy) < G Rex TITE 191l Lo e -

Proof. Inequality (5.59) was already proved in Theorem 5.13. Let us now prove
inequality (5.60): Using (5.59), Corollary 5.26 and Theorem 5.13 we obtain

1
[ollwes@acry S llvdle, < G llvdls,

1 1
:a (HEOU*”LP(]RUI,(CN) + HU*HLP(Rd,CN)) = C, (H)\U* - gHLP(Rd,(CN) + HU*HLP(]RUZ,CN)>

! 1 (14N
<a ((1 +[A]) ||'U*||LP(]Rd7(CN) + ||g||Lp(Rd,<cN)> < ¢ U Rex +1 Hg”LF(Rd,cN) .

Finally, let us prove inequality (5.61): Using (5.47), (5.60) and Cy = Cgi we obtain

1(S-, Vol oga ovy = [Aox = ADv, = gl 1pga oy
<Al ||v*||Lp(Rd,tcN) + ”AAU*HLP(]Rd,(CN) + ||g||LP(]Rd,(CN)

<max{l, [A[} (HU*HLP(Rd,(cN) + ||AAU*||LP(R‘1,(CN) + ||g||LP(]Rd,(CN)>

<max{L, [} (Cae 02 lyao vy + 19l cm))

Cy [1+]A
<max{1, ||} (é (?&‘ + 1) + 1) 191l 1o (e ey -



6 Constant coefficient perturbations
in LP(R?, CM)

In this chapter we apply perturbation theory of semigroups to the operator
[Loov] (1) := ADv(z) + (Sz, Vu(z)) — Bu(z), v € RY d > 2,

in LP(RY,CN) for 1 < p < oo, where v : R? — CV, A,B € CVV S € Réd
skew-symmetric and N € N. Writing the operator as

[Loov] (2) = [Lov] (z) — Bu(z), z € R, d > 2,

L, can be seen as a constant coefficient perturbation of the complex-valued Ornstein-
Uhlenbeck operator Ly, that was analyzed in Chapter 5 before.

In Section 6.1 we investigate constant coefficient perturbations of A, in L?(R?, C¥)
for 1 < p < oo, where (A4,,D(A,)) denotes the infinitesimal generator of the
complex-valued Ornstein-Uhlenbeck semigroup (Ty(t)),, on LP(R?, C"): Consider
the bounded linear operator

(6.1) E,: LP(RY,CN) — LP(RYL,CY), [Ew](x) := —Bo(r)

on LP(R? CY) for some 1 < p < co and some matrix B € CMV. Then we analyze
perturbations of the form

B,:D(B,) € L"(RY,CY) — L’ (R, CY),  [By] (2) := [Apv] () + [Epv] (2).

This means that the infinitesimal generator A, is perturbed by the bounded op-
erator E,, which means that F, is a bounded constant coefficient perturbation
of A,. Assuming (A1), (A2) and (A5) for K = C, we show in Theorem 6.1 that B,
with maximal domain D(B,) = D(A,) is the infinitesimal generator of a strongly
continuous semigroup (T (), in LP(R?, CV) for every 1 < p < co. Moreover,
this theorem yields a series representation for the semigroup (7w (t)),.,, where the
summands are defined recursively. This follows directly from an application of the
bounded perturbation theorem, [34, I11.1.3|. In Theorem 6.2 we require additionally
assumption (A8g) and prove that the semigroup is given by

Jpa Hoo(, £, t)0(§)dE >0

,xeRd,
v(x) ,t=0

where H(z,&,t) = H(x, &, t) denotes the heat kernel from Theorem 4.4. Note that
for this result assumption (A8pg) is crucial and guarantees that Hy and B commute.
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Assuming (A1), (A2), (A5) and (A8g) for 1 < p < oo and K = C, we prove in
Corollary 6.7 that the resolvent equation for B, which is given by

(M = By)v =g,

admits a unique solution v, € D(A,) for every g € LP(RY,CN) and A € C
with ReA > —by, where —by := s(—B) denotes the spectral bound of —B, cf.
(1.18). This follows from some applications of abstract semigroup theory, [34,
I1.1]. In particular, if we require in addition the assumptions (A3) and (A4) for
1 < p < oo, then the identification problem for B, is solved by Theorem 5.19 and
5.25, respectively, and we obtain B, = L, on D(A,) = D} (Ly) = DL, (Lo).

In Section 6.2 we derive a-priori estimates for the resolvent equation for B,
in exponentially weighted LP-spaces. Assuming (Al), (A2), (A5) and (A8g) for
K = C, we prove in Theorem 6.8 that the solution v, belongs to W(,l’p(Rd, CN) for
every g € LP(R? CV) and \ € C with Re\ > —by. This is an extended version of
Theorem 5.8.

For the sake of completeness note that, assuming (A1)—-(A5) and (A8p) for 1 <
p < oo and K = C, every A € C of the form

k
A=—-Aw) — ianal, nmeEZ, weR, MNw)€ow?dA+ B),
=1

belongs to the essential spectrum oes(Loo) of Lo in LP(RY,CY). Hence, L, is
not sectorial in LP(R?, CV) and (T (1)), is not analytic on LP(R?, CV), whenever
S # 0. These results will be proved later in Section 7.4 for more general perturbed
Ornstein-Uhlenbeck operators. Their proofs combine and extend the results from

[71] and [15].

6.1 Application of semigroup theory

Let the assumptions (A1), (A2) and (Ab) be satisfied for K = C, then we denote by
(A,,D(A,)) the infinitesimal generator of the complex Ornstein-Uhlenbeck semi-
group (To(t)),s, from (5.3) on LF(R? CV) for 1 < p < co. The semigroup (Ty(t)),-
is strongly continuous in LP(R?, CV) for every 1 < p < oo and satisfies

HTO(t)Hg(Lp,Lp) <My, Vt>=0,

d
with M, = Ginax ) > 1. Moreover, if we additionally require the assump-

Amin @0
tions (A3) and (A4) for 1 < p < oo, then A, is the maximal realization of L, in
LP(R?,CN) on its maximal domain, which is D(4,) = DY (L) = D2,..(Lo).
In this section we investigate constant coefficient perturbations of A, in LP(R¢, CV)
for 1 < p < oo. For this purpose, let E, be given by (6.1). An application of [34,
I11.1.3 Bounded Perturbation Theorem, III.1.7 Corollary and II1.1.10 Theorem]

yields the following result.
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Theorem 6.1 (Bounded Perturbation Theorem). Let the assumptions (Al), (A2),
(A5) and B € KN be satisfied for 1 < p < oo and K = C. Then the operator

B, :=A,+ E, with D(B,):=D(A,)
generates a strongly continuous semigroup (T (t)),~, on LP(R, CN) satisfying
(6.2) ||T ( )HE(LP ) < < M, eMOtHEPHL(LP ) Yt >0

Moreover, for every v € LP(RY,CN) and t > 0 the semigroup (Too(t)),s, satisfies
the integral equation (variation of parameters formula)

Too(t)o = Ty(t)v + /t To(t — 5)E,Tu(s)vds,

15 unique and can be obtained by

(6.3) Too(t) = i T2(t)
where
(6.4) TOt) == Tp(t), TOHV(t) = / t To(t — ) E,T"(s)ds.

Identification problem for B,. Theorem 6.1 states that (B,, D(A,)) is the in-
finitesimal generator of (Ths(t)),s, in LP(R?, CN) for 1 < p < co. If we additionally
require the assumptions (A3) and (A4) for 1 < p < oo, then an application of The-
orem 5.19 and Theorem 5.25 solves the identification problem for B, in LP(R? C")
and we infer that

By = Lo on D(A,) =Di(Lo) = Lo)-

max(

To investigate the nonlinear problem for the Ornstein-Uhlenbeck operator, it is
obligatory to have a more convenient representation for the semigroup of the per-
turbed operator B, since the estimate (6.2) shows that the semigroup (7w (t)),-
doesn’t remain bounded as t — oo. The next theorem provides an explicit repre-
sentation for the semigroup (T (t)),s, for matrices A, B € CV that are simulta-
neously diagonalizable (over C). This can easily be inferred from (6.3) using that
the matrix B commutes with the Ornstein-Uhlenbeck kernel Hy(x, &, ).

Theorem 6.2 (Semigroup representation). Let the assumptions (Al), (A2), (A5)
and (A8p) be satisfied for 1 < p < oo and K = C. Then the semigroup (T (t)),,
in LP(R,CN) is given by

oo Hoclr & 000)E >0
v(x) =0 ’

(6.5) [T (t)v] () := {

where Hoo(x,&,t) = H(x,&,t) denotes the heat kernel from Theorem 4.4.
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Proof. From Theorem 6.1 we know that the semigroup (T (%)), is given by (6.3)
and (6.4). By induction over n € Ny we show that

—tB)"
(6.6) TM(t) = To(t)< . ) ,n €Ny, t>0.

The case n = 0 is satisfied by (6.4). Let us consider the case n — n + 1: Using
(6.4), (6.1), (6.6), (5.3), (A8p) (that guarantees BHy(x,&,t) = Hy(z,£,t)B) and
Lemma 4.5 we obtain for every v € LP(R?,CY) with 1 < p < co and every ¢ > 0

TOH) (Ho(z) = /Ot To(t — 8)E,T (s)v(x)ds

(=sB)"
n!

:—ATW—@EM@ v(a)ds

:—/ / Ho(x,@b,t—s)BHO(w,f,s)(_S?) v(€)dideds
0 Re JR4 n.

:_/0 /R 5 Ho(x,w,t—s)Ho(zp,g,s)dzp(_SB) Bu(€)deds

n!
t n+1
= [ [ e e S —vepeas
0 Rd n:

B (—tB)n+1
=, Hy(z,¢&, t)m

=To(t) %v(:p)

v(&)dg

This proves (6.6). Now, (6.3), (5.3) and (A8p) yield
i (=tB)"

n!
n=0

— | Ho(w, & ) Pru(e)de = /R Hao, €, 0(€)dE, > 0.

R4

Too(t)v(x) =To(t) v(z) = To(t)e Plo(z)

Finally, T (0)v(z) = v(x) follows from (6.3) and (6.6), since To(g)(O)’l}(:L‘) = v(x)
and TO(Z,L)(O)v(x) =0 forn > 1. O

Simultaneous diagonalization of A and B. Note that if A, B € CM" are diago-
nalizable matrices then A and B commute if and only if A and B are simultaneously
diagonalizable (over C), [53, Theorem 1.3.12]. Therefore, condition (A8p) ensures
that the matrices A and B commute. Moreover, also the inverse A~!, that exists
by assumption (A2), commutes with the matrix B. Furthermore, this yields that
A~% and B commute and also that B and exp(A~') commute by an application of
the Baker-Campbell-Hausdorff formula. Combining these facts we obtain that

Hy(x,&,t)B = BHy(z,6,t), x,& €RY >0,

ie. [B,Hy(x,&,t)] := BHo(x,&,t) — Ho(x,&,t)B = 0.
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As already mentioned after Theorem 4.4, the situation changes dramatically if
the assumption (A8p) is not satisfied. In this case the kernel Hy and B in general
do not commute: Consider X, X5, Y € CM¥ then the Hadamard lemma states
that

= 1 1
MYe ™ =N —[X1,Y], =Y+ [X,Y]+ = [ X4, [ X, Y]]+
€ € Zm![la ]m +[ 15 ]+2[ 17[ 15 ]]+ )

m=0

where [ X, Y], =Y, [X,Y], = [X,Y] = XY - YX and [X,Y],, = [X, [X,Y]mfl].
This yields the following formula

X0eMY = Y XpeMt 4 [Xo, V] X Z — X5 [Xy, Y], e,

which we must apply for

d
2

Xy = — (4A)7" |z —¢|?, X, = (4mtA)2, Y =B

Theorem 6.3 (Boundedness on LJ(RY, CN)). Let the assumptions (Al), (A2),
(A5) and (A8g) be satisfied for 1 < p < oo and K = C. Then for every ra-

dial weight function § € C(R R) of exponential growth rate n > 0 and for every
v e LH(RY,CV)

(6.7) I Tee®)ol gz ey < Calt) [l gacry >0,
68)  IDTw®)ll ygacy) < OO lollgracw, >0, i=1,....d,
69)  IDDT(t)0lmecn) < Col®) el gy + 8> 0,05 = 1,.sd,

where the constants Cyyp/(t) are from Section 4.3 for every |B| = 0,1,2, i.e.

. d 1 d+1 op (L3 z
ot () At (2]
1 i
C ( ) CG bOt tamm 2 |: 3 ( 7_7 )
OB

2]
i)

_ d+2 1
Cs(t) —CyM 5" e b0t (tamin) " [ 1 <—, 5 Ht)
r(s) 2
I (42) d+3 3 bij 1 d
+2 F(g) (th)QlFl (T;i;ﬁt) +7]M 1F1 (_7_7"it)
I (4L d+1 3 g
-1 2 2.
+5UM F(g) (Ht)QlFl (Taﬁv"it)}
In case p = oo they are given by Cypp(t) with p = 1, where M := = e > 1

[B]+d+[8]=1 min€0
—plBl+d+
Tef(boff)

and Kk = % > 0. Note that Cyyp(t) ~ ast — oo and

Cyyp|(t) ~ =% ast—0 for every |B] = 0,1, 2.
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Proof. Using the semigroup representation from Theorem 6.2, the proof can be
adopted from Theorem 5.1, where we have to replace Ty and Hy by T, and H,, = H,
respectively. O

For the next statement we refer to [34, I11.1.3 Lemma, I1.1.4 Theorem]:

Lemma 6.4. Let the assumptions (A1), (A2), (A5) and (A8p) be satisfied for
1<p<ooand K=C.

(1) The generator B, : D(A,) C LP(RY,CN) — LP(RY,CN) is a linear, closed and
densely defined operator.

(2) For every v € D(A,) andt > 0 we have

Tw(t)v € D(A,)

d
aTw(t)v =T (t)Byv = B)To(t)v

(3) For every v € LP(RY, CN) and every t > 0 we have

/t T (s)vds € D(A,)

(4) For every t > 0 we have
t
To(t)v —v :Bp/ Too(s)vds , forv e LP(RY, CY),
0

t
:/ T (s)Byuds , forv e D(A,).
0

Since (B,, D(A,)) is a closed operator on the Banach space LF(R?, CV) for every
1 < p < 00, we can introduce

o(B,) :=={X € C| A\ — B, is not bijective} spectrum of B,,
p(B,) :=C\o(B,) resolvent set of B,
R\, B,) ==\ — B,)~", for X\ € p(B,) resolvent of B,.
The next identities follow from [34, I1.1.9 Lemma].

Lemma 6.5. Let the assumptions (Al), (A2), (A5) and (A8g) be satisfied for
1<p<ooand K=C. Then for every A € C andt > 0,

t
e Mo (t)v —v = (B, — \) / e T (s)vds , forv € LP(RY, CY),
0
t
:/ e T(s) (B, — ) vds , forv e D(A,).
0
By (6.7) from Theorem 6.3 (with 6 =1, n = 0 and Cp = 1) we have

(6.10) Juw €ER A IMeo 2 11 | Toa®)ll ppr 1) € Mooe™" ¥Vt 20,

2 \%
where My, := My = (aam—ago> > 1 and wy, := —by, which gives a better estimate

as in (6.2). For the next statement we refer to |34, 11.1.10 Theorem|.
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Theorem 6.6. Let the assumptions (Al), (A2), (A5) and (A8g) be satisfied for
1<p<ooand K=C.

(1) If X € Cis such that R(A\)v := [~ e T (s)vds exists for everyv € LP(RY,CV),
then

A€ p(B,) and R(A B,) = R(\).
(2) If A € C satisfies Re A > wy, then
Aep(By), R(ABy) = R())

and

Mo

BN, Bp)ll gz, 1) < Re)l — wy,

Theorem 6.6(2) states that the half-plane Re A > w4, belongs to the resolvent set
p(B,). Therefore, the spectrum o(B,) is contained in the half-plane Re A < weo.
The spectral bound s(B,) of B, |34, I1.1.12 Definition|, defined by

—00 < 8(Bp) == sup Rel <wy = —by < +00.
A€o (Bp)

can be considered as the smallest value w € R such that the spectrum is contained

in the half-plane Re A < w.
A direct consequence of Theorem 6.6 is the following:

Corollary 6.7 (Solvability and uniqueness in LP(R?, CV)). Let the assumptions
(A1), (A2), (AB) and (A8p) be satisfied for 1 < p < oo and K = C. Moreover, let
A € C with Re XA > wyo. Then for every g € LP(RY, CN) the resolvent equation

(AL~ B,)v=g

admits a unique solution v, € D(A,), which is given by the integral expression

v, = R(\)g —/OO AT (s)gds

/ / He g(€)déds.

Moreover, the following resolvent estimate holds

(6.11)

Mo

< Roh— we 191l 2o (e o) -

||U*||Lp(Rd,tcN) X
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Green’s function of B,. Let the assumptions (A1), (A2), (A5), (A8p) and (A9p)
be satisfied for 1 < p < oo and K = C. By Corollary 6.7 (with A = 0) we obtain
for every g € LP(RY, CV) a unique solution v, € D(A,) of the resolvent equation

By =g

which is given by (6.11). We believe one can apply Fubini’s theorem in (6.11) to
obtain

(o) = = (RO @) = [ Gl ate)ds

= —/OO Ho(x,&,s)ds
0

denotes the Green’s function of B,. In particular, by Corollary 6.7 with A = 0 the
following resolvent estimate holds:

where

Mo

”U*HLP(Rd,(CN) S —— ”g”LI’(Rd,CN) :

6.2 Exponential decay

In this section we prove a-priori estimates for the solution v, of the resolvent equa-
tion (Al — B,)v = g in exponentially weighted LP-spaces. We show that the so-
lution v, € D(A,) decays exponentially (at least) with the same rate as the inho-
mogeneity g. Note, that this result needs neither an explicit representation for the
domain D(A,) nor for the infinitesimal generator B,. But the proof requires the
integral expression for v, from Corollary 6.7, that needs the explicit representation
for the semigroup (Te(t)),, from Theorem 6.2. The proof of the following result
is similar to that one of Theorem 5.8.

Theorem 6.8 (A-priori estimates in L)(R?, CV)). Let the assumptions (A1), (A2),
(Ab) and (A8g) be satisfied for 1 < p < oo and K = C. Moreover, let 0 < v < 1
and A € C with Re A > wy. Then for every radially nondecreasing weight function
0 € C(RY,R) of exponential growth rate n > 0 with 0 < n* < ﬁ% and for

every g € LY(RY, CN) we have v, € Welp(Rdv CY) with

Cq
(6.12) |’U*”L5(Rd,cN) <m HgHLg(Rd,cN) )
6.13 D <« G =1,....d
(6.13) [Divell Ly (e ey \m 91l 2z gacvy > i =1, d,

where v, € D(A,) denotes the unique solution of (A — B,)v = g in LP(R?,CN) and
the A-independent constants Cr, Cg are given by Lemma 4.8 (with w = ws ).

Proof. By Corollary 6.7 (with H(z,&,t) = H(z,&,t)) we have the representation

(6.14) / Hoo(, €, t)g(€)dédt,

Using this representation, the proof can be adopted from Theorem 5.8. In the last
inequality, we must apply Lemma 4.8 with w = wy. U



7 Variable coefficient perturbations
in LP(RY, CV)

In this chapter we apply perturbation theory of semigroups to the operator
[Lov] (z) :=AAv(z) + (Sz, Vu(z)) — Bu(z) + Q(z)v(z), v € RY d > 2,

in LP(RY,CY) for 1 < p < oo, where v : R? — CV, A,B € CVV S € Réd
skew-symmetric, Q € L* (R4, C¥") and N € N. Writing the operator as

[Lov] (2) = [Loov] () + Q(z)v(2), 2 € RY, d > 2,

Lo can be seen as a variable coefficient perturbation of the perturbed complex-
valued Ornstein-Uhlenbeck operator L., that was analyzed in Chapter 6.

In Section 7.1 we investigate variable coefficient perturbations of B, in LP(R¢, CV)
for 1 < p < oo, where (B,, D(A,)) denotes the infinitesimal generator of the semi-
group (T (t)),~o on LP(R?,CV): Consider the bounded linear operator

(7.1) F,: LP(RY, CY) — LP(RT, CV), [Fou] (z) = Q(x)v(x)

on LP(R? CY) for some 1 < p < oo and some function @ € L*(R? CV*). Then
we analyze perturbations of the form

Cy: D(Cp) € LP(RY,CY) — LP(R,CY),  [Cpo] (w) := [Byo] () + [Fp] (2).

This signifies, similarly to Chapter 6, that the infinitesimal generator B, is per-
turbed by the bounded operator F},, which means that F, is a bounded vari-
able coefficient perturbation of B,. Assuming (Al), (A2), (A5), (A8p) and
Q € L®(RYKNYN) for K = C, we show in Theorem 7.1 that C, with maximal
domain D(C,) = D(A,) is the infinitesimal generator of a strongly continuous
semigroup (Tg(t)),5, in LP(R?,CY) for every 1 < p < co. This follows directly
by the bounded perturbation theorem, [34, II1.1.3]. In contrast to the constant
coefficient perturbation from Chapter 6, we do not have an explicit representation
for the semigroup (Tq(t)),-, in this case. Nevertheless, assuming (A1), (A2), (A5),
(A8p) and Q € L>®°(R4, KMN) for 1 < p < oo and K = C, we show in Corollary 7.5
that the resolvent equation for C,, which is given by

(A[ o Cp) v=g,
admits a unique solution v, € D(A,) for every g € LP(R?,C") and A € C with
a
ReA > —by + M ||Q]] 1, where —by := s(—B) and My, := (@> *cf. (1.18).

Amin@0

This follows once more from some applications of abstract semigroup theory, [34,
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I1.1]. In particular, if we require additonally the assumptions (A3) and (A4) for
1 < p < o0, then the identification problem for C), is again solved by Theorem 5.19
and 5.25, respectively, and we obtain C, = L on D(A,) = D}, .(Ly) = D2, (Ly).
In Section 7.2 we apply the results from Section 7.1 to small perturbations
Q = Q. € L=(R?,CMV) of B,, meaning that (). is small with respect to ||| ;. De-
noting by Cj the infinitesimal generator of (Tq.(t)),-,, we then derive some a-priori

estimates for the resolvent equation ()\I — C’;) v = ¢ in exponentially weighted
LP-spaces. Assuming (Al), (A2), (A5), (A8p) and (A9p) for 1 < p < oo and
K = C and Q. € L>®(R?, CM) satisfying

b . 1 1
Q| oo < —Omm{ } = K,

3 C7’ My,
we prove in Theorem 7.6 that the solution v, belongs to VVG1 P(RE, CN) for every
g € Li(RY,CV) and A € C with Re A > —%. Note that for small perturbations the
bound Re A > —%0 does not depend on the perturbation ).. Moreover, the upper
bound of the decay rate does not depend on A any more.

In Section 7.3 we apply the results from Section 7.1 to perturbations @) €
L>*(RY,CNY) of B,, where @ falls below the constant K at infinity. Note that
such perturbations () can always be decomposed into the sum @) = Q. + Q. of a
function Q. € L*(R¢, CNV), that is small with respect to |||/, and a function
Q. € L®(R4,CNN), that is compactly supported on R?. Denoting by C, the in-
finitesimal generator of (Tg(t)),., we then derive some a-priori estimates for the
resolvent equation (Al — C},) v = ¢ in exponentially weighted LP-spaces. Assuming
(A1), (A2), (A5), (A8p), (A9p) for 1 < p < 0 and K = C, Q € L*(R? CNY)
satisfying

1 1

57, M—oo} , for some Ry > 0,

esssup |Q(z)|, < = min{
2[R0 3

A € C with Re X > —%0 and g € LH(R? C"), we prove in Theorem 7.7 that every
solution v, belongs to W, ”(R%, CN).
In Section 7.4 we investigate the essential spectrum of L. Assuming (Al)-(A5),

(A8p) and Q € L>®(R? KM) with

esssup |Q(z)[, = 0 as R — oo
|z|>R

for 1 < p < oo and K = C, we show in Theorem 7.9 that every A € C satisfying
the dispersion relation for Lo

k
det <)\[N +w2A+B+ianal[N> =0, for somew € R, n; € Z,

=1

belongs to the essential spectrum of L. As a consequence we show in Corollary 7.10
that Lg is not sectorial in LP(RY, CV) and (Tg(t)),-, is not analytic on L?(R? CV)
for every 1 < p < oc.

t=20
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7.1 Application of semigroup theory

Let the assumptions (Al), (A2), (A5) and (A8p) be satisfied for K = C, then
we denote by (B,,D(A,)) the infinitesimal generator of the semigroup (Ti()),
from (6.5) on LP(R?,CV) for 1 < p < co. The semigroup (Tx(t)),s, is strongly
continuous in LP(R?, CV) for every 1 < p < oo and satisfies

||T00(t)||L(LP7LP) < Mooewmt Vt > 07

d
with My = My = (@)2 > 1 and wy (= —bg € R. Moreover, if we ad-

Amind0
ditionally require the assumptions (A3) and (A4) for 1 < p < oo, then B, is
the maximal realization of L., in LP(R% CV) on its maximal domain, which is
D(Ap) = D{;C(Co) = Dﬁlax(‘co)’
In this section we investigate variable coefficient perturbations of B, in LP(R? C)
for 1 < p < co. For this purpose, let F, be given by (7.1). An application of [34,
[11.1.3 Bounded Perturbation Theorem, I11.1.7 Corollary and II1.1.10 Theorem]|

yields the following result.

Theorem 7.1 (Bounded Perturbation Theorem). Let the assumptions (Al), (A2),
(A5), (A8p) and Q € L= (R4, K"N) be satisfied for 1 < p < oo and K = C. Then

the operator

C, =B, +F, with D(C,) :=D(A4,)
generates a strongly continuous semigroup (1g(1)),s, on LP(R?, CN)satisfying
(7.2) 1T ()l oo 1y < MaeloxtMmlFrlewnsn)t v > g,

Moreover, for every v € LP(RY,CN) and t > 0 the semigroup (Ty(t)),, satisfies
the integral equation (variation of parameters formula)

To(t)v =T (t)v +/0 Too(t — s)F,To(s)vds,

15 unique and can be obtained by

To(t) =Y T3 (#)

where
t
TO(t) = Too(t), TS (1) = /0 Toolt — 8)F, TS (s)ds.

Simultaneous diagonalization of A and B. Note that the statement from
Theorem 7.1 remains true, if we omit the assumption (A8p). In that case, we do
not have a semigroup representation for (7(t)),, any more and the bound from
(7.2) has accordingly to be modified.
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Identification problem for C,. Theorem 7.1 states that (C,, D(A,)) is the in-
finitesimal generator of (Tg(t)),., in LP(RY,CY) for 1 < p < co. If we additionally
assume the conditions (A3) and (A4) for 1 < p < oo, then an application of Theo-
rem 5.19 and Theorem 5.25 solves the identification problem for C,, in LP(R? CV)
and we infer that

Cp=~Lg on D(A) =D (Lo) = Dya(Lo)-

Contrary to the case of constant coefficients, we cannot assume here, that Q(z)
commutes with both A and B for every x € R?, since this is in general not satisfied
in order to investigate the nonlinear problem of the Ornstein-Uhlenbeck operator.
Thus, we are not able to derive a closed form for the representation of the semigroup
(Tq(t)),5¢- In particular, it is not possible in this case to optimize the boundedness
property of | To(¢)|l 2z 1y from Theorem 7.1.

An application of [34, I1.1.3 Lemma, 11.1.4 Theorem| yields the following result:

Lemma 7.2. Let the assumptions (A1), (A2), (A5), (A8p) and Q € L™ (R KNN)
be satisfied for 1 < p < oo and K = C.

(1) The generator C, : D(A,) C LP(RY, CN) — LP(RY CY) is a linear, closed and
densely defined operator.

(2) For every v € D(A,) andt > 0 we have

To(t)v € D(Ay)

d
ETQ(t)U = TQ(t)CpU = CpTQ(t)’U

(3) For every v € LP(RY,CN) and every t > 0 we have

t
/ To(s)vds € D(A,)
0
(4) For every t > 0 we have
t
To(t)v —v :C’p/ To(s)vds , forv € LP(RY, CY),
0
¢
:/ To(s)Cpuds , forv e D(A,).
0

Since (C,, D(A,)) is a closed operator on the Banach space LP(R?, CV) for every
1 < p < 00, we use the standard notion

o(Cp) :={A € C| A\l — C, is not bijective} spectrum of C,,
p(Cy) :=C\o(Cy) resolvent set of C,,
R\, C,) ==\ —C,)7", for A € p(C,) resolvent of C,.

The next identities follow from [34, I1.1.9 Lemmal].
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Lemma 7.3. Let the assumptions (A1), (A2), (A5), (A8p) and Q € L>(R? CNV)
be satisfied for 1 < p < oo and K= C. Then for every A € C and t > 0,

t
e MTo(t)v —v = (C, — \) /0 e M To(s)vds , forv € LP(RY, CN),

_ / NT(s) (Cy— M)vds  forv € D(A).
0

The following statement comes from [34, I1.1.10 Theorem].

Theorem 7.4. Let the assumptions (A1), (A2), (A5), (A8g) and Q € L>(RI KNY)
be satisfied for 1 < p < oo cmd K=C.

(1) If X € Cis such that R(\)v := [~ e *Tg(s)vds exists for everyv € LP(R?,CV),
then

A€ p(Cp) and R(NC,) = R(M).
(2) If A € C satisfies Re A > woo + M ||Q|| o, then
A p(Cy), RONGy) = (M)

and
M,
Re A — (Woo + My HQHCb)

Theorem 7.4(2) states that the half-plane Re A > wy + Mo [|@|| - belongs to
the resolvent set p(C),). Therefore, the spectrum o(C)) is contained in the half-
plane Re A < wo + Moo ||@Q]| ;- The spectral bound s(C,) of C,, |34, I11.1.12
Definition|, defined by

—00 < 5(Cp) := sup Re < weo + My Q| oo < +00
A€o (Cp)

IR Co)ll o(ze ) <

can be considered as the smallest value w € R such that the spectrum is contained
in the half-plane Re A < w.
A direct consequence of Theorem 7.4 is the following:

Corollary 7.5 (Solvability and uniqueness in LP(R?, CV)). Let the assumptions
(A1), (A2), (A5), (A8p) and Q € L®(RY KNN) be satisfied for 1 < p < oo and
K = C. Moreover, let X € C with ReA > woo + My ||Qll ;- Then for every
g € LP(R4,CN) the resolvent equation

(M —-Cyv=yg

admits a unique solution v, € D(A,) which satisfies the integral expression

v, = R(N)g :/ e M To(s)gds
0

- /OOO /]Rd e M Huo(, €, 5) (9(€) + Q(€)v.(€)) déds.

Moreover, it holds the resolvent estimate
< Mo
”U*HLp(Rd,CN) S ReA — (woo + Mo 1] ) ”gHLP(Rd,(CN)'
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7.2 Exponential decay for small perturbations
Let us consider the operator
[Lo.v] (z) = ADv(z) + (Sx, Vo(x)) — Bo(z) + Q. (z)v(z), v € RY d > 2,

for some sufficiently small Q. € L°(R? CM). Assuming (A1), (A2), (A5) and
(A8p) for 1 < p < oo and K = C, we can apply the results from Section 7.1. In the
following we denote by (C5, D(A,)) the infinitesimal generator of (Tg. (t)) =0 We
suggest that if we additionally require (A3) and (A4) for 1 < p < oo, then we can
replace the generator C¢ by L, and its domain D(A,) by Dy, (L) and DL, (L),
respectively.

The next theorem yields a-priori estimates for the solution of the resolvent equa-
tion ()\[ — C;) v = ¢ in exponentially weighted LP-spaces. This requires the ad-
ditional assumption (A9g). We show that for sufficiently small perturbations Q.
the solution v, € D(A,) decays exponentially (at least) with the same rate as the
inhomogeneity g.Note that the bound Re A > —%0 does not depend on the pertur-
bation (). as in Corollary 7.5. Moreover, the upper bound for the decay rate does
not depend on A any more. The proof is based on an application of Corollary 7.5
and Theorem 6.8.

Theorem 7.6 (A-priori estimates in L)(R?, CV)). Let the assumptions (A1), (A2),
(A5), (A8p) and (A9p) be satisfied for 1 < p < oo and K = C. Then for every
0 < ¥ < 1 and for every radially nondecreasing weight function 0 € C(R4 R) of
exponential growth rate n = 0 with 0 < n* < U3 “Ob‘;g , for every Q. € L>*(R®, CNY)

with ||Qz|| po < %Omin {C%, MLOO}’ for every A € C with Re A > —%0 and for every
g € LH(RL, CN) we have v, € W, P (R? CN) with
Cy
(7.3) [0xl o @a oy <m 191l Lo e ey »
V20 .
(4) IDlyeem < ligoenyi= 1

(Re A + Zo)

where v, € D(A,) denotes the unique solution of (A\[ —C5)v = g in LP(R?,CY) and
the A-independent constants C7, Cys are given by Lemma 4.8 (with w = wy, ).

Proof. 1. Existence and uniqueness in LP(R? CV) (by Corollary 7.5): First we show
that there exists a unique solution v, € D(A,) of (A\[ — C%)v = g in LP(R?, CY).
Since 6 is nondecreasing we have g € LL(R?, CV) C L”(R‘f, C"). Moreover, from
Re A > —%0, the choice of Q. and by > 0, cp. (A9p), we obtain

2

500+ Mo [|Qell e > woo + Moo [ Qell o 0 2= —bo.

bo
ReA> —— > —
¢ 3
Thus, the statement follows directly from Corollary 7.5. In order to verify that this
v, belongs to W, ?(R%, CN) and satisfies the inequalities (7.3) and (7.4) we must
analyze (A — CS)v = g in Ly(R?,C").
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2. Existence in L)(R?, CN) (by fixed point argument): Consider the fixed point
equation

= (M —B,)'g+ (M —B,) ' Qv =: Fuv
in LH(RY, CV). Since Re A > —%0 and by > 0 we obtain Re A\ > —by and

0< 2<Q92 aobo — aobo Y agp _@ <Q9(IQ(R€)\—|—()0>
ST T T e U3 20 D?

Thus, for given v € L§(RY, C) an application of Theorem 6.8 implies F'v € D(A,)
and Fv € L§(R?, CV). Moreover, the linear part of F' is a contraction since (6.12)
yields

| = By Quolly <allolly, Vo e THRYCY)

with Lipschitz constant

bo
1Qcll e € 5 <5 <L

0<qg:i= ———
¢ Re A + b

DO | —

Re)\—i-b

The last inequality follows from Re\ > —%0 and the choice of ().. Hence, by

the contraction mapping theorem F has a unique fixed point u, € LJ(R? CV)
which even belongs to D(A,) and satisfies (A\I — C5)v = g in Lj(R? CV). Since
Ly(RY,CN) € LP(R?,CY) both v, and u, solve (A\I — C5)v = g in LP(R? CV)
and by uniqueness we deduce v, = u, in LP(R4, C"). Moreover, we conclude that
v, = u, € LH(RY, CV).

3. Lj- and VVQ1 P_estimates (by contraction mapping principle and bootstrapping):
The Lj-estimate (7.3) follows from the contraction mapping principle and

1 Re A\ + by Cy
* p — * D < - FO VNG
[oall Ly = Il e - 1FOllp < &2 N+ b= Cr [0~ Rex 1 by gl e
Cy
WHQHL

Finally, the VVG1 P_estimate (7.4) is proved by bootstrapping using the inequalities
(6.13) and (7.3) for every i = 1,...,d

Cs
1Dy S——— llg + Qval
" ReA + bo)? b
08 (
< (llgllug + 1@l el zz)
(Re)\+bo)% Lh L Ly

LS B L R AT
T (ReA+bp)? oy ¥ 3C7Re A + %o g

1

. Cg (Re)\+b0 )5 H ” < \/508
— : b < —
(Re A+ 2n)7 \ReA+ 2 "
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For the last inequality we used Re A < —%0 and

bo
Redt+bo 1, 5
Re A + 2o Re ) 4 20
This shows that v, € W,”(R?, CN). O

7.3 Exponential decay for compactly supported
perturbations

Let us consider the operator
[Lov] (x) :=AAv(x) + (Sx, Vo(z)) — Bu(x) + Q(x)v(z), z € R, d > 2,

for some Q € L®(RY CM") and let us assume for the moment that Q can de-
composed into Q@ = Q. + Q., where Q. € L>*(R? CM) is small with respect to
|-l and Q. € L°(R?, CMY) is compactly supported. Such a perturbation Q. is
also called a compactly supported perturbation of £y_. Assuming (Al), (A2),
(A5) and (A8p) for 1 < p < 0o and K = C, we can apply once more the results
from Section 7.1. Let (C,, D(A,)) denote the infinitesimal generator of (T (t))

in LP(R? CY), then using @ = Q. + Q. we obtain for every v € D(A,)
[Cpv] (z) = [Byv] () + (Qe(x) + Qc(x)) v(z) = [Cpv] (z) + Qc(z)v(x),

where (C5, D(A,)) denotes the infinitesimal generator of (Tg, (1)), in LP(R?, CV).
This means that the relatively compact perturbation ) of B, is the same as a
compact perturbation (). of Cj. The relation will be of importance in the following
proof.

In the next theorem we prove a-priori estimates for the solution of the resolvent
equation (A — C,)v = ¢ in exponentially weighted LP-spaces. We show that for
perturbations (), that falls below a certain threshold in the far-field, the solution
v, € D(A,) decays exponentially (at least) with the same rate as the inhomogeneity
g. Similar to Theorem 7.6, the bound Re A > —%0 does not depend on the pertur-
bation (). as in Corollary 7.5. The main idea of the proof is to combine the results
from Corollary 7.5 and Theorem 7.6.

Theorem 7.7 (A-priori estimates in L (R?, CV)). Let the assumptions (A1), (A2),
(AD), (A8p) and (A9p) be satisfied for 1 < p < oo and K = C. Then for every
0 < ¥ < 1, for every radially nondecreasing weight function § € C(RY R) of
exponential growth rate n > 0 with 0 < n? < ﬁ%ag‘j):i%Q, for every Q € L>(R? CNV)
with

(7.5) esssup |Q(z)|, < — min{

o[> Ro 3

t=>0

1 1

o M—oo} , for some Ry > 0,

for every A € C with ReX > —%0 and for every g € LL(R* CY) the following
property is satisfies:

Every solution v, € D(A,) of the resolvent equation (\I — C,)v = g in LP(RY,CN)
satisfies v, € WP (R, CN).



7.3 Exponential decay for compactly supported perturbations 139

Proof. Let 0 < 9 < 1 and let § € C(R% R) be a radially nondecreasing weight
function of exponential growth rate n > 0 with 0 < 7* < 192 dobo_
1. Decomposition of Q): For positive real R choose a C* cut oﬁr functlo

0 ,T< R
Xr:[0,00[— [0,1] with xg(r) = ¢ smooth , R<r <2R.
1 , = 2R

Then, we decompose () as follows

Q) = Xro(|2))Q(x) + (1 = Xry([2]) Q(z) =: Qc(x) + Qe(x),

where Ry > 0 comes from (7.5). Note that Q.,Q. € L>®(R? CM) since Q €
L®(RE CYN) and g (|-]) € Cu(R%,[0,1]). Moreover, Q. is compactly supported
because Q.(z) = 0 for every |z| > 2R, and Q. is bounded by
Q| Lo a vy = X0 ([ DR Lo (g evny
= xR (- D@ oo i\ 35, o3y
|

< ”XR0< ’ )”cb(Rd\BRO,[o,u) HQ<')”L°°(Rd\BRO,(CN’N)

b b 11
min .
07 00

Now, let A € C with Re A > —% and g € Lj(R?, C") and let v, € D(A,) a solution
of (\[ —Cp)v =g in LP(R? C"), i.e. v, satisfies

(7.6) (M = C%) v, = Qevs + g, in LP(RY, CV).
In the following, we consider the problem
(7.7) (M = C%) uy = Qevy + g, in LP(R?,CY) and in Lj(R?,CY).

Our aim is to show by Corollary 7.5 that u, = v, (in LP(R% CV)) is the unique
solution of (7.7) in LP(R?, CN) and by Theorem 7.6 that u, € W,”(R? CN).

2. Uniqueness in LP(R? CV): Consider (7.7) in LP(RY,CY). Q. € L=(R? CNYN)
and A € C satisty

2
Re\ > —50 = —gbo + 3 = —gbo + Moo | Qe oo > Woo + Moo [|Qel| oo -

Hence, Corollary 7.5 (with @ = Q. and inhomogeneity Q.v, + ¢) implies a unique
solution u, € D(A,) of (7.7) in LP(R4, CV). Thus, we deduce that w, := u, — v, €
D(A,) is a solution of

(7.8) (M = C) w, =0, in LP(R?,C").

Now, we apply Corollary 7.5 once more (with Q = Q. and g = 0), which yields a
unique solution w, € D(A,) of (7.8) in LP(RY, CV), which satisfies ||w,]|,;, = 0 by
the resolvent estimate from Corollary 7.5. Hence, u, = v, in LP(R4, CV).
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3. Existence in LL(R? CN): Consider (7.7) in LL(R? CY). To apply Theorem
7.6, we only have to check that Q.v, + ¢ € LH(RY, CN): From v, € D(4,), g €
LL(R? CV) and since Q. is compactly supported in Byg,(0) we obtain

1Qcvs + gllpa,cvy < N0Qctull ozacwy + 191l g Ra cn)
= HHQCU*”LP(BQRO,CN) + ”gHLg(Rd,cN)

< ||0||C})(B2RO7R) ||(]' - XR0(| ’ |))Q||L°°(BQRO7CMN) ||'U*||LP(B2RO,CN) + ||g||Lg(]Rd,(CN)
< HeHCb(BQRO,R) HQHLW(Rd,CN’N) HU*HLP(Rd,CN) + ”gHLg(Rd,CN)

=Cl.q,Ro HU*HLp(Rd,cN) + Hg”Lg(Rd,CN)

i.e. Qu,+g € LE(RY CV). Therefore, Theorem 7.6 implies that the unique solution
u, € D(A,) of (7.7) in LP(RL, CN) satisfies u, € W, P(R?, CN). Since u, = v, in
LP(R4 CN) and since u, € W,*(R? CN) C LhH(R?, CN) C LP(R%, CV), we conclude
that v, € W,”(R? CN) as well. O

Remark. Since v, € Lj(R?, CV) solves (A — C2) v, = Qcv, + g in Lj(RY, CV), we
deduce from (7.3) that

Cr
||U*||L5(Rd,<cN) <m |Qcvx + 9||L5(Rd,<cN)

C7
<m (CG,Q,RO |’U*HLP(R¢1’((3N) + Hg”Lg(Rd,CN)> )

Similarly, using (7.4) we obtain

VaCs
1Dy <= (Coaun [0l o) + 9llzgeeacmy)
(Re A + 20)

fori =1,...,d, where the constants C7, Cy are from Lemma 4.8 (with w = w,).

7.4 Essential spectrum and analyticity

In this section we combine and extend the approaches from [15, Section 8.2, The-
orem 8.1] and [71, Theorem 2.6] to compute the essential spectrum of L in
LP(R* CY) and 1 < p < co. In order to transfer the results to the infinitesimal
generator (), it is necessary to solve the identification problem for C),. Therefore,
we restrict 1 < p < oo and require additionally the assumptions (A3) and (A4). In
[15], Beyn and Lorenz have analyzed the case p = d = 2 for K = R. The spectrum
of the Ornstein-Uhlenbeck operator in LP(R¢,R), 1 < p < oo, without perturbation
terms was studied by Metafune in |71].

First, let us introduce some notation about the spectrum of a closed and densely
defined operator, [52]:
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Definition 7.8. Let X be a (complex-valued) Banach space and let
A D(A) € X — X be a closed, densely defined, linear operator. Moreover,
let A € C.

(1) A € p(A) if and only if the following properties hold

o (M —A):D(A) — X is 1 — 1 (injective) and onto (surjective),
o (M — A)""is bounded on X.

The set p(A) is called the resolvent set of A and (A — A)™" is called the resol-
vent of A. Moreover, the set o(A) := C\p(A) is called the spectrum of A and
an element A € o(A) is called an eigenvalue of A.

(2) \g € 0(A) is called isolated if and only if

Je > 0VA e Cwith 0 <|XN—X| <e:Xep(A).

(3) The multiplicity of Ay € o(A) is defined as the dimension of the algebraic
eigenspace

{v€X|()\OI—A)k:OforsomekGN}.

(4) A € C is called a normal point of A if and only if one of the following
properties hold

o )€ p(A),
o )\ € opoint(A) :={A € c(A) | A is isolated with finite multiplicity }.

The set opoint(A) is called the point spectrum of A.
(5) The set

Oess(A) = {A € C| X is not a normal point of A}

is called the essential spectrum of A.

By definition it holds
C = p(4) U r(A4) = p(A) U (ess(4) U goima(4) )

We first give a short motivation, how we can determine the essential spectrum
of Lg, see [15, Section 8.2| for the case d = p = 2 and see [71, Theorem 2.6| for the
essential spectrum of the drift term in LP(R% R), 1 < p < oo:

The main idea for detecting the essential spectrum is to look for solutions of the
initial value problem

o, 1) = [Lqv] (¢, ), # € R > 0,
v(x,0) = vo(x), reRY t=0.
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1. Orthogonal transformation. For space dimensions d > 3 the axis of rotation
is in general not orthogonal to some plane (x;,zx), 1 < [,k < d. Furthermore, in
space dimensions d > 4 the pattern can also rotate rigidly around several axes of
rotation simultaneously. The first step is to separate the axes of rotation in such
a way that they are orthogonal to (completely) different planes. For this purpose

we perform an orthogonal transformation: Since S € R%? with ST = —S we have
o(9) C iR. Let +ioy,...,+io, denote the nonzero eigenvalues of S, 1 < k < [4],
then

3 P € R* orthogonal matrix : S = PAf . PT,

where
AS 0
AS _ Af Rdd  AS — 0 g R22
block — 0 < T T =0 0 < ’
0 0
for every j = 1,..., k. The orthogonal transformation of coordinates

z=T(y) = Py, y € R’
and 0(y,t) := v(T1(y),t) yield the transformed equation
Uiy, t) = [Lon ] (y, 1), y € RY, £ >0,
where the transformed operator is given by
[Lon ] (y,t) = AD(y, 1) + (Aga, VO(y, 1)) — Bi(y, ) + Q(Ti(y))(y, 1),
with

k
(Moacy, Vi(y, 1)) = Z o1 (YaDa—1 — ya-1Da) 0(y, t).

=1

2. Transformation into several planar polar coordinates. Since now we
have k angular derivatives in k different planes it is advisable to transform the
coordinates of every such a plane into planar polar coordinates via

(le_l) =T(r, ¢) := <7”l COS¢Z) =1,k ¢ € —m 7], r >0.

Yo 7 sin ¢y

All further coordinates, i.e. yori1,...,yq, remain fixed. Denoting the total trans-
formation by To(r1, @1, - - ., Tk, Pk, Y2kt1, - - - » Ya) We obtain from (&, t) := 0(T2(§),t)

(€, 1) = [Lomnt] (§,1), & € (J0,00[x] — m,7])" x RT2 ¢ >0,
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where £ := (11,01, ..., Tk, Oks Y2kt1, - - -, Ya) and the transformed operator is given
by
k 1 1 d
(Lo (§,1) =A > (631 O+ T—lza;l) + Y 8] B(¢,1)
=1 =2k+1

— > 010,,0(8,t) — Bo(&, 1) + Q(T1(T2(6))) (&, 1).

3. Simplified operator (limit operator, far-field operator). Since the essen-
tial spectrum depends only on the limiting equation for |z| — oo, we let formally
r; — oo for every 1 <[ < k and obtain

0 (&,1) = [£3%,0] (€.1), € € (0, 00[x] —m,7)" x R**, £ >0,
with the simplified operator

k d k
Y+ > ajl] D& ) = Y 010,0(, 1) — BH(E, 1),
=1 =1

1=2k+1

[ %I}Qﬂ (f,t) =A

where we assumed that sup, - |Q(z)] — 0 as R — oo.

4. Temporal Fourier transform. In order to eliminate the time derivative we
perform a Fourier transform with respect to the time variable t.  From

0(€) == e M(&, 1), A € C, we obtain
[(AT = £35.) 0] (€) = 0, € € (10, 00[x] — 7, 7])" x R,

5. Angular Fourier transform. Using a Fourier transform with respect to the
space variable &, we eliminate all spatial derivatives, including radial and angular
derivatives. For this purpose, we choose

k

. k
0(§) = exp (% Zn) exp (iznmﬁz) v,m €Z weR, veCY, v =1,
=1 =1

o€l —mml,r>0,1=1,... k,

that is sometimes called the angular Fourier decomposition. This yields

[()\[ — ACZ?}Q) f]] (f) = ()\[N + w2A +ianal[N —+ B) f](f)

=1

The angular Fourier decomposition is a well-known tool for investigating essential
spectrum, also in case of spiral waves, see [38|.

6. Finite-dimensional eigenvalue problem. Hence, [(A] — Ezifln) o] (&) =0
for every £ if and only if A € C satisfies the following finite-dimensional eigenvalue
problem
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Theorem 7.9 (Essential spectrum of Lg). Let the assumptions (A1)—(Ab5), (A8p)
and Q € L>®(RY KNN) with

Ng = esssup |Q(x)], = 0 as R — oo
|z|>R

be satisfied for 1 < p < oo and K = C. Moreover, let \;j(w) denote the eigenvalues
of WPA+ B for j=1,...,N. Then every number A\ € C with

k
(7.9) )\:—)\j(w)—ianal,nlGZ,wER,jzl,...,N,

=1

belongs to the essential spectrum of Lg in LPF(RY,CN), i.e. N\ € 0es(Lg).

Dispersion relation for £g. The dispersion relation for Lo in LP(RY, CV) with
1 < p < oo states that every \ € C satisfying

k
det <)\[N +w2A+B+ianallN> =0, for somew € R, n; € Z,

=1

belongs to the essential spectrum of Ly, i.e. A € 0es(Lg). This condition is
necessary for the localization (and the existence) of the essential spectrum. Note
that we have not proved that every A € oes(Lg) can be represented as in (7.9).

Essential spectrum at localized rotating waves. Later on, in Theorem 9.10
we apply Theorem 7.9 to the linearized operator

[Lv] (z) = ADv(z) + (Sz, Vu(z)) + D f(vi(x))v(z)
with
—B=Df(vx),  Qx)=Df(vi(x)) = Df(vs), x € RY,

where v, (z) denotes the profile of a localized rotating pattern. This is motivated
by the fact, that the essential spectrum of £ provides informations about the linear
(or spectral) stability of £ at localized rotating waves v,.

Density of essential spectrum in a half-plane. Consider the set

k
ol (Lg) = {)\ € C | det (MN +w2A+B+ianallN> =0, weR, e Z} .

=1

Theorem 7.9 shows that oP"(Lg) C 0es(Lg). Moreover, we have the inclusion
oPT(Lg) C{X € C|Re A < —by}, where by = —s(—DB). If there exists o, 0, such

€ss

that 0,0,,! ¢ Q then o27(L) is dense in the half-plane {\ € C | Re A < —bg}, i.e.

o (Lo) = {A € C|Re X < —by}. Otherwise oP2*(Lg) is a discrete subgroup of
{A € C|ReA < —by} (independently of p). The reason for this conclusion is given
by Metafune in |71, Theorem 2.6]: There, it is proved that the essential spectrum of

the drift term is dense in iR, i.e. 0es((Sx, Vu(x))) = iR, if and only if there exists
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Om, Om such that 0,0, ¢ Q. Otherwise, oo ((Sx, Vu(zx))) is a discrete subgroup of
iR (independently of p).

Effect of assumption (A9z) on the location of essential spectrum. If we
require in addition the stability condition (A9g), then by = —s(—B) > 0. Hence,
ReAj(w) > 0 and thus 622" (Ly) € {A € C|ReA < —=by} € C_, where C_ :=
{Ae C|ReA < 0}.

Figure 7.1 illustrates the set o22(Lg) in the scalar case for A =1 (1 +1), B =1

ess 2

and @ = 0. Figure 7.1(a) shows the part of the essential spectrum of Ly for

o1 = 1.027 and space dimension d = 2 and d = 3. In this case o22*(Lg) forms a

zig-zag curve, see [15] for d = 2, and is not dense in {\ € C | Re A < —1}. Note that
o2 (Lg) can only be dense in {A € C|ReX < —1} for space dimensions d > 4.

Figure 7.1(b) shows the part of essential spectrum of Ly for oy = 1, 0y = 1.5
and d = 4. The eigenvalues o1, oy satisfy 01051 € Q and agafl € Q. Thus, the
set P2 (Lg) is not dense in {A € C|ReX < —1}. Figure 7.1(c) shows the part

ess

of essential spectrum of Lg for o1 = 1, 09 = %exp(l) and d = 4. In this case,
the eigenvalues oy, 0y satisfy o105, ¢ Q and 090, ' ¢ Q. Thus, the set oP¥(Ly)

is dense in {)\ € C|ReX < —%} This shows, that also the essential spectrum
Oess(Lg) changes dramatically depending on the eigenvalues of S.
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Figure 7.1: Essential spectrum of L for parameters A =
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Proof. 1. Let R > 2 be large and let yg : [0, 00[— [0, 1] be a cut-off function such

that xr € C*([0, ool, [0, 1]) with bounded derivatives independently of R and
(0 . rel0,R—1],
e0,1] ,re[R—-1,R],
xr(r) =<1 .1 € [R,2R)],
€0,1] ,r€2R,2R+ 1],
0 re 2R+ 1, 00].
2. Define

vg(§) = <HXR T ) xr(|Z])v(€)
— (H Xr(T1) ) xr(|Z]) exp <ZWZ77> exp (iznl¢l> v,

=1

where 7 := (Togy1,--.,7a), &= (11,01, -, Tk, Ok, T), m € Z, w € R, 0 € CV with
0| =1, ¢ €] —m,mw], ;,>0and [l =1,..., k. By definition of xg we have

(7.10) (M = £GT7,) vr(§) =0,

whenever |Z| € [0,R — 1JU[2R + 1,00[ or r; € [0, R — 1] U [2R + 1, 00[ for some
1 <1 < k. Moreover, by the choice of A and by definition of yr we have

(7.11) (M — L37T,) vr(£) =0,

if |z],7 € [R,2R)] for every [ =1,... k.
3. By the choice of A,

92 (xr(r)e i””) = YR(r ) W 2iwx R (1) e + xr(r)on e L =1,.. .k,
2

a;, (xr(2])) = W Xr(|Z]) + E ‘2 Xe(Z]), l=2k+1,....d,

the triangle inequality, \XR('/’)\ L X&(r) < lIxgllcz: X&(r) < Ixallce, l0(§)] =1
and ‘—;I < %1 < 1, since R > 2, we have

X R
(A[ o SQHE“Q) UR(&)‘

|
‘()\I—A ; Z

=2k+1

‘(ﬁXR("ﬂ) xr(|Z]) <M A

=1

+Zala¢l+3> <HXR Tz)XR |Z|)v(g )i

=1
+ Z 0y, + B) v(€)

SRS SRS

1=2k+1

~
=0 (by the choice of \)

k k
— A" (xXh(r) + 2iwx(m) (H me)) xa(l#)o(€)
=1 =1

J#l
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<[4l Z IXR ()] + 2|w] xR ()| <H|XR r5) ) IXr([Z[)]v()]

J#l

1AL, (%mq NEA )(H\XR ") )\v )|

<[Aly (B(1+ 2[wl) +|d = 2k = 1] + 1) [[xzllcz = €,

for every |Z|,r, € [R— 1, RJU[R,2R]U[2R,2R+ 1] and 1 < [ < k.
4. Furthermore, we have by the definition of xg, [v(£)|? = 1 and by the transfor-
mation theorem

ol sy = [ fon(o) da
R4

:/000 /:/Ooo /: /Rd_% (ﬁm) () drdgrdry - - - dprdry

k

S A S A | O[22

2R+1 2R+1
LT )
-7 JR=1<[Z|<2R+1 \ |4
2R+1 T
:/ / /TJX%(Tl)dﬁbszz
R—1<|1|<2R+1 —

([ ey / Glaais [ i)
R—1<|#|<R~—~~— R<|%|<2R ==~ 2R<|#|<2R+1 H>6—’

>0 =1
k R 2R 2R+1
-H%( [ natnydn+ [ rgoan+ [ nx%(m)drl)

k 2R k
>/ ldz - H 27T/ ridr; = CRdH 3rR* = (37) kO R2k+d — CRY,
R<|Z|<2R =1 R 1

where d¢ = dideydry - - dpidry and d := d — 2k denotes the dimension of the
Z-integral. Moreover, we used the following formula with « = R and b = 2R

1 ,d=0,
(7.12) / =0 4=l
aslal<b oprz M) G

5. Furthermore, we have by (7.10)

8 = £33) ey = [ 1OV = £33) o)



148 7 Variable coefficient perturbations in LP(R¢, CY)

:/0“’ /W/OOO /W/R <ﬁm> (M — £, vr(©)|” diddydry - - - debydry

=1

/2R+1/ /2R+1/7;/RKﬂgzm1 (H )}(,\] £i) vr(€)[" d¢

Defining d := d — 2k we distinguish between the following cases:
Case 1: (d =0). From step 3, (7.11), the multinomial theorem,

R 1 2R 1 2R+1 1
(713) / Tld’f‘l = —(2R—1), / T‘ldle —3R2, / Tld’f‘l = —(4R+1),
R—1 2 R 2 2R 2

k= %l and
(2R _ 1)j1(3R2)j2(4R+ l)js < CRj1+2j2+j3 _ CRk-i-jz < CRk—i—k—l _ CRd—l
we further obtain

2R+1 2R+1 . |
/ / / / (H Tl) ’ (AI - EEX’IITQ) vR(£) }p dzdoidry, - - - dprdry

=1

STV U (1) o

) CP(2m)k 21 (2R — 1)'(3R?)2(4R + 1) < OR.

J1+J2+J3 k (

1,72, 73

J1+J2+J3 k

1). Again from step 3, (7.11), the multinomial theorem, (7.12),
71 (3R?)72 < CR%2 and (4R + 1) < CR’* we further obtain

LAY UYL

Jit+j2+j3=k

/R—1<a”c|<R (Hn) )edzdry -+ - dry,
2 LYY

J1+iz+iz=k
J2 7k

/R o ( ) dlxd'rl dr, N
to2 (szaﬂs)( )( )</m+)

Jit+j2+jz=k

c? dxdry -+ - dr
/2R<|5c|<2R+1 <E l>< ) ' g
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. < § .)21k(23—1)11(332)ﬂz(43+1)

Jj1+je+i3=k J1, 72,73
1 L d =
72 (o) s Cr(2m)*
+ Y (. oyl (2R — 1) (3R> (4R + 1)
L~ \J1,72,73) 2F
Jj1+ietiz=k
Jjo#k
R L d=1
d—2 d_pd - P k
o nT ((2R)~ ) >0 CP(2m)

k 1
+ 0y ( . ) —(2R — 1) (3R%)™(4R + 1)
Jj1+je+iz=k J1:92:73) 2
1 . d
o 42 ((2R)?-RY)

IO

< ) ORIt 2tz td—L + ( v ) C Rir+22+js+d
h Z 317]27]3) Z J1,J25 73

1
D k
9 C?(2m)

an
WV

[SIS% NJ

ot ek J1+do+iz=Fk
SR iath
k j1+2j2+j3+d—1 d—1
+ E o CR < CRY.
. : . 1,J2,J3
Jj1+j2+js=k T

sun

6. Now, let us consider the operator L 7, instead of ,. By definition of xg we

have

(M = Lqgm,)vr] (§) =0,

whenever |z] € [0,R — 1JU[2R 4+ 1,00[ or 1, € [0, R — 1] U [2R + 1, 00| for some
1 <1 < k. Moreover, we have by the choice of A, by definition of yr and since
R>1

(AL = Lom,) vr(E)]

- (A] B %%2 AZ < Oy, + a¢z) r(§) — Q(g)vR(g)i

=1 l

_ns (la " %25‘@) uR(€) + @<§>vR<5>|

: (1 15 e

-

< Al

J=1

-

1
<Al ) (lwl + ) L
7=1

1
p

(IAI Z jw| + ) +nR> ,1<p<oo
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if |Z|,r; € [R,2R] for every [ = 1,. .,k.
7. From the choice of A, step 3, Tl < R

IXr(W)] < lIxzllce and [v(§)] =1 we obta

|(AM — LQ,TQ) vR(§)]

— |0 - ) onte) - 43 (£

=1 N\

< 1 (since R >2), & < 1, [xr(y)| <1,
l

%+%%Jw@—@@w@‘

k k

—| (V= ) vel©) = A D x| [Lxary) | xllaete)

=1 Jj=1

—AZ—W (HXR Tg)XR |Z|)v Az—ml (HXR 7’]>XR 1Z[)v(€)
(HXR (r5) )XR (1z[)v (€ )’
k
<10 - 285 e + 14, Y- o (H ) )

k k
+ |A|QZ 1l (H ) IxXr(Z)] (€]

=1 =1

k
+ |A|QZ ;= [l (H ) IxXr(Z)] (€]

=1

+ 1@l L (H IXR(Tj)I> Ixr(Z])] [o(€)]

k
<C +[A] <k‘ IxRllez + kol + D Il + ||Q||LOO> =C,

=1

Ed

for every |Z|,r, € [R— 1, R]U[R,2R]U[2R,2R+ 1] and 1 <[ < k.

8. Hence, we obtain from the transformation theorem and step 6
I = £0) vl g e

_ /R (M = Lo) vr()|” dz = /R (M = Lom,) vr(z)[ d

[ (H) (O — Lom) vale) P de
N T N

Using the abbreviation d := d—2k we distinguish again between the following cases:
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Case 1: . From step 6, step 7 and (7.13) we deduce

), m/ / m/ (13 )|;
" sz;ﬂg <91792793> < ) < )D (/;RH)JS cr (Hn> (2m)*dry - - - dry

k

/ / (2m)* Z(H )\Alz (ool + [maf?)

l =
£l

<H Tl) nrdry, - - -dr; + C R
b 2R k
Z Al (] + | / / Hrjdﬁ Cdr
-1 -
il

+<2w>’fnR/2R---/R2R<
k

=3 (@) Al (o] + [ml?) H / d) / dr,
J?él

=1

Z Al IWI +lml®)

r| dordry - - - dpdry

Il >
,_.z

rl> dry---dr, + CR™!

k  r2R
+ (2n)*nR H/ rydr; + CR!
/R

- <§kj<2w>’f AL, (1] + ) (2) R) + @m0 (2)3 L OR®

=1

<CR¥! + CR%p.

Here we refer to case 1 from step 5 for an estimate of the sum.
Case 2: (d > 1). From the procedure used in case 2 from step 5 and in case 1 and
(7.12) we obtain

S 1) 3

+ CORYT

3 Al ( \WI +l’)

=1

< (CR* ™'+ CRnp) / di + CR™!

R<|Z|<2R
gCRZkfler 4 CRdfl + CR2k+an — C«Rdfl 4 CRdT]R.

The constant C'R! in the first inequality comes from an estimate of three sums,
compare case 2 from step 5. For the second inequality compare case 1.
9. Define

UR
WR ‘=

e LP(R?,CY),

[vRl Lo ra,cv)
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which belongs to LP(R4, CV) by step 4, then we obtain from step 4 and step 8

(AL — ‘CQ),UR”I[)/P(]Rd,(CN)

I\ = £o) g ) 15
URHLp(Rd’(CN)

_CR"' 4+ CRYy _ C

R :§+nR—>0asR—>oo.

10. Hence, we must have
A€ a(Lg) or (M —Lo)™" is unbounded on LP(R?, CV).

If A= —)\(w) =i 7, moy € 0(Lg), i.e. \is an eigenvalue of Ly, then varying
w € R shows that A cannot be isolated, i.e. Aisnot a normal point of L. Therefore,
all such numbers A belongs to the essential spectrum of Ly, i.e. A € dess(Lg). O

The next Corollary states that for every 1 < p < oo the semigroup (T(?)),-,
is not analytic on LP(R%, CV), 1 < p < oo, whenever S # 0. We refer to [10§]
and also to [71] and [83] for the scalar real-valued case. We refer to [34, 11.4.5],
for a definition of an analytic semigroup, and to [34, 11.4.1], for the definition of a
sectorial operator.

Corollary 7.10 (Analyticity of (T(1)),5,)
with S # 0 and Q € L= (RY KNN) with

. Let the assumptions (A1)—(Ab), (A8p)

ng = esssup |Q(x)], = 0 as R — oo
|z|>R

be satisfied for 1 < p < oo and K = C. Then the operator Lg is not sectorial
in LP(R?,CN) and, consequently, the corresponding semigroup (Tg(t)),., is not
analytic on LP(RY CN).

Proof. We show that Lg is not sectorial: For this purpose, we verify that
V4 €)o, g] IN € Nxy, = {)\ e C | larg(\)] < g + 5} {0} A € ges(L0),

ie. A& p(Lg). Let 6 €]0, 7] and let A € C be chosen as in (7.9). Let us fix w.lo.g.
je{l,...,N},w=0and ny,...,np = 0. Then X has the form \ = —p —iny0; for
some p € o(B). Choose n; € Z so large, that A € ¥z ;. Now, Theorem 7.9 implies
A € 0es(Lg), hence X ¢ p(Lg). Thus, Lo cannot be sectorial in LP(RY, CY) and,
consequently, the semigroup (Tg(t)),., cannot be analytic on L” (R4, CN) by (34,
Theorem I1.4.6]. Note, that the proof needs that o; # 0 for at least one such [, that
is guaranteed by the assumption S # 0. O

The case S = 0. A crucial part in the proof of Corollary 7.10 plays the fact
that S # 0. The assertion is in general not true for S = 0: Consider for example
the simplest case S = B = @ = 0 with A = I, then it is well known that the
corresponding diffusion semigroup is analytic on LP(RY, C") for every 1 < p < oo.
This result remains valid for arbitrary diffusion matrices A € CV satisfying the
assumptions (Al)-(A4) for 1 < p < 0.



8 Nonlinear problems and complex
Ornstein-Uhlenbeck operators

In this chapter we investigate the nonlinear problem
(8.1) ANv(z) + (Sz, Vo(z)) + f(v(z)) =0, z € RY, d > 2,
for the complex Ornstein-Uhlenbeck operator

[Lov] (z) := ADNv(x) + (Sz, Vu(z)), v € R,

in LP(RY,KY) with A € KMV, skew-symmetric matrix S € R%? nonlinearity
KV KNV and v : R — K" for K € {R,C} and N € N.

In Section 8.1 we consider the nonlinear problem (8.1) for K = R and prove
the main result from Theorem 1.8. Assuming (A4)-(A9) for 1 < p < oo and
K = R, we prove in Theorem 1.8 that v, — v, and its derivatives up to order 1
decay exponentially in space at a certain rate, whenever v, is a classical solution
of (8.1) such that v, € LP(R? RY) and v, — vy falls below a certain threshold in
the far-field. The proof is based on an application of Theorem 7.7, that requires
the identification of the generator C), and its maximal domain from Theorem 5.19.
For a detailed treatment of this result we refer to Section 1.2. For an outline of the
proof see Section 1.3.

In Section 8.2 we consider the nonlinear problem (8.1) for K = C whose nonlin-
earities are of the form

F1C¥ 5, f() =g (jul)u.
where g : R — CM is a sufficiently smooth function. Assuming (A4) and (A5) for
1 < p < oo and K = C and assuming some additional properties for the function
g, we prove in Corollary 8.1 an extension of Theorem 1.8 to complex systems. The
proof is based on an application of Theorem 1.8. For this purpose we transform the
N-dimensional complex-valued system (8.1) into a coupled 2N-dimensional real-
valued system.

8.1 Proof of main theorem

We are now able to prove our main result from Theorem 1.8:

Proof. Let 0 < 9 < 1 be fixed, 1 < p < oo and # € C(R% R) be a radially
nondecreasing weight function of exponential growth rate n > 0 with

0<n?< ﬁ%a?‘z:i;g, where .y, ao and by are from (1.18).
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1. Let v, denote a classical solution of (1.20) satisfying v, — v, € LP(R? RY) and
(1.19). From Taylor’s theorem, (A6) and (A7) we obtain

f(0e(@)) = [(vao) + D f(vs0) (04(2) — veo)
—_— ==

=0 =:—B

+ /0 (Df (Voo + (vs(2) = Us0)) = Df (00)) di (v4() = vo0)

2. Defining w, := v, — vy then w, € C*(RY RY) N CL(RY,RY) N LP(RY, RY) since
v, is a classical solution of (1.11) and v, — vy, € LP(R? RY), and we obtain

0 =AAv(x) + (S, Vu(z)) + f(v(x))
=ANA (04(x) — Vo) + (S, V (0,(T) — v0))
— B (0u(7) = v0) + Q(2) (v4(2) = veo)
=AAw,(x) + (Sz, Vw,(z)) — Bw,(z) + Q(z)w.(z) = [Low,] (z).

3. In order to apply Theorem 7.7 (with C, = Lg and A = 0) we have to verify,
that the assumptions are satisfied. Note that the application of Theorem 7.7 with
C, = Lg requires additionally that the assumptions (A3) and (A4) are fulfilled,
which are necessary to solve the identification problem for C),. Let us check the as-
sumptions: Assumption (A1) follows from (A8). The assumption (A4) and (Ab) are
directly satisfied and assumption (A4) implies (A3) and (A2). Using the definition
of B, the assumptions (A8g) and (A9p) follow from (A8) and (A9), respectively.
It remains to verify @ € L*(RY, CNVY) (7.5), w, € D(A,) and Low, = 0 in
LP(R4,CV).

4. First we show that Q € L>*(R¢, CMY). From w, € C,(R% RY) we obtain

Vo0 + 1w ()] < Jvoo| + 1 |wi(@)] < voo] + lwill oo =2 B

for every z € R? and 0 < t < 1. Using (A6) this implies

Q)] < / (D f (v + tw ()], + | D f (v dt

< sup  |Df(2)]y + D f(veo)l,
zGBRl(O)

for every z € R? which is of course finite by the continuity of Df on com-
pact sets. Taking the suprema over x € R? we obtain Q € Cy (R RMY), thus
Q € L>=(Re, CNN),

5. We next verify (7.5): Let us choose Ky = Ki(A, f,vs,d, p,0,19) > 0 such that

by . { 1 1 }
8.2 K su D*f(z < —min< —, —
( ) ! (zEBKll()voo) } f( )}2> 3 07 Moo
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is satisfied, where C; = C7(A,d, p,0,9) is from Lemma 4.8, M., = My (A, d) from
(6.10), by = by(f, vo) from (1.18) and

D42, = | D*£(2)

sup ‘DQ ‘2.

veRN
[v|=1

The fundamental theorem of calculus, (A6), (1.20) and the choice of K yield
Q)]

_ /O D f (v + tw, (2)) — D f(vo0)dt

HL(RN,RN’N) =

2

— /0 /0 D? f (Voo 4 8(Uso + tw, (@) — veo) )5 (Voo + tw, () — vso)dl

2

_ / 1 / DP (0 4 st (2))ds - fuo ()t

2

/ /0 sup vaooJrst(v*( )—voo))’2ds-t|v*(x)—voo|dt

lz[>Ro

b 1 1
<K, sup }sz(z)’2 < —Omin{ }
2€BK; (Voo) 07 ()

for every |z| > Ry. Taking the suprema over |z| > Ry yields

bo { 1 1 }
sup |Q(x — min )
WRO\ @)l < 3 AN

6. Now we verify that w, € D(A,): An application of Theorem 5.19 shows
that D(Ag) = D! (Ly). Therefore, it suffices to show that w, € LP(R? CV),
w, € WIP(RY,CN) and Low, € LP(RY,CY). By assumption we know that

loc

w, = v, — Vs € LP(RLRY). Moreover, we deduce w, € W2P(R? RN) from
w, € C?*RYRY). It remains to prove that Low, € LP(RYRY): Since
v, € Cp(R4RYN) there exists a constant R; > 0 such that |v,(z) —ve| < Ry
for every x € R%. From (A6) we deduce that f is locally Lipschitz continuous, i.e.

there exists L = L(R;) > 0 such that
| (vu(2)) = f(v )| S Llv(2) = vs

for every 2 € R%. Now, we obtain from (A7) and (1.11)

| Low, ||}, / [[Low,] (x)P da:—/ [[Lovy] (z)|F dx
/ | f (ve(2))|" d —/ |f (ve(2)) — fveo) | dx < Lp/ e () — Vool dx:
Rd

=L7 [lvxe = voolze = P [Jws |7

This yields Low, € LP(R?, CN) and thus w, € DI (Ly).
7. Finally, we verify Low, = 0 in LP(RY,RY): From w, € DI (Ly) and
Q € L=®(RY,RMY) we deduce from Holders inequality that Low, € LP(RY RY).
Further, since w, € C?(RY, RY) satisfies [Low,] (z) = 0 pointwise for every z € R?,
we deduce from Low, € LP(RY RY) that Low, = 0 in LP(RY, RY).
Now, we can apply Theorem 7.7 that yields w, = v, — v € W91 P(RY,RY). O
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8.2 Application to complex-valued systems

In this section we extend the result from Theorem 1.8 to complex systems (8.1).
The proof is based on an application of Theorem 1.8

Corollary 8.1. Let the assumptions (A4) and (A5) be satisfied for 1 < p < oo and
K = C. Moreover, let g € C*(R,CNN) such that A and g(0) are simultaneously
diagonalizable (over C), o(g(0)) C C_ and define

(8.3) f:CVN=CV f(u) =g (Jul’)u

Then for every 0 < ¢ < 1 and for every radially nondecreasing weight function
0 € C(R%YR) of exponential growth rate n > 0 with

2 a,obo
0 < ﬁgaQ P

Umax; o from (1.18), by = —s(g(0)), there is a constant K1 = K1(A, g,d,p,0,9) > 0
with the following property:
Fvery classical solution v, of

(8.4) ANv(z) + (Sx, Vo(x)) + f(v(z)) =0, » € RY,
such that v, € LP(RY,CN) and

(8.5) sup |u,(x)| < Ky for some Ry > 0

|z|>Ro
satisfies
v, € WP (RY, CM).

Proof. 1. We transform the N-dimensional complex-valued system (8.4) into the
coupled 2N-dimensional real-valued system

(8.6) ArAvg () + (Sz, Vur(z)) + frlvr(z)) =0, € RY,
For this purpose, we decompose A = A; + iAy with A1, Ay € RVN v = vy + dvy

with V1,V Rd — RN, fl,fg . RQN — RN with fl(ul,u2) = Ref(u1 -+ ’iUQ),
foluy, us) = Im f(uy +iug), g = g1 + igo with g1, go : R — R¥Y and define

Ap — Al —A2 R !
R ‘= A2 Al s VR ‘= Vs

= (fe) = G o)

where Ap € R2V2N yp € R?V and fg : R2Y — R2V,

and
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2. In order to apply Theorem 1.8 to the 2/N-dimensional problem (8.6), we have to
verify, that the assumptions (A4)—(A9) are satisfied for K = R. For this purpose,
we collect some relations of A and Ag:

(87) Neo(A) <= M\Xeo(dp),

— — -1
1 B 1Y Y 1Y Y (A4 O
(8.9) Re (v, Av) = (vg, Arvr), |v| = |vr|, |[Av| = |Arvg|.

Since A satisfies (A4) for some 1 < p < 0o and K = C, we deduce from (8.9), that
Ag satisfies (A4) for the same 1 < p < oo and K = R. We casually note that if A
satisfies (A1), (A2), (A3) for some 1 < p < 0o and K = C then Ag satisfies (Al),
(A2), (A3) for the same 1 < p < oo and K = R, that follows from (8.8), (8.7),
(8.9), respectively. Assumption (A5) is directly satisfied. Since g € C*(R,CNV)
we deduce that fp € C*(R*¥ R?M), meaning that assumption (A6) is satisfied for
K = R. Choosing v,, = 0 € R?", then fr(vs) = 0 and condition (A7) is satisfied.
Since A and ¢(0) are simultaneously diagonalizable (over C), we deduce from (8.8)

that Ap and
_ (9:1(0) —g2(0)
DfR@—(gz(m gl<o>)

are simultaneously diagonalizable (over C), meaning that assumption (A8) is satis-
fied for K = R. Finally, since o(g(0)) € C_ we deduce from (8.7) that
(D fr(0)) € C_. Thus, assumption (A9) is also satisfied.

3. Let 0 < ¥ < 1 be fixed and § € C(R? R) be a radially nondecreasing weight
function of exponential growth rate n > 0 with 0 < n? < ﬂ%ag(;i‘;ﬂ, where apax, o

and by are from (1.18) with Ag and D fg(0) instead of A and D f(vs,). Moreover,
let v, be a classical solution of (8.4) satisfying v, € LP(R? C") and (8.5). Then

the function
(Re v*)
VR x = I
muv,

is a classical solution of (8.6), which also satisfies vg , € LF(RY R?") and (8.5) since
v, ()| = |vp..(x)|. Now, an application of Theorem 1.8 yields vg , € W, (R, R?N)
and thus v, € W, ?(R%, CV). O

Exponential decay for holomorphic nonlinearities. For the exponential
decay in the complex-valued case, Corollary 8.1 requires that the nonlinearity
f: CN — C¥ has the special form (8.3). The form (8.3) often arises in applica-
tions, for example in complex Ginzburg-Landau equations but also in Schrédinger
equations and Gross-Pitaevskii equations. Note that under the more restrictive
assumption that f : CV — CV is holomorphic, we can directly adopt the proof of
Theorem 1.8. But in applications the nonlinearity is often not holomorphic. For
instance, the nonlinearity of the cubic-quintic complex Ginzburg-Landau equation
is not holomorphic at the origin.






9 Eigenvalue problems for the
linearized differential operator

In this chapter we analyze the eigenvalue problem

(9.1) ANv(z) + (Sz, Vo(x)) + Df (ve(z))v(z) = Mv(z), 2 € RY, d > 2,
for the linearized differential operator

(9.2) [Lv] (z) := AAw(z) + (Sz, Vu(z)) + Df(v.(x))v(z), v € R

where v : R? — CV, A € RVN_ § € R4? skew-symmetric, f : RY — RV sufficiently
smooth, A € C and v, : R — R denotes a classical solution of the nonlinear
problem (1.11). Related to the co-rotating frame (1.16), the operator £ describes
the linearization at the profile v, of the rotating wave solution u,, cf. Definition
1.1. Investigations of the corresponding eigenvalue problem (9.1) are motivated by
the stability theory of rotating patterns, [15]. In order to investigate the eigenvalue
problem (9.1) in the complex case with K = C, we stress that N-dimensional
complex-valued systems must generally be transformed to 2/N-dimensional real-
valued systems as performed in the proof of Corollary 8.1. In this chapter we
are mainly interested in finding classical solutions (A, v) of the eigenvalue problem
(9.1). Such a solution consists of an eigenfunction v € C?(R? C") and an associated
eigenvalue A € C. Moreover, we are also interested in the exponential decay of these
eigenfunctions.

In Section 9.1 we introduce some basic definitions for classical solutions of (9.1)
and for the spectral stability of rotating waves, [38]. Decomposing the spectrum
o(L£) into the union of the essential spectrum oe(L£) and the point spectrum
Tpoint (L) gives rise to investigate both parts of o(L£) in the following sections.

In Section 9.2 we analyze the point spectrum opeimt(£) of £ and the shape of the
correspondig eigenfunctions. Assuming v, € C3(R? RY) to be a classical solution
of (1.11), we show in Theorem 9.4 that every

)\EO’(S)U{)\1+>\2 | )\1,)\2 GO'(S), )\1 %)\2}

belongs to the point spectrum opeint(L) of £ and that their corresponding eigen-
function v has the form

v(z) = (C™'% + C"™, Vu,(2)), © € RY,

for explicitly given C%* € C¢ and skew-symmetric C** € C%?. This part of
d(d+1)

the point spectrum o4 (£) contains =%— eigenvalues and is caused by the ro-

tational and translational symmetries from the SE(d)-action. Note that by the
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skew-symmetry of S, all these isolated eigenvalues are located on the imaginary
axis. In particular, we conclude that 0 € opeint(£) and that the rotational term
v(x) = (Sz, Vu,(z)) is an eigenfunction associated to the eigenvalue 0. The point
spectrum contains in general further isolated eigenvalues, but a complete charac-
terization of the point spectrum is often very delicate and will not be performed
here. The results for the point spectrum do not depend upon whether the rotating
pattern is localized or nonlocalized. This is in strict contrast to the essential spec-
trum, that depends strongly on the asymptotic behavior of the rotating wave at
infinity. We conclude with some examples for the two and three dimensional case.

In Section 9.3 we investigate the exponential decay of the eigenfunctions v, which
strongly depends on the asymptotic behavior of the pattern v, and on the real part
of its corresponding eigenvalue A\. Assuming the assumptions of our main result
from Theorem 1.8, we prove in Theorem 9.8 that v and its first order deriva-
tives decay exponentially in space at the same rate as the pattern v,, whenever
v is a classical solution of (9.1) such that v € LP(RY,CN) and A € C with
ReA > w. The proof is based on an application of Theorem 7.7, that
requires once more the identification of the maximal domain from Theorem 5.19.
We deduce that the rotational term v(z) = (Sz, Vo, (z)) belongs to W, (R% RY),
whenever v, € C3(R% RY).

In Section 9.4 we study the essential spectrum e (L) of L for exponentially
localized patterns v,. Assuming the assumptions of our main result from Theorem
1.8, we prove in Theorem 9.10 that every A € C satisfying

k
det <)\IN +w?A — Df(vs) +ianal[N> =0, for somew € R, n; € Z,

=1

belongs to the essential spectrum oq(£) of £ in LP(RY, CY) for 1 < p < oo. The
result follows directly from an application of Theorem 7.9.

In Section 9.5 we analyze the essential spectrum oes(L) of £ for Archimedean
spiral patterns vy, a special kind of a nonlocalized rotating wave with d = 2, and
formulate a dispersion relation for Archimedean spiral waves. Most of the results
from this section are not completely new and we refer to [92| and [38], but also to
[93].

9.1 Classical solutions and spectral stability

We are interested in solutions (A, v) of (9.1) in the following sense:

Definition 9.1. A function v : RY — CV is called a classical solution of (9.1)
for some \ € C, if

(9.3) v e C*RY,CY)
and v solves (9.1) pointwise.

We transfer the definition for spectral stability of traveling waves to rotating
waves, see |38, Section 3.1.2|, and introduce the strong spectral stability.
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Definition 9.2. A rotating wave solution u, : R? x [0, co[— K of (1.14) given by

ftS(

ug(z,t) = v (e (x — zy)

is called spectrally stable, if 0(£) C C_ UiR = {\ € C | Re A < 0}. Moreover, a
rotating wave solution u, : R?x [0, oo[— K¥ of (1.14) is called strongly spectrally
stable, if it is spectrally stable and every A € o(£) with Re A = 0 is caused by the
SE(d)-group action.

The eigenvalues caused by the SE(d)-group action are described in detail in
Theorem 9.4.

For rotating waves on unbounded domains it is well known that one usually derive
nonlinear stability from strong spectral stability. Note that nonlinear stability only
implies spectral stability, but in general not strong spectral stability. However,
both definitions motivate investigations of the spectrum o(L) of the linearization
L. For this purpose, we decompose (L) into

0(L) = 0ess(L) U Tpoint (L),

where 0o (L) and opoimt(£) denote the essential and the point spectrum of L, re-
spectively, cf. Definition 7.8. In the following sections we analyze these two sets in
more detail.

9.2 Point spectrum and the shape of eigenfunctions

In this section we analyze the isolated points in the spectrum of the operator £
which are caused by the group action on SE(d). It is convenient to work in the
Euclidean Sobolev space

Wl (R, KY) = {v e W*P(RYKY) | (S, V) € LP(RLKY) VS € s0(d)}

||v||Wé;il(Rd,KN) = ||U||W27P(]Rd,]KN) + SSUI()d) [(Sz, vv)”LF(Rd,KN) ; L <p<oo,
€50

which is the intersection of the spaces DF . (L) for every S € so(d), see Example

max

10.6. To investigate the point spectrum of £ we need the following Lemma.

Lemma 9.3 (Group action on SE(d)). Let v € LP(RY,KY) for 1 < p < oo and
K € {R,C}. Moreover, let the group action

a(-)v: SE(d) — LP(RY,KY), g:=(R,7) a(R,T)v
be given by
[a(R, 7)v] (z) == v(R™ (x — 7))
for g = (R,7) € SO(d) x R? = SE(d) =t G. Then, for v € Wil (RLKYN) the

derivative of a(-)v with respect to g evaluated at g = 1 is the mapping
d[a(1)v] : TySE(d) — LP(REKY), s dfa(1)v] p
gien by
dla(D)v(x)] (S,A) = — (Sz + I;A\, Vou(zx)),
where Ty SE(d) = se(d) and p = (S, )\) € so(d) x R = se(d).
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Proof. We prove the result pointwise and note that all derivatives converge in
LP(RYKN). For v € Wit (R4 KYN) the derivative of a(-)v with respect to g =

Eucl

(R, T) is given by the mapping
dla(g)v] : T,SE(d) — LP(RY,KY),  p s dla(g)v] p

where T,SE(d) denotes the tangential space of SE(d) at g. The right hand side
d[a(g)v] can be computed in a formal way as follows:

dlalg)u(e)] = 7 olo)o(x)] = g alR. 7] )
d 1 - 0 . o X
“d(R, T)U(R (x—71)) = [ﬁv(R (x — 1)), —TU<R (z — T))}

.....

where S € so0(d) is chosen such that eXp(S) R for R given by the group element
and X is defined by X(S5) := — l . Zk 141 Sie(Lie — Iy). To prove the last
equality, recall the informations about the special Euclidean group SE(d) from
Section 3. For the first term we use the definition of X (S) from above and apply
(3.1) to obtain

0 d—1 d
aS,Av (eXp ( - Z Z Sie(I, — Ikl)> (z — T))

=1 k=Il+1

=Dv(R Yz — 7)) - % (ex(s) (x — 7'))

1
=Dv(R ™z — 1)) - / 1= X(S) [aiX(S)} X da - (z — 1)
0 Sij

1
=—Dv(R ' (z—1))- / U= IXE) (15 — [)e*Xda - (x — 1)
0

forevery1=1,...,d—1and j =17+ 1,...,d. This yields

P P d—1 d
%U(R_l(;p—T)) = <asijv<exp (— Z Slk Ilk_Ikl )(l‘—T)))il .

I=1 k=l+1 =1,...,
J=1

1
:< — Dv(R Yz — 1)) - / U= XE (15— [)e**Oda - (x — 1)
0
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The second term is even simpler: From

8iTlv(R_l(:zc—T)) =Dv(R Yz — 7)) - iR_l(x_T)

=—Dv(R ' (z—71)) R ¢

for i =1,...,d we deduce

The derivative d[a(g)v] at g = 1 leads to the simple expression

da(1)v(x)] = — (Dv(x)(]ij — Ij')x> o (Dv(:p)el>

I =i+l,...d ~ 7 T i

. (mp xiDj>v<x>> 7 (Dw@f))
i=1,...,d—1 1=1,....d
J=i+1,..., d T

The unit element is 1 = (R, 7) = (I4,0) € SO(d) x R%. To guarantee the relation
exp(S) = R = I, for some S € so(d) we choose S = 0. Therefore, we have
X (S) = X(0) =0, thus e1=9X) = aX() = [, and the integral equals (I;; — I;;).
In order to evaluate d[a(1)v] at u = (S, \) € so(d) x R? we use the basis of s0(d)
from Section 3 once more and obtain for every (S, \) € se(d)

dfa(1)v(x)] (S, )

0

The following theorem gives informations about the point spectrum and the
shape of the eigenfunctions of £. As mentioned before we are not able to determine
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the whole point spectrum of £, but all eigenvalues on the imaginary axis that are
due to the SE(d)-action and their associated eigenfunctions. The procedure for the
proof is already well known in the literature, for instance for traveling waves and
spiral waves, and is based on the following algebraical observation: Considering
the nonlinear equation (1.19), one applies the group action a(g) to both sides and
takes the derivative with respect to g at ¢ = 1. This leads to a number of dH)
equations, which equals the dimension of SE(d).

Theorem 9.4 (Point spectrum of £ on the imaginary axis). Let v, € C3(R%, RY)
be a classical solution of (1.19). Moreover, let U € C4? be the unitary matriz from
(3.2), then the function v : RY — CN given by

Z Z Crt(x z:D;)o,(x) + Y Ci* Dy, ()

i=1 j=i+1 =1

— —dJa(1)v.(x)] (gtt) = (O + L,OY T, (x))

is a classical solution of the eigenvalue problem Lv = v for every O™ € C4? and
Cta ¢ C? satisfying
(A, (C™,C") = (=A7, (0, Uey)),
for somel=1,...,d, or
(A, (€™, C)) = (=A% + X0, (UL = Lna) U™, 0)),

for somen =1,....,d—1 and m = n+1,...,d. Thus, v € C*(R? CN) is an
eigenfunction of L with eigenvalue \ € 1R.

Remark. Later on we will show that the eigenfunctions v decay exponentially,
see Theorem 9.8. Moreover, it is possible to deduce from Theorem 7.7 that the
eigenvalues A are actually in the LP-point spectrum of £, i.e. A\ € opoint (L), meaning
that they are isolated and have finite multiplicity. This will be proved elsewhere
by using Fredholm theory.

Proof. 1. Let v, € C3(R% RY) be a classical solution of (1.19), i.e. v, satisfies the
nonlinear problem

0 = AAv,(z) + (Sx, Vo, (2)) + f(v.(2)), v € RL
Applying the group action a(g) from Lemma 9.3 on both hand sides yields
0 =a(g) (AAwv,(z) + (Sz, Vo, (2)) + f(v.())), v € RL

Taking the derivative % at g = 1, we obtain by Lemma 9.3

0 =d [a(1) (ADv,(z) + (Sz, Vo, (2)) + f(ve()))]

== [((%‘Dz — 2:D;) (ADv.(z) + (S, Vo (2)) + f(vi())) ) | ,
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This leads to a total of @ equations

(9-4) 0 =(z;Di — 2:D;) (ADv.(x) + (Sz, Vo (x)) + f(v(2)))
(9.5) 0 =D, (AAv,(x) + (Sz, V. (x)) + f(v(z))).

fori=1,...,d—1,j=i+1,...,dand [ =1,...,d, where d(dﬂ = dim SE(d).

2. We apply the differential expressions (z;D; — x;D;) and Dl to the nonlinear
equation and transfer them directly in front of v,(x). For this purpose we have
to investigate commutator relations between this two terms and the differential
expressions. In order to transform (9.5), we observe that

oD, (AL, (x)) = AADw,(z),
o Di (f(vi(2))) = Df(vi(@)) Divi(2),

d d
oD, (Sx,Vu,(x)) = D, Z (Sz), Div,(x) = Z {(Sx)iDl + (Se), ] D, ()
d d
Z (Sx);D;Dyv, () + Z (Ser), Divy(x) = (Sz, VD, (z)) + (Ser, Vo, (z)) ,

for every I = 1,...,d, where Se; = S,;. Similarly, for equation (9.4) we obtain

d
o AA ((;D; — :D;)v,(x)) = A D} ((2;D; — 2:D;)v.(x))
k=1
d
k=1

= A(ZEJDZ — ZL‘Z‘DJ‘)A’U*(I‘) -+ 2DiDjU*(ZL') — 2DjDi’U*(l‘)
= (2;D; — x;Dj) ADv,(z),
o(z;D; — 2:D;) f(vu(2)) = D fvu(@)) (25 Di — w:D;)vs (),

foreveryi=1,...,d—1and j =17+1,...,d. The transformation of the rotational
term (Sz, Vo, (z)) is much more involved: Using

2D Dy, () = Dy (2, Dyvg () — Opp Divs ()

and
d
xy (Sz, VD, (z)) = Z (Sz),, 2Dy Div, ()
m=1
d d
=Y (S2),, Du(xeDivy () = > (S2)k0miDiv.(z)
m=1 m=1

= (Sz, V(xDve(x))) — (Sz)eDjv,(x),
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we deduce

(z;D; — x;D;) (Sx, Vuu(x))
=z; ((Sz, VD;u,(x)) + (Se;, Vo, (x))) — x; ((Sz, VDju, () + (Se;j, Vu.(2)))
=(Sx,V((x;D; — x;Dj)v.(2))) + z; (Sei, Vuu(z)) — x; (Sej, Vu,(z))

— (Sz);Div(x) + (Sx);Djv,(x).

We now simplify the remaining four terms in the last equation. Using

d
x; (Se;, Vu(z)) + (Sx);Djve () = ; Z SniDpvy(z) + Z Sin®nDjv,(x)

n=1 n=1
d d
= — Sin.Tan’U*<37) -+ Z Sinl’nDjU*(.T) — Sijl’ijU*<.§U) + Sijl’ijU*<.§U)
= =
d
= Sin (xnDj — ;D) ve(2),
i

and analogously

- {:c (Se;, V() + (5:5)]»0@-@*(3;)} = Sjn (#Di — 2:Dy) ve(x)
i
as well as
<S€l, VU* Z Snan'U* Z Sln n'U*

and taking all into account, (9.4) and (9.5) can be rewritten as

(9.6) 0 =L ((z;D; — )+ Z Sin(wn Dy — ;D )0, ()
n#]
— Z Sin(TnDi — 2Dy ) v (),
n;éz
(9.7) 0 =L (D, (x ZSlnD e

fore=1,...,d—1,7=44+1,...,dand [ =1,...,d.
3. We now reduce Lv = Av to a finite dimensional eigenvalue problem. For this
purpose, we put the ansatz

d
= Z Z Ci'(x;D; — :Dj)v.(z) + Y CI™ Dy, (z), CR*,Cf™ € C

i=1 j=i+1 =1
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into the original eigenvalue problem Lv = A\v and transform the equation in such a
way, that we are able to require equality for every summand.

-1 d d
Z NG (25 D; — ;. D; v, (z) + Z ACF* Dy (z) = Mv(z) = Lo(x)
i=1 j=i+1 =
d-1 d d
=33 L ((wsD: — aiDyua)) + Y O (D)
i=1 j=i+1 =1
-1 d d
== > CE'Sin(xaDj — x;Dy)vi(x)
i=1 j=i+1 Z;;
-1 d d d d
+Y 0D O Sju(xaD; — T+ YOS Dy ()
i=1 j=i+1n=1 =1 n=1

We next modify each

of these three terms.

For this purpose we use the skew-

symmetry of S € R%? and the abbreviation Dg ;= x;D; — x;D;. The first term
can be simplified by
d-1 d d
Z ZCmtSm 2y D; — ;D) v, (2)
i=1 j=i+1 n=
;,e
d-1 d d d d
_ rot x rot
RN SDIP I T AR o) ) pic TN B
n=1i=n+1 j=1 =2 j=1 n=1
jsﬁi JFi
d d - d i1 i-1
_ rot rot T
S DD D) Mz THUBHEES 3 9 wic-T e
=2 j=i+1 n=1 =2 j=1 n=1
d-1 d d-1 d i1
_ rot rot T
Y YOS D) - X 3 Y O Do)
i=1 j=i+1 n=1 j=1 i=j+1 n=1
d-1 d i- -1 d j-1
_ rot rot T
=22 ZC Sni D yvx () + Crg SniD{i jyva()
i=1 j=i+1 n=1 i=1 j=i+1n=1
d-1 d j—1
DD Sl + Z SjnCr\ (2;D; — 2, D;)v, (),
=1 j=i+1 n=1

-1 d d
Z ZC{ftSjn<anl — x;Dy)v, ()
i=1 j=it+1n=1
n#£i
-1 d d
=2 2. D CiSuDliyosl

i=1 j=1 n=i+1

J#i

-1 d d
=22 2 ORtSuDigyvila)
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d—1 d d d—1 i—1

=2 2 2 CRSuDiym) 22 > D7 )
i=1 j=i+1n=i+1 i=1 j=1 n=i+1
d—1 d d —2

53D DD IR IAEES 3 Sl SN AE
i=1 j=i+1n=i+1 7j=1i=5+1n=i+1

:dfl d d CrOtS D d-1 d d CrOtS D
Z Z (Z] )+Z Z Z zy)v*( )
i=1 j=i+1n=i+1 j=1i=5+1n=i+1

_ d—1 d d CrOtS D - d-1 d d CrOtS Dw
IIDIDY hat() =30 D0 D0 ORSuDful)
i=1 j=i+1n=i+1 1=1 j=i+1n=j+1
d—-1 d d

= - > SinCit + Z SinCl | (D5 — 2:D;)v(2)
=1 j=i+1 n=i+1 n=j+1

and the third term by

d d d d d d
DN Ot Dyv(x) =Y Y CE S D, (x) =Y [ =) SwC* | D ()
=1 n=1 n=1 [=1 =1 n=1
Thus, we conclude
-1 d d
Z Z AC (2 Ds — 2 Dj v, () + Z ACP? Dy, ()
; 1 m — d - i1
=3 [— D SO+ Y St 4+ Gt — Z SjnCLt
=1 j=i+1 n=1 n=j+1 n=1 n=i+1
d d
(a;D; — 2 D)oy () + ) | =D SinCi* | Dyvi(x).
=1 n=1

Requiring equality of summands yields fori =1,...,d -1, j =4+ 1,...,d and
l=1,...d

ji—1 d i—1 d
(9.8) ACEN =" Crt S, — Y CRiS, = Y Cr S+ Y GRS,y
n=1 n=j+1 n=1 n=i+1

(9.9) o = Z CS

In order to determine the solutions (A, (C™*, C"™)) of (9.8)-(9.9) we postulate
Cpt = —C5* for every 4,j = 1,...,d, i.e. in the following we consider C™" a

a (complex—valued) matrix C™" € Cd d that is assumed to be skew-symmetric. Note
that CI?* = 0 by equation (9.8). Thus, the equation (9.8)—(9.9) leads to a d(dzﬂ)—
dimensional eigenvalue problem
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(9.10) AC™ = —SCmt 4 (SO
(9.11) \OtE — _gOtra

Since (9.10)—(9.11) arise in block diagonal form, it is sufficient to solve the eigenvalue
problems separatly, i.e. (A, C™") solves (9.10) if and only if (X, (C™*, 0)) solves (9.8)—
(9.9). Similarly, (A, C*™®) solves (9.11) if and only if (A, (0, C™)) solves (9.8)—(9.9).
Equation (9.10) is a matrix eigenvalue problem that admits exactly d(d; D solutions.
This number equals the dimension dim SO(d). The eigenvalue problem (9.11) has
exactly d solutions. Altogether, we have @ solutions, which coincide with the
dimension of SE(d).

4. We start to solve (9.11): From (3.2) we deduce S = UAsU7T with a unitary matrix
U e C¥ Ag = diag(\},...,\]) and \; € o(S) pairwise different. Multiplying
(9.11) from left by UT and defining w := UTC"* € C¢ we obtain

(9.12) A = \OTCP = TS0 = —FTUAGTT O™ = —Aguw.

The solutions of (9.12) are given by (\,w) = (=A7,¢;) for [ = 1,...,d. Thus, the
transformation C'* = Uw yields the solutions (A, C%") = (=\7, U¢;) of (9.11) for
[ =1,...,d. Consequently, (A, (C*™" C")) = (=X, (0,U¢)) forl =1,...,d are d
solutions of (9.8)—(9.9).

5. Finally, we solve (9.10): We use the decomposition S = UAsUT once more.
Multiplying (9.10) from left by UT, from right by U and defining W := UTC™'U €
C44 we obtain

AW = NOTC™ 0 = 0T SC™0 + U (SC™)' U

9.13
919) — _OTOATT O 4 (DTUASTT D), = AW 4+ W A,

The solutions of (9.13) are given by (A\, W) = (=(A\5 + \2), L,y — L) for n =
1,...,d—1and m =n+1,...,d. Thus, the transformation C™" = UWUT yields
the solutions (A, C™) = (—(AS+\2), ULy — Lnn)UT) of (9.10) forn =1,...,d—1
and m = n +1,...,d, where C™" = U(I,, — Lm)UT € C% is of course skew-
symmetric. Consequently, (X, (C™, C¥)) = (—(AJ +\2)), (U(Lym — Lnn)UT, 0)) for
n=1,...,d—landm=n+1,...,d are d(dgl) solutions of (9.8)—(9.9). O

The previous Theorem 9.4 and the subsequent remark prove that the point spec-
trum of the linearization £ contains the spectrum of S and the direct sum of its
different eigenvalues. We summarize this result in the following:

Corollary 9.5. Let the assumptions of Corollary 9.9 be satisfied, then the inclusion

Upart (‘C) = U<S) U {)\1 + )\2 ‘ )\17 )\2 € O'(S), )\1 # )‘2} g Jpoint(£)

point

holds for the LP-spectrum of L, in particular, 0 € point(L).
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Rotational term. If v, € C3(R?,R"), then for space dimensions d > 2
v(z) = (S, Vu,(z)) € C*(R,RY)

is a classical solution of Lv = 0, i.e. v is an eigenfunction of £ with eigenvalue
A = 0. This can be shown directly and follows also from Theorem 9.4 with A = 0,
Cta =0 e R, O™ = S € R¥. This was also observed in [15] for d = 2.

Multiplicities of isolated eigenvalues. Theorem 9.4 gives also information
about the multiplicity of the isolated eigenvalues of £. More precisely, for any fixed
skew-symmetric S € R%? Theorem 9.4 yields an lower bound for the multiplicities.
But note that multiplicities depends on S € R%9, ie. varying S € R%¢ leads to
different eigenvalues with multiplicities.

Im A\ Im A\ Im A
1 i(o1 + 02) 1

1 Qin 2

1 i(o1 — 02) 1

1 C) 109 2

ImA
i(ol + 0'2)

iU1
i(Ul — 0'2)

iUQ

: 7 ReA 7 ReA Re A
1 C)—i01 1 C) —102
1 —i(o1 — 09) 1 —i(o1 — 09)
1 Q—io 2 @—ioy
1 711(014*02) 1 711(014*02)
(a) d=2 (b) d=3 (c) d=14 (d)d=5
dim SE(2) = 3 dim SE(3) = 6 dim SE(4) = 10 dim SE(5) = 15

Figure 9.1: Point spectrum of the linearization £ on the imaginary axis ‘R for space
dimension d = 2,3,4,5 given by Theorem 9.4.

Figure 9.1 shows the eigenvalues A € opoint(L£) from Corollary 9.5 and their
corresponding multiplicities for the different space dimensions d = 2,3,4,5. The
eigenvalues A € o(S) are illustrated by the blue circles, the eigenvalues A €
{A + X2 | A1, A2 € a(S), A1 # Ao} are illustrated by the green crosses. The imag-
inary values to the right of the symbols denote the precise values of eigenvalues
and the numbers to the left their correspoggh})g multiplicities. We observe that for

+

space dimension d there are dim SE(d) = =5~ eigenvalues on the imaginary axis.

Example 9.6 (Point spectrum of £ for d = 2). In the two dimensional case the
skew-symmetric matrix S € R?? has the form

. 0 Sia
=5 %)
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where 01 = S15 and k£ = 1. The matrix S is unitary diagonalizable with diagonal
matrix Ag € C*? and unitary matrix U € C??2 given by

~ fioy 0 1 /1
AS_(O —z’al)’U_\/Q(i —i)’

where \Y = io; and \J = —ioy. Note that the j-th column of the matrix U contains
the normalized eigenvector UJS := Ue; € C? for the j-th eigenvalue )\JS . Using
U(ly — I5))UT = —i(I15 — I51), Theorem 9.4 yields the following eigenfunctions,
compare also [15, Lemma 2.3],

A = ioq, v1(x) = Dyve(z) + iDyvy (),
Ay = —ioy, ve(z) = Dyvy(x) — iDyvy (),
)\3 = 0, Ug([L‘) = (l‘ng - ZL‘1D2)’U*(ZL‘).

Example 9.7 (Point spectrum of £ for d = 3). In the three dimensional case the
skew symmetric matrix S € R*? has the form

0 S12 Si3
S=1|-5n0 0 Sas |
—S13 =S 0

where 0y = \/S%, + S%; + 93, and k = 1. The matrix S is unitary diagonalizable
with diagonal matrix Ag € C3? and unitary matrix U € C*? given by

01513—1512523 01513+1512523 Soz

iop 0 0 o1y/2(S73+55;)  o14/25F5+53;) !
A . 0152340512513 01523—1512513 __ Siz
S = 0 —101 0 s U = 0'1\/2(5%34*5%3) 0'1\/2(5%34*5%3) o1 5
0 0 0 i(S75+535) —i(S33+535) Si2

011/2(S25+5%;)  014/2(S33+53) o1

where Ay = ioy, \j = —io; and \§j = 0. Note once more that the j-th column
of the matrix U contains the normalized eigenvector UJS := Ue; € C? for the j-th
eigenvalue )\f . Using

ULy — Iy)U" = =8,

0 Y 2(573+53;) S12513+1i01 523

201 o1/2(S25+52;)
U([13 _ [31)UT — \/2(573+53;) 0 _ =S51283+i01513 | |
201 o11/2(5%,+52,)
_ S12513+i01823  —=S12523+i01513 0

010/2(52;+53;)  014/2(S33+52;)

0 Y 2(St5+535) _ —=512813+1i01 523

201 o14/2(52,+53,)
U([23 _ [32)UT = \/2(573+S535) 0 S12S93+1i01 513 ,
201 o1 2(5%3-{-533)
—S8125134101S23  __ _S12S23+i01513 0

Ul\/2(5%3+533) Ul\/Q(S%:a"‘S%s)
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Theorem 9.4 yields the following eigenfunctions

A\ = ioy, v1(z) = (01513 — 1S12523) D104 () + (01523 + ©512.513) Dov, ()
+ (%5 + 933) Dy (),

Aoy = —ioy,  va(x) = (01513 + 1512523) D1vi () + (01523 — 1512513) Davs ()
- Z'(5123 + 533)D311*(x),

A3 =0, v3(2) = SozDyv,(x) — S13Dov, () + S12D3v, (),

A =0, v4(x) = Sia(xe Dy — 21 Do) v, () + Si3(x3 D1 — 21 D3)v.(x)
+ Sog(23D9 — z9D3)v, (),

s = —ioy,  vs(x) = — (S + S%)(za D1 — 11 Do) v, (x)
+ (S12513 +i015%3) (23D — 11 D3)v.(T)
+ (S12823 — i01513) (23 Dy — 22 D3)v, (),

Ag = 1071, v6(z) = —(Si3 + Sa3) (w2 Dy — 21Dy, ()
+ (512513 — i01S3) (13 D1 — 11 D3)ve ()

+ (S12523 + i01513) (23 D9 — £ D3)v, ().

9.3 Exponential decay of eigenfunctions and of the
rotational term

The following theorem proves that eigenfunctions of £ decay exponentially in space,
whenever their associated (isolated) eigenvalues are sufficiently close to the imagi-
nary axis.

Theorem 9.8 (Exponential decay of eigenfunctions). Let the assumptions
(A4)—(A9) be satisfied for 1 < p < oo and K = R. Then for every 0 < J < 1
and for every radially nondecreasing weight function 6 € C(R? R) of exponential
growth rate n = 0 with

2 apb
0<n2<ﬁ§a20 ;92

and amax, ag, by from (1.18), there exists a constant K1 = K1(A, f, Vs, d,p,0,9) > 0
with the following property:

Given a classical solution v, of (1.19) such that v, — vy € LP(R? RY) and (1.20)
hold. Then every classical solution v € LP(R? CY) of the eigenvalue problem

(9.14) ANv(z) 4 (Sz, Vo(x)) + Df(v.(z))v(z) = Mo(z), 2 € RY,
with A € C and Re X > —%0 satisfies
v € Wy PR, CM).

Proof. Let 0 < 9 < 1 be fixed, 1 < p < oo and # € C(R% R) be a radially
nondecreasing weight function of exponential growth rate n > 0 with
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0<n?< ﬁ%a?‘z:i;g, where .y, ao and by are from (1.18).

1. Let v denote a classical solution of (9.1) satisfying v € LP(R4, RY), then

0= Mv(z) = [Lv] (z) = Mv(z) — (ADv(z) + (Sz, Vu(z)) — Bu(z) + Q(x)v(z))
— (M = Lo ela),

where B := —D f(vs) and Q(z) := D f(ve(x)) — D f(vso).

2. In order to apply Theorem 7.7 (with C, = Lg) we have to verify, that the
assumptions are satisfied. Note that the application of Theorem 7.7 with C, = L
requires additionally that the assumptions (A3) and (A4) are fulfilled, which are
necessary to solve the identification problem for Cj,. Let us check the assumptions:
Assumption (A1) follows from (A8). The assumption (A4) and (A5) are directly
satisfied and assumption (A4) implies (A3) and (A2). Using the definition of B, the
assumptions (A8g) and (A9g) follow from (A8) and (A9), respectively. It remains
to verify Q € L= (R?, CMN), (7.5), v € D(A,) and Lgv = v in LP(R? CV).

3. First we show that Q € L>®°(R4, CMN): Since v, — vy € Cp(RY, RY) we obtain

[04(2) = Voo <o = Vool =2 B
for every x € R%. Using (A6) this implies
Q(x)ly = [Df(vu(2)) = Df(voo)ly < sup [Df(2)|y +[Df (o)l

2€Bpr, (0)

for every z € R?, which is of course finite by the continuity of Df on compact
sets. Taking the suprema over z € R? we obtain Q € Cp(RY,RMY) thus Q €
L> (R4, CNYY.

4. We next verify (7.5): Let us choose K = Ki(A, f,v00,d,p,0,9) > 0 (as in
Theorem 1.8) such that

by . { 1 1 }
K su D*f(z < —min{ —, —
1 (ZEBKII()UOO)} f( )’2> 3 - M,
is satisfied, where C7 = C7(A, d, p,0,1) is from Lemma 4.8, M., = M, (A,d) from

(6.10), by = bo(f,veo) from (1.18). The fundamental theorem of calculus, (A6),
(1.20) and the choice of K yield

Q)l, = (D (u(x)) ~ D (w0l
< [ 1D (0 + s(0(0) = vy d (o) = v

</<prfwﬁdM) %mgw<wpmw—%0
o \lz|>Ro |z|>Ro

bo { 1 1 }
su D?f(z < — min
(zeBKlpvoo ‘ f( )‘2> 3 07 0o
P

for every |z| > Ry. Taking the suprema over |z| > Ry yields

su ), < —ming —,— ;.
s 1), < i {57 )
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5. Next we verify that v € D(A,): An application of Theorem 5.19 shows that
D(A,) = D! (Ly). Therefore, it suffices to show that v € LP(RY CV), v €
W2P(RY, CN) and Lov € LP(RY, CV). By assumption we know that v € LP(R¢, CN).

Moreover, we deduce v € W2P(RY, CN) from v € C?(R%, CV). Tt remains to prove

that Lov € LP(RY,CY): From (A6) we deduce that Df is locally Lipschitz contin-
uous, i.e. there exists L = L(R;) > 0 such that

[Df(0u(x)) = Df(Us0)| < L|vi(2) = veo|

for every x € R%. Now, we obtain from (9.14) and Holder’s inequality

1ol < AVl o + [Df (woo) [ [0l o + (1D F (0x(2)) = D f (o)l oo 101l 2o
S AL+ [DF (voo)| + LB) (ol -
This yields Lov € LP(RY, CV), thus v € D! (Ly).
6. Finally, we verify that Lov = Mo in LP(R?, CV): From v € D(4,) we deduce
that both Lgv and A — Lgv belong to LP(RY, CY). Since [Lgv] (z) = \v(z) for
every r € R%, we obtain Lov = \v in LP(R?, C"). Now, we can apply Theorem 7.7
that yields v € W,”(R?, CN). O

Exponential decay for Re A > —by. Usually one expects that every eigenfunction
associated to an eigenvalue A\ € oyt (L) decays exponentially in space, i.e. for A
satisfying satisfies Re A\ > —by. However, Theorem 9.8 provides that Re A > —%0
must be satisfied. The lower bound —%0, that is larger than —bgy, is necessary
to obtain a uniform decay rate, i.e. a decay rate that does not depend on Re A
any more. Note that one can also prove the exponential decay of eigenfunctions
associated to eigenvalues with Re A > —by, but one usually obtains different decay
rates. An eigenvalue that is located near —by implies a small decay rate for the
eigenfunction.

A direct consequence of Theorem 9.8 is the following:

Corollary 9.9 (Exponential decay of the rotational term). Let the assumptions
(A4)—(A9) be satisfied for 1 < p < oo and K = R. Then for every 0 < J < 1
and for every radially nondecreasing weight function 6 € C(R? R) of exponential
growth rate n = 0 with

2 a,obo

0<n2<ﬁ§a2 p?

With Gmax, o, by from (1.18), there exists a constant Ky = K1(A, f, Vs, d, p,0,7) >
0 with the following property:

Given a classical solution v, € C3(RY,RY) of (1.19) such that v, —vs € LP(RYRY)
and (1.20) hold. Then the classical solution

v(x) = (Sz, Ve (z))
of the eigenvalue problem (9.14) with A = 0 satisfies

v € W P(RERY).
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Proof. In order to apply Theorem 9.8 for v(x) = (Sx, Vu.(x)), we have to check
that (Sx, Vou,(r)) € LP(RYRY). Our main result from Theorem 1.8 states that
v, € W,P(RYRY). This directly implies that (Sz, Vou,(z)) € LP(R%RN) and
the application of Theorem 9.8 completes the proof. A further possibility to verify
(Sx, Vo, (z)) € LP(R? RY) works as follows: In the proof of Theorem 1.8 we showed
that v, € D} (Ly). By Theorem 5.25 we have DI, (L) = DE,. (L), thus we deduce
(Sz, Vo, (1)) € LP(RY, RY) by the definition of D (Ly). O
Exponential decay of AAwv,. A crucial implication of Corollary 9.9 is that
AN (v, —vs) € LH(RY RY): For this purpose, we consider the steady state equation
ANv, (x) + (Sz, Vo (z)) + flv.(z)) =0, z € R%

Following the proof of Theorem 1.8, we decompose the last term into
f(u(@)) = =B(0u(x) — voo) + Q(2) (vi(2) — vs0) -
Defining w, := v, — v, we obtain
0 = AAw,(z) + (Sz, Vw,(z)) — Bw,(z) + Q(2)w,(z), z € RY,

with Q@ € L>(R% RNN). Theorem 1.8 shows that w, € W, ”(R% RY) and thus,
the last two terms belong to LL(R? RY). Assuming additional smoothness on v,
ie. v, € C3(RYRY), we deduce from Corollary 9.9 that (S-, Vv,) and therefore
also (S-, Vaw,) belong to W,*(R? RN). This implies that AAw, € Lj(RERY)
for 1 < p < co. Note that for @ € WH*(R? RMY) this procedure even implies
ANw, € W, P(RY RN).

9.4 Essential spectrum and dispersion relation of
localized rotating waves

In this section we investigate the essential spectrum of the linearization about a
localized rotating wave. The following Theorem is an application of Theorem 7.9
with

—B=Df(vx). Q) = Df(v(x)) — Df(vs), a € .

Note that Theorem 1.8 implies that Q € L>®(R? RYV) satisfies . For a detailed
treatment of the essential spectrum we refer to Section 7.4

Theorem 9.10 (Essential spectrum of L£). Let the assumptions of Theorem 1.8
be satisfied. Moreover, let \;(w) denote the eigenvalues of w?*A — Df(vs) for
7 =1,...,N and let +ioy,...,+io, denote the nonzero eigenvalues of S. Then
every number A € C with

k
)\:—)\j(w)—ianal,nlGZ,wER,jzl,...,N,
1=1

belongs to the essential spectrum of L in LP(RY,CN), i.e. X € 0ugs(L).
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Dispersion relation for £ at localized rotating waves. The dispersion relation
for the linearization £ at a localized rotating wave in LP(R? CV) with 1 < p < o0
states that every A € C satisfying

k
(9.15) det ()\]N +w?A — Df(ve) +i analIN> =0, for somew € R, n; € Z,

=1

belongs to the essential spectrum of £, i.e. A\ € 0e(L). The dispersion relation for
d = 2 can be found in [15].

Location and density of the essential spectrum. Let us define the set

oP (L) ;= {\ € C | X satisfies (9.15)} .

€ess

Theorem 9.10 shows that oP2(L) C 0e(L). Moreover, (9.15) for w = 0 yields the

ess

inclusion 0P (L) C {A € C| ReA < s(Df(vs))}. If there exists o, 0., such that

ess

opot ¢ Q then oP(L) is dense in the half-plane {A € C | Re A < s(Df(vs))},

ess

Le. oP (L) ={A € C|ReA < s(Df(vx))}. Otherwise o22*(L) is a discrete sub-
group of {A € C|Re\ < s(Df(vs))} (independently of p). The density observa-
tions come originally from |71, Theorem 2.6] and they are illustrated in Figure 7.1.
Note that the spectral condition (A9), stating that the matrix D f(vy) is stable,
implies that s(Df(vs)) < 0, hence oP2*(L£) C C_, which is necessary to guarantee

spectral stability, cf. Definition 9.2.

9.5 Essential spectrum and dispersion relation of
nonlocalized rotating waves

In this section we investigate the essential spectrum of the linearization about a
rigidly rotating spiral wave. This serves as an backward material for the numerical
examples in Section 10.4. A rotating spiral wave is a special type of nonlocalized
rotating waves for d = 2. Most of the results come from [92] and [38], but we also
refer to [93].

Recall the reaction diffusion equation (1.14)

wy(x,t) =AAu(x,t) + f(u(z,t),t >0,z R d>1,
u(z,0) =up(x)  t=0, 2R

Definition 9.11. A function uy : R x [0,00[— K" is called a traveling wave
solution of (1.14) if it has the form

Uso (T, 1) = Voo (T — Cool)

with profile (or pattern) v, : R — K" and translational velocity c,, € R
with ¢, # 0. A traveling wave uy of (1.14) is called an one-dimensional
periodic wavetrain with period 7" > 0 if v, is a T-periodic function, i.e.
Voo (§ + T) = v () for every z € R.
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Note that v, is T-periodic if and only if u., is T-periodic w.r.t. z. In particular,
Vs satisfies the one-dimensional traveling wave equation

Av"(§) + ' (§) + f(v(€)) = 0.

Assumption 9.12. Let v : R — K¥ be the profile of an one-dimensional
T-periodic wavetrain us of (1.14) for d = 1 that travels at speed co, i.€. Voo
satisfies the compatibility conditions

(A10) Uso 15 T-periodic,
(A11) Avg (§) + Caotlc (§) + f(v0(§)) = 0, E € R.

We assume a rotating Archimedean spiral wave solution u, of (1.14) in the fol-
lowing sense:

Definition 9.13. A rotating wave solution wu, : R? x [0, co[— K of (1.14) in the
sense of Definition 1.1 (with d = 2) is called a (rigidly) rotating Archimedean

spiral wave if the complex version vP°(r, ¢) := v, (T (T(r, $))) of the pattern
v, (z) satisfies vP°! € Cy(]0, oo xR, K) and

UEOI('f’a ®) — Voo <7‘ — i) ’ = 0 uniformly for ¢ € R

9.16 li
( ) im e

r—00

for some k4, € R with k., # 0 and for some function vy, : R — KV satisfying (A10)
and (A1l) with 7' = % and coo = P where o = Sp5 denotes the angular velocity
of the Archimedean spiral wave.

The condition (9.16) states that the pattern vP°! is Archimedean far away
from the center of rotation and describes in a certain sense a counterpart or
an extension of (1.20). v, is called the asymptotic wavetrain (of the spiral
wave solution) or the asymptotic profile (of the spiral wave) and k. is
called the wavenumber (of the periodic wavetrain). In particular, we advise
the following important relation

o
Cop = —.
koo

This relation states that the translational speed c., of the periodic wavetrain coin-
cide with the quotient of the rotational speed o of the spiral wave and the wavenum-
ber k., of the periodic wavetrain.

We now start to investigate the essential spectrum of the linearization at the spiral
wave. For this purpose we assume K = R. In case K = C we must transform the
N-dimensional complex-valued equation into a 2/ N-dimensional real-valued system,
c.f. proof of Corollary 8.1. For the moment let d > 2 and consider

[Lov] (z) + f(v(z)) == ADv(2) + (S, Vo(@)) + f(v(2)) =0, z € R,

where A € RVY with o(A) C C,, S € R4 with —S = ST and f € CY(RY,RY).
The linearization at the profile v, of the rotating wave u, is given by

[Lo] () = ADv(x) + (Sz, Vu(x)) + Df (0x(x))v(z).
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In the following we look for solutions of the initial value problem
ve(x,t) = [Lv] (2,t), » € R ¢ >0,
v(z,0) = vo(x), reRY t=0.

Similarly to Section 7.4, we now derive a dispersion relation for the linearization at
the profile of an Archimedean spiral wave:

1. Orthogonal transformation. The transformation Tj(y) = Py and
5(y, ) = v(T1(y), 1) yield

6t(y7t) = [‘CTlf)] (yv ) AA'U yv + <Ablockyavv y,1 >+ Df U*(Tl( )))6(yvt)

with

<A€10cky7 Vi(y,t) Zal Y Dar—1 — yo—1D) 0(y, t).

=1

2. Several planar polar coordinates. Choosing 75(£) as in Section 7.4 for
g = (Tlu ¢17 s Tk (bku Yokt 1y - -+ yd)7 then @<£7 t) = 6(T2<£>7 t) y1€ldS

k d
0,(&,t) = [Lp,0] (§,1) =A Z<a2 + —0,, + a;) + ) a;l]@

=1 1=2k+1

k

— 3" 01050, 1) + Df (0 (TL(To(€)))0(E, 1),

=1
where we define vP°!(&) = v, (T} (T2(€))).

3. Rigidly rotating spiral waves for d = 2. From now on we consider rigidly
rotating spiral wave solutions u,. For this purpose let d = 2, thus £ = (r, ¢) with
r:=ry, ¢ := ¢ and 0 := 0;. Adding and subtracting the —-perlodlc function

D f(voo(r — —)) (r,¢,t) we obtain
oy(r, ¢, t) = [Lp,0] (r, ¢, 1) =A (af + %& + T—lzag)@(r, ¢, t) — 00yd(r, b, t)

+(DI02 00 - DAt = ) ) (000

[e.e]

Doy = 12)0(r,0.1).

o

Note that D f(vP(r, ¢)) — D f(veo(r — i)) — 0 for 7 — oo uniformly for ¢ € R.
Moreover, v is a 27-periodic function w.r. -t o.

4. Simplified operator (limit operator, far-field operator). Neglecting the
terms of order O (%) we obtain the far-field linearization

00(r,0.0) = AGZS(r,6,0) = 00,(r,6,8) + Df (tnalr = 2-)(r,6.1).
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5. Angular transformation. o(r, ¢,t) = o(r,r — %, t)and £ =71 — % yield

v(r & t) = A (83 +20,¢ + 852) o(r, &, t) + kia@(r, E,t)+ Df(veo(&))v(r, &, 1)

where D f(v5(§)) and v(r, &, t) are ]%’Z-periodic functions w.r.t. &.

6. Temporal Fourier transform. o(r,&,t) = eMo(r, &), A € C, and multiply
from left by e~ yields

N6(r, €) = A (08 + 20, + 0F) 0(r, ) + - —0e0(r,€) + Df (1o ())0(r, ),

=(0r+3¢)’

where v(r, €) is s—w—periodic w.r.t. £

7. Radial Fourier transform. o(r, &) = ¢""v(§), v € C, and multiply from left
by e yields

Mo(€) = A (v + 200 + 5F) w(€) + 3~ 0eul€) + D (vo(E))u(6)

-~

=(v+0¢)*
where v(§) is %—periodic.

8. Bloch wave transformation w.r.t. &. v(§) = e wv(§), v € C from step 7,
and multiply from left by e*¢ yield

Mo(€) = ABZv(€) — T20(€) + =00 (€) + D f (vso(€))0(€),

with %—periodic function D f(ve(€)). Add 72v(§) and define A= A+ = we
obtain

No(€) = AGRU(E) + —0ev(E) + DI (v (©))0(E).
The %-periodicity of v(¢) and the Bloch wave transformation v(¢) = e (&)

leads to the Floquet boundary condition

27 27T

(€)= v(€+ =), (€)= vel€ +

2T

)

Note that for a 2nd order problem we have to impose boundary conditions for v and
ve to make the problem well-posed. This is expressed by the periodicity conditions
for v and ve. Indeed, if v is sufficiently smooth, the second equality can directly be
deduced by differentiating the first one. Altogether, we obtain a Floquet boundary
value problem

(9.17) Mo(€) = AdZo(€) + calzv(€) + D f (vs(€)0(€), € € 0, 7],
(9.18) e"Tv(0) = v(T), eTve(0) = ve(T).



180 9 FEigenvalue problems for the linearized differential operator

where D f(vs(€)) € RYY is a continuous, 2--periodic function, ¢y, := ;% € R and

period T' := % We now look for solutions (A, v, v) satisfying (9.17)—(9.?8).

9. Application of Floquet theory. Using u := v¢, we transform the N-
dimensional 2nd order boundary value problem (9.17)—(9.18) into a 2N-dimensional
1st order boundary value problem

<Z)§(€) - (A—l(MN —ODf(voo(g))) —ci\;l_l) (Z) (€), £ elo, 1],

(o ()

Note that A™! exists due to the fact that Reo(A) > 0. Abbreviating w := (U)

with w : R — R2V we obtain

(9.19) we(€) = A(&)w(§), € € [0, 77,
(9.20) e"Tw(0) = w(T)

with continuous, T-periodic matrix-valued function A : R —

R2NV:2N given by

~ 0 IN
4= (4, - Drtoaten) i)

It is well known that in general one cannot derive an explicit solution representation
for (9.19)-(9.20), but one can apply Floquet theory, see [51] and [24]|: For this
purpose, let W (¢) with W : R — R*V:2N be a fundamental matrix solution of (9.19),
where we assume without loss of generality that W (0) = Ioy. An application of
Floquet’s theorem, see [51, Theorem 7.1] or [24, Theorem 2.83], yields that W has
the form

W(€) = P(€)e”®  (Floquet normal form)

with T-periodic function P : R — C?V2¥ and constant matrix B € C*V:2V, The
proof of Floquet’s theorem shows that the matrix P(§) is invertible for all £ € R.
Moreover, P satisfies P(0) = Iy, since W(0) = Iy, and W satisfies

W(T) = P(T)eP" = P(0)ePT = W(0)eP” = B

by the T-periodicity of P. The invertible matrix e?7 is called the monodromy
matrix of (9.19). Its eigenvalues p € o(e’®?) are called the characteristic mul-
tipliers (or Floquet multipliers) of (9.19). Furthermore, an element p € C
satisfying p = e#T for some p € o(e!?) is called a characteristic exponent (or
Floquet exponent) of (9.19). The Floquet multipliers p of (9.19) are unique.
The Floquet exponents p of (9.19) are not unique but their real parts Re . This
can be accepted by the fact that if p is a Floquet exponent of (9.19) then also
1+ 27?2’% is a Floquet exponent of (9.19) for every k € Z. For a detailed treatment
of Floquet theory for homogeneous linear periodic systems we refer to [51] and [24].

10. Evolution operator. Defining

D5 () = W(OW ()t = P(€)eBEV Pyt € C2V2N
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the evolution operator of (9.19) is by the periodic map
O5(T,0) := W(T)YW(0)™! = P(T)GB(T_O)P(O)_l — BT ¢ 22N

where we used P(T) = P(0) = Ly, since W(0) = ILy. Since W(T) = W(0)ePT
and W(0) = I,y we deduce

®5(T,0) = W(T)W(0) "t = W(0)ePTW(0)~! = e'P.

We now look for solutions w of (9.19)—(9.20), that have the special form

w(€) = W(&w,, for & € R and for some w, € R,
Due to the Floquet boundary conditions (9.20) we have

e"Tw(0) = w(T) = W(T)w, = e"Tw, = (T, 0)w(0).
Subtracting e*7w(0) we obtain

(@5(T,0) — " Ly) w(0) = 0.
11. Dispersion relation for Archimedean spiral waves. Using A= \+ .
we define
d(\,v) = det (q))ﬁL%(T, 0) — e”TIQN) .

Since we are interested only in bounded solutions, we choose v = ik, k € R, where
k is called the Bloch wavenumber. This and 7" = ,% yield

. 2w P
d()\,lk}) = det <(b>‘+io'k§o(@’0) — 62 kio IQN) = 0.
The dispersion relation for Archimedean spiral waves states: If d(\,ik) = 0 for
some k € R, then \ € 0.4(L), i.e.

d(A,ik) =0 for some k € R = X € 0ge(L).
Therefore, we have the inclusion
{A e C|d(\ik) =0 for some k € R} C 0e(L).

We suggest that the eigenvalue A and the Bloch wave number £ are related by the
dispersion relation. In particular, we cannot derive an explicit expression for the
dispersion relation due to the fact that equation (9.19)—(9.20) cannot be solved
explicitly. But, we are able to give a better characterization of the structure of the
essential spectrum. For this purpose, we first note that if (A, ik) solves d(\,ik) = 0
then also (X, k) := (A — ion, i(k + nks)) solves d(\, k) = 0 for every n € Z, i.e.

d(\,ik) =0 for some k € R = d(\ —ion,i(k + nky)) = 0 for every n € Z.
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2min

Using e = 1 for every n € Z this follows easily from

A—ion—+io

d(X —ion,i(k + nky)) = det <<I> ket ko </<;_’ 0) — ¥ e IQN)
2 ‘
=det (@MU%(%—W, 0) — e%zk’;[m) = d(\,ik) = 0.

Therefore, we can consider w.lo.g. k € [0,ks][. Moreover, if (A ik) solves

d(A,1k) = 0 then also (A, —ik) solves d(\, —ik) = 0, i.e.

d(\,ik) =0 for some k € R = d(\, —ik) = 0.

Thus, for k € [0, k| there are 2N solutions of d(\,ik) = 0, that we denote by
N(v) = N(ik), 1 =1,...,2N. We deduce the inclusion
(9.21) {N(ik)+iocZ |k € R, Il =1,...,2N} C 0es(L).

12. Shape of the spectral curves. We finally discuss the shape of the spectral
curves I'! := {)\l(z’k) | k € R} for fixed [ =1,...,2N: In order to apply the implicit
function theorem we consider the continuously differentiable function

d:R*>x R — R? (N E) — d ((il) ,k) = d(M +ide, ik) = d(N, ik).
2

Then the mapping d satisfies

- /70 (0 ~ 0 292 .. - .
d (<0> ,O) = (O) and dy <(0) ,O) € R*“ is invertible.

at the point (A, k) = ((0,0)7,0). An application of the implicit function theorem
yields open sets U = U((0,0)) c R? and V = V(0) C R as well as a continuously
differentiable function g : V — U with ¢(0) = (0,0)7 such that d(g(k), k) = 0 for
every k € V. Considering A as a function of k, i.e. A(k) := g(k), this means that

d(\(ik), ik) = d(\(k), k) = 0 for every k € V.

Further, the function d satisfies

We deduce, that the function A\(k) and therefore also the spectral curves I'' have
locally the shape of a parabola near k = 0. Thus, we can think about {\(ik)+ioZ |
k € R} from (9.21) as infinitely many copies of parabolas along the imaginary
axis for every [ = 1,...,2N. The parabolas in the complex plane are opened to
the left and touch the imaginary axis at ¢0Z. In particular, the distance on the
imaginary axis of two neighboring parabolas equals the rotational velocity o of the
Archimedean spiral wave.
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We conclude with extensions and corresponding open problems:

Essential spectrum of scroll waves and scroll rings. We believe that this
approach extends to scroll wave and scroll ring solutions for d = 3. In this case,
there exists a further period in z-direction, that has to take into account in the
computation of the essential spectrum. This question seems to be still an open
problem.

Hyperbolic-parabolic systems. Furthermore, we believe that the approach also
extends to matrices A that do have a zero eigenvalue. This is motivated by the
existence of rigidly rotating spiral waves in Barkley’s model for D = 0 and seems
also to be an open problem.






10 Freezing approach and numerical
results

In this chapter we recall some basic ideas and results from the field of equivariant
evolution equations. We then introduce the freezing method, that is an approach
for the approximation of relative equilibria. An application to reaction-diffusion
equations shows that rotating waves are a special kind of relative equilibria. Solv-
ing numerically the resulting freezing system for the Examples from Section 2.1
yields approximations for the profiles of rotating waves and their group velocities.
Moreover, we investigate numerically the spectrum of the linearization at localized
and nonlocalized rotating waves. Afterwards, we introduce the decompose and
freeze method for equivariant evolution equations. We apply the general theory
for reaction-diffusion systems and extend this approach to higher space dimensions
in order to investigate interactions of multi-solitons. At the end of the chapter
we numerically investigate the interaction of several spinning solitons in the two-
dimensional Ginzburg-Landau equation.
In Section 10.1 we consider abstract evolution equations

(10.1) w(t) = F(u(t)),0<t<T with u(0) = up, t =0,

for some densely defined function FF : X D Y — X on a K-valued Banach
space (X, [|-]]). Assuming (10.1) to be equivariant with respect to a group action
a(-)u : G — X of a finite-dimensional (not necessarily compact) Lie group G on X,

Fla(y)u) = a(1)F(u), v € G, u € Y,
we investigate so called relative equilibria of (10.1)
(10.2) U (t) = a(7.(t))vs, 1(t) € G, v, €Y.

For some general theory of equivariant evolution equations we refer to [25], [39] and
[43]. At the end of this section, in Example 10.6, we apply the theory for

(10.3) G =SE(d), F(u)=AAu+ f(u), X =LRLKY), 1<p<oo,

This leads us to general reaction-diffusion systems on R?. Their solutions, which
are of the from (10.2), are called rotating waves.

In Section 10.2 we introduce the freezing method in an abstract setting, [18].
The freezing method is an approach for approximating relative equilibria such as
traveling and rotating waves. The idea of the freezing method is to decompose the
solution of (10.1) into a group motion and a profile, not only at or near relative
equilibria as in (10.2), but also for the general Cauchy Problem (10.1). Introducing
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new unknowns (t) € G and v(t) € Y such that the solution u of (10.1) is of the
form

u(t) = a(y(t))o(t), 0 <t <T,

we transform (10.1) into a differential algebraic evolution equation

(10.4a) v(t) =F(v(t)) — da(D)o()] u(t), v(0) = o,
(10.4b) 0 =W(v(t), u(t)),
(10.4c) 7(t) =dLyy (1) (1), 7(0) = 1,

where d[a(1)v(t)] u(t) denotes the derivative of the group action a(-)u and
U Y x g — g denotes a so-called phase condition. Well-known phase condi-
tions are the fixed and the orthogonal phase condition, that we briefly discuss. The
equation (10.4c) is known as the reconstruction equation. In Example 10.7 we apply
the presented theory to reaction-diffusion systems, compare (10.3). This leads to
a partial differential algebraic evolution equation (10.5), which we analyze numeri-
cally in the next section. In Example 10.8 we analytically solve the reconstruction
equation for reaction-diffusion systems with G = SE(d). The freezing method was
independently proposed in [18| and [89]. For a more detailed treatment about
the freezing method of single structures we also refer to [103], [19], [105], [20] and
[16]. The freezing approach for hyperbolic-parabolic systems is analyzed in [85],
[86], [87], [88] and partially in [16]. Results for the freezing method of stochastic
traveling waves can be found for instance in [65].

In Section 10.3 we analyze the freezing system

vi(x,t) =AAv(x,t) + f(v(z, 1)) + (S(t)x + LaA(t), Vo(z, 1)),
v(, 0) =uo(z),
(10.5b) =V (v(-, 1), u(t)),
Ri(t) R(t)S(t) R(0) Iy

10.5 = .
s (7 >> (i) (7o) = (6
for the Examples from Section 2.1. To solve (10.5) numerically, we truncate (10.5)
to a bounded domain and postulate homogeneous Neumann boundary conditions.
Solving this resulting system until a certain end time 7' yields a profile v,(z) :=
v(z,T) and velocities (Si, \) := (S(T"), A(T)). The definition is justified by the fact
that we expect v(t) — v, and (S(t), A\(t)) — (S, A\x) as t — oo. Hence, the solution
of (10.5) provides an approximation of the rotating wave w,, compare (1.15) and
Example 10.8.

In Section 10.4 we investigate the spectral properties of the linearizations about

rotating waves for the Examples from Section 2.1 and Section 10.3. For this purpose
we consider the eigenvalue problem

(10.5a)

(10.6) M —L]v(z) =0,z € R, d> 2,
where £ denotes the linearization about a rotating wave profile v,

[Lv] (z) := AAw(2) + (Sz, Vu(z)) + Df(ve(z))v(z), 2 € R%



187

To solve (10.6) numerically, we restrict the equation (10.6) to a bounded domain and
impose homogeneous Neumann boundary conditions. Solving the resulting system
yields a prescribed number of eigenvalues and their associated eigenfunctions.

In Section 10.5 we introduce the decompose and freeze method in an abstract
setting, [17]|. Introducing new unknowns v;(¢) € G and v;(t) € Y fori =1,...,m
such that the solution u of (10.1) is of the form

u(t) = Za(yj(t))vj(t), 0<t<T,

we transform (10.1) into a nonlinearly coupled system of differential algebraic evo-
lution equations

() — . ¥ 0:(0) = 20
(10.7a) w;(t) =F(v;(t)) — d[a(1)v, ()]u;(t)JrEZle( ) (0) = v;,

(Bt

(10.7Db) 0 =U(v(t), (1)),
(10.7¢)  7ja(t) =d Ly, 1) (1) (), 75(0) =,

with abbreviation v¥(t) := 7, '(t) o y(t). Finally, in Example 10.15 we apply the
presented theory to reaction-diffusion systems. This leads to a nonlinearly coupled
system of partial differential algebraic evolution equations, which we analyze nu-
merically in the next section. The decompose and freeze method comes originally
from [17]. Since the approach is quite new, there doesn’t exist many results con-
cerning the nonlinear stability theory of multi-structures. So far, there is only a
nonlinear stability result for multifronts and multipulses in one space dimension,
[99]. An extension of this method to multi-solitons in higher space dimensions can
be found in [16].

In Section 10.6 we are mainly interested into the interaction of multi-solitons.
For this purpose we numerically solve the decompose and freeze system

vz, t) =AAvj(x,t) + f(vj(x, 1) + (S;(t)z + LgA;(t), Vv,(z, 1))

IO [f(}jaWNOWALO>

(10.8a) e DO () (@) |7\ =
_ Z f(a gz t))] v;(x,0) = o)(x)

(10.85) 00,010
o (150)-(HA36)- (149)- ()

for the cubic-quintic complex Ginzburg-Landau equation from Example 2.1. We
observe different situations, in which the solitons repel from each other (weak in-
teraction), collide with each other into a single soliton (strong interaction) or per-
manent collide with each other (phase shift interaction). Using the decompose and
freeze method, we analyze the temporal change of the profiles, their velocities and
their positions for these interaction processes.
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10.1 Equivariant evolution equations

In this section we briefly introduce some basic theory of equivariant evolution equa-
tions, [25], [39], [43].
Consider a general abstract evolution equation

w(t) =F(u(t)), 0 <t < T,

(10.9) u(0) =ug , t =0,

on a K-valued Banach space (X, ||-||) with K € {R, C}. We assume that the operator
F, given by

F:XDY=D(F)> X, u— Fu), Y=X.

is defined on a dense subspace Y of X. The whole approach can also be generalized
to Banach manifolds rather than Banach spaces, [19], [105], [85].

Definition 10.1. A function v € C*(]0,T[, X) N C([0, T[,Y) is called a solution
of (10.9) on [0, T if u solves (10.9) pointwise.

Let (G, o) denote a finite-dimensional (not necessarily compact) Lie group with
group operation

o:GxG—=G, (71,7%) " 7107,

unit element 1 and dimension dim G = ¢ < co. By v~! € G we denote the inverse
of v € G, ie. v Loy=~0y"t = 1. Moreover, let g = T7G denote the Lie algebra,
associated with G, that is the tangent space of G at 1 and has the same dimension
as G, i.e. dimg = ¢q < o0.

The left multiplication by v € G on G is now defined via

L,:G—G, g—L,(g):=vog
with derivative denoted by
dL,(g) : T,G = Tyo,G, p+— dLy(g)p.
Here, T,G denotes the tangent space of G at g € G. Thus, for ¢ = 1 we have
dL,(1) : g =T1G = T,G, v dL,(1)p.
Furthermore, let

a:G— GL(X), v~ a()

denote the action of the Lie group G on X via a representation in GL(X), meaning
that a is a homomorphism satisfying the following properties

a(l) =1, a(y107) = a(m)a(r),
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where I denotes the unit element of GL(X ). Moreover, we assume that the mapping
a(u:G—= X, v aly)u

is continuous for every fixed u € X and continuously differentiable for every fixed
u € Y, where the derivative is given by

dla(v)u] : T,G = X, p dla(y)y] p.
In the special case v = 1 we have
dla()u] : g =T1G — X, p—da(l)u]p
for every fixed u € Y. Furthermore, we assume that
a(y)Y =Y Vyed.
Indeed, it is sufficient to require only a(y)Y C Y, because of
Y =a(y)a(y )Y Ca(y)Y.

In the literature there exists a general principle for the construction of the func-
tion space Y such that all our assumptions are satisfied. But note that this result
does not provide an explicit representation for Y. The following proposition can
be found in [18, Proposition 2.4|, that is an extension of [94, Theorem 4.5|.

Proposition 10.2. Let (X, ||-||,) be a Banach space and let a : G — GL(X) be a
homomorphism. Then

Xy {u & Xo | Jull, := sup [la()ull, < oo}
veG

is a Banach space with respect to the norm |||, and the operators a(v)|y, are
isometries in GL(Xy). Further, the space

Xy :={u€ X1 | a(-)u is continuous in G}

is a closed subspace of (Xy, ||-[|;) such that a(y)|y, € GL(Xy) acts continuously.
Finally,

X3 :={u € Xy | a(-)u is continuously differentiable in G}

1s a dense subspace of Xy and can be written as

X3 = ﬂ D(u),

HEY

where D(u) is the domain of the infinitesimal generator of the C°-semigroup
(a(exp(1)) o
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Note that all assumptions above are satisfied for the choice
X = X2 and Y = X3.

Finally, we require that the evolution equation (10.9) is equivariant in the fol-
lowing sense:

Definition 10.3. The evolution equation (10.9) is called equivariant under the
group action a of G on X if

F(a(y)u) =a(y)F(u) YueY VyeQdG.

We are interested in a special kind of solution of the equivariant evolution equa-
tion (10.9), so called relative equilibria, [19, Definition 4.1].

Definition 10.4. (1) A solution u, of (10.9) on [0, 0] is called a relative equi-
librium (with respect to the action a of G on X) if it has the form

ux(t) = a(7:(t))vs, £ 2 0

for some v, € Y and v, € C'(]0, 00, G) N C([0, o[, G).
(2) A solution u, of (10.9) on [0,00] is called a relative periodic orbit (with
respect to the action a of G on X) if it has the form

ux(t) = a((t))vs(t), t = 0

for some periodic v, € C*(]0,00[,Y) N C([0,00[,Y) with nontrivial period T > 0
and v, € C*(]0, 0o[, G) N C(]0, 0o[, G).

Consider the group orbit of an element v € Y

Oc(v) :={aly)v [y € G}

We point out that a relative equilibrium u,(t) = a(7.(t))v, lies for all times in a
single group orbit, i.e. u.(t) € Og(v,) for every ¢ > 0. An essential feature of
relative equilibria is that they never come alone: If u,(t) = a(v.(t))v, is a relative
equilibrium of (10.9) then also a(y o 7, ())v, is a relative equilibrium of (10.9) for
every v € G-

& (alr o)) = o @aln(t)e) = Taut) = aty) Tu, )

=a(7) F(u(t)) = a(y) Fa((t)v.) = Fla(y)a(y.(t))v.) = Flaly o 7. (t))vs).
This means that relative equilibria always come in families.

Nonlinear Stability of relative equilibria: One main issue for the investigation
of relative equilibria is nonlinear stability of relative equilibria (also called stabil-
ity of relative equilibria with asymptotic phase). Since relative equilibria always
appears in families, we have to modify the classical Lyapunov stability in order to
investigate the stability of relative equilibria, [16, Definition 2|, [105].
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Definition 10.5. A relative equilibrium u, of (10.9) with u,(t) = a(7v.(t))vs for
t € [0, 00][ is called orbitally stable (with respect to given norms |[|-||,, ||-||, on Y")
if for any £ > 0 there exists a § > 0 such that for any initial value uy € Y with
g — vi||; < 6 the following property hold:
The Cauchy problem (10.9) has a unique solution u € C'*(]0, oo, X) N C([0, oo[, Y)
and the solution u satisfies

inf [|u(t) —a(y)v]l, <e Vt=>0.

veG
Moreover, u, is called stable with asymptotic phase if in addition there exists
a &g > 0 such that for any initial value ug € Y with |lug — v,||; < J there exists
some Y € G (depending on ug) such that

lu(t) — a(Voo © Vu(t))vull, = 0 as ¢ — oo.

The value 7., is called the asymptotic phase and depends in general on the initial
data ug.

In the remaining part of this section we classify general reaction-diffusion systems
into the general framework of abstract equivariant evolution equations. As we will
see below, rotating waves are a special kind of relative equilibria in reaction-diffusion
systems.

Example 10.6 (Reaction diffusion systems, Part 1). Let us consider a system of
reaction diffusion equations

wy(2,t) =AAu(x,t) + f(u(z,t), t >0,z eR, d > 2,

(10.10) d
u(z,0) =up(x) ,t=0, z e R%

on the Banach space (X, |[||) given by (LP(RY\,KY),|-|,,) with K € {R,C},
1 < p < oo, diffusion matrix A € K¥¥ and nonlinearity f : KV — K. The
operator

F:X2DY=DF)— X, ur F(u):=AAu+ f(u)

is defined on the dense subspaces Y, that will be characterized below.
Let d € N with d > 2 and let

G = SE(d) = SO(d) x R¢

denote the special Euclidean group of dimension ¢ = dim SE(d) = d(d; 1), that is
the semidirect product of the special orthogonal group

SO(d) = {R e R | R" = R™" and det(R) = 1}

of dimension dim SO(d) = @ with the Abelian translation group R? of dimen-

sion d. SE(d) consists of all pairs

v = (R,7) € SE(d), R € SO(d), T € R?,
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is equipped with the group operation o : SE(d) x SE(d) — SE(d) defined by
7oy = (Ry,7) 0 (R, 7o) = (R Ry, 71 + Ri72),
and has the unit element 1 = (I,0). The inverse of v = (R, 7) € SE(d) is
y'=(R,7) "= (R ~-R 7).
Moreover, the Lie algebra of SE(d) is given by
g =Ty SE(d) = se(d) = so(d) x R?,
that is the direct product of the space of skew-symmetric matrices
so(d) = {S € R* | ST = -5},

—d(d; U with the Abelian translation group R of dimension

d(d+1)

of dimension dim so(d) =

d. The Lie algebra se(d) has also the dimension ¢ = dim se(d) =
The left multiplication by some v = (R, 7) € SE(d) on SE(d) is defined by

L, :SE(d) — SE(d), g¢g=(R,7)r L,(g9):=v0g=(RR,7+ R7)
with derivative at ¢ =1
dL,(1): g =se(d) = T,SE(d), p+dL,(1)p:= (RS, R\),

where v = (R, 7) € SE(d) and u = (S, \) € se(d).
Let (X, [|]]) still be chosen as above, then we define the SE(d)-action on X via

a(-)u:SE(d) = X, ~v=(R,7) la(y)u] (") := w(R7'(- = 7)).

A short computation shows that the action a : SE(d) — GL(X) is indeed a homo-
morphism, since we have

la(1)u] (z) = [a(I4,0)u] (z) = u(l;*(x — 0)) = u(x), r € RY,
and

[a(71 0 Y2)u] () = [a(R1Ra, 71 + Ra7a)u] ()
=u ((RlRQ)_l (x — (11 + Rim2) ) =u (Rz (Rl_l (x — 71 - 7_2))
= [a(n)u(By (- = )] (2) = [a(n)a(r2)u] (x), z € R
For u € Y the derivative of a()u with respect to v € G at v =1
dla(L)u] : g =se(d) = X, p—da(1)u]p

is given by, cf. Lemma 9.3,

(10.11)  dla(1) Z (Sx 4 I\), Dau(z) = — (S + I\, Vu(z))
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= — i Z Sij (x;D; — x;Dj)u(z) — Z N Dyu(z),

i=1 j=i+1

where p = (S, \) € s0(d) x R? = se(d).
Let us now discuss the choice of the function space Y, that is obtained from
Proposition 10.2: For (Xo, [-[|y) = (LP(R?,KN),[|-]|,) with 1 < p < oo we have

X=X =X, = Xo:= PRLKY), Il = [l == [l -

A difficult task in general is to derive a full characterization of X3. But thanks to
our extensive investigations in Chapter 5 we are now able to present a connection
between the abstract semigroup theory for the Ornstein-Uhlenbeck operator from
Chapter 5 and the maximal domain of F: Let A € KM satisfy the assumptions
(A1) and (A4), then an application of Proposition 10.2 and Theorem 5.25 yield the
following characterization for the domain Y = D(F') of F

Y = X3 ={ue L?| a(-)uis continuously differentiable in SE(d)}
= ﬂ ,Drp;la)((‘c())
(S,\)€se(d)
= [ {veW> | (S-+IA Vv) € L*}
(S,\)€Ese(d)
={v e W*? | ((I;; — I};)-,Vv) € L?, (e, Vv) € L}
= {’U € WQ’p | <(IU — Iji)'a V'U> € Lp}

forevery i =1,....,d—1,j=1,....,dand [ = 1,...,d. Therefore, we define the
Euclidean Sobolev space (of order 2 with exponent p)

Wal (REKY) == {v € W2P(RLKY) | (S-, Vv) € LP(RL,KY) VS € s0(d)}
for every 1 < p < oo, which is equipped with the norm, compare Corollary 5.26,

[vllwzr @agny = [Vlweo@axy) + sup ({52, Vo)l pga gy -
e Seso(d)
Note that a first step in order to obtain an explicit representation for Y was done
in Theorem 5.19 together with our a-priori estimates from Theorem 5.8, that yields
a local version for the domain

YV ={ve W2PRLKY) nWP(RLKY) | ADw + (S - +AI, Vo) € LP(REKY)
V (5, A) € se(d)},

which is only equipped with the graph norm of £j. The domain Wé{f’d(Rd,KN )
is used in [15] for p = d = 2 and K = R with HZ ,(R* RY) := Wy, (R? RY).
We notice that for the space of bounded uniformly continuous functions a full
characterization for the domain Y is still an open problem. Only in the scalar real-
valued case with K = R and N = 1, an application of |29, Proposition 3.5] yields
a local version for the domain Y. The abstract representation for the domain Y in
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Cup(R% KN) was used in [113, Section 2.3.1| for the first time with d = 2, K = R
and N = 1.

A straightforward computation shows that the reaction diffusion system (10.10)
is equivariant under the SE(d)-action on WgP (R? KN): On the one hand it is
trivial to see that

a(7)F(u(z)) =a(R,7) (ADu(z) + [(u(z)))
=A[Au)(RH (2 — 7)) + f(w(R™ (z — 7))

and on the other hand a short computation shows that

Fla(y)u(@)) = AA [u(R™ (z — )] + f(w(R™ (z — 7))

:AZZ ail- Z (%u(RI(x - T))) (aii (R™(x — T))k) + f(w(R™(z = 7))
—A Ad zd: 3 (a%a%u(fz—l(a; - 7))) (81 (R (z - T))l) (aii (B (= - T))k)

A S () (o (R ), ) + S )

1

=A[Au] (R (z = 7)) + f(u(R™}(z — 7).

Here we used that the equalities

i aa; (R (z—1)), =0, Xd: <£i (R (x — T))l) (a% (R (z — T))k) = &,

i=1 ( i=1

are satisfied for every k,l € {1,...,d} and (R,7) € SE(d). Moreover, one shows
that a(y)WaP,(RLKN) = WaP (R?KN) for every v € SE(d), but we omit the
details.

Relative equilibria of (10.10) on [0, oo are now of the form

uy(2,t) = v, (R7Ht) - (v — 7(1)) , ve € WEE,(REKY), 7, = (R, 7.) € SE(d).

Examples for relative equilibria of the reaction-diffusion systems (10.10) are rotat-
ing waves with (R,(t),7.(t)) = (exp(tSy), x,) for some (S, x,) € se(d), but also
traveling waves with (R,(t),7.(t)) = (l4, \st). We are mainly interested in ro-
tating waves. As we know from the abstract theory above, they always come in
families: If u.(z,t) = v (e ®(x — ,)) is a rotating wave of (10.10), then also
v, (e R7Y(x — (1 + Rx,))) is a rotating wave of (10.10) for every (R, 7) € SE(d).
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Nonlinear Stability of rotating waves: An important issue is to investigate
nonlinear stability of rotating waves, also known as stability with asymptotic phase.
Let u,(z,t) = v,(e 7t (x — x,)) be a rotating wave of (10.10) with ,(¢) = (e***, x,)
and let two possibly different norms |||, and ||-||, on W2, (R? KV) be given. Then
we are interested in nonlinear stability of rotating waves, cp. Definition 10.5:

Problem 1. For any € > 0 there exists a 6 > 0 such that for any initial value
uy € Wk (RE KN with |Jug —v,]|, < & the following property hold: The reac-
tion diffusion system (10.10) has a unique solution u € C(]0, o[, LP(R%, KM)) N
C([0, 0o, WP (RE,KN)) and the solution u satisfies

inf t) — < Vit > 0.
nf () —a(e, < Ve

Moreover, there exists a g > 0 such that for any initial value ugy € Wé{il(Rd, K)

with |[ug — vl < 0 there exists some asymptotic phase v~ € SE(d) such that the
solution u satisfies

|u(t) — a(Voo © Vu(t))ts]|y = 0 as t — 0.

A nonlinear stability result of 2-dimensional localized rotating waves in parabolic
reaction diffusion systems was proved in [15, Theorem 1.1] ford =p =2, K =R
and ||-||; = ||Ill, = ||| 72- But so far, there are no further nonlinear stability results
for higher dimensional rotating waves. Nonlinear stability results for traveling
waves in parabolic reaction diffusion equations are well known in the literature and
can be found in the monographs [52], [110] and in the survey article [91|. For a
nonlinear stability result of traveling waves in hyperbolic and mixed hyperbolic-
parabolic equations we refer to [85], [86], [87] and [88]. A nonlinear stability result
for multi-fronts and and multi-pulses in parabolic reaction diffusion equations, that
we discuss below in Section 10.5, can be found in [99].

An essential feature of all stability results is to derive nonlinear stability from
linear stability (also called strong spectral stability). The proof for the nonlinear
stability of 2-dimensional localized rotating waves from [15, Theorem 1.1] requires
three essential assumptions: The profile v, of the rotating wave and their partial
derivatives up to order 2 are localized in the sense of Definition 1.1. The matrix
D f(v) is stable, i.e. Re D f(vs) < 0 meaning that all eigenvalues have a negative
real part. And finally, the eigenvalues of the linearized operator

[Lv] () = ADwv(z) + (Sz, Vou(x)) + Df(ve(x))v(x).

satisfy suitable eigenvalue conditions. In order to extend the nonlinear stability
result from [15, Theorem 1.1] to rotating waves in several space dimensions, it is
useful to analyze the decay of rotating waves and the spectrum of the linearization.
In particular, Problem 1 shows that the characterization of the maximal domain
Y = D(F) plays also a fundamental role. The exponential decay of rotating waves
we have investigated in our main result from Theorem 1.8. Moreover, we have
analyzed the eigenvalue problem for the linearized differential operator both ana-
lytically in Chapter 9 and numerically in Section 10.4 below. As we have seen above,
the characterization for the domain Wé;il(Rd, K¥) is based on the characterization
of D (Ly) as described in Theorem 5.25.

max
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10.2 Freezing method for single-structures

In the following we briefly recall the main concept of the freezing method for
single-structures. The main idea of this approach is to approximate relative equi-
libria of equivariant evolution equations, which is based on a decomposition of the
solution u of (10.9) into a group motion and a profile. For a more general and
detailed treatment we refer to [18] and [89], but also to [103], [19], [105], [20], [16].
Consider a general equivariant evolution equation (10.9). We introduce new
functions v(¢) € G and v(t) € Y such that the solution u of (10.9) is of the form

(10.12) u(t) = a(y(t)v(t), 0 <t < T.

Inserting the ansatz (10.12) into (10.9)
a(y()ve(t) + dla(y(#)v(B)] % (t) = % [a(y(#))v(8)] = w ()
=F(u(t)) = Fa(y(1))o(t)) = a(y(1)) F(v(t))

and applying a(y~!(t)) to both sides we obtain

(10.13) w(t) =F(o(t)) — a(y ()d [a(v(O))o(t)] 7u(t), 0 < t < T

At this point, it is convenient to introduce u(t) € g = TG via

)
)

(10.14) i) = dLoy(L)p(t), 0 < t < T.

Then, differentiating a(y(t))a(g)v(t) = a(y(t)og)v(t) = a(Lyw (g))v(t) with respect
to g at g = 1 yields

(10.15) a(y(£))d [a(Mv(®)] p(t) = da(y(t))v(t)] dLyy (Dpt), 0 <t <T.
Thus, requiring (10.14), equation (10.13) can be written as
(10.16) v (t) = F(v(t)) —da(T)v(t)] u(t), 0 <t <T.

To compensate the extra variable yu(t), we finally impose ¢ = dim g phase conditions
U(v(t), u(t)) = 0, that are defined by a functional

(10.17) U:Y xg—=g, (v,p)— Y, np),

where g* denotes the dual space of the Lie algebra g, which is isomorphic to R,
ie. g° = R% To take the initial data from equation (10.9) into account, we equip
the v-equation (10.14) with the initial condition v(0) = 1. Thus, using (10.12) at
t = 0 the initial condition for the v-equation (10.16) is given by v(0) = wy.

This leads to the abstract formulation of the freezing method as differential al-
gebraic evolution equation (DAE)

(10.184) w(t) =F(u(t)) — dla(L)o ()] u(t), 0(0) = up,
(10.18b) 0 =W (u(t), u(t)).
(10.18¢) 70(t) =dLey (L)a(2), 2(0) = 1.
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The equations (10.18a) and (10.18¢) must be satisfied for ¢ > 0 and the equation
(10.18b) for t > 0. In applications (10.18a) is a PDE, (10.18b) an algebraic con-
straint and (10.18¢) an ODE. The ODE from (10.18c) is called the reconstruction
equation in [89], is decoupled from the first two equations (10.18a) and (10.18b)
and can be solved in a post-processing step.

We now explain a well-studied possibility for the choice of the algebraic constraint
(10.18b), that is called the phase condition. In the sequel, we will distinguish
between the fixed phase condition and the orthogonal phase condition. For this
purpose, let us assume that

() X xX =K, (u,v)— (u,v)

is a continuous inner product on the K-valued Banachspace (X, [-||) with
K € {R,C}, ie. |u|l == /(u,u) < C|u|. If (X,]]-],(-,)) is a Hilbert space,
we can choose e.g. (-,-) := (-,-) and hence |-| = ||-|]. But in general we do not
assume this.

Type 1: (fixed phase condition). Choose a template function © € Y. The fixed
phase condition is a minimization condition that requires v to be the closest
point to v(t) on the group orbit of ¢ given by O(0) := {a(y)v | v € G}, i.e.

min [v(t) — a(7)6] = [v(t) — 9].

The necessary condition is

= (=d[a(1)0], v(t) — a(1)0
= —(d[a(1)?],v(t) — 9) —
= —2Re (v(t) — 0,d[a(1)0]) ,

that is a mapping from 717G into R? = g*. In the numerical computations we

will replace the phase condition (10.18b) by

(10.19) 0 = —2Re (v(t) —v,d[a(1)0]w) VYw € g,

that leads to a DAE of index 2. To reduce the index we choose a basis
et,...,e? of g = T1G, evaluate (10.19) at w = ¢/ for every j = 1,...,q,
multiply b —%, differentiate with respect to ¢ and insert the differential

equation (10.18a) to obtain

d .
0= —Re (v(t) — 0,d[a(1)0]e’) = Re <vt dla(1)0]e’)
(10-20) _Re@1 dfa(1)d] ') — Re (d]a( <nmwﬂmmwww
:WQWUM@%
that is the j-th component of the phase operator Wg,. This leads to the
fixed phase condition Wy (v(t), u(t)) = 0 € R? = g*. If we replace (10.18b)

by (10.20) we end up with a DAE of index 1, provided that v(¢) and © are
sufficiently close for every ¢ > 0.
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Type 2: (orthogonal phase condition). The orthogonal phase condition is also
a minimization condition and requires that the temporal change |v;| is minimal
at each time instance, i.e.

min [ (8)| = min |F(o(8)) — d[a(D)o(0)] ul = [F(0(t)) — d [o(L)o(®)] (1)

peg

The necessary condition is

d 2 _ |4 v(t)) —dla(l)v ?
e Pl I FALCOR O I
- {di (F(o(t)) — d[a(1)o(t)] u, F(u(t)) — d[a(L)v(t)] M)]
ol p=p(t)

that is a mapping from g = TG into R? = g*_ i.e. the condition reads as
(10.21) 0= —2Re (v (t),d[a(1)v(t)]w) Yw € g.

For the numerical computations one usually uses condition (10.21) instead
of (10.18b). Next, we choose a basis e!,..., e? of TyG, evaluate (10.21) at
el for every j = 1,..., ¢, multiply by —% and insert the differential equation
(10.18a) to obtain

(10.22)

= Re <F v(t)),da(1)v(t)] ej> Re <d a(IL ( )] (1), d fa(L)v(t)] €)

that is the j-th component of the phase operator W,,. This leads to the
orthogonal phase condition W (v(t), u(t)) = 0 € R? = g*. If we replace
(10.18b) by (10.22) we end up with a DAE of index 1, provided that the
isotropy group of v(t), that is given by Hyy := {y € G | a(y)v(t) = v(t)}, is
trivial for every t > 0.

Example 10.7 (Reaction diffusion systems, Part 2). We continue with Example
10.6 and assume that the solution u of (10.10) can be written as

(10.23)  w(x,t) = a(y(t))v(z, t) = v(R(t) Nz — 7(t),1),t >0, s € RY, d > 2,
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where v(t) = (R(t),7(t)) € SE(d) and v(-,t) € Y. Inserting the freezing ansatz
(10.23) into (10.10) and applying a(y~*(¢)) to both sides yields

(10.24)  wi(z,t) = ADv(w, 1) + f(v(z, 1)) — aly(1)d [a(y () v(z, 1)] 7 (L),

for t > 0 and x € RY Introducing u(t) € se(d) = TySE(d) via (10.14), the
v-equation (10.24) can be transformed into (10.16), where dla(1)v(x,t)]u(t) is
given by (10.11). To compensate the extra variable pu(t) we additionally require
dim se(d) = d(d+1) phase conditions, given by the functional

(10.25) U Y xse(d) = (se(d)”, (v,u)— V(v pn),

where the dual space (se(d))” of the Lie algebra se(d) is isomorphic to RIm=(@ j e,
(se(d) = RS

Ry(t) (1)S(t) R(0) Ly
(Tt@)) = %(t) = dLv(t)(]l)N(t) ( (t) (t)) (7_(0)) = <0) ;
where y(t) = (R(t),7(t)) € SE(d) and p(t) = (S(t),\(t)) € se(d). Thus, the

freezing method yields a partial differential algebraic evolution equation
(PDAE)

. The reconstruction equation is given by

(10.26a) v(w,t) =Alv(z,t) + fv(z, 1)) + (S(t)x + LaA(t), Vo(z,1)) |

(10.26b) - :Z’O(ﬁ):t),u( t),
oo (B0~ (0). (50) - (5)

Let us discuss the two mentioned possibilities for the choice of the phase condition
(10.26b). For this purpose let us consider the Hilbert space X = L2*(R¢ KY)
equipped with the inner product

(4 )pe LQ(Rd,KN) X LZ(Rd,KN) =K, (u,v) (u,v)re ::/ mTv(x)dx

Rd

and (-,-) := (-,+) 2. Moreover, let & € W2 (R?, KY) denote a template function.
The necessary condition for the fixed phase condition from (10.19) yields

0=Re (v(t) _5, <Sx I, V@>)L2 YV (S, A) € se(d).

Plugging (1;; — 1;;,0) and (0, ¢;), that is indeed a basis of se(d), into this equation
we obtain

0 =Re (U(t)—’{],(l’jDi—.TiDj)@)Lg, ’lIl,,d—l,jI’l—l—l,,d,
0=Re (v(t) —0,D0);., 1=1,...,d.

To guarantee that the index of the PDAE equals 1 we have to require that

Re ((z;D; — z;Dj)v(t), (1Dy — 23 D1)0) 2 # 0,
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Re ((.I'JDZ — l’iDj>’U<t>, DmTA)>L2 7£ 0,
Re (D,ﬂ](t), (.T}le — SL’le)@)Lg # 0,
Re (Dyv(t), Dy0) ;2 # 0.
is satisfied for every ¢,k = 1,...,d—1, j =1+ 1,...,d, l = k+1,...,d and

n,m=1,...,d.
The necessary condition for the orthogonal phase condition from (10.21) yields

0= —2Re (vt(t), <§x + I, Vv(t)>>L2 V (S, A) € se(d).

Plugging (/;; — 1;;,0) and (0, ¢;) once more, we obtain

0 =Re (v(t), (z;D; — x;:Dj)v(t)) ., i=1,...,d=1,j=i+1,....d
0 =Re (v(t), Div(t));., 1=1,...,d.
To guarantee that the index of the PDAE equals 1 we require that
Re ((z;D; — x;Dj)v(t), (1D — zDi)v(t)) 2 # 0,
Re ((z;Di — ;:Dj)v(t), Dpo(t)) 2 # 0,
Re (D,v(t), Dyou(t)); 2 # 0.
Approximation of localized rotating waves on bounded domains: An im-

portant issue is to investigate approximations of rotating waves to bounded do-

mains. We formulate such a result for the choice p = 2.
Let (v, (Sy, \)) € W2 (R%KN) x se(d) be a solution of

0 =AAv, () + (S,x + A\, Vo (2)) + f(vi(z)) , 2 €RY
0 =Re <U* —QA),(I‘]‘DZ' _xiDj)@>L2(Rd’KN) y 1= ]_,...,d— ]_, j =1+ ]_,...,d
O :Re <v*_{)’Dl@>L2(Rd7KN) 3 l — ]_,...,d
where v € Wéfd(Rd, KY) denotes an appropriate reference function. Then we are
interested in solving the following problem:

Problem 2. There exist some p > 0 and Ry > 0 such that for every radius R > Ry
the boundary value problem

0 =AAvg(x) + (Spx + Ag, Vog(z)) + f(vr(z)) , z € Bgr(0),

0 =vg(z) , ¢ € 0BR(0),
0 =Re <UR — TA), (.TJDZ — xiDj>@>L2(BR(O)7KN) s 1= 1, e d— 1, j =14+ 1, Ce d,
O :Re <UR — ’lA}’ Dl®>L2(BR(O),KN) 5 l = 17 ey d7

has a unique solution (vg, (Sgr,Ar)) in a neighborhood of
B0l (90 2)) = { (0. (S.0)) € W22 (BLKY) x se(d)|

HU*|BR(0) - UHWéfCI(BR(O),KN) +d((9 M), (5,4) < '0}'
Moreover, there exist some C > 0 and n > 0 such that

lvr — U*Hwéfd(Rd,KN) +d((Sk, Ar), (S Ar)) < Ce™
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An approximation theorem for relative equilibria on bounded intervals in one
space dimension can be found in [98] and [104]. But so far, there seems to be no
approximation results for localized rotating waves. This is still an open problem.

In order to extend the result from [98] to an approximation theorem for localized
rotating waves, as formulated in Problem 2, we must analyze solvability and unique-
ness of the inhomogeneous Cauchy problem for the Ornstein-Uhlenbeck operator on
bounded domains, compare Section 1.6. Moreover, we must study the truncation
error. Therefore, we plug the solution of the v,-equation into the vg-equation. If
every term is exponentially small, then we can conclude that the truncation error
is exponentially small. Of course, v, satisfies the PDE from the vg-equation on the
whole Bg(0). But both the boundary condition and the phase conditions possess
a defect. To show that these defects are exponentially small, we need pointwise
exponential decay of the rotational term and of the derivatives of v, up to order
2. Our main Theorem 1.8 implies exponential decay of v, in LP-spaces, but does
not yet provide us with pointwise estimates. For this purpose, we must extend
Theorem 1.8 to spaces of bounded uniformly continuous functions or to spaces of
Hoélder continuous functions, compare Section 1.6.

Example 10.8 (Reaction diffusion systems, Part 3). We continue with Example
10.7 and compute the motion v(t) = (R(t),7(t)) € SE(d) in the special Euclidean
group when the solution v(¢) has reached its relative equilibrium v,, i.e. we compute
v(t) for a given p, = (Si, \) € se(d) from the reconstruction equation

(10.27) (Zt(%)) = V() = dLyy (1), = (gggi) : (fé(?;) = (gd) :
The R-equation is decoupled from the 7-equation and admits the solution
(10.28) R(t) = exp(tS,).
Inserting the solution for R from (10.28) into the T-equation yields

7,(t) = exp(tSi) A, 7(0)=0

with solution

o0 Xn
10.2 = E(tS.)tA.,, E(X):= X € R
(10.29) (0 = BOS)I BX) = A Xe
Note that
d = t"“S” = (tS,)"

Tt(t):£[ (LStA] = tz@ —% o A = exp(tS,) A,

7(0)=E0-5:)-0-A\=1;-0-A =0.
If X € R4 is invertible, we can represent F(X) by

> X ntl
B(X)= xS = X (exp(X) — T) = (exp(X) — 1) X1

— (n+1)!
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Thus, we deduce from (10.28) and (10.29) that the solution for the reconstruction
equation (10.27) is given by

R.(t)\  (R(t)\ [ exp(tSy)
(10.30) (T*(t)) - (T(t)) = (E(ES*)M*) L0<t<T.
Consider the relative equilibrium
Uz, 1) = a(Ry(t), 72 (t))va(2) = v, (Ru(t) Mz — 7(1))) -

If a special point z, € R? of the profile v, is of interest, e.g. the tip of a spiral as
in [21], then this point will be visible at position x(¢) with

v = R a(t) — (1))
10.30) of the reconstruction equation (10.27) yields
« 7'*( )= exp(tS ):c* + E(tS, )t)\

—~ = (tS,)"
*+Z ZO<§1+)1)!M*

x_ gnilgn (S*x* + A*)
(n+1)! '

The solution

o(t) =R.(t)r
=Z

n=

:[L‘* +
n=0

For z(t) € R% that remain fixed with respect to the time evolution, the point
z, € R? must satisfy the equation

(10.31) S,y + A =0

for a given p, = (S, A\s) € se(d). In the following we discuss about the solutions of
(10.31). For this purpose, we define the kernel (or null space) and the range of
S, by

N(S,) = {:c* cR?| Sz, = 0} ,
R(S,) :== {y* eRY |3z, €eR?: Sz, = y*} .
Case 1: (rank(S,) = d). In this case the matrix S, has full rank, i.e. N(S,) = {0}

is trivial and R(S,) = R? hence S, is invertible and the only point that
remains fixed in time is given by

Crot i= =S\, € R

The point ¢,o; € R? is called the center of rotation in R?, since the relative
equilibrium satisfies

s, 8) =t (R (2 — 72(1))) = v (exp(—£8,) (& — B(S)EA))
=v, (exp(—tS,)(z — (exp(tS,) — I4)(tS.) " 'tA.))
=v, (exp(—tS,)z — S A + exp(—tS.) 5, 'A,)
=v, (exp(—tS,)(z + S;'A\) — S
=0, (exp(—t5,)(T — Crot) + Crot) -
Defining the shifted profile v&t (z) := v, (x + ¢,or) We obtain the rotating wave

Uy, t) = viet (exp(—tSy) (T — rot)) -



10.2 Freezing method for single-structures 203

Case 2: (rank(S,) < d). In order to solve the equation (10.31), let us first consider
the corresponding homogeneous equation S,x, = 0. Using the orthogonal
transformation S, = PAgfockPT from Section 3 with block diagonal matrix
Agl*ock yields

Si, =0 <= z,€N(S,) =span{Pej.1,..., Peq} U{0}.

Let us next consider the inhomogeneous equation (10.31). To guarantee that
equation (10.31) admits at least one solution x, we must require —\, € R(S,),
otherwise there exists no solution. If —\, € R(S,), then we deduce

(10.32) Sty = =N = 1, € {Tsy + Tayv | xav € N(S4)},

where x4, is any solution of (10.31). Here, x4, and z4, are called the support
vector and the direction vector in R? respectively. Using that z, is a
solution of (10.31), a formal computation

— RN (t)7.(t) = —exp(—tS,) B(tS,)tA,

2 (—tS,)" = (tS,)" 2 o= (—tS)E (S, )k
T (Z( n! : ) (Z (il+>1)!> BAe = = (ZZ </<;!(n>—<k:+)1)! )tk*

= e —1)k - :tS* n
- <nzzo(ts*) ;; m> A= (; (n+ 1))!> A
L (—tS,)" = (—tS,)" ! L (—tS,)"
- (nzzo (n+ 1)!) B5uTer = = (;0 (n+1)! ) T T T <n:1 nl ) Lov
= ([d — Z (‘2#)”) Tey = (Ig — exp(—tS,)) zsy = (Id — R;l(t)) Ty

shows that the relative equilibrium satisfies

w2, ) =v, (R (1) (2 — 7(1))) = v, (R7'(1) (2 — 2gy) + 2sy)
=v, (exp (=tS,) (z — xsy) + Tsy) -

Defining the shifted profile v7*(x) := v,(z + 5,) we obtain the rotating wave
Ug(,t) = vP (exp(—tS,)(z — x)) -

Obviously, the choice of the support vector zg, is still arbitrary. To make the
choice unique, we solve a rank-deficient least squares problem, [42, Section
5.5]: Let (S, A\x) € se(d) with rank(S,) = 2k < d and let the singular value
decomposition S, = USVT of S, from (3.3) be given. An application of [42,
Theorem 5.5.1| shows that

2k T
UTA,
(10.33) ==Y Vi

i=1

minimizes ||S,z + A||, with respect to the Euclidean norm ||-||, and has the
smallest 2-norm of all minimizers x belonging to the set of minimizers
x = {z € RY|||S.z + \.||, = min}. Here, U.; and V.; denote the i-th column
of U and V, respectively.
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Note that the solution set from (10.32) one obtains from the freezing method for
free. This set yields a center of rotation for d = 2, an axis of rotation for d = 3,
a center or a plane of rotation for d = 4 and several axis of rotation as well as
hyperplanes of rotation for d > 5.

Moreover, note that the calculations above extends also to

() =0 =amoon = (535 (76) = (%)

for some initial value (R, 79) € SE(d). This equation admits the solution

R, (t) R(t) Ry exp(tS,)
(T*( )) | <T(t) RyE(tS)th, + 1) U SEST
But in the numerical examples below we only consider the case (Ry, 1) = (14, 0).
We next consider the special cases d = 2 and d = 3 in more detail.

Special Case 1: (d = 2). From the assumption 0 # S, € s0(2) we can deduce that
the matrix S, is invertible, i.e. N(S,) = {0} and R(S,) = R% This yields
the center of rotation in R?

1
o0 o1y _ (0 Sip AW
Crot = S* )‘* - (_512 0 )\(2)

L0 =1\ /AWY 1 A@ R?
s, 0 ) \he) T, lw ) ER

and the relative equilibrium satsifies

(10.34)

uy(2,t) = v, (exp(—tS,) (v — 25) + cff)f) S (exp(—tS.)(xz — 2R)).

In particular, the time, that the pattern needs for exact one rotation about

2D s given by the temporal period of rotation for d = 2
oD _ 2_7T _ 2
o1 [Sae|”

that can be determined by 7" := min{t > 0 | exp(—tS,) = I;} for arbitrary
space dimensions d > 2.

Special Case 2: (d = 3). For space dimension d = 3 the matrix 0 # S, € s0(3)
is indeed not invertible. More precisely, the null space of S, contains the
direction vector of the axis of rotation, i.e.

Sas
N(S*) =qT —513 | reR
Sl2

Thus, the axis of rotation has the form

Sas
=P +r | -S|, r€R.
S12
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Using the singular value decomposition S = UXVT from (3.3) with

0 a b 0 g1 0
S=|-a 0 c|,Ay=|-o 0 0],

—b —c 0 0 0 0

1 \/1?2(1& Ve © o 0 0
P=—|- ab ~b|,2=10 o 0],

o1 \/b2+02 \/b2+02 )
0 Vb2 +c? oa 0 0 0

___ac boy c __boy ___ac
1 V242 Vb2+c? 1 Vb2 +c? Vb2 +c2
U=— ab coy —b V=—|—-——w __ab —b
o1 \/b2+c2 \/b2+c2 ) o \/b2+c2 \/b2+02 9
V0?2 + 2 0 a 0 Vi2E+ 2 oa
o1 = Va2 +b+c > 0and a := Sip, b := Si3, ¢ := So3 and solving the

rank-deficient least squares problem leads to the support vector

S1aA2 + S13A3

1
2P = —S12M1 + 5233 |,
Stz + s + 5 —S13A1 — S23 A2

cf. (10.33). This yields a very simple formula for the axis of rotation

(10.35)
. 1 S1aAs + S13A3 Sos
Uror (T) 1= 55 2 5 | —S2AL + SwsAz | +r | =S|, reER
Stz + 51+ 5\ _g, — i, Sis

In this case, the relative equilibrium satisfies
wn(a,t) = v, (exp(—18.) (x — 227) +28l) = vi¥ (eap(~S.)(x — 2&7))

In particular, the time, that the pattern needs for exact one rotation about
ayot (1), is given by the temporal period of rotation for d =3

3p 2T 2T
|o1] ‘\/5%2"‘5123“‘5%3‘.

10.3 Numerical examples of single-structures

In this section we investigate numerically the freezing system

(10.36a)

(10.36b) 0 (
Ry(t) R(
(10.360) ( (t)) _ ( ol



206 10 Freezing approach and numerical results

from Example 10.7, c¢f. (10.26). Our aim is to compute an approximation of the
rotating wave u,, in the sense that we approximate the profile v, and the velocities
(Sk, Ay, separately.

To solve the partial differential algebraic system (10.36) numerically, we first
truncate (10.36) from the original domain R? to a bounded domain © C R?. Since
the truncation requires additional boundary conditions and since we don’t want to
affect the asymptotic behavior of the wave near the boundary, we purpose homoge-
neous Neumann boundary conditions, also known as no-flux boundary conditions.
This leads to truncated versions of (10.36) and their solutions can be considered as
approximations of the original rotating wave.

In the examples below, we numerically solve the truncated version of the PDAE
from (10.36) including the additional boundary conditions. The finite domain
0 C R? will be a circular disk if d = 2 or a cube if d = 3. We use continuous
piecewise linear finite elements in space and the BDF method of order 2 in time.
The computations require suitable initial data vy and reference functions v that
both come actually from a simulation and are chosen as the solution u at the end
time from Example 2.1, 2.2 and 2.3, respectively. For the numerical computations
we use Comsol Multiphysics™, [1].

Example 10.9 (Ginzburg-Landau equation). Consider the freezing system for the
cubic-quintic complex Ginzburg-Landau equation (QCGL) from Example 2.1

(10.37a) v, =alv+v(u+p lv|* +~ \v\4)

d—1 d d
+ Z Z SZ](ZL‘JDZ — l‘iDj)U + Z )\lDlU, U(', to) = Vo
i=1 j=i+1 =1
(1037b) RG(U—’{},(ZL'JDZ—ZL‘ZDJ)QA})LQ, Zzl,,d—l,j22+1,,d
(10.37¢) Re (v—0,D0);., l=1,...,d

wosro (7)= () (i) = (6)
with v : R? x [0, 00[— C, d € {2,3}, a, 8,7, € C and Rea > 0.

(1): For the parameter values (2.4) we know from Example 2.1 that the QCGL
exhibits spinning soliton solutions u(z,t) for space dimensions d = 2 and d = 3, cf.
Figure 2.1. In the examples below we approximate the patterns v, as well as the
rotational and translational velocities, that are contained in S and A, respectively.
Further, using the reconstruction equation (10.37d) we determine the centers of
rotation 2 € R? for d = 2 and the axis of rotation a3 € C'(R,R?) for d = 3.

Figure 10.1(b)-10.1(d) shows the real part (b), imaginary part (c¢) and the ab-
solute value (d) for the approximation of the profile v, of the spinning soliton in
R? as the solution of (10.37) on a circular disk of radius R = 20 centered in the
origin at time ¢t = 400. Figure 10.1(e) shows the translational and rotational ve-
locities. p = A1 and pu® = X® denotes the translational velocity in z;- and
zo-direction, respectively, and u® = Si» denotes the rotational velocity in the
(x1, z3)-plane. Their values at time ¢ = 400 are

0
0

(10.38) Y =0.002926, pu» =—-0.01691, p® = 1.0270.
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Recall that we have a clockwise rotation, if S15 > 0, and a counter clockwise rota-
tion, if Sio < 0. Thus, the spinning soliton rotates clockwise. The reconstruction
equation and the velocities yield the center of rotation, cf. (10.34),

op_ L p®N —% ~(—0.016465
rot ,u(g) _M(l) — |\ __0.002926 - —0.002849 | °

1.0270

The temporal period, that the spinning soliton in R? needs for exact one rotation,
is given by

27
]

TP — = 6.118.

2 1.5
15

1

< Z‘(««“““““““"‘“““““““““““““‘—
0 e

‘150 200 250 300 350 400

Figure 10.1: Frozen solitons of QCGL for d = 2

Figure 10.1(f) shows that neither the approximation v of the profile v, nor the
velocities p™, 1 and p® vary in time any more, i.e. both v and p®, u®, p®
are stationary at time ¢ = 400. For the computation of (10.37) with d = 2 we
used continuous piecewise linear finite elements with maximal stepsize Ax = 0.25,
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the BDF method of order 2 with absolute tolerance atol = 107, relative tolerance
rtol = 1072 and maximal stepsize At = 0.2, homogeneous Neumann boundary
conditions and fixed phase conditions. The initial data and the reference function
come from a simulation: First we solved the nonfrozen system (2.1) until time
t = 150, as explained in Example 2.1, then we solved the freezing system (10.37)
from ¢ty = 150 to T" = 400, where the initial data and the reference function is
chosen as the solution of the nonfrozen equation (2.1) at time ¢ = 150, cf. Figure
2.1(a)-2.1(c). This general procedure is also displayed in Figure 10.1(a), that shows
a space-time diagram on the line z; € [—20, 20] for x5 = 0 and 0 < ¢ < 400.

, ‘E'««(«(«mm«lm« “
i

0 100 150 200 250 300 350 400 450 500

Figure 10.2: Frozen solitons of QCGL for d = 3

Figure 10.2(b)-10.2(d) shows the real part (b), imaginary part (c¢) and the abso-
lute value (d) for the approximation of the profile v, of the spinning soliton in R?
as the solution of (10.37) on a cube with edge length L = 20 centered in the origin
at time ¢ = 500. Figure 10.2(e) shows the translational and rotational velocities.
pM =202 = X2 and 13 = A®) denotes the translational velocity in -, @o-
and xs-direction, respectively, and ,u(4) = Sia, u(5) = 513 and u(6) = Sy3 denote the
rotational velocities in the (z1,z3)-, (1, x3)- and (2, x3)-plane. Their values at
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time ¢ = 500 are
(10.30) pM=-0.1315, x® =0.1231, p® =—-0.001496,
' p® =0.6855, u® =—0.01558, u® =0.01086.

The reconstruction equation, the rank-deficient least squares problem and the ve-
locities yield the axis of rotation, cf. (10.35),

0.179489 0.01086
atl(r)y =1 0191649 | +r [ 0.01558 | , r € R.
—0.007199 0.6855

The temporal period, that the spinning soliton in R3 needs for exact one rotation,
is given by

2
Ve G o

Figure 10.2(f) shows once more that neither the approximation v of the profile
v, nor the velocities p™®, ..., 1 vary in time any more. For the computation of
(10.37) with d = 3 we used continuous piecewise linear finite elements with maximal
stepsize Ax = 0.8, the BDF method of order 2 with absolute tolerance atol =
107°, relative tolerance rtol = 1072 and maximal stepsize At = 2.0, homogeneous
Neumann boundary conditions on all faces and fixed phase conditions. The initial
data and the reference function come again from a simulation: First we solved the
nonfrozen system (2.1) until time ¢ = 100, as explained in Example 2.1, then we
solved the freezing system (10.37) from to = 100 to 7' = 500, where the initial data
and the reference function is chosen as the solution of the nonfrozen equation (2.1)
at time ¢ = 100, cf. Figure 2.1(d)-2.1(e). This general procedure is also displayed
in Figure 10.2(a), that shows a space-time diagram on the line z; € [—20,20] for
r9 = 23 = 0 and 0 < ¢ < 500.

T3P = 0.162327.

(2): For the parameter values (2.5) we know from Example 2.1 that the QCGL
exhibits rigidly rotating spiral wave solutions wu(z,t) for space dimension d = 2, cf.
Figure 2.2.

Figure 10.3(b)-10.3(d) shows the real part (b), imaginary part (c¢) and the ab-
solute value (d) for the approximation of the profile v, of the spiral wave in R? as
the solution of (10.37) on a circular disk of radius R = 20 centered in the origin
at time ¢ = 500. Figure 10.3(e) shows the translational and rotational velocities.
p = X1 and 1@ = X? denotes again the translational velocity in z;- and zo-
direction, respectively, and ® = S;, denotes the rotational velocity. Their values
at time ¢ = 500 are

(10.40) M =0.02616, pu® =—-0.01027, pu®» =1.323.

Since Si, > 0, the spiral wave rotates clockwise. In particular, the spiral wave
rotates faster than the 2D-spinning solitons. The reconstruction equation and the
velocities yield the center of rotation, cf. (10.34),

op L () (<O (0007763
Crot—u(:s) —p ) Q006 T 0.019773 )

1.323
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The temporal period, that the spiral wave needs for exact one rotation, is given by

2
TP — =" 47499,

1]
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Figure 10.3: Frozen spiral of QCGL for d = 2

Figure 10.3(f) shows that neither the approximation v of the profile v, nor the
velocities pi1, po and pg vary in time any more. For the computation of (10.37) with
d = 2 we used continuous piecewise linear finite elements with maximal stepsize
Az = 0.25, the BDF method of order 2 with absolute tolerance atol = 1075, relative
tolerance rtol = 1072 and maximal stepsize At = 1.0, homogeneous Neumann
boundary conditions and fixed phase conditions. The initial data and the reference
function come from a simulation: First we solved the nonfrozen system (2.1) until
time ¢t = 150, as explained in Example 2.1, then we solved the freezing system
(10.37) from to = 150 to T' = 500, where the initial data and the reference function
is chosen as the solution of the nonfrozen equation (2.1) at time ¢t = 150, cf. Figure
2.2(a)-2.2(c). This general procedure is also displayed in Figure 10.3(a), that shows
a space-time diagram on the line z; € [—20, 20] for x5 = 0 and 0 < ¢ < 500.
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(3): For the parameter values (2.6) we know from Example 2.1 that the QCGL
exhibits twisted and untwisted scroll waves and scroll ring solutions wu(x,t) for

]

—

—-05

5|
4
3|
2
1
0]

20

-1, 10

150 350 550 750 150 350 550 750 150 350 550 750 150 350 550 750
t t

() (f)

Figure 10.4: Frozen scroll ring of QCGL and A-w system for d = 3

Figure 10.4(b)-10.4(d) shows the real part (b), imaginary part (c) and the abso-
lute value (d) for the approximation of the profile v, of the untwisted scroll wave
in R? as the solution of (10.37) on a cube with edge length L = 40 centered in
the origin at time t = 850. Figure 10.4(e) shows the translational and rotational
velocities. pM =AM, 4 =A@ and 4 = A®) denotes the translational velocity
in xq-, xo- and :Eg-dlrection, respectively, and u(4) = Sia, ,u(5) = 513 and ,u(ﬁ) = So3
denote the rotational velocities in the (1, x2)-, (1, x3)- and (xs, x3)-plane. Their
values at time ¢t = 850 are

pV = —0.00123, p® =0.004219, p® =5.697,

10.41
( ) Y =0.0004585, p® =0.0004447, 1'% = —0.0003909.

Figure 10.4(f) shows once more that neither the approximation v of the profile v,
nor the velocities M, ..., 4% vary in time any more.
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We find out that the freezing method yields a traveling wave instead of a rotating
wave, since the rotational velocities are approximately zero and only p®, that
describes the velocity in z3-direction, is unequal 0. This phenomena is caused by the
periodic boundary conditions on the (1, z3)-faces. Due to the boundary condition
the scroll ring can be considered either as a traveling wave, that drifts along the
xr3-axis, or as a rotating wave, that rotates about the xs-axis. This states that the
isotropy group is nontrivial for G = SE(3), but it is indeed trivial in G = SO(3).
This fact was already discussed in [46]. Thus, we perform a second computation
using the freezing method with G = SO(3). Therefore, we modify (10.37) as follows:
We set A, = 0 in (10.37a) and omit the phase conditions (10.37c). Consequently,
the T-equation in (10.37d) has the solution 7(¢) = 0. Using the same computational
settings as before in the case G = SE(3), the freezing method in G = SO(3) yields

at time t = 850 the velocities
p =0, u® =0 pu¥=o0,
(10.42) , . ;
p® = —0.8934, u® =0.002114, p© = —0.001088.

The reconstruction equation, the rank-deficient least squares problem and the ve-
locities yield the axis of rotation, cf. (10.35),

0 —0.001088
aP(ry=(0] +r|-0002114 |, r € R.
0 —0.8934

The temporal period, that the scroll ring in R? needs for exact one rotation, is given

by

2T

73D _
@+ (W) + ()2

= 7.0329.

Since the numerical results for G = SO(3) are very similar to those from Figure
10.4 for G = SE(3), we omit to present separate figures for this situation.

For both computations of (10.37) with d = 3 we used continuous piecewise linear
finite elements with maximal stepsize Ax = 1.6, the BDF method of order 2 with
absolute tolerance atol = 107°, relative tolerance rtol = 1072 and maximal stepsize
At = 1.0, homogeneous Neumann boundary conditions on all faces and fixed phase
conditions. The initial data and the reference function come again from a simula-
tion: First we solved the nonfrozen system (2.1) until time ¢ = 150, as explained in
Example 2.1, then we solved the freezing system (10.37) from ¢, = 150 to 1" = 850,
where the initial data and the reference function is chosen as the solution of the
nonfrozen equation (2.1) at time ¢t = 150, cf. Figure 2.3(a)-2.3(c). This general
procedure is also displayed in Figure 10.4(a), that shows a space-time diagram on
the line z; € [—20,20] for x5 = 23 = 0 and 0 < ¢ < 850.
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Example 10.10 (A-w system). Consider the freezing system for A\-w system from
Example 2.2

(10.432) v, = alw +v (A ([v]?) + iw (Jo]?))

-1 d d
+ Z Z Sij(xjD; — x; Dj)v + Z ADw, (-, to) = vy

i=1 j=i+1 =1
(1043b) Re(’l]-’ﬁ,(l’]Dl—.TzD])@)LQ, ’lIl,,d—l,jI’l—l—l,,d
(10.43c) Re (v—0,D10);., l=1,...,d

o (5)-(5): (3)-(3)

with v : R? x [0,00[— C, d € {2,3}, « € C, X : [0,00[— R and w : [0, co[— R.

0=
0=

(1): For the parameter values (2.8) we know from Example 2.2 that the A\-w system
exhibits rigidly rotating spiral wave solutions wu(z,t) for space dimension d = 2, cf.
Figure 2.4.

Figure 10.5(b)-10.5(d) shows the real part (b), imaginary part (c¢) and the ab-
solute value (d) for the approximation of the profile v, of the spiral wave in R? as
the solution of (10.43) on a circular disk of radius R = 50 centered in the origin
at time ¢ = 550. Figure 10.5(e) shows the translational and rotational velocities.
p =AM and 1 = A® denotes the translational velocity in z1- and xo-direction,
respectively, and ® = S, denotes the rotational velocity. Their values at time
t = 550 are

(10.44) M =0.0005907, p® =0.001609, u® = —0.9091.

Since S1o < 0, the spiral wave rotates counter clockwise. The reconstruction equa-
tion and the velocities yield the center of rotation

ep_ L (p® N (=S (—0.001770
rot ,u(g) —,M(l) 0.0005907 0.000650 :

0.9091

The temporal period, that the spiral wave needs for exact one rotation, is given by

2
720 — T _ 69114,

|1

Figure 10.5(f) shows that neither the approximation v of the profile v, nor the
velocities M, u® and p® vary in time any more. For the computation of (10.43)
with d = 2 we used continuous piecewise linear finite elements with maximal step-
size Az = 0.5, the BDF method of order 2 with absolute tolerance atol = 1077,
relative tolerance rtol = 1072 and maximal stepsize At = 0.1, homogeneous Neu-
mann boundary conditions and fixed phase conditions. The initial data and the
reference function come again from a simulation: First we solved the nonfrozen
system (2.7) until time ¢ = 150, as explained in Example 2.2, then we solved the
freezing system (10.43) from ¢y = 150 to 7" = 550, where the initial data and the
reference function is chosen as the solution of the nonfrozen equation (2.7) at time
t = 150, cf. Figure 2.4(a)-2.4(c). This general procedure is also displayed in Figure
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10.5(a), that shows a space-time diagram on the line z; € [—50, 50] for 2 = 0 and
t < 550.

W— ﬂ

450 500 550

0<

= 20
150 250 350 450 550 150 250 350 450 0150 250 0 450 550 150 250 350 450
t t

() (f)

Figure 10.5: Frozen spiral of A-w system for d = 2

(2): For a discussion about the scroll ring in Figure 10.4(a)-10.4(f) we refer to
Example 10.9(3).

Example 10.11 (Barkley model). Consider the freezing system for the Barkley
model from Example 2.3

(10.45) ”:<33)AM«?MO&3@QJ?))

d—1 d d
+ Z Z SZJ(.TJDZ — .I‘iDj)’lJ + Z )\lDlU, U(', to) = Vo
=1

=1 j=i+1
:<U—’IAJ,(.TJ‘DZ‘—SL’Z'D]'>’IAJ)L2, Z:L,d—l,j:’l—Fl,,d
(v—10,Dp%),2, 1=1,....d

gy (T) = (BS), (R (1)
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with v = (vi,v2)T, v : RT x [0,00[— R% d € {2,3},0< D << 1,0 <¢e << 1,
0<a,beR, g:R—R

(1): For the parameter values (2.10) we know from Example 2.3 that the Barkley
model exhibits rigidly rotating spiral wave solutions u(x,t) for space dimension
d = 2, cf. Figure 2.5.

Figure 10.6: Frozen spiral of Barkley model for d = 2

Figure 10.6(b)-10.6(d) shows the first component (b), the second component (c)
and the absolute value (d) for the approximation of the profile v, of the spiral wave
in R? as the solution of (10.45) on a circular disk of radius R = 40 centered in
the origin at time ¢ = 650. Figure 10.6(e) shows the translational and rotational
velocities. p™® =AM and p® = A? denotes the translational velocity in z;- and
xo-direction, respectively, and u® = S, denotes the rotational velocity. Their
values at time ¢ = 650 are

(10.46) p = —-1.370, p® =-2422, 1@ =2.067.
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Since Si2 > 0, the spiral wave rotates clockwise. The reconstruction equation and
the velocities yield the center of rotation

oo L ( u® ) _ (?ﬁ) _ (-1.1717)'
ot = @) \ = 121 0.6628

The temporal period, that the spiral wave needs for exact one rotation, is given by

oD 2T

= Ty = 5039,

Figure 10.6(f) shows that neither the approximation v of the profile v, nor the
velocities ™, ® and p® vary in time any more. For the computation of (10.45)
with d = 2 we used continuous piecewise linear finite elements with maximal step-
size Az = 0.5, the BDF method of order 2 with absolute tolerance atol = 107%,
relative tolerance rtol = 1072 and maximal stepsize At = 1.0, homogeneous Neu-
mann boundary conditions and fixed phase conditions. The initial data and the
reference function come again from a simulation: First we solved the nonfrozen
system (2.9) until time ¢ = 150, as explained in Example 2.3, then we solved the
freezing system (10.45) from ¢, = 150 to 7" = 650, where the initial data and the
reference function are chosen as the solution of the nonfrozen equation (2.9) at time
t = 150, cf. Figure 2.5(a)-2.5(c). This general procedure is also displayed in Figure
10.6(a), that shows a space-time diagram on the line z; € [—40, 40] for x5 = 0 and
0 <t <650.

10.4 Numerical computations of the essential and
the point spectrum

In this section we investigate numerically the eigenvalue problem
(10.47) M —L]v(z) =0,z € R, d > 2,
where £ denotes the linearization about a rotating wave v,

[Lv] (7) := ADv(z) + (Sz, Vu(z)) + Df(ve(x))v(x), 2 € R%

To solve the eigenvalue problem (10.47) numerically, we restrict equation (10.47) to
a bounded domain and require additional boundary conditions. More precisely, in
the examples below we compute the finite element approximation of the eigenvalue
problem (10.47) on circular disk for d = 2 and on cubes for d = 3. In both cases
we use homogeneous Neumann boundary conditions. The rotating wave v,, at
which we linearize, is chosen as the solution v at the end time from Example 10.9,
10.10 and 10.11, that is an approximation of v,, i.e. we first solve the freezing
system and use the solution as linearization point. The velocities of the rotating
waves v,, that are needed for the matrix S, can be found in the Examples 10.9,
10.10 and 10.11. To solve the eigenvalue problem by the finite element method
we use Comsol Multiphysics™ [1]. The code involves the ARnoldi PACKage,
short ARPACK, that was developed to solve large-scale eigenvalue problems. The
ARPACK requires a real shift ¢ € R for computing a prescribed number neig of
eigenvalues that are closest to o and satisfy a certain eigenvalue tolerance etol.
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Example 10.12 (Ginzburg-Landau equation). Consider the eigenvalue problem
for the real-valued version of the cubic-quintic complex Ginzburg-Landau equation
(QCGL) from Example 2.1 and Example 10.9

(10.48) (0‘1 ‘0‘2) Av(z) + (Soz + A, Vo(2)) + Df (0.(2)) v(z) = Mo(z),

(0] aq
with v : R? — C% d € {2,3} and f : R* — R? given by

f <U1) _ ((U1/~L1 — Uafty) + (u1 By — usf) (Ui + u3) + (uryr — uy2) (uf + u%)Z)
Uz (ur o + ugpry) + (u1 B + uaf) (ui +u3) + (uryz + uam) (ui + U%)z ’

where u = uy + tug, @ = a1 + i, B = 01 + 102, ¥ = 71 + i and u;, oy, B, 7 € R
for i = 1,2. The pattern v, must be considered as a function v, : R* — R? instead
of v, : R* — C.

(1): For the parameter values from (2.4) we have already seen in Example 2.1
and in Example 10.9 that the Ginzburg-Landau equation exhibits spinning soliton
solutions for space dimensions d = 2 and d = 3, that this parameter values satisfy
our assumptions (A1)—(A9) for every p €]4 —2v/2,4+2v2[, i.e. p=2,3,4,5,6, and
that the solitons are exponentially localized in the sense of Theorem 1.8 for the real
valued system and in the sense of Corollary 8.1 for the complex-valued equation
with maximal decay rate (2.3). In the examples below we approximate solutions
(A, v) of the eigenvalue problem (10.48), where (A, v) consists of an eigenvalue A\ € C
and its corresponding eigenfunction v : R? — C2. In particular, we point out that

W ®)
(10.49) A, = <Z(2)) , S, = (_O Mo ) ifd =2

u®
and
1 0 u® Lo
(10.50) M= |p®@),S=-p® 0 u9) ifd=3.
u® —p® —p®

Recall the following values that are relevant to discuss the results concerning the
linearization and its associated eigenvalue problem:

(10.51)

Moreover, we know from Example 10.9 for d = 2, cf. (10.38) and (10.49),
(10.52) o(S,) = {£oi}, o1 =p® =1.0270,

and for d = 3, cf. (10.39) and (10.50),

(10.53)  o(S,) = {0, +01i}, o1 = \/(W))2 + (1)) 4 (u©)* = 0.68576.
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For the computation of the eigenvalue problem (10.48) we use in both cases
d =2 and d = 3 continuous piecewise linear finite elements with maximal stepsize
Az =025 (if d = 2) and Az = 0.8 (if d = 3), homogeneous Neumann boundary
conditions and the following parameters for the eigenvalue solver

(10.54) neig = 800, o= —1, etol=10"".

The profile v, and the velocities (S, A,) come actually from a simulation: First we
solve the freezing system (10.37) until time 400 for d = 2 and until time 500 for
d = 3, as explained in Example 10.9, then we solve the eigenvalue problem (10.48),
where the profile v, and the velocities (S, \,) are chosen as the solution of (10.37)
at the last time instance, cf. Figure 10.1(b)-(e) and Figure 10.2(b)-(e).

Figure 10.7 and 10.9 show an approximation o®P"*(L) of the spectrum o(L) of
L linearized about the spinning soliton v, for d = 2, see Figure 10.7(b), and d = 3,
see Figure 10.9(b), as well as the exact informations about ¢ (L) that we know from
our theoretical results in Figure 10.7(a) for d = 2 and Figure 10.9(a) for d = 3. In
Figure 10.8 and 10.10 there are visualized the real parts of the first component of
certain eigenfunctions v associated to different eigenvalues belonging to the point
spectrum opoimt(£). Let us start to discuss the numerical results in detail:

By Theorem 9.10 we can expect that

(10.55) {)\ = —w?oq 4y +i (—w20z2 + o — ncrl) |lweR, ne Z} C 0ess(L)

with o from (10.52) for d = 2 and from (10.53) for d = 3. The case d = 2 was
also discussed in [15, Section 8]. In both cases the essential spectrum e (L) forms
a zig-zag-structure, that is illustrated by the red lines in Figure 10.7(a) for d = 2
and in Figure 10.9(a) for d = 3. The distance between two neighboring tips of the
cones equals oy, that can easily by seen in (10.55). The minimal distance between
the essential spectrum and the imaginary axis equals by = %, since, cf. (10.51),

1
Reo(L) < —by = Rep = —3
The dispersion relation from (9.15) states that A € C belongs to o (L) if there

exist w € R and n € Z such that

>\+1(2+1)+' i 0
— (W 1\ — no = V.
2 2 '

Figure 10.7(b) and Figure 10.9(b) show an approximation o2PP***(L) of the essential

spectrum, that is represented by the red dots. In both cases, o2PP**(L) gives a
good approximation for o (L), given by the red lines in Figure 10.7(a) and Figure
10.9(a). An application of Theorem 9.4 yields the eigenvalues of £, that are due
to the SE(d)-action, and the shape of their eigenfunctions. In Example 9.6 and
9.7, they are explicitly computed for the case d = 2 and d = 3, respectively. In
both cases there are three eigenvalues Ay, Ao, A3 € point (L), that are located on the

imaginary axis, compare Corollary 9.5 and see Figure 9.1. They are given by

)\1:i01, )\2:—2'01, )\320
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Figure 10.7: Essential and point spectrum of QCGL for a spinning soliton with d = 2
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Figure 10.8: Eigenfunctions of QCGL for a spinning soliton with d = 2

Every eigenvalue has algebraic multiplicity 1 for d = 2 and algebraic multiplicity 2
for d = 3. They are visualized by the blue circles in Figure 10.7(a) for d = 2 and in
Figure 10.9(a) for d = 3. Their corresponding approximations are illustrated also
by the blue circles in Figure 10.7(b) and in Figure 10.9(b). Indeed, as indicated
in Corollary 9.5, Theorem 9.4 does not give a complete characterization of the
point spectrum opeine(L), i.e. in Figure 10.7(a) and 10.9(a) there can in general
exist further isolated eigenvalues between the essential spectrum o (L) and the
imaginary axis. This is also motivated by our numerical observations. In case
d = 2, the approximation of o(L£) contains in addition 8 complex-conjugated pairs
of isolated eigenvalues, represented by the blue crosses in Figure 10.7(b). Similarly,
in case d = 3, the approximation of o(£) admits additionally 11 complex-conjugated
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Figure 10.9: Essential and point spectrum of QCGL for a spinning soliton with d = 3
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Figure 10.10: Eigenfunctions of QCGL for a spinning soliton with d = 3

pairs of isolated eigenvalues, see Figure 10.9(b). Both, the eigenvalues visualized by
the blue circles and by the blue crosses form together an approximation oo™ (L)
of the point spectrum of £. In Figure 10.7(b) and Figure 10.9(b) there are some
isolated eigenvalues labeled by a green square. Their associated eigenfunctions

are visualized in Figure 10.8 and 10.10. To be more precisely, in the pictures
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there are illustrated the real parts of the first component of the corresponding
eigenfunction v : R — C2. The first three eigenfunctions in Figure 10.8 and the
first six eigenfunctions in Figure 10.10 are approximations of the eigenfunctions
from Theorem 9.4, see also Example 9.6 for d = 2 and Example 9.7 for d = 3. The
remaining eigenfunctions are associated to an eigenvalue from the point spectrum.
Note that the first eigenfunction in Figure 10.8 and the third eigenfunction in Figure
10.10 are approximations of the rotational term (S,z, Vu,(x)). An application of
Theorem 9.8 shows that every eigenfunction with associated eigenvalue A € C
satisfying

b 1
Rel > — 2 — —~ ~ —0.1667
3 6

decays exponentially in space with the same rate as in (2.3). In case d = 2,
this property is satisfied only for the first three eigenfunctions associated to the
approximations of Ay, Ay and A3, see Figure 10.8. In case d = 3, this property
is satisfied for the first six eigenfunctions associated to the approximations A,
A2, A3 and additionally for the 7th and 8th eigenfunction. Nevertheless, every
eigenfunction with associated eigenvalue A € o 0P ™ (L) seems to be exponentially
decaying in space. In particular, Corollary 9.9 states that also the rotational term
(Syz, Vu,(x)) decays exponentially in space with the same rate as in (2.3).

(2): For the parameter values from (2.5) we have already seen in Example 2.1 and
in Example 10.9 that this equation exhibits rigidly rotating spiral wave solutions
for space dimensions d = 2 and that this parameter values satisfy our assumptions
(A1)-(A9) for every p €]4 — 2v/2,4 4+ 2V/2[, i.e. p = 2,3,4,5,6. But the spiral
wave is not localized in the sense of Theorem 1.8, since condition (1.20) seems not
to be satisfied. But note that the spiral wave seems to be Archimedean far away
from the center of rotation, i.e. v, satisfies (9.16). For the discussion about the
spectrum of £ linearized at the spiral wave, we recall (10.51). Moreover, we know
from Example 10.9, cf. (10.40) and (10.49),

(10.56) o(S,) = {Fo1i}, o1 =p® =1.323.

For the computation of the eigenvalue problem (10.48) we use again continuous
piecewise linear finite elements with maximal stepsize Ax = 0.5, homogeneous
Neumann boundary conditions and the same parameter values as in (10.54) for
the eigenvalue solver. The profile v, and the velocities (S, A,) come again from a
simulation: First we solve the freezing system (10.37) until time 500, as explained
in Example 10.9, then we solve the eigenvalue problem (10.48), where the profile
v, and the velocities (S,, A,) are chosen as the solution of (10.37) at time ¢ = 500,
cf. Figure 10.3(b)-(e).

Figure 10.11 shows an approximation of the spectrum o (L) of £ linearized about
the spiral wave v,. In Figure 10.12 there are visualized the real parts of the first
component of certain eigenfunctions associated to different eigenvalues belonging
to the point spectrum opeint(£). We next discuss the numerical results in detail:

Since the spiral wave does not satisfied the condition (1.20), we cannot apply
Theorem 1.8, Corollary 8.1, Theorem 9.8, Corollary 9.9 and Theorem 9.10. Nev-
ertheless, the spiral wave is Archimedean far away from the center of rotation and
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therefore we can apply the theory from Section 9.5, that yields, cf. (9.21),
{N(ik) +io1Z | k € R, 1 = 1,2} C 0ess(L).

In contrast to the essential spectrum of localized rotating patterns, where the es-
sential spectrum contains infinite many cones that form a zig-zag structure, the
essential spectrum for a spiral wave contains infinitely many parabolas A!(i-) that
are all opened to the left. The distance between two neighboring turning points of
the parabolas equals oy, that can easily be seen in (9.21).

Lt ‘. hd LA S S S .
-10 -8 -6 -4 -2 0

Figure 10.11: Essential and point spectrum of QCGL for a spiral wave with d = 2
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Figure 10.12: Eigenfunctions of QCGL for a spiral wave with d = 2

Figure 10.11 shows an approximation o?PP**(L) of the essential spectrum at a
spiral wave, represented by the red dots. On the left we have an approximation of
these infinitely many parabolas. In particular, the distance of their turning points
is approximatively o;. In the middle we have against our theoretical knowledge
infinitely many horizontal lines and on the right we observe the Floquet exponents
in the comoving frame, see also [38, Figure 19(b)]. Note that neither a smaller
spatial stepsize nor a larger domain has any effect on the shape of the approximation
for the spectrum. This means that we can expect that also o (L) contains some

horizontal lines and the Floquet exponents. An application of Theorem 9.4 yields
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informations about the part of the point spectrum opoint (L) that is located on the
imaginary axis and is due to the SE(2)-action. These eigenvalues are given by

A =101, A= —ioy, A3=0,

and have algebraic multiplicity 1. Their corresponding approximations are illus-
trated by the blue circles in Figure 10.11. Since Theorem 9.4 does not yield a
complete characterization of the point spectrum opoint (L), there can in general ex-
ist further eigenvalues belonging to oyt (£). The approximation of o(L£) contains
4 complex-conjugated pairs of isolated eigenvalues, represented by the blue crosses
in Figure 10.11. Note that one pair of these eigenvalues, A ~ —1072 £ 4, is very
close to the imaginary axis. The approximation of the point spectrum, denoted by
Tpoint (L), is compound by the eigenvalues visualized by the blue circles and by the
blue crosses. In Figure 10.11 there are some isolated eigenvalues labeled by a green
square. Their associated eigenfunctions are visualized in Figure 10.12. As before,
there are illustrated the real parts of the first components of the corresponding
eigenfunction. The first three eigenfunctions in Figure 10.12 are approximations
of the eigenfunctions from Theorem 9.4, see also Example 9.6. The fourth eigen-
function belongs to the green boxed eigenvalue that is closest to the imaginary
axis. Note that the first eigenfunction is an approximation of the rotational term
(Siz, Vu,(x)). In particular, all these eigenfunctions doesn’t decay in space.

(3): For the parameter values from (2.6) we have already seen in Example 2.1(3)
and in Example 10.9(3) that the Ginzburg-Landau equation exhibits twisted and
untwisted scroll wave as well as scroll ring solutions for space dimensions d = 3 and
that this parameter values satisfy our assumptions (A1)—(A8) for every 1 < p < oo
but not the spectral assumption (A9). But neither the scroll wave nor the scroll ring
is not localized in the sense of Theorem 1.8, since condition (1.20) seems neither to
be satisfied. In the x1-xo-plane both, the scroll wave and the scroll ring, seems in
a certain sense to be Archimedean far away from the center of rotation, compare
(9.16). This motivates that the approach for the computation of the essential
spectrum for the spiral wave extends similarly to scroll waves and scroll rings. For
the discussion about the spectrum of £ linearized at a scroll ring we know from
Example 10.9(3), cf. (10.41) and (10.50)

(10.57)  o(S.) = {0, +01i}, o1 = \/(u(4>)2 + ()2 4 (19)? = 0.0006387

for G = SE(3) and, cf. (10.42) and (10.50)

(10.58)  o(S,) = {0, £0i}, o1 = \/(u<4>)2 + (1)) 4 (u©)* = 0.8934032

for G = SO(3). For the computation of the eigenvalue problem (10.48) we use
again continuous piecewise linear finite elements with maximal stepsize Ax = 1.6,
homogeneous Neumann boundary conditions on the side surfaces, periodic bound-
ary conditions on the faces 3 = F20 and the same parameter values as in (10.54)
for the eigenvalue solver. The profile v, and the velocities (S, \,) come again from
a simulation: First we solve the freezing system (10.37) until time 850, as explained
in Example 10.9(3), then we solve the eigenvalue problem (10.48), where the profile
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v, and the velocities (S,, A,) are chosen as the solution of (10.37) at time ¢ = 850,
cf. Figure 10.4(b)-(e). This procedure we perform for both cases, G = SE(3) and
G = SO(3). The values for (S, A\,) one also obtains from (10.41) and (10.42) in
combination with (10.50).

Figure 10.13 shows an approximation of o®®P**(L) of the spectrum o(L) of L
linearized at a scroll wave v, for G = SE(3), see Figure 10.13(a), and G' = SO(3),
see Figure 10.13(b). In Figure 10.12 and 10.12 there are visualized the real parts
of the first components of some eigenfunction v associated to different eigenvalues
belonging to the point spectrum oyt (L) for G = SE(3), see Figure 10.12, and for
G = S0(3), see Figure 10.12. We now discuss the numerical results in more detail:

Since the parameters does not satisfy the assumption (A9) and the scroll wave
does not satisfy the condition (1.20), we cannot apply Theorem 1.8, Corollary
8.1, Theorem 9.8, Corollary 9.9 and Theorem 9.10. Therefore, we can neither
expect that the pattern v, and the eigenfunctions v (belonging to some eigen-
value A € opoint(L)) decay exponentially nor that the essential spectrum has a
zig-zag-structure. Nevertheless, since the scroll ring is at least in a certain sense
Archimedean far away from the center of rotation, we can expect from the theory
from Section 9.5, that also the essential spectrum for a scroll ring contains infinitely
many parabolas that are opened to the left, compare (9.21).

Figure 10.13 shows an approximation o2PP™*(L) of the essential spectrum at
a scroll ring, represented by the red dots, for G = SE(3), see Figure 10.13(a),
and G = SO(3), see Figure 10.13(b). As already motivated in Example 10.9(3),
the scroll ring can either be considered as a rotating wave that rotates about the
xr3-axis or as a traveling wave that travels along the xs-axis. In case of G =
SE(3) the freezing method yields a traveling wave, since the rotational velocities
are almost zero, compare (10.41), and therefore Figure 10.13 can be considered as
the spectrum at a traveling wave in three space dimensions. In case of G = SO(3)
the freezing method yields a rotating wave, since the translational velocities are set
to 0, compare (10.42). In case of a traveling wave with G = SE(3) the essential
spectrum seems to contain only horizontal lines, see Figure 10.13(a). Contrary, in
case of a rotating wave with G = SO(3) the essential spectrum contains infinitely
many (filled) parabolas that are located in Re A < —0.1. In particular, the distance
of their turning points is approximatively 1. An application of Theorem 9.4 yields
informations about the part of the point spectrum ot (£) on the imaginary axis,
that is due to the SE(3)-action. These eigenvalues are given by

A =101, A= —ioy, A3=0,

and have algebraic multiplicity 2, compare Corollary 9.5 and Figure 9.1. Their
corresponding approximations are illustrated by the blue circles in Figure 10.13(a)
for G = SE(3) and in Figure 10.13(b) for G = SO(3). In case of G = SE(3) there
is only one zero eigenvalue on the imaginary axis, see Figure 10.13(a). In case of
G = SO(3), Figure 10.13(b) can be considered as the spectrum at a rotating wave
in three space dimensions and the blue circles corresponds the approximation of
40,1 and 0. Since Theorem 9.4 does not yield a complete characterization of the
point spectrum opein (L), there can in general exist further eigenvalues belonging to
Tpoint (L£). In both cases, G = SE(3) and G = SO(3), the approximation o®PP**(L)
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Figure 10.13: Essential and point spectrum of QCGL and A-w for an (untwisted) scroll
ring with d = 3 and with respect to the Lie group G = SE(3) (a) and
G =S0(3) (b)
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Figure 10.14: Eigenfunctions of QCGL and A-w for an (untwisted) scroll ring with d = 3
and with respect to the Lie group G = SE(3)
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Figure 10.15: Eigenfunctions of QCGL and A-w for an (untwisted) scroll ring with d = 3
and with respect to the Lie group G = SO(3)
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of (L) contains in addition 5 complex-conjugated pairs of isolated eigenvalues,
represented by the blue crosses in Figure 10.13. The approximation of the point
spectrum oot (£), denoted by o 00 ™ (L), is compound by the eigenvalues visual-
ized by the blue circles and by the blue crosses. In Figure 10.13 there are some
isolated eigenvalues labled by a green square. Their associated eigenfunctions are
visualized in Figure 10.12 for G = SE(3) and in Figure 10.12 for G = SO(3). As be-
fore, there are illustrated the real parts of the first components of the corresponding
eigenfunction. In Figure 10.12, the first three eigenfunctions are approximations of
the eigenfunctions belonging to the eigenvalue 0. All these eigenfunctions doesn’t
decay in space. In Figure 10.12, the first three eigenfunctions are approximations
of the eigenfunctions from Theorem 9.4, see also Example 9.7. Since the alge-
braic multiplicity of the corresponding eigenvalues is equal 2, we expect three more
eigenfunctions. It seems that they do not appear in our numerical results, since
the spatial stepsize is indeed too large. Note that the first eigenfunction in Figure
10.12 is an approximation of the rotational term (S,z, Vv, (z)). In particular, also
these eigenfunctions doesn’t decay in space.

Example 10.13 (A-w system). Consider the eigenvalue problem for the real-valued
version of the A\-w system from Example 2.2 and Example 10.10

Qg O

(10.59) (0‘1 _0‘2) Av(z) + (Sez + Ae, Vo(2)) + D (0,(2)) v(z) = Mo(z),

with v : R — C2, d € {2,3} and f : R? — R? given by

F (u1> _ <u1)\ (u? + ud) — usw (u? + u%))

Us ww (u? 4 u3) + ug\ (u? + ul)

where A\, w : [0, 00[— R, u = uy +ius, & = ay + i and u;, a; € R for i = 1,2. The
pattern v, must be considered as a function v, : R — R? instead of v, : R — C.

(1): For the parameter values from (2.8) we have already seen in Example 2.2
and in Example 10.10 that the A-w system exhibits rigidly rotating spiral wave
solutions for space dimension d = 2 and that this parameter values satisfy the
assumptions (A1)-(A8) for every 1 < p < oo with v, = (0,0)7, but neither
condition (1.20) nor assumption (A9), since D f(0,0) contains the eigenvalue 1 with
algebraic multiplicity 2. Therefore, the spiral wave is not localized in the sense of
Theorem 1.8. But the spiral wave seems to be Archimedean far away from the
center of rotation, i.e. v, satisfies (9.16). Recall the following values from Example
10.10 that are relevant to discuss the results concerning the linearization and its
associated eigenvalue problem, cf. (10.44) and (10.49),

(10.60) o(S,) = {xoyi}, o1 =pu® =-0.9091.

In order to approximate solutions of the eigenvalue problem (10.59) we use continu-
ous piecewise linear finite elements with maximal stepsize Az = 0.5, homogeneous
Neumann boundary conditions and the same parameters as in (10.54) for the eigen-
value solver. The profile v, and the velocities (S, A,) come again from a simulation:
First we solve the freezing system (10.43) until time 550, as explained in Example
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10.10, then we solve the eigenvalue problem (10.59), where the profile v, and the
velocities (54, \y) are chosen as the solution of (10.43) at time ¢ = 550, cf. Figure
10.5(b)-(e). The values for (S,, As) can also be received from (10.44) and (10.49).

Figure 10.16:
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Essential and point spectrum of the A\-w system for a spiral wave with d = 2
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Figure 10.17: Eigenfunctions of the A\-w system for a spiral wave with d = 2

Figure 10.13 show an approximation of the spectrum o(L) of L linearized about
the spiral wave v,. In Figure 10.13 there are visualized the real parts of the first
component of some eigenfunctions associated to different eigenvalues belonging to
the point spectrum opoint(£). Let us discuss the numerical results:

Since the spiral wave does not satisfy the condition (1.20), we cannot apply The-
orem 1.8, Corollary 8.1, Theorem 9.8, Corollary 9.9 and Theorem 9.10. However,
we can act on the assumption that the spiral wave is Archimedean far away from
the center of rotation and therefore we can apply the theory from Section 9.5. We
infer from (9.21) that

{N(ik) +io1Z |k € R, 1 = 1,2} C 0ess(L).

This means that the essential spectrum for a spiral wave contains infinitely many
parabolas A!(i-) that are all opened to the left. The distance between two neigh-
boring turning points of the parabolas equals oy, that can easily be seen in (9.21).

Figure 10.13 shows an approximation ¢2PP™*(L) of the essential spectrum at
a spiral wave, represented by the red dots. On the left of the picture, there is
illustrated the approximation of these infinitely many parabolas. In particular, the
distance of two neighboring turning points is as expected approximatively o;. In the

middle we have against our theoretical knowledge infinitely many horizontal lines.
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Using Theorem 9.4 we deduce informations about the part of the point spectrum
Opoint (L) that is located on the imaginary axis and is due to the SE(2)-action. All
these eigenvalues are given by

A =101, A= —ioy, A3=0,

and have algebraic multiplicity 1. Their corresponding approximations are illus-
trated by the blue circles in Figure 10.13. As everyone knows, Theorem 9.4 does
not yield a complete characterization of the point spectrum opoint(£). This means
that there maybe exist further eigenvalues belonging to opeimnt(£). The approxima-
tion of o(L) contains no further isolated eigenvalues. The approximation of the
point spectrum, denoted by o vp ™ (L), contains only the eigenvalues visualized by
the blue circles. The three eigenfunctions belonging to the eigenvalues labeled by
a green square in Figure 10.13, are visualized in Figure 10.13. These pictures show
the real parts of the first component of the eigenfunctions. These three eigenfunc-
tions are approximations of the eigenfunctions from Theorem 9.4, see also Example
9.6. In particular, the first eigenfunction is an approximation of the rotational term
(S,x, Vu,(x)), that obviously does not decay in space.

(2): For a discussion about the spectrum at a scroll ring in Figure 10.13, 10.12 and
10.12 we refer to Example 10.12(3).

Example 10.14 (Barkley model). Consider the eigenvalue problem for the Barkley
model from Example 2.3 and Example 10.11

(10.61) ((1) g) Ao() + Sz + Ay, Vo(2)) + Df (0,(x)) v(x) = Mo(z),

with v : R? — C2, d € {2,3} and f : R? — R? given by

f <U1) _ (éul (1 —ul) (Ul — UQTer))
Uy g(ur) — us ’
where v = (u1,up)’ €R2,0< D<<1,0<e<<1,0<a,beR, g:R— R and
v, s R — R2.

(1): For the parameter values from (2.10) we have already seen in Example 2.3 and
Example 10.11 that the Barkley model exhibit rigidly rotating wave solutions for
space dimension d = 2. In the following we consider also the case D = 0.1. Note
that the Barkley model (2.9) is a mixed hyperbolic-parabolic system for D = 0 and
a parabolic system for D = 0.1. The parameter values (2.10) with D = 0 satisfy
only our assumptions (Al) and (A5)—(A7). If we choose D = 0.1 in (2.10), then
the parameters even satisfy the assumptions (A1)-(A8) for every

22 22
1.2099 x —— <

<—
W10+ 11 T o0+ 11

with vy = (0,0)7, but neither condition condition (1.20) nor our assumption (A9),
since (A9) requires that b < 0. Therefore, in both cases, D = 0 and D = 0.1, the
spiral wave is not localized in the sense of Theorem 1.8. But in case of D = 0.1 the

~ 4.7054,
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spiral wave seems to be Archimedean far away from the center of rotation, i.e. v,
satisfies (9.16). In order to discuss the results concerning the linearization and its
associated eigenvalue problem, we recall the translational and rotational velocities
of the spiral wave: For D = 0 we have already observed in Example 10.11 that the
velocities are given by (10.46). Repeating the computations from Example 2.3 and
Example 10.11 with exactly the same setting but with D = 0.1 instead of D = 0
yields the following velocities

pV =—-3195, pu® =—-1570, p® =1.957.
Thus, compare (10.49),

(10.62) 0(S,) = {xoi}, o1 =p =2.067, for D =0,
(10.63) o(S,) = {xoi}, o1 =p® =1.957, for D =0.1.

For the computation of the eigenvalue problem (10.61) we use in both cases, i.e.
for D = 0 and D = 0.1, continuous piecewise linear finite elements with maximal
stepsize Ax = 0.5, homogeneous Neumann boundary conditions and the same
parameter values as in (10.54) for the eigenvalue solver. The profile v, and the
velocities (S, Ay) come again from a simulation: First we solve the freezing system
(10.45) until time 500, as explained in Example 10.11, then we solve the eigenvalue
problem (10.61), where the profile v, and the velocities (S,, A,) are chosen as the
solution of (10.45) at time t = 500, cf. Figure 10.6(b)-(e) for the case D = 0.

5r 101
af 8t
3t 6f A
= .
2t o 4+ ..
. Wt .
1t 2t . .
of o or :
-1r -2r ° - ’ .
° :
-2F o -4F .,
3l rys
_at —gl
5 . . . ) -10 . .
-25 -2 0 0.5 1 15 -10 -8 -6 2

Figure 10.18: Essential and point spectrum of the Barkley model for a spiral wave with
d = 2 for the hyperbolic-parabolic case with D = 0 (a) and for the parabolic
case with D = 0.1 (b)

Figure 10.18 shows an approximation of the spectrum o (L) of L linearized about
the spiral wave v, for D =0 (a) and D = 0.1 (b). In Figure 10.14 there are visu-
alized the real parts of the first component of certain eigenfunctions associated to
different eigenvalues belonging to the point spectrum opein(£) for D = 0. Anal-
ogously, Figure 10.14 contains the corresponding eigenfunctions for D = 0.1. We
next discuss the numerical results in detail:

For both, D = 0 and D = 0.1, the spiral wave does not satisfied the condition
(1.20). Therefore, Theorem 1.8, Corollary 8.1, Theorem 9.8, Corollary 9.9 and
Theorem 9.10 are not applicable. Nevertheless, in the parabolic case with D = 0.1
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Figure 10.19: Eigenfunctions of the Barkley model for a spiral wave with d = 2 (for D = 0)
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Figure 10.20: Eigenfunctions of the Barkley model for a spiral wave with d = 2 (for
D =0.1)

the spiral wave is Archimedean far away from the center of rotation and therefore
we can apply the theory from Section 9.5. This yields, cf. (9.21),

{N(ik) +io1Z | k € R, | = 1,2} C 0ess(L).

meaning that the essential spectrum contains infinitely many parabolas A!(i-) that
are all opened to the left. The distance between two neighboring turning points
of the parabolas equals oy, that can easily be seen in (9.21). In the hyperbolic-
parabolic case with D = 0, where the diffusion matrix is degenerated and doesn’t
have full rank, the situation much more involved. The parabolic part generates
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identically to the case above such a set of parabolas. But in case of D = 0 it is
well known, that the hyperbolic part generates additionally a vertical line which is
located in the left half-plane and belongs to the essential spectrum. Note that the
theory from Section 9.5 does not cover the case for degenerated diffusion matrices.

Figure 10.18(a)-(b) shows the approximations o2PP**( L) of the essential spectrum
at a spiral wave for D = 0 (a) and D = 0.1 (b), represented by the red dots. In
both pictures we observe on the left an approximation of these infinitely many
parabolas. In the left picture we additionally observe an approximation of the
vertical line belonging to the essential spectrum that is due to the hyperbolic part.
Both, for D = 0 and D = 0.1, the distance of their turning points is approximatively
o1. Furthermore, an application of Theorem 9.4 provides a certain part of the point
spectrum opoint (L) that is located on the imaginary axis and is due to the SE(2)-
action. These eigenvalues are given by

A =101, A= —ioy, A3=0,

and have algebraic multiplicity 1. Their corresponding approximations are illus-
trated by the blue circles in Figure 10.18(a) for D = 0 and in Figure 10.18(b).
Note that Theorem 9.4 does not yield a complete characterization of the point
spectrum opeint (L), meaning that there can exist further eigenvalues belonging to
Tpoint (L). The approximations of o(L£) contain in both cases, D =0 and D = 0.1,
one complex-conjugated pair of isolated eigenvalues, represented by the blue crosses
in Figure 10.18(a)-(b). The approximation of the point spectrum, denoted by

ot (L), is compound by the eigenvalues visualized by the blue circles and by
the blue crosses. The eigenfunctions of the isolated eigenvalues, that are labled
by a green square in Figure 10.18(a) and Figure 10.18(b), are visualized in Figure
10.14 and Figure 10.14, respectively. Similar as before, there are illustrated the
real parts of the first components of the corresponding eigenfunction. The first
three eigenfunctions in Figure 10.14 and Figure 10.14 are approximations of the
eigenfunctions from Theorem 9.4, see also Example 9.6. The fourth eigenfunction
belongs in both cases to the remaining eigenvalue, which is labeled by a green box.
We notice that in both cases the first eigenfunction is an approximation of the ro-
tational term (S,x, Vu,(x)). Finally, we observe that none of these eigenfunctions
decay in space.

10.5 Decompose and freeze method for
multi-structures

In this section we introduce the decompose and freeze method. This method
can be considered as an extension of the freezing approach to multi-structures, e.g.
multi-fronts and multi-pulses for d = 1 and multi-solitons for d = 2. For some
literature about the decompose and freeze method we refer to [17] and [99] for
one-dimensional multi-structures and to [16] for one- and two-dimensional multi-
structures.

Let E denote a module acting on the state space (X, ||-||) via left multiplication,

o ExX =X, (pu)r—peu.
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Moreover, let
b:G— GL(E), ~vw—b(y)
denote the action of the Lie group G on E. Considering the mapping
b(p:G— E, y=by)p, ¢E€E,
we require that the actions a and b satisfy the identities

(10.64) a(y) (peu) =(b(y)p) e (a(v)u), VyeGVpe EVu e X,
(10.65) b(v) () = (b(7)) (b(7)¥) VyEGVp, Y €L

In practice, given an explicit representation for the action a, one derives a repre-
sentation for the action b from (10.64), which then must satisfy the property from
(10.65). In particular, if we apply (10.65) with v = ¢~ we obtain the equality
g = b(7) (pp™1) = (b(7)p) (b(7) (¢71)), where 15 denotes the unit element of E.
This yields the inverse

In the following we briefly explain the main concept of the decompose and freeze
approach for multi-structures, [17], [99], [16]:

Consider a general equivariant evolution equation (10.9). We introduce new
functions 7;(t) € G and v;(t) € Y for j =1,...,m (m € N and m > 2) such that
the solution u of (10.9) can be written as

(10.66) u(t) = i a(y;(t))v(t), 0 <t < T.

J=1

Here, 7;(t) € G denotes the time-dependent position of the pattern v;(t) € Y.
We now perform a time-dependent partition of unity. For this purpose, we assume
¢ € E such that the inverse of ) 7", b(7;)¢ € E with respect to the multiplication

in F exists for every 71,...,7n» € G and we denote this inverse (ZTzl b(fyj)<p>
by W. Inserting the ansatz (10.66) into (10.9) and using the abbreviation
j=1007j

YE(t) = 7; 1 (t) o () we obtain

a(; (8))vse(t) + d la(;(8))v;(0)] ;4(2)

S aton

Jj=1

.
agb
7N
N~
Il
<
NgE
S~
B
—
2
S
S~—
S~—
(o4
<
—~
N
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r (Z a(ﬁ(t))vk(t)> > F (a(vf(t))vk(t))D,
k=1

k=1

where in the last equation we used the following relation

F <Z a(%(t))vk(t)> =Y F(aly(®)us(t)

k=1

:gj 288;2‘; o |r (g;a(%(mvk(t)) - zij <a<%<t>>vk<t»]
f: e E (gama(%(tmk(t)) - fj r <a<ﬂ>am<t>>vk<t>>]
j’”l e <a<%<t>> BUCACE m(t))vk(t))
- fj F (a(()a(; () o w(®)er(t) ]
j: - g%g?j(‘f))w o a(5 ()| F (g a(ﬁ(t))vk(t))
- fj F (o2 (t)) (1) ]
_ jml s b(lw(t))w o a(y;(1)) (SO o |F (;m; a(fyf(t))vk(t)>
- fj F (a2 (0)nl) D
:g <§‘I b(ﬂ)b(fyk(t))ng) R o a(v;(t)) (w o |F (kZ: a(vf(t))vk@))
- fj F (o2 (2)) (1) D




234 10 Freezing approach and numerical results

Requiring equality of the summands in 7", and applying a(7y;'(t)) on both sides
in the j-th equation we obtain

1 v
ialt) =F(0(0) = alo;” O)eaCu OO0 + S Cro

F (Z a(vf(t))vk(t)> =Y F(alyf()u(t))

k=1

(10.67)

for j =1,...,m. Next, we introduce p;(t) € g =1T1G via

(10.68) Vi(t) = dLq @y (L)p;(t), 0 <t <T
for every j = 1,...,m. Using (10.15) once more, equation (10.67) can be written
as

¥

vj(t) =F(v;(t)) — d[a(1)v;(£)] p(t) + ACHOE

(10.69) m m
+[r (Sactonan) - 3o r otomo)
k=1 k=1
To compensate the extra variables fp;(t) for j = 1,...,m, we require as in the

derivation of the freeze method for single structures ¢ = dim g phase conditions
U(v(t), pj(t)) = 0 for every j = 1,...,m, where ¥ is defined by (10.17). Finally,
we impose the initial conditions 7;(0) = 7} € G for equation (10.68) and v;(0) = v}
such that

uo(w) = 3" al:)le), « € R

J=1

This leads to the abstract formulation of the decompose and freeze method as a

coupled nonlinear system of differential algebraic evolution equations
(SDAE)

(10.708) vj(t) =F(v;(1)) — da(1)o,(6)] s (1) 0;(0) = o}

VR

2
TSGR

F (Z a(ﬁ(t»vk(t)) =3 F (a(yE @) o (®))

(10.70b) 0 =W(v;(t), p;(t)),
(10.70¢) v;4(t) =d Loy (1) (t), 7;(0) =17,
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with abbreviation ¥ (£) := ~;'(¢) oyx(t). The equations (10.70a) and (10.70c) must
be satisfied for £ > 0 and (10.70b) for £ > 0. In applications (10.70a) is now a cou-
pled PDE, (10.70b) are algebraic constraints and (10.70c) is an ODE. In contrast to
the freezing method for single-structures, the system (10.70a) and the reconstruc-
tion equation (10.70c) are coupled, i.e. they must be solved simultaneously. The
algebraic constraint can be substituted once more by one of the phase conditions,
that we have discussed in Section 10.2.

Example 10.15 (Reaction diffusion systems, Part 4). We continue with Exam-
ple 10.8. Let the Banach space (X, |-||) be still given by (LP(R?,KY),|-||,,) for
K e {R,C} and 1 < p < co. Let E = Cy, (R4 R), then the module Cy, (R, R) acts
on X via multiplication

o Cop(RER) X X = X, (p,u) — pou:=qu.

The representation for the SE(d)-action a on X and property (10.64) yields that
the SE(d)-action b on Cy,(R?, R) must also be given by

b(-)p : SE(d) = Cup(R™,R), 7= (R,7) = [b(v)¢] () := p(R7'(- = 7)),

i.e. a and b formally coincide. Now, it is straightforward to check that (10.65) is
satisfied. Further, let ¢ € Cy,(R?, R) be a positive radial bump function such that
the main mass is located near zero and 0 < ¢(z) < 1 for x € R, e.g.

o(x) = sech (8 |z|), for some [ > 0,

then the expression » " | b(v;)¢ € Cup(R?% R) is invertible in Cy, (R, R) for every
Yy ooy Ym € SE(d)

We introduce new functions ~;(t) = (R;(t), 7;(t)
every j = 1,...,m such that the solution u of (10.1

) € SE(d) and v;(-,t) € Y for
0) can be written as

(10.71) u(x,t) = Za@j( v;(, 1) Zv (z —7;(1),t),

fort > 0 and x € R? with d > 2. Inserting the freezing ansatz (10.71) into
(10.10), using the partition of unity explained above and requiring equality for
every summand, yields analogously to (10.67)

e, t) =AAv; (2, 1) + f(v;(z,8) — aly;  (€)d [al;(E))v; (2, )] 7;4(t)
p(x) S
(10.72) + S b(%( [ ( 2 a % )vk(z t))

—Zf wt))]

fort >0,z € R% j =1,...,m and abbreviation Vi Rt
(t) = (,(8), ),(1)) € se(d) = TLSE(d) via (10.68),

(Bi8)) =t = a0 = (Y Eg) (B0 = (%),

) = ( Yok (t). Introducing
ie.
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where v;(t) = (R;(t), 7;(t)) € SE(d), the v;-equations (10.72) can be transformed
into (10.69) with d[a(1)v;(x,t)] p;(t) given by (10.11). To compensate the extra
variables 11;(t) we require once more @ = dimse(d) phase conditions
U(v;(-,t), pj(t)) = 0 for every j = 1,...,m, where VU is a function as in (10.25).
Possibilities for the choice of phase condition were discussed in Example 10.7. Thus,
the decompose and freeze method yields the coupled nonlinear system of par-

tial differential algebraic evolution equations (SPDAE)
Vi@, 1) =ALv;(x, 1) + f(v; (2, 1)) + (S5(0)x + LaA;(2), Vs (z, 1))

R C) [ﬂ;pwmmww>

(10.73a) rer b () p() |\ =

(10.73b) 0 =0 (w;(- 1), p(8)),
oo (40) = (R (59) = (9).

where v;(t) = (R;(t),7;(t)) € SE(d), p;(t) = (5;(t), A\j(t)) € se(d) and the argu-
ment ~¥(t) is equal to

V() =57 () o () = (Rj(), 75(1)) ™" o (Ralt), (1))

(
(

10.6 Numerical examples of multi-solitons

In this section we apply the decompose and freeze method to investigate numerically
the interaction of multi-solitons. To be more precise, we consider the cubic-quintic
complex Ginzburg-Landau equation (QCGL) in two space dimensions and study
interaction processes of several spinning solitons. For this purpose we analyze both
the nonfrozen equation and the decompose and freeze system. Interaction processes
of the QCGL in the nonfrozen case for d = 2 and d = 3 can be found in [78]. Let
us briefly discuss the numerical settings.

Generation of initial data. Consider the QCGL from Examples 2.1, 10.9 and
10.12

e =alsu+u i+ B luf? + [l
(10.74)
u(0) =uq
with u : R x [0, 00[— C, ug : R* — C, d € {2,3}, a, 3,7, € C and Rea > 0. For
the parameter values (2.4) we already know from Example 2.1(1) and 10.9(1) that
single spinning solitons exists, cf. Figure 2.1 for an illustration.

To investigate the interaction of several spinning solitons we need appropriate
initial data, that come originally from a simulation. To generate the initial data
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we solve (10.74) on a circular disk of radius R = 20 until time ¢t = 150. For the
numerical computations we use the parameters from (2.4), continuous piecewise
linear finite elements with maximal stepsize Ax = 0.5, the BDF method of order
2 with absolute tolerance atol = 1074, relative tolerance rtol = 10~2 and maximal
stepsize At = 0.1, homogeneous boundary conditions and initial data

1 , 3 + 23
ull (w1, 19) = : (x1 +ixy) exp (— 149 2) .

To avoid confusions in the sequal we denote the corresponding solution by u'd(z, ).

Compuational settings for the nonfrozen system. Now we investigate the
interaction of several spinning solitons in the nonfrozen system (10.74). For this
purpose we start a second computation and solve (10.74) on a circular disk of radius
R = 20 until time ¢ = 150. For the numerical computations we use again the
parameters from (2.4), continuous piecewise linear finite elements with maximal
stepsize Ax = 0.5, the BDF method of order 2 with absolute tolerance atol =
1079, relative tolerance rtol = 1072 and maximal stepsize At = 0.1 as well as
homogeneous boundary conditions. As initial data wug for (10.74) we take the sum
of m > 2 such solitons, shifted a certain distance apart with a possibly shifted
phase, i.e. we consider initial data of the form

(10.75) up(z) = zm:ug (}?;1 (x — %j)) , € R,

j=1

with uf(z) = u(2,150) for |z] < R and ul(x) = 0 for |z| > R, j = 1,...,m.
This means that u?(:p) is the single spinning soliton that we have computed before
and which is illustrated in Figure 2.1. The constants éj and 7;, that are needed to
construct the initial data from (10.75) via

Cos ‘?J’ — smﬂj

(10.76) R; := R(0;) := ( ) cR*? §;€R, 7 €R?

sinf; cos0;
are chosen explicitly in the examples below for every j = 1,...m. Now, the solution
u(z,t) of (10.74) describes an interaction process of multi-solitons in the nonfrozen
case.

In the numerical computations occur three different situations: If the distance
of the centers of rotation 7; is large enough and the phases are shifted identically,
the solitons repel each other and a multi-structure consisting of m spinning solitons
stabilizes. This behavior we call a weak interaction. If the distance is small and
the phases are shifted identically, the solitons collide into a single spinning soliton.
This behavior we call a strong interaction. If the phases are shifted differently
and the distance of the centers of rotation is small enough, a permanent collision
process will occur. This behavior we call a phase shift interaction.

Computational settings for the decompose and freeze system. We are
now interested into that what happens with the shape of the profiles and their
corresponding velocities during the interaction process of the spinning solitons. To
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investigate this numerically, we consider the coupled nonlinear system of partial
differential equations for the QCGL

(e, t) = Az, ) + f(v;(2, 1)) + (Sj(t)2 + Lad; (1), Vi(z,1))

p(2) Sk (
(10.77a) i ZZL b(vF (1) (2) [f <; (V2 (1)) vk ( t))

eEvJ vJ,Dle)LQ,z:L...,d,
(10.77¢) (R,g))) i) (Fe)=(3).

for j =1,...,m, with parameters a, 3,7, u € C, Rea > 0 and nonlinearity

f:C=C, f)=v(u+Blof+vl').

In the examples below we compute the solution of (10.77) on a circular disk of radius
R = 20 that is centered at the origin. For the numerical computations we used the
same settings as for the nonfrozen case above, i.e. we use the parameters from
(2.4), continuous piecewise linear finite elements with maximal stepsize Ax = 0.5,
the BDF method of order 2 with absolute tolerance atol = 1075, relative tolerance
rtol = 1072 and maximal stepsize /At = 0.1 as well as homogeneous boundary
conditions. Moreover, we equip (10.77) with initial data

(10.78) W(z) =ud(x), RI=R(0?9), 6)=0,eR, 1) =7 €cR
for every j = 1,...,m. Finally, the bump function is given by

2
(10.79) o(x) = =sechb|z|, beR,

eblel + e=blel ~ cosh b|z|

with b = 0.5 and the reference functions v;(z) = v (z) for j = 1,2.

Let u(z,t) denote the solution of the nonfrozen system (10.74) and let v(x,t)
denote the solution of the decompose and freeze system (10.77), then we can expect
that the time evolution of the interaction process is approximatively

(10.80) u(z,t) ~ Zvj (R;1(t) (z —75(1)) . 1)

i.e. the right hand side, called the superposition, approximates the solution of
(10.74), where (v, (R;, 7;)) denotes the solution of (10.77). This will be checked in
the examples below. For the numerical computations we use Comsol Multiphysics™,

[1].

Example 10.16 (Weak interaction of two spinning solitons in 2D). In this example
we investigate the weak interaction of two spinning solitions in two space dimen-
sions. To make ourself familiar with the behavior of weak interaction involving
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two spinning solitons we first discuss the results of the nonfrozen system (10.74).
Afterwards we discuss the results of the decompose and freeze system (10.77).
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Figure 10.22: Time evolution for weak interaction of 2 spinning solitons in 2D

Figure 10.22 shows the real part of the time evolution for the weak interaction
of two spinning solitons in R? as the solution of (10.74) at time ¢ = 12.6, 75.0 and
150.0 in (a)-(c). For the numerical computation we used (10.76) with m = 2 and

~ ~ - —4 - 4
ww amimo = (). a= ().

i.e. the initial data for (10.74) are the sum of two spinning solitons centered at
+(4,0) and without phase shift. Figure 10.21 shows the real part (a), imaginary
part (b) and the absolute value (c) of the initial function ug from (10.75). The
colorbars in Figure 10.21 and 10.22 are scaled from —1.65 (blue) to 1.65 (red). In
Figure 10.22 we observe that the solitons repel from each other and they change
their position clockwise. We next discuss the results obtained by the decompose
and freeze method, cf. (10.77).

Figure 10.23 illustrates the corresponding results for the decompose and freeze
method (10.77) in R? for m = 2. For the numerical computation we used the initial
data (10.78) with parameters from (10.81). Figure 10.23(d)-(e) shows the real parts
of the single profiles v; in (d) and v, in (e) at time ¢ = 150. We observe that each
of these profiles possess the shape of a spinning soliton. Figure 10.23(f) illustrates
the time evolution for the positions of these two profiles from ¢ = 0 to ¢ = 150. The
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Figure 10.23: Weak interaction of 2 spinning solitons in 2D with decompose and freeze
method

blue and the red line describes the curve for the position of v; and wv,, respectively.
The positions at the end time ¢ = 150 are represented by the blue and the red circle.
The pointers that are fixated at each circle represent the current phase position.
We observe that the positions travel clockwise on a circle. Since the positions at
time ¢ = 150 are

4155 1265
pi(150) = ( 2.916 ) - P(150)= (—3.021) ’

we deduce that [p;(150) — p2(150)| = 10.3026 and expect that the circle has ap-
proximatively the radius R = 5.1513. Therefore, the distance of the solitons has
grown up from 8 to 10.3026, meaning that the solitons repel. In particular, the
phases seem to coincide. Figure 10.23(g)-(i) shows the velocities: the translational
velocities in x;-direction (g) and in z,-direction (h) as well as the angular veloci-

T
ties in the x1-wo-plane (i). Note that p; = (M§~1), u§2),,u§3)> are the velocities for
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the jth profile v;, 7 = 1,2. We observe e.g. in Figure 10.23(g) that ,ugl)(t) and
18V (t) are periodic in time with period T2P ~ 6.2 and that pV () and pl(t) are
shifted from each other by the value 3.1, which equals the half period length. A
similar behavior we observe in Figure 10.23(h) for uf) and ug). In contrary to the
translational velocities, the angular velocities ug?’) and ug?’) are just also periodic
and their periods coincide but there seems to be no shift between their curves. Fig-
ure 10.23(a)-(c) shows the time evolution for the real part of the superposition, cf.
(10.80), at time ¢t = 12.6, 75.0 and 150.0. Since the superposition can be considered
as an approximation for the solution of (10.74), we compare the results illustrated
in Figure 10.22(a)-(c) with those from Figure 10.23(a)-(c). Here, we observe that
the decompose and freeze method after long time yields a certain phase shift, but
the centers of rotation are good approximated. Altogether, the decompose and

freeze method can reproduce the weak interaction of two spinning solitons.

Example 10.17 (Strong interaction of two spinning solitons in 2D). In this ex-
ample we investigate the strong interaction of two spinning solitons in two space
dimensions. To establish a better understanding for the strong interaction of two
spinning solitons we first discuss the results for the nonfrozen system (10.74) and
then we discuss the results of the decompose and freeze system (10.77).
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Figure 10.24: Initial data for strong interaction of 2 spinning solitons in 2D

Figure 10.25 shows the real parts of the time evolution for the strong interaction
of two spinning solitons in R? as the solution of (10.74) at time ¢ = 4.2, 10.8, 11.7
in (a)-(c) and at time ¢ = 15.3, 18.0, 35.1 in (d)-(f). For the numerical computation
we used (10.76) with m = 2 and

(10.82) 0, =0,=0, 7 = <_3O'75> - (3'075) ,

i.e. the two spinning solitons are now centered at +(3.75,0) and without phase
shift. Figure 10.24 shows the real part (a), imaginary part (b) and the absolute
value (c) of the initial function ug from (10.75). The colorbar is again scaled from
—1.65 (blue) to 1.65 (red). In Figure 10.25 we observe that the clockwise rotating
solitons collide and produce a single spinning soliton that rotates about the origin
with the same velocity as each of these two solitons before the collision. We next
discuss the results obtained by the decompose and freeze method, cf. (10.77).
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Figure 10.25: Time evolution for strong interaction of 2 spinning solitons in 2D

Figure 10.26 illustrates the correspondig results of the decompose and freeze
method (10.77) in R? for m = 2. For the numerical computation we used the initial
data (10.78) with parameters from (10.82). Figure 10.26(d)-(e) shows the real parts
of the single profiles v; in (d) and v in (e) at time ¢t = 150. At first glance the
profiles v; and vy look very strange but on closer inspection we observe that their
sum equals the real part of a single spinning solition. This tells us that every profile
v1 and vy contains a certain portion of the single spinning soliton. Figure 10.26(f)
illustrates the time evolution for the positions of these two profiles from ¢t = 0 to
t = 150. The blue and the red line describes the curve for the position of v; and
vy, respectively. The positions at the end time ¢ = 150 are represented by the blue
and the red circle. The pointers that are fixated at each circle represent the current
phase position. We observe, in contrast to the weak interaction, that the positions
in case of strong interaction travel counter-clockwise on a circle. Since the positions
at time ¢t = 150 are

—0.1013 0.1250
p1(150) = (—1.0114) - P2(150) = <0.9204) ’

we deduce that their distance is given by [p1(150) — p2(150)| = 1.9450. Therefore,
we expect that the circle has approximatively the radius R, = 0.9725. Note that
the knowledge about the distance of the positions doesn’t permit us to make any
conclusions about the distance of the solitons and vice versa. In particular, the
phases seem to coincide. Note that the lines forming the boundary of the circle are
a little bit wavy. This seems to be caused by the homogeneous Neumann boundary
conditions. In case of homogeneous Dirichlet boundary conditions these lines form
a smooth circular curve. Figure 10.26(g)-(i) show the velocities: the translational
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Figure 10.26: Strong interaction of 2 spinning solitons in 2D with decompose and freeze
method

velocities in z;-direction (g) and in xo-direction (h) as well as the angular velocities

T
in the xq-zo-plane (i). Recall that p; = (ug»l), ,ug-z), u§3)) are the velocities for the

Jth profile v;, j = 1,2. Similar to the case of weak interaction, we observe e.g. in
Figure 10.26(g) that z\"(¢) and pi"(¢) are periodic in time with period TP ~ 6.0
and that ,ugl)(t) and ,ugl)(t) approximatively satisfy the property ugl)(t) = —,ugl)(t).
A similar behavior can be discovered in Figure 10.26(h) for uf) and ,uéQ). Note that
the collision process that takes time from ¢t = 0 to ¢t ~ 35 can also be observed
in the curves of the velocities. Figure 10.26(a)-(c) shows the time evolution for
the real part of the superposition, cf. (10.80), at time ¢t = 10.8, 15.3 and 35.1. A
comparison of the results illustrated in Figure 10.26(a)-(c) with those from Figure
10.25(b),(d),(f) shows that the decompose and freeze method yields a very good
reproduction of the collision process.
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Example 10.18 (Phase shift interaction of two spinning solitons in 2D). In the
following example we analyze the phase shift interaction of two spinning solitons
in two space dimensions. Similar as in the examples above, we first discuss the
results for the nonfrozen system (10.74), then the results for the decompose and
freeze system (10.77).
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Figure 10.28: Time evolution for phase shift interaction of 2 spinning solitons in 2D

Figure 10.28 illustrates the real parts of the time evolution for the phase shift
interaction of two spinning solitons in R? as the solution of (10.74) at time ¢ = 23.7,
26.4, 27.9 in (a)-(c) and at time ¢t = 72.6, 75.3, 77.1 in (d)-(f). For the numerical
computation we used (10.76) with m = 2 and

~ ~ - —4 - 4
(10'83> '91 = 07 '92 =T, 11 = < 0 ) y T2 = <0) )
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i.e. the first soliton is centered at £(—4,0) without phase shift and the second
soliton is centered at (4,0) and rotated by 180 degrees. Figure 10.27 shows the
real part (a), imaginary part (b) and the absolute value (c) of the initial function
ug from (10.75). The colorbar reaches from —1.65 (blue) to 1.65 (red). In Figure
10.25 we observe that each soliton rotates clockwise about its respective center
of rotation. Moreover, the real part, imaginary part and absolute value of the
complete structure rotates additionally about the origin. This is in strong contrast
to the examples of weak and strong interaction above. In particular, the phase shift
seems to prevent the collision of the solitons. We next discuss the results obtained
by the decompose and freeze method, cf. (10.77).
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Figure 10.29: Phase shift interaction of 2 spinning solitons in 2D with decompose and
freeze method

Figure 10.29 visualizes the numerical results of the decompose and freeze method
(10.77) in R? for m = 2. For the numerical computation we used the initial data
(10.78) with parameters from (10.83). Figure 10.29(d)-(e) show the real part of the
single profiles v; in (d) and v, in (e) at time ¢ = 150. Even though we have a phase-
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shift interaction without interruption, we observe, similarly to the case of weakly
interacting solitons, that both profiles coincide with each other. Figure 10.29(f)
illustrates the time evolution for the positions of these two profiles from ¢t = 0 to
t = 150. The blue and the red line describes once more the curve for the position
of v; and v, respectively. The positions at the end time ¢ = 150 are represented by
the blue and the red circle. The pointers that are fixated at each circle represent
the current phase position. Similar to the case of strong interaction, the positions
travel counter-clockwise on a circle. The positions at time ¢ = 150 are

2.845 —2.854
P1(150) = (1.324) - P2(150) = (—1.327)

and hence their distance is given by |p; (150) — p2(150)| = 6.2854. Consequently, we
expect that the circle has approximatively the radius R, = 3.1427. In particular,
as indicated by the pointers the time evolution preserves the initial shift. Figure
10.29(g)-(i) show the velocities: the translational velocities in z;-direction (g), in
xo-direction (h) and the angular velocities in the z1-zo-plane (i). Recall that p; =

T
(uﬁ»l), ,uf), M§3)> are the velocities for the jth profile v;, j = 1,2. The velocities

1V () and pS (¢) are again periodic in time with period TP ~ 5.8, but in contrast

to the strong interaction, the translational velocities in z;-direction now satisfy
approximatively ugl)(t) = ,ugl)(t), i.e. with positive sign. Figure 10.29(a)-(c) show
the time evolution for the real part of the superposition, cf. (10.80), at time ¢t =
26.4, 72.6 and 77.1. Note that the colorbar is now scaled from —1.7 (blue) to
1.7 (red). A comparison of the results from Figure 10.29(a)-(c) with those from
Figure 10.28(b),(d),(f) shows that the decompose and freeze method provides us a
good reproduction of the phase-shift collision process but admits a certain phase

difference, that develops over long time.

Example 10.19 (Weak interaction of three spinning solitons in 2D). We now
expand the investigations from Example 10.16 and analyze the weak interaction
of three spinning solitons in two space dimensions. As usual, we first discuss the
results for the nonfrozen system (10.74) and afterward we discuss the results of the
decompose and freeze system (10.77)

20 10 3 10 20 20 10 0 10 20 20 10 0 10 20
X X

Figure 10.30: Initial data for weak interaction of 3 spinning solitons in 2D
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Figure 10.31: Time evolution for weak interaction of 3 spinning solitons in 2D

Figure 10.31 shows the real part of the time evolution for the weak interaction of
three spinning solitons in R? as the solution of (10.74) at time ¢ = 15.0, 75.0 and
150.0 in (a)-(c). For the numerical computation we used (10.76) with m = 3 and

- rcosg N 7“(305%’T - 7“(3051177r

T = . Ty = ) T3 = )

! rsinZ )’ 2 resin & )7 3 rsin 4 )7

2 6 6

(10.84) 5.5

51:~2:~3:O r = ——
) \/—7
3

i.e. as initial data for (10.74) we use the sum of three not phase shifted spinning
solitons that are put on the vertices of an equilateral triangle. The numerator of
r, that equals 10, describes the distance of two different 7;. The constant r =

% ~ 5.7735 itself denotes the radius of the circumcircle, which is known to be the

circumradius. In complex notation the centers 7; are located on the circle re’ with
=71, %’T, HTW' Figure 10.30 shows the real part (a), imaginary part (b) and the
absolute value (c) of the initial function g from (10.75). The colorbars in Figure
10.30 and 10.31 are scaled from —1.65 (blue) to 1.65 (red). Similar to the case of
two weakly interacting solitons from Example 10.16, we observe that the solitons
repel of each other and that they change their positions clockwise. We next discuss
the results obtained by the decompose and freeze method, cf. (10.77).

Figure 10.32 illustrates the corresponding results for the decompose and freeze
method (10.77) in R? for m = 3. For the numerical computation we used the initial
data (10.78) with parameters from (10.84). Figure 10.32(d)-(f) shows the real parts
of the single profiles v; in (d), v in (e) and v in (f) at time ¢ = 150. We observe
that each of these profiles possess the shape of a spinning soliton. Figure 10.32(j)
illustrates the time evolution for the positions of these three profiles from ¢ = 0 to
t = 150. The blue, the red and the green line describes the curve for the position of
v1, U9 and vs, respectively. The positions at the end time ¢ = 150 are represented by
the blue, red and green circle. The pointers that are fixated at each circle represent
the current phase position. We observe that the positions travel clockwise on a
circle and the phases are equal at the end time. Since the positions at time ¢ = 150

are
2.331 —~6.050 3.734
p1(150) = (5.625) - p2(150) = (—0.832) - pe(150) = <—4.862) ’
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Figure 10.32: Weak interaction of 3 spinning solitons in 2D with decompose and freeze

method.

we deduce that |p;(150) — p;(150)| = 10.58 for every i,j € {1,2,3} with i # j.
Therefore, the distance of two different centers has grown up from 10 to 10.58,
meaning that the solitons repel. In particular, we observe that the circumradius
increases from 5.7735 to Ry = ? -10.58 = 6.10. Figure 10.32(g)-(i) shows the ve-
locities: the translational velocities in x;-direction (g) and in zo-direction (h) as well
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T
as the angular velocities in the ;-zo-plane (i). Note that p; = (,u§ ), u§2), uﬁ )> are

the velocities for the jth proﬁle vj, j = 1,2,3. We observe e.g. in Figure 10.32(g)

that ,ug (1), ugl (t) and u3 ( ) are periodic in time with period T2” ~ 6.1, which is
approximatively 27, and that ,ugl)(t) D (¢ (t) and ugl)( t) are shifted from each other

by the value 2.03, which is approx1mat1vely , l.e. one thlrd of the perlod length.
The same behavior we observe in Figure 10.32(h) for M1 , ,ug ) and ,u3 The angu-

lar velocities ,ug?’), ,ug?’) and ,uz(,,?’) are periodic with period T(ZxD ) 2 3.0, that could be
7, approximatively. But in contrast to Example 10.16, their curves are also shifted
from each other by the value 1.0, which is approximatively %, i.e. one third of the
period length. Figure 10.32(a)-(c) shows the time evolution for the real part of the
superposition, cf. (10.80), at time ¢t = 15.0, 75.0 and 150.0. Since the superposition
can be considered as an approximation for the solution of (10.74), we compare the
results illustrated in Figure 10.22(a)-(c) with those from Figure 10.32(a)-(c). Here,
we observe that the decompose and freeze method after long time yields a certain

phase shift, but the centers of rotation are good approximated.

Example 10.20 (Strong interaction of three spinning solitons in 2D). In the last
example we expand the investigations from Example 10.17 and investigate the
strong interaction of three spinning solitons in two space dimensions. We again
first discuss the results for the nonfrozen system (10.74) and then we discuss the
results of the decompose and freeze system (10.77).

20- e — 20- e — 20- e —

Figure 10.33: Initial data for strong interaction of 3 spinning solitons in 2D

Figure 10.34 shows the real part of the time evolution for the strong interaction
of three spinning solitons in R? as the solution of (10.74) at time ¢ = 2.1, 5.1, 8.4 in
(a)-(c) and at time ¢ = 12.0, 19.8, 50.1 in (d)-(f). For the numerical computation
we used (10.76) with m = 3 and

- rcosg - Tcos%” - 7“(3051177r
T = . Ty = ) T3 = )
! rsin g ’ 2 7 sin —7gr ’ 3 7 sin —1%5” ’
(10.85)

51252:(53:0, r =

i.e. as initial data for (10.74) we use the sum of three not phase shifted spinning

solitons that are put on the vertices of an equilateral triangle. The distance of two

different 7; is chosen to be 7.5 and thus the circumradius equals 7 = % ~ 4.3301.
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Figure 10.34: Time evolution for strong interaction of 3 spinning solitons in 2D

Figure 10.33 shows the real part (a), imaginary part (b) and the absolute value (c)
of the initial function uy from (10.75). The colorbars in Figure 10.33 and 10.34
are scaled from —1.65 (blue) to 1.65 (red). Similar to the case of two strongly
interacting solitons from Example 10.17, we observe that the solitons collide into a
single spinning soliton that rotates about the origin with the same velocity as each
of these three solitions before the collision. We next discuss the results obtained
by the decompose and freeze method, cf. (10.77).

Figure 10.35 illustrates the corresponding results for the decompose and freeze
method (10.77) in R? for m = 3. For the numerical computation we used the initial
data (10.78) with parameters from (10.85). Figure 10.35(d)-(f) shows the real parts
of the single profiles v in (d), ve in (e) and vz in (f) at time ¢ = 150. Similar as
in Example 10.17 the profiles look very strange. But their superposition (10.80)
that is depicted in Figure 10.35(c) shows the real part of a single spinning soliton.
This tells us one more that every profile v, v, and v3 contains a certain portion
of the single spinning soliton. Figure 10.35(j) illustrates the time evolution for the
positions of these three profiles from t = 0 to ¢ = 150. The blue, the red and the
green line describes the curve for the position of vy, v and wvs, respectively. The
positions at the end time ¢ = 150 are represented by the blue, red and green circle.
The pointers that are fixated at each circle represent the current phase position.
We observe that the positions travel clockwise on a circle, which is in contrast to
the strong interaction of two spinning solitons from Example 10.17. Their phases
are equal at the end time. Since the positions at time ¢ = 150 are

~1.1520 0.8207 0.2992
p1(150) = <—0.3108) - p2(150) = <—0.8348) - ps(150) = (1.1330) ’
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Figure 10.35: Strong interaction of 3 spinning solitons in 2D with decompose and freeze

method

we deduce that [p;(150) —p,;(150)| = 2.04 for every 4,5 € {1,2,3} with i # j.
This shows that the distance of two different centers has plummeted from 7.5 to

2.04.

In particular, we observe that the circumradius decreases from 4.3301 to

Repe = ? -2.04 = 1.1778. The boundary of the circle is wavy again, which is
similar to the case of two strongly interaction solitons from Example 10.17. Figure
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10.35(g)-(i) shows the velocities: the translational velocities in z;-direction (g) and
in zo-direction (h) as well as the angular velocities in the x1-zo-plane (i). Note that

T
i = (ugl),,ug-z), u§3)) are the velocities for the jth profile v;, j = 1,2, 3. Similar to

the previous examples we observe in Figure 10.35(g) that ,ugl)(t), ,ugl)(t) and ugl)(t)

are periodic in time with period T2” = 6.0, which is approximatively 27, and
that ,ugl)(t), uél)(t) and ,ugl)(t) are shifted from each other by the value 2.0, which
is approximatively %’r, i.e. one third of the period length. The same behavior we
observe in Figure 10.35(h) for /,ng’, /,ng’ and /,ng’. The angular velocities ,ug?’), uf) and
u?) converge to 1.027. Moreover, we observe that their graphs are congruent with
each other and that they are not periodic in time. Note that the collision process
that takes time from t = 0 to ¢ = 70 which can also be observed in the velocity
diagrams from Figure 10.35(g)-(i). Figure 10.35(a)-(c) shows the time evolution
for the real part of the superposition, cf. (10.80), at time ¢ = 5.1, 12.0 and 50.1.
Finally, comparing the results illustrated in Figure 10.25(b),(d),(f) with those from
Figure 10.35(a)-(c), we realize that the decompose and freeze method gives a good
reproduction of the strong interaction process of three spinning solitons.
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set of rational numbers
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set of complex numbers, C_ = {z € C | Rez < 0}

can be either R or C

scalars, vectors and matrices
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Q<NTnuD v

space dimension, d > 2

[th unit vector

imaginary unit or an index

time variable

state space variables, z,y,&, 9 € R

system dimension, N > 1

diffusion matrix A € KV

constant coefficient matrix, B € KV

identity, Iy identity matrix in KV

I;; = e;e] , zero matrix with value 1 at (4, j)
orthogonal transformation matrix, P € R%4
rotational matrix, R € SO(d) or radius, R > 0
real skew-symmetric matrix S € R%4, S € s0(d)
unitary matrix, U € C%4
transformation matrix, Y €
general linear group

Lie group of SE(d)

special Euclidean group
Lie group of SO(d)

special orthogonal group
first antieigenvalue of A
spectrum of A

spectral radius of matrix A
spectral abscissa, spectral bound of A
(real) angle of A,
diagonal matrix
eigenvalues of matrix A €
nonzero eigenvalues of S € so(d), o; € R
Ay = diag(M, ..., \{) diagonal matrix in
block diagonal matrix, A, € R%4
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39
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arg z argument of z € C 39
Rez real part of z € CV 39
Im z imaginary part of z € CV 39
det A determinant of matrix A 39
exp(A) exponential mapping, matrix exponential 40
Tr(A) trace of a matrix A € CV-V 48
differential operators
Alv(z) diffusion term for A € KMV 13
(S, Vu(x)) drift term, rotational term for S € so(d) 6
(Sz+ I\, Vo(z)) drift and translation term 161
L linearized differential operator 159
L4 diffusion operator 13
Lgrife drift operator 13
Lo, Lou Ornstein-Uhlenbeck operator, £y = L3 4 £t 67
Lo constant coefficient perturbation of Ly 123
Lo, small variable coefficient perturbation of £ 136
Lo variable coefficient perturbation of £ 131
% time derivative 7
A Laplacian, Laplace operator, A = Z?:1 g—; 6
x;D; — x;D; angular derivative in x;-x;-plane Z 7
D; partial derivatives w.r.t. z, D; = a%i 7
Df total derivative of f : RY — R¥Y 9
| 1l 2o norm on D? (L) 121
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G(z,€) complex Green’s matrix function of £ 130
H(x, &, 1) complex heat kernel matrix of £ 45
Ho(x,&,t) complex Ornstein-Uhlenbeck kernel, heat kernel 70
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Hoo(x, &) complex heat kernel matrix of L 125
K(x —¢&,t) complex heat kernel matrix of L3 114
K(,t) complex integral kernels, K, K¢, K7 56
f((@[),t) complex integral kernels, K, K, K7 56
function spaces and norms
0 € C(RYR) weight function (of exponential growth rate) 10
D, q index for the W*P-spaces, 1 < p < 00 42
Qr space-time domain for T > 0, Qp = R4x]0, T'[ 42
LP(RE KN) Lebesgue spaces with exponent 1 < p < oo 42
Whp(RE KN) Sobolev spaces of order k& € N; with exponent 42
I<p< o
LH(RY,KMN) exponentially weighted LP-spaces 42
ng PR KY) exponentially weighted W*P—spaces 42
WEeDr(Qr, KYN)  space-time Sobolev spaces of order (2[,1) with ex- 42

ponent p
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