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1 Introduction and main result

1.1 Introduction

The field of nonlinear waves has been extended over the last decades. Nonlinear
waves are solutions of time dependent partial differential equations that are posed
on an unbounded domain, [35, Chapter 18]. In many cases these equations possess
symmetry properties which, depending on their type, allow traveling waves, rotating
waves or phase-rotating waves. A common feature to all these solutions is that they
are completely characterized by a time independent profile which travels, rotates
or oscillates at constant velocity. Such solutions arise in different applications
from physical, chemical and biological sciences. Equations that exhibit these types
of solutions are for instance the complex Ginzburg-Landau equation (see: [64],
[76]), the λ-ω system (see: [61], [80]), the Barkley model (see: [10], [11]), the
Schrödinger equation (see: [33], [112]) and the Gross-Pitaevskii equation (see: [44]).
One important focus of research is to study nonlinear stability of such solutions
and relate it to spectral properties of the linearization at the nonlinear wave. For
the numerical approximation it is crucial to study truncations to bounded domains.
Proving exponential decay of waves is an important issue in this field, since it implies
exponentially small truncation errors. This is one major step before investigating
further errors caused by spatial and temporal discretizations.

In the present thesis we deal with systems of reaction-diffusion equations

ut(x, t) =A△u(x, t) + f(u(x, t)), t > 0, x ∈ Rd, d > 2,

u(x, 0) =u0(x) , t = 0, x ∈ Rd,
(1.1)

where A ∈ RN,N is a diffusion matrix, f : RN → RN is a sufficiently smooth
nonlinearity, u0 : R

d → RN are the initial data and u : Rd × [0,∞[→ RN denotes a
vector-valued solution which is sought for.

We are mainly interested in rotating wave solutions of (1.1) which are of the form

u⋆(x, t) = v⋆(e
−tSx), t > 0, x ∈ Rd, d > 2(1.2)

with space-dependent profile v⋆ : R
d → RN and skew-symmetric matrix S ∈ Rd,d.

As an example we discuss in this work the cubic-quintic complex Ginzburg-
Landau equation (QCGL), cf. (2.1), where such solutions occur and are called
spinning solitons. For more information on spinning solitons see [28]. Figure 1.1(a)
shows the real part of a spinning soliton v⋆ in two space dimensions. The range of
colorbar reaches from −1.6 (blue) to 1.6 (red). Figure 1.1(b) shows the isosurfaces
of the real part of a spinning soliton in three space dimensions. The isosurfaces
have the values −0.5 (blue) and 0.5 (red).
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(a) (b)

Figure 1.1: Spinning soliton of QCGL (2.1) for d = 2 (a) and d = 3 (b)

Rotating waves from (1.2) are completely characterized by their time invariant
profile v⋆ and a skew-symmetric matrix S ∈ Rd,d. The skew-symmetry of S implies
that e−tS is a rotation matrix. Therefore, such a solution u⋆ rotates at constant
velocity while it maintains its shape. Note that rotating waves always come in
families: If u⋆ from (1.2) solves (1.1), then so does the function v⋆(e

−tS(R−1(x −
τ))) for every (R, τ) ∈ SE(d), where SE(d) denotes the special Euclidean group.
Furthermore, the profile v⋆ is called localized, if it tends to some constant vector
v∞ ∈ RN as |x| → ∞, and nonlocalized otherwise.

Transforming (1.1) via u(x, t) = v(e−tSx, t) into a co-rotating frame we obtain
the evolution equation

vt(x, t) =A△v(x, t) + 〈Sx,∇v(x, t)〉+ f(v(x, t)), t > 0, x ∈ Rd, d > 2,

v(x, 0) =u0(x) , t = 0, x ∈ Rd.
(1.3)

with drift term

〈Sx,∇v(x)〉 :=
d∑

i=1

(Sx)iDiv(x).(1.4)

Now, the pattern v⋆ itself is a stationary solution of (1.3), meaning that v⋆ solves
the steady state problem

A△v⋆(x) + 〈Sx,∇v⋆(x)〉+ f(v⋆(x)) = 0, x ∈ Rd, d > 2,(1.5)

that involves the Ornstein-Uhlenbeck operator

[L0v] (x) := A△v(x) + 〈Sx,∇v(x)〉 , x ∈ Rd.(1.6)

An important issue is to investigate the nonlinear stability (also called stability
with asymptotic phase) of rotating waves, i.e. to show that for any initial data
u0 sufficiently close to v⋆ there exists (R∞, τ∞), (R(t), τ(t)) ∈ SE(d) such that the
solution u(t), t > 0, of (1.1) satisfies u(t) − v⋆(e

−tS(R(t)−1(x − τ(t)))) → 0 in a
suitable topology and (R(t), τ(t)) → (R∞, τ∞) as t → ∞. A well known task is to
derive nonlinear stability from linear stability of the linearized operator

[Lv] (x) := [L0v] (x) +Df (v⋆(x)) v(x), x ∈ Rd.(1.7)
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By Linear stability (this will be called strong spectral stability in Chapter 9) we mean
that the essential spectrum and the isolated eigenvalues of L lie strictly to the left
of the imaginary axis except those that are caused by the SE(d)-group action (see
Chapter 9 for these eigenvalues). A nonlinear stability result for two dimensional
localized rotating patterns was proved by Beyn and Lorenz in [15]. Their proof
requires three essential assumptions: The profile v⋆ of the rotating wave and their
partial derivatives up to order 2 are localized in the above sense. Furthermore, the
matrix Df(v∞) is stable, meaning that all its eigenvalues have a negative real part.
And finally, strong spectral stability in the sense above is assumed. Their result
shows that the decay of the rotating wave itself and the spectrum of the linearization
are both crucial for investigating nonlinear stability of localized rotating waves. A
corresponding result on nonlinear stability of nonlocalized rotating waves, such as
spiral waves and scroll waves, is still an open problem. However, the spectrum of
the linearization at a spiral wave is well-known and has been extensively studied
by Sandstede, Scheel and Fiedler in [92], [38] and [93].

For numerical computations it is essential to truncate equation (1.1) and (1.3)
to bounded domains, see Section 1.6. This is motivated by the fact that numerical
approximations, e.g. with finite elements, require that the original equation is
posed on a bounded domain. The truncation error, that arises by the truncation
process, depends on the boundary conditions. Assuming that a rotating wave is
(exponentially) localized, we can expect the truncation error to be (exponentially)
small as well. For this reason, the exponential decay of rotating waves plays a
fundamental role in the field of truncations and approximations of rotating waves
on bounded domains.

The basic step before investigating truncations is to study the rotating waves of
(1.1) on the whole Rd. This is the topic of the present thesis. For the behavior on
bounded domains there are a lot of numerical simulations but the analysis of the
limit as R → ∞ is an open problem, see Section 1.6.

The main theme of this work is to derive suitable conditions guaranteeing that
every localized rotating wave of (1.1) is already exponentially localized. To be
more precise, the main theorem states that every rotating wave that falls below a
certain threshold at infinity and that satisfies in addition v⋆ ∈ Lp(Rd,RN) for some
1 < p < ∞, decays exponentially in space, in the sense that v⋆ belongs to some
exponentially weighted Sobolev space W 1,p

θ (Rd,RN). Afterward, we extend this
result to complex-valued systems. This is motivated by the exponentially localized
spinning solitons arising in the complex Ginzburg-Landau equation, see Figure 1.1.

We follow Mielke and Zelik, [114], and define the exponentially weighted Sobolev
spaces W k,p

θ (Rd,RN) for some weight function θ ∈ C(Rd,R) of exponential growth
rate. The main suggestion for our result comes from [15]. In [15, Remark 5], the
authors conjecture that the stability of the matrix Df(v∞), i.e. Re σ (Df(v∞)) < 0,
implies the exponential decay of the rotating wave as |x| → ∞. Assuming in
addition that v⋆ is localized, they believe that one can also deduce that its partial
derivatives up to order 2 are localized. For traveling waves in dimension d = 1
such results are well known. There one usually considers x as the time variable,
transforms the steady state problem to a first order ODE and applies the theory of
exponential dichotomies. But the procedure does not carry over directly to d > 2.
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Therefore, we develop in this thesis a new approach that allows to prove exponential
decay in higher space dimensions.

Our approach works as follows: In the first step we compute a (complex-valued)
heat kernel H0 for the differential operator L0. Using this kernel, we introduce the
associated semigroup (T0(t))t>0 on an appropriate state space X, e.g.

X = Lp(Rd,CN), X = Cb(R
d,CN) or X = Cα(Rd,CN). We verify that the semi-

group is strongly continuous on X (or possibly on a certain subspace of X), which
justifies to introduce the infinitesimal generator and to apply semigroup theory, see
e.g. Engel and Nagel, [34]. The generator itself can be considered as the abstract
version of the formal differential operator L0. To investigate their relation we must
solve the identification problem, which on the one hand yields an explicit represen-
tation for the maximal domain and on the other hand shows that the abstract and
the formal differential operator coincide on this domain. The identification problem
was solved for the scalar real-valued case by Metafune, Pallara and Vespri in [73]
for X = Lp(Rd,R) and by Da Prato and Lunardi in [29] for X = Cb(R

d,R) and
X = Cα(Rd,R).

For investigating the asymptotic behavior of solutions of (1.5) we decompose
Df(v⋆(x)) as follows

Df(v⋆(x)) = Df(v∞) +Qε(x) +Qc(x), x ∈ Rd,(1.8)

for some small perturbation Qε ∈ L∞(Rd,RN,N) and for some perturbation
Qc ∈ L∞(Rd,RN,N) with compact support. Then we show that it suffices to analyze
solutions of the linear operator

[L0v] (x) + (Df(v∞) +Qε(x) +Qc(x)) v(x) = 0, x ∈ Rd.

For this reason, we apply semigroup theory to study constant coefficient perturba-
tions as well as small and compactly supported variable coefficient perturbations
of L0.

We are faced with different problems in this work: The main problem is that
the rotational term 〈Sx,∇v⋆(x)〉 has unbounded coefficients. Therefore, this term
cannot be treated as a lower order term on unbounded domains. Moreover, since
we consider complex-valued systems, we have to transfer many results, that are
only known for the scalar real-valued case, to complex systems. Furthermore, due
to the unbounded coefficients of 〈Sx,∇v⋆(x)〉 it turns out to be hard to solve the
identification problem for L0. And finally, there is the question about a suitable
state space X.

Furthermore, we investigate the eigenvalue problem for the linearization (1.7) at
a localized rotating wave v⋆. We determine the eigenvalues located on the imaginary
axis and caused by the SE(d)-group action as follows

σ(S) ∪ {λ1 + λ2 | λ1, λ2 ∈ σ(S), λ1 6= λ2} ⊆ σpoint(L).(1.9)

And we derive the shape of the corresponding eigenfunctions v : Rd → CN , which
are of the form

v(x) =
〈
Crotx+ Ctra,∇v⋆(x)

〉
, x ∈ Rd,
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for some explicitly given skew-symmetric Crot ∈ Cd,d and Ctra ∈ Cd, where 〈·, ·〉
is defined as in (1.4). In particular, the result shows that for every space dimen-
sion d > 2 the eigenvalue λ = 0 belongs to σpoint(L) with associated eigenfunction
v(x) = 〈Sx,∇v⋆(x)〉. Another application of our main theorem shows that eigen-
functions of the linearized operator decay exponentially in space, provided the
corresponding eigenvalues are sufficiently close to the imaginary axis. In addition
to eigenvalues, we identify a certain part of the essential spectrum,

{

−λ(ω)− i

k∑

l=1

nlσl | nl ∈ Z, λ(ω) ∈ σ(ω2A−Df(v∞)), ω ∈ R

}

⊆ σess(L),

(1.10)

where ±iσ1, . . . ,±iσk denote the nonzero eigenvalues of S. For this purpose we
derive a dispersion relation for localized rotating patterns. All these studies are
motivated by [15] and [71] and are necessary to investigate nonlinear stability of
rotating waves in higher space dimensions.
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Figure 1.2: Essential and point spectrum (a), numerical spectrum (b) and two isofurfaces
of eigenfunction corresponding to the eigenvalue 0 (c) for the three-dimensional
spinning soliton of QCGL (2.1) from Figure 1.1(b)

Figure 1.2(a)–1.2(b) illustrates the spectral behavior of the QCGL when lin-
earized at the spinning soliton from Figure 1.1(b). The red lines in Figure 1.2(a)
correspond to the part of the essential spectrum from (1.10). They form a zig-zag
structure that is parallel to the imaginary axis. The distance of two neighboring
tips of the cones equals the rotational velocity σ1 = 0.68576. The blue circles
correspond to the part of the point spectrum from (1.9), that is caused by the
SE(3)-group action. Each of these isolated eigenvalues has multiplicity 2. Figure
1.2(b) shows a numerical approximation of the full spectrum. Red dots approximate
the essential spectrum, blue circles the known eigenvalues on the imaginary axis,
and blue crosses the remaining point spectrum. Figure 1.2(c) illustrates an approx-
imation of the eigenfunction 〈Sx,∇v⋆(x)〉 that corresponds to the zero eigenvalue.
The isosurfaces have values −1.5 (blue) and 1.5 (red). Note that the eigenfunction
coincides with our drift term and decays exponentially in space.
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Finally, we numerically investigate the interaction of several spinning solitons in
the cubic-quintic complex Ginzburg-Landau equation in two space dimensions. We
are mainly interested in the fate of the single shapes and velocities when solitons
collide or repel each other. In order to analyze the interaction of multi-solitons we
extend the decompose and freeze method from Beyn, Thümmler and Selle, [17],
to higher space dimensions. It writes the solution of (1.1) as a superposition of
finite number of solutions (given by the number of patterns) which solve a system
of coupled nonlinear partial differential algebraic equations.

(a)

−4 −2 0 2 4
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0
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x
1

x 2

(b)

Figure 1.3: Interaction of three spinning solitons in the QCGL (2.1) with d = 2 and their
positions of centers

Figure 1.3(a) shows the real part of the sum of three spinning solitons of the
QCGL for d = 2, cf. Figure 1.1(a). Each of these solitons is located on a different
vertex of an equilateral triangle and rotates at constant velocity. After some time
they collide into a single spinning soliton that rotates at their common velocity.
Figure 1.3(b) shows the time evolution for the positions of the 3 spinning solitons,
that are obtained from the decompose and freeze method for multi-solitons. Each
of the colors represent the motion of a single soliton with a pointer at the end which
indicates the current phase position. For a detailed description we refer to Section
10.6.

1.2 Assumptions and main result

Below we give a more technical outline of the basic assumptions and the main result
of this thesis:

Consider the steady state problem of the form

A△v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd, d > 2,(1.11)

with diffusion matrix A ∈ KN,N and a function f : KN → KN for K ∈ {R,C}.
The drift term is defined by a matrix 0 6= S ∈ Rd,d as

〈Sx,∇v(x)〉 :=
d∑

i=1

d∑

j=1

SijxjDiv(x),(1.12)
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where Di =
∂
∂xi

. The operator A△v(x)+〈Sx,∇v(x)〉 is usually called the complex
Ornstein-Uhlenbeck operator, [107].

Our interest is in skew-symmetric matrices S = −ST , in which case (1.12) is a
rotational term containing angular derivatives

〈Sx,∇v(x)〉 =
d−1∑

i=1

d∑

j=i+1

Sij (xjDi − xiDj) v(x).(1.13)

We look for different types of solutions, which satisfy at least v ∈ Lp(Rd,KN) for
some 1 6 p 6 ∞ and N ∈ N.

Under appropriate conditions our main result states that a solution v⋆ of (1.11)
and its first order derivatives decay exponentially in space as the radius |x| goes to
infinity.

Investigating steady state problems of this type is motivated by the stability
theory of rotating patterns in several spatial dimensions, [15]. There one considers
reaction diffusion equations

ut(x, t) =A△u(x, t) + f(u(x, t)), t > 0, x ∈ Rd, d > 2,

u(x, 0) =u0(x) , t = 0, x ∈ Rd,
(1.14)

where A ∈ KN,N is a diffusion matrix, f : KN → KN a nonlinearity and u a solution
that maps Rd × [0,∞[ into KN .

We define a rotating wave solution u⋆ of (1.14) in the following sense:

Definition 1.1. A function u⋆ : R
d × [0,∞[→ KN is called a rotating wave (or

rotating pattern) if it has the form

u⋆(x, t) = v⋆(e
−tS(x− x⋆)), x ∈ Rd, t ∈ [0,∞[,(1.15)

with profile (or pattern) v⋆ : R
d → KN , a skew-symmetric matrix 0 6= S ∈ Rd,d

and x⋆ ∈ Rd. A rotating wave u⋆ satisfying

lim
|x|→∞

eη|x| |v⋆(x)− v∞| = 0 for some v∞ ∈ KN and η > 0

for η = 0 is called localized and nonlocalized, otherwise. Moreover, a localized
rotating wave u⋆ is called exponentially localized (with decay rate η) if η > 0.

The vector x⋆ ∈ Rd can be considered as the center of rotation for d = 2 and as
the support vector of the axis of rotation for d = 3. In case d ∈ {2, 3}, S can be
considered as the angular velocity tensor associated to the angular velocity vector

ω ∈ R
d(d−1)

2 containing Sij, i = 1, . . . , d− 1, j = i+ 1, . . . , d.
A transformation into a co-rotating frame shows that if u(x, t) solves (1.14)

then v(x, t) = u(etSx+ x⋆, t) solves

vt(x, t) =A△v(x, t) + 〈Sx,∇v(x, t)〉+ f(v(x, t)), t > 0, x ∈ Rd, d > 2,

v(x, 0) =u0(x) , t = 0, x ∈ Rd,
(1.16)

where the drift term is given by (1.13). Conversely, if v(x, t) solves (1.16) then
u(x, t) = v(e−tS(x− x⋆), t) solves (1.14).
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Note that v⋆ is a stationary solution of (1.16), meaning that v⋆ solves the nonlin-
ear problem (1.11). In Section 2.1 we illustrate such rotating patterns by a series
of examples.

In order to investigate exponential decay of the profile v⋆, we list a series of
assumptions that will be important in the sequel. Throughout, let K ∈ {R,C}:
Assumption 1.2. For A ∈ KN,N consider the following conditions:

A is diagonalizable (over C), (system condition)(A1)

Re σ(A) > 0 (ellipticity condition)(A2)

where σ(A) denotes the spectrum of A,

∃ βA > 0 : Re 〈w,Aw〉 > βA ∀w ∈ KN , |w| = 1, (accretivity condition)(A3)

where 〈u, v〉 := uTv denotes the standard inner product on KN ,

case (N = 1, K = R): A = a > 0,(A4)

cases (N > 2, K = R) and (N > 1, K = C):

µ1(A) >
|p− 2|
p

for some fixed 1 < p <∞ (Lp-antieigenvalue condition)

where µ1(A) is the first antieigenvalue of A.

The assumptions (A1)–(A4) satisfy the obvious relations:

(A4) ⇒ (A3) ⇒ (A2).

Condition (A1) ensures that all results for scalar equations can be extended to sys-
tem cases. It is completely independent of (A2)–(A4). Assumption (A2) guarantees
that the diffusion part A△ is an elliptic operator and requires that all eigenvalues
λ of A are contained in the open right half-plane C+ := {λ ∈ C | Reλ > 0}, where
σ(A) denotes the spectrum of A. A matrix C ∈ KN,N that satisfies Reσ(C) < 0 is
called a stable matrix. Thus, (A2) states that the matrix −A is stable. In partic-
ular, (A2) implies that the matrix A is invertible. Condition (A3), states that A is
an strongly accretive matrix, which is more restrictive than (A2). Assumption
(A4) postulates that the first antieigenvalue of A, defined by, [48],

µ1(A) := inf
w∈KN

w 6=0
Aw 6=0

Re 〈w,Aw〉
|w||Aw| = inf

w∈KN

|w|=1
Aw 6=0

Re 〈w,Aw〉
|Aw| ,

is bounded from below by a non-negative p-dependent constant. This is equivalent
to the following p-dependent upper bound for the (real) angle of A, [47],

ΦR(A) := cos−1 (µ1(A)) < cos−1

( |p− 2|
p

)

∈]0, π
2
], 1 < p <∞.

Condition (A4) imposes additional requirements on the spectrum of A and is more
restrictive than (A3). For some special cases, the constant µ1(A) can be given
explicitly in terms of the eigenvalues of A. In the scalar complex case A = α ∈ C,
assumption (A4) leads to a cone condition which requires α to lie in a p-dependent
sector in the right half-plane. In the scalar case condition (A4) coincides with the
Lp-dissipativity condition from [26].
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Assumption 1.3. The matrix S ∈ Rd,d satisfies

S is skew-symmetric, i.e. S = −ST , S ∈ so(d,R) (rotational condition).(A5)

Assumption (A5) guarantees that the drift term (1.12) contains only angular
derivatives, see (1.13). Our main result will be formulated for the real-valued case.

Assumption 1.4. The function f : RN → RN satisfies

f ∈ C2(RN ,RN) (smoothness condition).(A6)

Later on we apply our results also to complex-valued nonlinearities of the form

f : CN → CN , f(u) = g
(
|u|2
)
u,

where g : R → CN,N is a sufficiently smooth function. Such nonlinearities arise
for example in Ginzburg-Landau equations, Schrödinger equations, λ− ω systems
and many other equations from physical sciences, see Section 2.1. Note, that in
this case, the function f is not holomorphic in C, but its real-valued version in R2

satisfies (A6) if g is in C2. For differentiable functions f : RN → RN , Df denotes
the Jacobian matrix in the real sense, see the following conditions (A8) and (A9).

Assumption 1.5. For v∞ ∈ RN consider the following conditions:

f(v∞) = 0 (constant asymptotic state),(A7)

A,Df(v∞) ∈ RN,N are simultaneously diagonalizable (over C)(A8)

(system condition),

σ (Df(v∞)) ⊂ C− := {λ ∈ C | Reλ < 0} (spectral condition).(A9)

Condition (A7) states that v∞ is a zero of the nonlinearity f . Note, that by (A8)
assumption (A1) is automatically satisfied. Condition (A9) states that the matrix
Df(v∞) is stable.

Definition 1.6. A function v⋆ : R
d → KN is called a classical solution of (1.11)

if

v⋆ ∈ C2(Rd,KN) ∩ Cb(R
d,KN )(1.17)

and v⋆ solves (1.11) pointwise.

Equation (1.17) requires v⋆ to be C2-smooth and bounded, see Section 3.2 for
general function spaces. For a matrix C ∈ KN,N we denote by σ(C) the spec-
trum of C, by ρ(C) := maxλ∈σ(C) |λ| the spectral radius of C and by s(C) :=
maxλ∈σ(C) Reλ the spectral abscissa (or spectral bound) of C. Using this
notation, we define the constants

(1.18)
amin :=

(
ρ
(
A−1

))−1
, a0 := −s(−A),

amax :=ρ(A), b0 := −s(Df(v∞)).

Our main tool for investigating exponential decay in space are exponentially
weighted function spaces, which we introduce in Section 3 in detail. An essential
ingredient for these function spaces is the choice of the weight function, which
follows [114, Def. 3.1]:
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Definition 1.7. (1) A function θ ∈ C(Rd,R) is called a weight function of
exponential growth rate η > 0 provided that

θ(x) > 0 ∀ x ∈ Rd,(W1)

∃Cθ > 0 : θ(x+ y) 6 Cθθ(x)e
η|y| ∀ x, y ∈ Rd.(W2)

(2) A weight function θ ∈ C(Rd,R) of exponential growth rate η > 0 is called
radial provided that

∃φ : [0,∞[→ R : θ(x) = φ (|x|) ∀ x ∈ Rd.(W3)

(3) A radial weight function θ ∈ C(Rd,R) of exponential growth rate η > 0 is called
non-decreasing (or monotonically increasing) provided that

θ(x) 6 θ(y) ∀ x, y ∈ Rd with |x| 6 |y|.(W4)

Note, that radial weight functions satisfy θ(x) = θ(y) for every x, y ∈ Rd with
|x| = |y|. Standard examples are

θ1(x) = exp (−µ|x|) and θ2(x) = cosh (µ|x|) ,

as well as their smooth analogs

θ3(x) = exp

(

−µ
√

|x|2 + 1

)

and θ4(x) = cosh

(

µ

√

|x|2 + 1

)

,

for µ ∈ R and x ∈ Rd. Obviously, all these functions are radial weight functions of
exponential growth rate η = |µ| with Cθ = 1. Moreover, θ1, θ3 are non-decreasing
and θ2, θ4 are non-decreasing if µ 6 0. Note, that for µ = 0 the examples include
the weight function θ(x) = 1. Furthermore, Definition 1.7 includes (radial) tableau
functions, e.g.

θ5(x) =

{

1 , |x| 6 R,

exp(−µ(|x| − R)) , |x| > R,

for some R > 0, where the constant Cθ depends on the size of the support, but not
on the growth rate η.

Associated with weight functions of exponential growth rate are exponentially
weighted Lebesgue and Sobolev spaces

Lpθ(R
d,KN) :={u ∈ L1

loc(R
d,KN) | ‖θu‖Lp <∞},

W k,p
θ (Rd,KN) :={u ∈ Lpθ(R

d,KN ) | Dβu ∈ Lpθ(R
d,KN) ∀ |β| 6 k},

for every 1 6 p 6 ∞ and k ∈ N0. Our main result is the following:

Theorem 1.8 (Exponential decay of v⋆). Let the assumptions (A4)–(A9) be sat-
isfied for some 1 < p < ∞ and K = R. Then for every 0 < ϑ < 1 and for
every radially nondecreasing weight function θ ∈ C(Rd,R) of exponential growth
rate η > 0 with

0 6 η2 6 ϑ
2

3

a0b0
a2maxp

2
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and amax, a0, b0 from (1.18), there exists a constant K1 = K1(A, f, v∞, d, p, θ, ϑ) > 0
with the following property:
Every classical solution v⋆ of

A△v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd,(1.19)

such that v⋆ − v∞ ∈ Lp(Rd,RN) and

sup
|x|>R0

|v⋆(x)− v∞| 6 K1 for some R0 > 0(1.20)

satisfies

v⋆ − v∞ ∈ W 1,p
θ (Rd,RN).

Roughly speaking, Theorem 1.8 states that every classical solution v⋆ which sat-
isfies v⋆ − v∞ ∈ Lp(Rd,RN) and which is sufficiently close to the steady state v∞
at infinity, see (1.20), must already decay exponentially in space. The exponential
decay is expressed by the fact, that v⋆ − v∞ belongs to an exponentially weighted
Sobolev space. Moreover, the theorem gives an explicit bound for the exponential
growth rate, that depends only on p, the spectral radius of A and the spectral
abscissas of −A and Df(v∞).

In the following we outline several implications and extensions of this result.

Complex valued equations. Later on we apply Theorem 1.8 to complex systems
with nonlinearities of the form

f : CN → CN , f(u) = g
(
|u|2
)
u,

where g : R → CN,N is a sufficiently smooth function. For this purpose, we trans-
form the N -dimensional complex-valued system into a 2N -dimensional real-valued
system and show how assumptions on the real-valued version of f translate into
the complex case.

Relation to the one-dimensional case. As we will see in Section 1.3, the proof
of Theorem 1.8 is fundamentally different from the proofs of exponential decay
towards limits at ±∞ for traveling waves in one space dimension. Consider the
one-dimensional reaction-diffusion equation

ut(x, t) = uxx(x, t) + f(u(x, t)), x ∈ R, t > 0,

where f : RN → RN is a given nonlinearity and u : R × [0,∞[→ RN denotes the
solution we seek for. Assume a traveling wave solution u⋆(x, t) = v⋆(x−ct) for some
0 6= c ∈ R, then the profile v⋆ : R → RN is a stationary solution of the co-moving
frame, i.e. v⋆ solves

0 = vxx(x) + cvx(x) + f(v(x)), x ∈ R.(1.21)

Note that in the one-dimensional case the steady-state equation is an ordinary
differential equation. An essential tool for investigating exponential decay and
nonlinear stability of traveling waves are exponential dichotomies, [35, Chapter 18
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(Sandstede)]. This requires to cast the second-order ODE into a first-order system:
Defining V1(x) := v(x) and V2(x) := vx(x), then V (x) = (V1(x), V2(x))

T satisfies

Vx(x) =

(
vx(x)
vxx(x)

)

=

(
vx(x)

−cvx(x)− f(v(x))

)

=

(
V2(x)

−cV2(x)− f(V1(x))

)

=: F (V (x)),

for every x ∈ R. Let f ∈ C1(RN ,RN) and v±∞ ∈ RN be such that f(v±∞) = 0
and Re σ(Df(v±∞)) < 0, then F ∈ C1(R2N , R2N) and V ±

∞ := (v±∞, 0)
T ∈ R2N are

hyperbolic fixed points, i.e. F (V ±
∞) = 0 and σ(DF (V ±

∞))∩ iR = ∅. Now, the theory
of exponential dichotomies yields some constants K± = K±(f, v±∞) > 0 such that
every solution v⋆ ∈ C2(R,RN) ∩ Cb(R,R

N) of (1.21) with

∣
∣v⋆(x)− v±∞

∣
∣ + |v⋆,x(x)| 6 K± for every x > x+ (x 6 x−)

satisfies v⋆(x) → v±∞ and v⋆,x(x) → 0 exponentially fast as x → ±∞, cf. [100,
Theorem III.7 (2)] for a time-discrete version.

To explicate the analogy, let us consider the Ornstein-Uhlenbeck operator L0v
instead of vxx + cvx. The smoothness assumption for f now corresponds to as-
sumption (A6). If we consider v∞ instead of v±∞, we see that f(v±∞) = 0 and
Re σ(Df(v±∞)) < 0 is expressed by assumption (A7) and (A9), respectively. The
threshold condition now corresponds to (1.20). Finally, we emphasize that in the
general case with Avxx instead of vxx, compare (1.21), the assumptions (A2), (A8)
and (A9) imply the hyperbolicity condition σ(DF (V ±

∞)) ∩ iR = ∅.
A common feature of the one- and multi-dimensional case is that one considers

small and compactly supported perturbations in both situations.

1.3 Decomposition of linear differential operators

In the following we explain the decomposition of the linear differential operators
that leads to the proof of Theorem 1.8.

Far-Field Linearization. Consider the nonlinear problem

A△v⋆(x) + 〈Sx,∇v⋆(x)〉+ f(v⋆(x)) = 0, x ∈ Rd, d > 2.

Let v∞ ∈ RN be the constant asymptotic state satisfying (A7). Assume that
f ∈ C1(RN ,RN) as in (A6), then Taylor’s theorem yields

f(v⋆(x)) = f(v∞)
︸ ︷︷ ︸

=0

+

∫ 1

0

Df(v∞ + t(v⋆(x)− v∞))dt

︸ ︷︷ ︸

=:a(x)

(v⋆(x)− v∞), x ∈ Rd,

where a ∈ Cb(R
d,RN,N) since v⋆ ∈ Cb(R

d,RN) and v⋆ is a classical solution. Since
v∞ ∈ RN is constant, the difference w(x) := v⋆(x) − v∞ satisfies the linearized
equation

A△w(x) + 〈Sx,∇w(x)〉+ a(x)w(x) = 0, x ∈ Rd, d > 2.
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In order to study the behavior of solutions as |x| → ∞ we decompose the variable
coefficient. In the following we decompose a rather than Df(v⋆(x)) in a fashion
similar to (1.8). For a direct application of (1.8) see Chapter 9.

Decomposition of a. Let a(x) = Df(v∞) +Q(x) with Q defined by

Q(x) =

∫ 1

0

Df (v∞ + tw(x))−Df (v∞) dt, x ∈ Rd.

This yields Q ∈ Cb(R
d,RN,N) and

A△w(x) + 〈Sx,∇w(x)〉+ (Df(v∞) +Q(x))w(x) = 0, x ∈ Rd, d > 2.

Decomposition of Q. Let Q(x) = Qε(x) + Qc(x), where Qε ∈ Cb(R
d,RN,N) is

small w.r.t. ‖·‖Cb
and Qc ∈ Cb(R

d,RN,N) is compactly supported on Rd, see Figure
1.4. Then we arrive at

A△w(x) + 〈Sx,∇w(x)〉+ (Df(v∞) +Qε(x) +Qc(x))w(x) = 0, x ∈ Rd.(1.22)

If we omit the term Qε + Qc in (1.22), the equation (1.22) is called the far-field
linearization.
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|Q(x)|

|Qε(x)|

|Qc(x)|

K1

R0

|x| = R

Figure 1.4: Decomposition of Q with data R0 and K1 from Theorem 1.8

Perturbations of Ornstein-Uhlenbeck operator. In order to show exponential
decay for the solution v⋆ of the nonlinear steady state problem (1.11), it is sufficient
to analyze the solutions of the linear system (1.22). Abbreviating B := −Df(v∞),
we will study the following linear differential operators:

[LQv] (x) = A△v(x) + 〈Sx,∇v(x)〉 −Bv(x) +Qε(x)v(x) +Qc(x)v(x),

[LQεv] (x) = A△v(x) + 〈Sx,∇v(x)〉 −Bv(x) +Qε(x)v(x),

[L∞v] (x) = A△v(x) + 〈Sx,∇v(x)〉 −Bv(x),

[L0v] (x) = A△v(x) + 〈Sx,∇v(x)〉 .
The Ornstein-Uhlenbeck operator L0, is the sum of the diffusion term
[
Ldiff

0 v
]
(x) = A△v(x) and the drift term

[
Ldrift

0 v
]
(x) = 〈Sx,∇v(x)〉.The drift

term has unbounded (in fact linearly increasing) coefficients. Later on, it will be
convenient to allow complex coefficients for the operators L0, L∞, LQε and LQ.
Therefore, we rewrite the assumptions (A8) and (A9) as follows:
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Assumption 1.9. Let B ∈ KN,N be such that

A,B ∈ KN,N are simultaneously diagonalizable (over C), i.e.(A8B)

∃Y ∈ CN,N invertible : Y −1AY = ΛA and Y −1BY = ΛB

where ΛA = diag
(
λA1 , . . . , λ

A
N

)
,ΛB = diag

(
λB1 , . . . , λ

B
N

)
∈ CN,N

(system condition),

Re σ(B) > 0 (spectral condition).(A9B)

In this context b0 is defined by b0 := −s(−B), cf. (1.18). Note that in case of
B = 0 assumption (A8B) coincides with (A1).

1.4 Detailed outline of the thesis

In Chapter 2 we recall the derivation of the real scalar Ornstein-Uhlenbeck operator
from an underlying stochastic ordinary differential equation (SODE). After that
we motivate the complex Ornstein-Uhlenbeck operator in scalar and system cases.
In the second part of Chapter 2 we give a series of examples from physical and
biological sciences, where the Ornstein-Uhlenbeck operator appears in the theory
of rotating patterns. Further, we give a short summary of known results concerning
the real-valued Ornstein-Uhlenbeck operator.

In Chapter 3 we discuss the special Euclidean group, [37], and the exponentially
weighted Lebesgue and Sobolev spaces, [114], as well as some general notation that
will be used throughout this work.

Complex-valued Ornstein-Uhlenbeck kernel. In Chapter 4 we extend the
approach from [14], [4] and [22] and use assumptions (A1), (A2), (A5) and (A8B)
to determine a heat kernel of the complex-valued operator L∞ for the case, where
A and B are complex simultaneously diagonalizable matrices. This leads to the
following heat kernel matrix

H(x, ξ, t) = (4πtA)−
d
2 exp

(

−Bt− (4tA)−1
∣
∣etSx− ξ

∣
∣
2
)

of L∞, which we will denote later by H∞. The choice B = 0 provides us with
a heat kernel, denoted by H0, for the complex Ornstein-Uhlenbeck operator L0.
Further, we show that H satisfies a Chapman-Kolmogorov formula, needed for the
subsequent semigroup theory. In the remaining section we prove some integral
properties for the modified kernel K(ψ, t) = H(x, etSx−ψ, t), which will be needed
in the sequel for the exponential decay and the application of semigroup theory.

Ornstein-Uhlenbeck semigroup. Assuming (A1), (A2) and (A5) we will study
in Chapter 5 the Ornstein-Uhlenbeck semigroup (T0(t))t>0 defined by the heat ker-
nel of L0 as

[T0(t)v0] (x) :=

∫

Rd

H0(x, ξ, t)v0(ξ)dξ, t > 0, x ∈ Rd.

Here we show that the semigroup (T0(t))t>0 (also known as the transition semi-

group) is strongly continuous in Lp(Rd,CN) for every 1 6 p < ∞. Hence, we
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can define the infinitesimal generator Ap of (T0(t))t>0. Using abstract semigroup
theory, [34], we derive solvability and uniqueness results for the resolvent equation
and resolvent estimates. Moreover, we show that the Schwartz space S is dense
in the domain of Ap with respect to the graph norm of Ap for every 1 6 p < ∞.
This shows that Ap and L0 coincide on S. To prove that Ap is indeed the maximal
realization (extension) of L0 in Lp(Rd,CN) for 1 < p < ∞, we must restrict p to
1 < p < ∞ and require in addition (A3) and the Lp-antieigenvalue condition (A4)
for L0. Then, we derive some resolvent estimates for L0 in

Dp
loc(L0) :=

{
v ∈ W 2,p

loc (R
d,CN) ∩ Lp(Rd,CN) | L0v ∈ Lp(Rd,CN)

}

for 1 < p < ∞, [73]. This enables us to conclude that the maximal domain
D(Ap) of Ap is equal to Dp

loc(L0) and that Ap and L0 coincide on Dp
loc(L0) for every

1 < p <∞.
Using exponentially weighted Sobolev spaces with radial weight functions of ex-

ponential growth, we then obtain exponential decay of the solutions for the resolvent
equation and its derivatives up to order 1, even if (A3) and (A4) are not satisfied.
In order to show that the maximal domain of the Ornstein-Uhlenbeck operator
L0 = Ldiff

0 +Ldrift
0 coincides with the intersection of the domains of its diffusion and

drift term, i.e.

D
(
Ldiff

0 + Ldrift
0

)
= D

(
Ldiff

0

)
∩ D

(
Ldrift

0

)
,

we analyze the homogeneous and inhomogeneous Cauchy problem for L0, following
the approach in [73] for the scalar real-valued case, and show for 1 < p < ∞ that
the domain Dp

loc(L0) coincides with

Dp
max(L0) :=

{
v ∈ W 2,p(Rd,CN) | 〈S·,∇v〉 ∈ Lp(Rd,CN)

}
.

Constant coefficient perturbations. In Chapter 6 we perturb the Ornstein-
Uhlenbeck operator L0 by adding the term Bv(x) with constant coefficients, that
leads us to the operator L∞. To find a realization of L∞, we assume (A1), (A2),
(A5) and perturb the generator Ap by adding the operator Epv := −Bv. Then
the bounded perturbation Bp := Ap + Ep, equipped with the same domain as Ap,
generates a C0-semigroup (T∞(t))t>0 on Lp(Rd,CN) for 1 6 p < ∞. If we require
in addition the assumptions (A3) and (A4), then the infinitesimal generator Bp is
indeed the maximal realization of L∞ in Lp(Rd,CN) for 1 < p <∞ and the domain
equals Dp

loc(L0). Note, that in general we do not have an explicit formula for the
semigroup (T∞(t))t>0 any more. But if A and B satisfy in addition to (A1), (A2),
(A5) the assumption (A8B), we are able to derive an explicit representation for the
new semigroup (T∞(t))t>0, given by

[T∞(t)v] (x) :=

∫

Rd

H∞(x, ξ, t)v0(ξ)dξ, t > 0, x ∈ Rd.

Here, the function H∞ coincides with the heat kernel for L∞ computed in Section
4. Again, under the assumptions (A1), (A2), (A5) and (A8B) we are able to derive
solvability and uniqueness results for the resolvent equation and resolvent estimates.
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In particular, assuming (A9B), we can derive an explicit representation of Green’s
function for Bp, as the time-integral over the heat kernel,

G(x, ξ) = −
∫ ∞

0

H∞(x, ξ, s)ds,

cf. [4] for such a representation. If in addition (A3) and (A4) are satisfied, this
turns out to be also a Green’s function for L∞. Again, we can prove exponential
decay of solutions of the resolvent equation for Bp and its derivatives up to order
1.

Small and compactly supported variable coefficient perturbations. Per-
turbing the operator L∞ by adding the term Q(x)v(x) with variable coefficients
Q ∈ L∞(Rd,CN,N), leads us in Chapter 7 to the operator LQ. In order to find a
realization of LQ, we assume (A1), (A2), (A5), (A8B) and perturb this time the
generator Bp and obtain the new generator Cp := Bp + Fp, Fpv := Qv, for the
full C0-semigroup (TQ(t))t>0 on Lp(Rd,CN) for 1 6 p <∞. Again, if we require in
addition assumptions (A3) and (A4), then the infinitesimal generator Cp is the max-
imal realization of LQ in Lp(Rd,CN) for 1 < p <∞ and its domain equals Dp

loc(L0).
Under the assumptions (A1), (A2), (A5), (A8B) and arbitrary Q ∈ L∞(Rd,CN,N),
we derive solvability and uniqueness results for the resolvent equation and resolvent
estimates in weighted spaces. We then apply this theory to perturbations Q = Qε,
where Qε is assumed to be small with respect to ‖·‖L∞, and to perturbations of the
form Q = Qε +Qc, where Qc is compactly supported.
Finally, assuming in addition (A3), (A4) as well as

ess sup
|x|>R

|Q(x)|2 → 0 as R → ∞,

and following [15] and [71], we compute the essential spectrum of the operator LQ in
Lp(Rd,CN) for every 1 < p <∞. This shows that neither LQ nor Cp is sectorial in
Lp(Rd,CN) and (TQ(t))t>0 does not generate an analytic semigroup in Lp(Rd,CN)
for 1 < p <∞.

Spatial decay of rotating waves. In Chapter 8 we analyze the steady state
problem (1.11) and prove the main result from Theorem 1.8, stating that v⋆ − v∞
and its derivatives up to order 1 decay exponentially in space at a certain rate,
whenever v⋆ is a classical solution of (1.11). Afterward, we extend Theorem 1.8 to
complex systems.

Spectral properties of linearization at rotating waves. Generalizing [15]
from d = 2 to d > 2, we investigate in Chapter 9 the linearization of the nonlinear
problem (1.11) of the Ornstein-Uhlenbeck operator on Rd. We analyze the point
spectrum and determine the eigenvalues on the imaginary axis, that are caused
by the SE(d)-action, as well as an explicit expression for their associated eigen-
functions. Further, we prove that, whenever an isolated eigenvalue is sufficiently
close to the imaginary axis, the corresponding eigenfunction and its first order
derivatives decay exponentially in space. As a byproduct we conclude that also
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the rotational term has an exponential decay in space. Moreover, we compute the
essential spectrum for exponentially localized rotating patterns.

Freezing method and numerical results. In Chapter 10 we introduce some
general theory about equivariant evolution equations following [25], [39] and [43].
Afterward, we introduce the well known freezing method, see [18] and [16]. The
main idea of this method is to approximate relative equilibria such as rotating
waves in reaction-diffusion systems. We then apply this method numerically to
compute the profiles and the velocities of rotating waves for a series of examples.
Moreover, we also investigate numerically the spectra of linearizations at rotating
waves. Finally, we introduce the decompose and freeze approach, see [17] and [16].
The main idea of this approach is to approximate profiles and velocities of multi-
structures, such as multi-solitons. At the end of the chapter, we apply this method
to investigate numerically interaction processes of several spinning solitons in the
two-dimensional cubic-quintic complex Ginzburg-Landau equation, see [78].

1.5 A guide through the present work

The three main results of this work are classified into spatial decay of rotating
waves, spectral properties of rotating waves and numerical results. These issues
can be found in the following sections:

Spatial decay: Chapter 3, Chapter 4, Section 5.1-5.6, Chapter 6,
Section 7.1-7.3, Chapter 8,

Spectral properties: Section 7.4, Chapter 9,
Numerical results: Section 2.1, Chapter 10.

Of course, these topics are closely related, but the material in the corresponding
sections can be read more or less independently. The Sections 2.2 and 2.3 serve as
background material for the Ornstein-Uhlenbeck operator. The Sections 5.7 and
5.8 provide a useful preparation for the theoretical part of Sections 10.1, 10.2 and
10.5.

1.6 Extensions and further results

Next we summarize some extensions of our theory, which so far have only partially
be completed. Details of these results have been left out in order to keep the size
of the present thesis within reasonable bounds.
Extension to the space of bounded continuous functions. A reasonable
state space, suggested by the work [29], is the following, cf. Section 3.2,

Crub(R
d,KN) = {u ∈ Cub(R

d,KN) | lim
t→0

∥
∥u(etS·)− u(·)

∥
∥
Cb(Rd,KN )

= 0},

where Cub(R
d,KN) denotes the space of bounded uniformly continuous functions.

Let the assumptions (A1), (A2) and (A5) be satisfied and consider the Ornstein-
Uhlenbeck semigroup (T0(t))t>0 on the function spaces

Crub(R
d,CN) ⊆ Cub(R

d,CN) ⊆ Cb(R
d,CN),
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that are introduced in Section 3.2. Then (T0(t))t>0 generates a semigroup on every

of these function spaces. The semigroup (T0(t))t>0 is discontinuous on Cb(R
d,CN),

weakly continuous on Cub(R
d,CN) and strongly continuous on Crub(R

d,CN), in fact
(T0(t))t>0 is neither strongly continuous on Cb(R

d,CN) nor on Cub(R
d,CN). There-

fore, we consider the semigroup (T0(t))t>0 only on the closed subspace Crub(R
d,CN).

Introducing its infinitesimal generator A∞ : Crub(R
d,CN) ⊇ D(A∞) → Crub(R

d,CN),
we obtain the unique solvability of the resolvent equation for A∞ in Crub(R

d,CN)
by application of semigroup theory. Moreover, the semigroup (T0(t))t>0 is not an-

alytic in Crub(R
d,CN). All these facts were observed in [29] for the first time, but

only for the scalar real-valued case. In order to investigate the relation between
the Ornstein-Uhlenbeck operator L0 and the infinitesimal generator A∞, we must
solve the identification problem in Crub(R

d,CN): Defining

D∞(L0) :=
{
v ∈ Crub(R

d,CN) ∩W 2,p
loc (R

d,CN) ∀ p > 1 | L0v ∈ Crub(R
d,CN)

}
,

we believe that D(A∞) = D∞(L0) holds with A∞v = L0v for every v ∈ D(A∞),
i.e. A∞ is the maximal realization of L0 in Crub(R

d,CN). This result is proved
in [29, Proposition 3.5] for the scalar real-valued case, where the authors use local
elliptic regularity to verify D(A∞) ⊆ D∞(L0) and a maximum principle to show
D(A∞) ⊇ D∞(L0). The perturbation theory for A∞ is straightforward and works
in a way similar to the Lp-case. We think that Theorem 1.8 extends to Crub(R

d,CN)
if v⋆− v∞ ∈ Crub(R

d,CN) and without assumptions (A3) and (A4). The result will
then be

v⋆ − v∞ ∈ Crub(R
d,CN) ∩ C1

ub(R
d,CN) ∩ C1

b,θ(R
d,CN),

but the details have not been fully worked out yet.

Fourier-Bessel method on unbounded domains. We next present a fur-
ther possibility to determine a heat kernel and a Green’s function of the complex
Ornstein-Uhlenbeck operator for skew-symmetric matrices S. Consider the steady
state problem

[L∞v] (x) := α△v(x) + 〈Sx,∇v(x)〉 − βv(x) = g(x), x ∈ R2,(1.23)

where A = α ∈ C, B = β ∈ C, g : R2 → C is continuous, N = 1 and d = 2.
The matrix 0 6= S ∈ R2,2 is assumed to be skew-symmetric and thus we have
±iσ1 ∈ σ(S) for some σ1 ∈ R. Equation (1.23) reads in polar coordinates

α

[

∂rr +
1

r
∂r +

1

r2
∂φφ

]

v̂(r, φ)− σ1∂φv̂(r, φ)− βv̂(r, φ) = ĝ(r, φ),(1.24)

for r > 0 and φ ∈ [−π, π[, where ±iσ1 ∈ σ(S). Representing v̂ and ĝ by a complex
Fourier series w.r.t. φ

v̂(r, φ) =

∞∑

n=−∞
vn(r)e

inφ, ĝ(r, φ) =

∞∑

n=−∞
gn(r)e

inφ(1.25)
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and inserting (1.25) into (1.24), a comparison of the Fourier coefficients yields

α

(

v′′n(r) +
1

r
v′n(r)−

n2

r2
vn(r)

)

− (β + inσ1) vn(r) = gn(r), r > 0, n ∈ Z.(1.26)

This can easily be transformed into a modified Bessel equation. Let us define
the left hand side in (1.26) as [L∞,nvn] (r) and let wn ∈ C be the square root of
α−1(β + inσ1) with Re wn > 0 (using assumptions (A2), (A5) and (A9B)), then
one can show that the Green’s function for L∞,n is given by

Gn(r, s) = −s
∫ ∞

0

1

2αt
exp

(

−(β + inσ1)t−
r2 + s2

4αt

)

In

( rs

2αt

)

dt

for 0 < r, s ∈ R with r 6= s, where In(z) denotes the modified Bessel function of the
first kind, [111]. The Green’s function for L∞ in polar coordinates turns out to be

Ĝ((r, φ), (s, ϕ)) = −s
∫ ∞

0

1

4παt
exp

(

−βt− r2 + s2

4αt
+

rs

2αt
cos(−σ1t+ φ− ϕ)

)

dt

which in Cartesian coordinates corresponds to

G(x, ξ) = −
∫ ∞

0

1

4παt
exp

(

−βt− 1

4αt

∣
∣etSx− ξ

∣
∣
2
)

dt.

Therefore, the solution of (1.23) can be represented by

v(x) =

∫

R2

G(x, ξ)g(ξ)dξ, x ∈ R2.

In particular, we observe that the Green’s function of L∞ coincides with the time-
integral of the heat kernel of L∞, [4],

G(x, ξ) = −
∫ ∞

0

H(x, ξ, t)dt.(1.27)

Moreover, using an orthogonal transformation for the skew-symmetric matrix S into
several planar polar coordinates, we expect that this approach extends to d > 2
and N > 1.

Fourier-Bessel method on circular domains. An essential advantage of the
Fourier-Bessel approach is that it can be applied to bounded domains, which is
an important issue when investigating truncations. Consider the boundary value
problem

[L∞,RvR] (x) := α△vR(x) + 〈Sx,∇vR(x)〉 − βvR(x) =gR(x), x ∈
•
BR(0),(1.28a)

lim
|x|→0

∇vR(x) · x =0,(1.28b)

avR(x) + b
∂

∂n
vR(x) =bR(x), x ∈ ∂BR(0),(1.28c)
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where BR(0) := {x ∈ R2 | |x| < R} and
•
BR(0) = BR(0)\{0} for some R > 0,

A = α ∈ C, B = β ∈ C, S ∈ R2,2 skew-symmetric, gR : BR(0) → C continuous,
bR : ∂BR(0) → C continuous and a, b ∈ C with |a|2 + |b|2 > 0. The condition
(1.28b) guarantees that the solution is bounded as |x| → 0. Moreover, the Robin
boundary condition from (1.28c) contains Dirichlet (a = 1, b = 0) and Neumann
(a = 0, b = 1) boundary conditions. Using (A5), equation (1.28) reads in polar
coordinates

α

[

∂rr +
1

r
∂r +

1

r2
∂φφ

]

v̂R(r, φ)− σ1∂φv̂R(r, φ)− βv̂R(r, φ) =ĝR(r, φ),(1.29a)

lim
r→0

∂r v̂R(r, φ) =0,(1.29b)

av̂R(R, φ) + b

[
∂

∂n
v̂R(r, φ)

]

r=R

=b̂R(φ),(1.29c)

for 0 < r < R and φ ∈ [−π, π[, where ±iσ1 ∈ σ(S). Representing v̂R, ĝR and b̂R by
complex Fourier series w.r.t. φ

v̂R(r, φ) =

∞∑

n=−∞
vR,n(r)e

inφ, ĝR(r, φ) =

∞∑

n=−∞
gR,n(r)e

inφ,

b̂R(φ) =

∞∑

n=−∞
bR,ne

inφ

(1.30)

and inserting (1.30) into (1.29), a comparison of Fourier coefficients yields

α

(

v′′R,n(r) +
1

r
v′R,n(r)−

n2

r2
vn(r)

)

− (β + inσ1) vR,n(r) =gR,n(r),(1.31a)

lim
r→0

rv′R,n(r) =0,(1.31b)

avR,n(R) + bv′R,n(R) =bR,n,(1.31c)

for every n ∈ Z, where (1.31a) holds for 0 < r < R. Similar as above, (1.31a) can
be transformed into a modified Bessel equation. For the general theory of Bessel
functions and related material see [111] and [81]. Once more, we define the right
hand side of (1.31a) by [L∞,R,nvR,n] (r) and requiring (A2), (A5) and (A9B) we
choose wn ∈ C with Re wn > 0 as above, then one can show that the Green’s
function GR,n and the Poisson kernel PR,n for L∞,R,n are given by

GR,n(r, s) =Gn(r, s) +
s

α
FR,nIn(wnr)In(wns), 0 < r 6= s < R,

FR,n :=
aRKn(wnR)− bwnRKn+1(wnR) + bnKn(wnR)

aRIn(wnR) + bwnRIn+1(wnR) + bnIn(wnR)
,

PR,n(r) =
In(wnr)

aIn(wnR) +
bwn

2
(In+1(wnR) + In+1(wnR))

, 0 < r < R,

where In(z) and Kn(z) denote the modified Bessel function of the first and second
kind, respectively, and Gn(r, s) denotes Green’s function of L∞,n from above on the
whole domain [0,∞[. The solution of (1.31) is now given by

vR,n(r) =

∫ R

0

GR,n(r, s)gR,n(s)ds+ PR,n(r)bR,n, 0 < r < R.
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Thus, the Green’s function and the Poisson kernel for L∞,R in polar coordinates
are

ĜR((r, φ), (s, ϕ)) =Ĝ((r, φ), (s, ϕ))(1.32)

+
1

2π

∞∑

n=−∞

s

α
FR,nIn(wnr)In(wns)e

−inϕe−inφ,

P̂R((r, φ), ϕ) =

∞∑

n=−∞
PR,n(r)e

−inϕe−inφ.(1.33)

Therefore, the solution of (1.29) can be represented by

v̂R(r, φ) =

∫ R

0

∫ π

−π
ĜR((r, φ), (s, ϕ))ĝR(s, ϕ)dϕds+

1

2π

∫ π

−π
P̂R((r, φ), ϕ)b̂R(ϕ)dϕ.

In contrast to the Fourier-Bessel method on the whole R2, it is not possible to find
closed expressions for the Fourier series from (1.32) and (1.33). It remains as an
open problem to derive suitable estimates of ĜR and P̂R which hold uniformly in
R. A relation, similar to (1.27), between the heat kernel and the Green’s function
as well as the Poisson kernel for L∞,R, seems not to be known in this case.

Phase-rotating waves and space-state-dependent nonlinearities. We cur-
rently extend the theory to include phase-rotating (or oscillating) waves

u⋆(x, t) = e−iωtv⋆(x), x ∈ Rd, t ∈ [0,∞[,

with phase velocity 0 6= ω ∈ R.
Such phase-rotating waves arise for instance in cubic-quintic complex Ginzburg

Landau equations, but also in Schrödinger equations (see: [44], [45], [33], [112])
and Gross-Pitaevskii equations (see: [44]). Note that in the latter equations x-
dependent potentials occur. This suggest still another extension to state dependent
nonlinearities f(x, u).
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2 Applications and origin of the

Ornstein-Uhlenbeck operator

2.1 Rotating waves in reaction diffusion systems

In Section 1.2 we have already motivated the nonlinear steady state problem (1.11)
for the complex Ornstein-Uhlenbeck operator by the existence of rotating wave
solutions. Such rotating waves arise in many applications from physical, chem-
ical and biological sciences. In the following, we list a set of examples, where
such rotating wave solutions exist. All the computations where done with Comsol
MultiphysicsTM, [1].

Example 2.1 (Ginzburg-Landau equation). Consider the cubic-quintic complex
Ginzburg-Landau equation (QCGL), [64],

ut = α△u+ u
(
µ+ β |u|2 + γ |u|4

)
(2.1)

with u : Rd × [0,∞[→ C, d ∈ {2, 3}, α, β, γ, µ ∈ C and Reα > 0. The real-valued
version of this equation reads as

(
u1
u2

)

t

=

(
α1 −α2

α2 α1

)

△
(
u1
u2

)

+ f

(
u1
u2

)

with

f

(
u1
u2

)

=

(
(u1µ1 − u2µ2) + (u1β1 − u2β2) (u

2
1 + u22) + (u1γ1 − u2γ2) (u

2
1 + u22)

2

(u1µ2 + u2µ1) + (u1β2 + u2β1) (u
2
1 + u22) + (u1γ2 + u2γ1) (u

2
1 + u22)

2

)

,

u = u1 + iu2, α = α1 + iα2, β = β1 + iβ2, γ = γ1 + iγ2 and ui, αi, βi, γi ∈ R

for i = 1, 2. This equation describes different aspects of signal propagation in
heart tissue, superconductivity, superfluidity, nonlinear optical systems, see [79],
photonics, plasmas, physics of lasers, Bose-Einstein condensation, liquid crystals,
fluid dynamics, chemical waves, quantum field theory, granular media and is used
in the study of hydrodynamic instabilities, see [76]. It shows a variety of coherent
structures like stable and unstable pulses, fronts, sources and sinks in 1D, see [109],
[102], [6] and [106], vortex solitons, see [27], spinning solitons, see [28], rotating
spiral waves, propagating clusters, see [84], and exploding dissipative solitons, see
[101] in 2D as well as scroll waves and spinning solitons in 3D, see [77].

Let us discuss the assumptions (A1)–(A9): Assumption (A1) is satisfied for every
α ∈ C, assumptions (A2) and (A3) if Reα = a1 > 0 and (A4) if

|argα| < arctan

(
2
√
p− 1

|p− 2|

)

, for some 1 < p <∞.
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The condition (A5) is satisfied with

S =

(
0 S12

−S12 0

)

and S =





0 S12 S13

−S12 0 S23

−S13 −S23 0



(2.2)

for d = 2 and d = 3, respectively. In the examples below we specify the entries S12,
S13, S23 ∈ R and the point x⋆ ∈ Rd, that will be the center of rotation if d = 2
and the support vector of the axis of rotation if d = 3. All these informations
come actually from a simulation. First we simulate the original system for some
time then we switch to the freezing method, which then yields the profile v⋆ as
well as the values for the rotational and translational velocities. This will be done
in Example 10.9, 10.10 and 10.11. For general theory about the freezing method
we refer to [16], [18], [20], [19] and [103]. The specific values of these variables
will be given in the examples below. Note that in case d = 2 we have a clockwise
rotation, if S12 > 0, and a counter clockwise rotation, if S12 < 0. Assumption (A6)
is obviously satisfied. Using, for instance, v∞ = (0, 0)T then assumption (A7) is
satisfied. Then, we have

Df(v∞) =

(
µ1 −µ2

µ2 µ1

)

and assumption (A8) is also satisfied. Assumption (A9) is only satisfied if Reµ < 0.
The bound for the rate of the exponential decay from Theorem 1.8 reads

0 6 η2 6 ϑ
2

3

Reα (−Reµ)

|α|2p2(2.3)

for some 0 < ϑ < 1. Let us now consider some specific examples:

(1): For the parameter values

α =
1

2
+

1

2
i, β =

5

2
+ i, γ = −1 − 1

10
i, µ = −1

2
(2.4)

this equation exhibits so called spinning soliton solutions for space dimensions
d = 2 and d = 3, see Figure 2.1.

Figure 2.1(a)–2.1(c) shows the spinning soliton in R2 as the solution of (2.1) on a
circular disk of radius R = 20 centered in the origin at time t = 150. For the com-
putation we used continuous piecewise linear finite elements with maximal stepsize
△x = 0.25, the BDF method of order 2 with absolute tolerance atol = 10−5, rela-
tive tolerance rtol = 10−4 and maximal stepsize △t = 0.1, homogeneous Neumann
boundary conditions and initial data

u2D0 (x1, x2) =
1

5
(x1 + ix2) exp

(

−x
2
1 + x22
49

)

.

Figure 2.1(d)–2.1(f) shows the spinning soliton in R3 as the solution of (2.1)
on a cube with edge length L = 20 centered in the origin at time t = 100. For
the computation we used continuous piecewise linear finite elements with max-
imal stepsize △x = 0.8, the BDF method of order 2 with absolute tolerance
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atol = 10−4, relative tolerance rtol = 10−2 and maximal stepsize △t = 0.1, ho-
mogeneous Neumann boundary conditions and (discontinuous) initial data

u3D0 (x1, x2, x3) = u2D0 (x1, x2)

for |x3| < 9 and 0 otherwise.

(a) Reu(x1, x2) (b) Imu(x1, x2) (c) |u(x1, x2)|

(d) Reu(x1, x2, x3) (e) Imu(x1, x2, x3) (f) |u(x1, x2, x3)|

Figure 2.1: Spinning soliton of QCGL for d = 2 (above) and d = 3 (bottom)

The parameter values (2.4) satisfy our assumptions (A1)–(A9) for every p with

1.1716 ≈ 4

2 +
√
2
< p <

4

2−
√
2
≈ 6.8284,

e.g. p = 2, 3, 4, 5, 6. At time t = 400 we have the rotational velocity S12 with center
of rotation x⋆ given by

S12 = 1.027, x⋆ =

(
−0.016465
−0.002849

)

in case d = 2 and the rotational velocities S12, S13, S23 with support vector x⋆ given
by





S12

S13

S23



 =





0.6855
−0.01558
0.01086



 , x⋆ =





0.179489
0.191649
−0.007199





at time t = 500 in case d = 3, compare Example 10.9. The solitons are localized in
the sense of Theorem 1.8 with the bound

0 6 η2 6 ϑ
1

3p2
<

1

3p2
for p ∈]4− 2

√
2, 4 + 2

√
2[.
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(2): For the parameter values

α =
1

2
+

1

2
i, β =

13

5
+ i, γ = −1− 1

10
i, µ = −1

2
(2.5)

this equation exhibits so called rotating spiral wave solutions, see Figure 2.2.

(a) Reu(x1, x2) (b) Imu(x1, x2) (c) |u(x1, x2)|

Figure 2.2: Rotating spiral wave of QCGL for d = 2

Figure 2.2(a)–2.2(c) shows the spiral wave in R2 as the solution of (2.1) on
a circular disk of radius R = 20 centered in the origin at time t = 150. For
the computation we used continuous piecewise linear finite elements with max-
imal stepsize △x = 0.25, the BDF method of order 2 with absolute tolerance
atol = 10−5, relative tolerance rtol = 10−4 and maximal stepsize △t = 0.1, homo-
geneous Neumann boundary conditions and initial data u2D0 from above.

The only difference in the choice of parameters in (2.5) when compared to (2.4),
is the real part of β, which is now slightly larger. The parameter values satisfy our
assumptions (A1)–(A9) also for p ∈]4 − 2

√
2, 4 + 2

√
2[. At time t = 400 we have

the rotational velocity S12 with center of rotation x⋆ given by

S12 = 1.323, x⋆ =

(
−0.007763
−0.019773

)

.

The spiral wave seems not to be localized in the sense of Theorem 1.8 since condition
(1.20) is not satisfied. We observe that enlarging β from 5

2
to 13

5
generates a pattern

with a higher rotational velocity.

(3): For the parameter values

α = 1, β = −(1 + i), γ = 0, µ = 1(2.6)

this equation exhibits so called twisted and untwisted scroll wave as well as
scroll ring solutions, see Figure 2.3.

Figure 2.3(a)–2.3(c) shows the untwisted scroll ring in R3 as the solution of
(2.1) and (2.7), respectively, on a cube with edge length L = 40 centered in the
origin at time t = 150. For the computation we used continuous piecewise linear
finite elements with maximal stepsize △x = 1.6, the BDF method of order 2 with
absolute tolerance atol = 10−3, relative tolerance rtol = 10−2 and maximal stepsize
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△t = 0.5, homogeneous Neumann boundary conditions on the lateral surfaces,
periodic boundary conditions on the faces for x3 = ∓20 and (discontinuous) initial
data

u3D0 (x1, x2, x3) =
1

5
(x1 + ix2) exp

(

−x
2
1 + x22
49

+ iK
2πz

Lx3

)

for |x3| 6 16 with winding number K = 1 and edge length in x3-direction
Lx3 = L = 40 and 0 otherwise. Due to the periodic boundary conditions on
the x3-slices the untwisted scroll wave can be considered as an untwisted scroll ring
on a torus.

(a) Reu(x1, x2, x3) (b) Imu(x1, x2, x3) (c) |u(x1, x2, x3)|

Figure 2.3: Untwisted scroll ring of QCGL and of the λ-ω system for d = 3

The parameter values (2.6) satisfy only the assumptions (A1)–(A8) for every
1 < p <∞ but not condition (A9), since the real part of µ is not negative. In this
case the pattern is not localized in the sense of Theorem 1.8. At time t = 850 we
have the rotational velocities S12, S13, S23 with support vector x⋆ given by





S12

S13

S23



 =





−0.8934
0.002114
−0.001088



 , x⋆ =





0
0
0



 .

Example 2.2 (λ-ω system). Consider the λ-ω system, [61], [80],

ut = α△u+ u
(
λ
(
|u|2
)
+ iω

(
|u|2
))

(2.7)

with u : Rd× [0,∞[→ C, d ∈ {2, 3}, α ∈ C, λ : [0,∞[→ R and ω : [0,∞[→ R. The
real-valued version of this equation reads as

(
u1
u2

)

t

=

(
α1 −α2

α2 α1

)

△
(
u1
u2

)

+ f

(
u1
u2

)

with

f

(
u1
u2

)

=

(
u1λ (u

2
1 + u22)− u2ω (u21 + u22)

u1ω (u21 + u22) + u2λ (u
2
1 + u22)

)

,

u = u1 + iu2, α = α1 + iα2 and ui, αi ∈ R for i = 1, 2. This equation describes
chemical reaction processes, see [61] and [60], physiological processes in the study
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of cardiac arrhythmias, time evolution of biological systems, see [80], and is often
used to analyze the mechanism of pattern formation as well as to study the onset
of turbulent behavior. An example of an emerging technological application based
on pattern forming systems is given by memory devices using magnetic domain
patterns. This model exhibits rotating spirals as well as scroll wave and scroll ring
solutions, see [32] and [36].

Let us again discuss the assumptions (A1)–(A9): Assumption (A1) is satisfied
for every α ∈ C, assumptions (A2) and (A3) if Reα = a1 > 0 and (A4) for some
1 < p <∞ if

|argα| 6 arctan

(
2
√
p− 1

|p− 2|

)

.

The condition (A5) is satisfied with S from (2.2). Assumption (A6) is satisfied if
λ, ω ∈ C2([0,∞[,R). Since the assumptions (A7)–(A9) depends on the choice of λ
and ω, we explain these conditions in the following example.

(1): For the parameter settings

α = 1, λ
(
|u|2
)
= 1− |u|2, ω

(
|u|2
)
= −|u|2(2.8)

this equation exhibits so called rigidly rotating spiral wave solutions, see Figure
2.4, as well as twisted and untwisted scroll wave and scroll ring solutions, see
Figure 2.3 for an untwisted scroll ring.

(a) Reu(x1, x2) (b) Imu(x1, x2) (c) |u(x1, x2)|

Figure 2.4: Rigidly rotating spiral wave of λ-ω system for d = 2

Figure 2.4(a)–2.4(c) shows the spiral wave in R2 as the solution of (2.7) on
a circular disk of radius R = 50 centered in the origin at time t = 150. For
the computation we used continuous piecewise linear finite elements with stepsize
△x = 0.5, the BDF method of order 2 with absolute tolerance atol = 10−4, relative
tolerance rtol = 10−3 and stepsize △t = 0.1, homogeneous Neumann boundary
conditions and initial data

u0(x, y) =
1

20
(x1, x2)

T .

For a discussion about the scroll ring from Figure 2.3(a)–2.3(c) we refer to Example
2.1(3).
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The parameter values (2.8) satisfy only the assumptions (A1)–(A8) for every
1 < p < ∞ and with v∞ = (0, 0)T but not condition (A9), since Df(0, 0) has the
eigenvalue 1 with algebraic multiplicity 2. In this case the pattern is not localized
in the sense of Theorem 1.8. The rotational velocity S12 and the center of rotation
x⋆ of the spiral are

S12 = −0.9091, x⋆ =

(
−0.001770
0.000650

)

at time t = 550. Since the λ-ω system (2.7) equipped with the parameter-values
(2.8) is indeed a special case of the cubic-quintic complex Ginzburg-Landau equa-
tion (2.1), namely for β = −(1 + i), γ = 0 and µ = 1, compare (2.6), we refer for a
discussion about the assumptions also to Example 2.1(3).

Example 2.3 (Barkley model). Consider the Barkley model, [10], [11], [12]

(
u1
u2

)

t

=

(
1 0
0 D

)

△
(
u1
u2

)

+

(
1
ε
u1 (1− u1)

(
u1 − u2+b

a

)

g(u1)− u2

)

(2.9)

with u = (u1, u2)
T , u : Rd × [0,∞[→ R2, d ∈ {2, 3}, 0 6 D << 1, 0 < ε << 1,

0 < a, b ∈ R, g : R → R. This equation describes excitable media, oscillatory
media, see[10], catalytic surface reactions, see [9], the interaction of a fast activator
u and a slow inhibitor v (in this case g(u) describes a delayed production of the
inhibitor) and is often used as a qualitative model in pattern forming systems (e.g.
Belousov-Zhabotinsky reaction). This model exhibits rotating spiral wave and scroll
wave solutions, see [11], [18] and [103].

Let us discuss the assumptions (A1)–(A9): Assumption (A1) is satisfied for every
D ∈ R, assumption (A2) and (A3) if D > 0 and (A4) for every

2(D + 1)

2
√
D +D + 1

< p <
2(D + 1)

−2
√
D +D + 1

, with 0 < D 6 1.

Condition (A4) doesn’t hold for D = 0. The condition (A5) is satisfied with
S ∈ R2,2 from (2.2). Specific values for S12 will be given in the example below.
Assumption (A6) is satisfied if g ∈ C2(R,R). The zeros of the nonlinearity are
(0, g(0)), (1, g(1)) and another one. Using, for instance, v∞ = (0, g(0))T then
assumption (A7) is satisfied and (A8) holds for D = 1. Since the eigenvalues of

Df(v∞) are g(0)+b
a2

and −1, condition (A9) is equivalent to g(0)+b
a2

< 0, i.e. g(0) < −b.
Analogously, using v∞ = (1, g(1))T then assumption (A7) is satisfied and (A8) holds

for D = 1. Since the eigenvalues of Df(v∞) are g(1)+b−a
a2

and −1, condition (A9)

is equivalent to g(1)+b−a
a2

< 0, i.e. g(1) < a − b. Let us now consider some specific
examples:

(1): For the parameter values

D = 0, ε =
1

50
, a =

7

10
, b =

1

100
, g(u1) = u1(2.10)

this equation exhibits so called rigidly rotating spiral wave solutions, see Figure
2.5.
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(a) u1(x1, x2) (b) u2(x1, x2) (c) |u(x1, x2)|

Figure 2.5: Rigidly rotating spiral wave of Barkley model for d = 2

Figure 2.5(a)–2.5(c) shows the rotating spiral wave in R2 as the solution of (2.9)
on a circular disk of radius R = 40 centered in the origin at time t = 150. For
the computation we used continuous piecewise linear finite elements with stepsize
△x = 0.5, the BDF method of order 2 with absolute tolerance atol = 10−5, relative
tolerance rtol = 10−2 and stepsize △t = 0.1, homogeneous Neumann boundary
conditions and initial data

u
(1)
0 (x, y) =

{

1 , x > 0

0 , x 6 0
, u

(2)
0 (x, y) =

{
a
2

, y > 0

0 , y 6 0
.

The parameter values (2.10) satisfy the assumptions (A1), (A6) since g is twice

continuously differentiable, (A7) for v∞ = (0, 0)T , (1, 1)T and
(

b
a−1

, b
a−1

)T
. At time

t = 650 we found the rotational velocity S12 for the matrix S from (A5) and the
center of rotation x⋆ given by

S12 = 2.067, x⋆ =

(
−1.1717
0.6628

)

.

All other assumptions are not satisfied. D = 0 violates assumption (A2), (A3), (A4)
and (A8). For v∞ = (0, 0)T condition (A9) needs b

a2
< 0, which is not satisfied, and

for v∞ = (1, 1)T assumption (A9) needs 1+b−a
a2

< 0, which is not true in this case.

Assumption (A9) is also not satisfied for v∞ =
(

b
a−1

, b
a−1

)T
with the parameters

above.

2.2 The origin of the Ornstein-Uhlenbeck from

stochastic ODEs

In this section we recall the origin of the Ornstein-Uhlenbeck operator from stochas-
tic differential equations. For this purpose we consider a stochastic ordinary dif-
ferential equation (SODE) and derive a second-order partial differential equation
(PDE), that is called the Kolmogorov equation. For a detailed treatment about the
transformation of a single SODE to a second-order PDE we refer to [55, Chapter
24], [56, Section 5.7], [57, Section 4.8] and [70, Section 2.8]. The corresponding dif-
ferential operator of the Kolmogorov equation is called the Kolmogorov operator,
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which comes originally from [58]. Different types of Kolmogorov operators were
treated in [3], [23] and [58]. Applications of Kolmogorov operators in physics and
finance can be found in [63] and [82]. The Ornstein-Uhlenbeck operator, which is
an elliptic operator with unbounded linearly growing coefficients, is a special type
of a Kolmogorov operator. For a motivation of the Ornstein-Uhlenbeck operator
from SODE’s we refer to [66, Chapter 9]. Note that Section 2.2 and Section 2.3 are
not relevant to understand the following theory concerning the exponential decay
and thus they can also be skipped.

2.2.1 From ODE to first-order PDE

Let d ∈ N and let µ ∈ C∞(Rd,Rd) be a function, which is at most linearly growing,
i.e.

∃C > 0 : |µ(x)| 6 C (1 + |x|) ∀ x ∈ Rd.

Then there exists a family

Φ(·; x) : [0,∞[→ Rd, x ∈ Rd,

of unique smooth functions, satisfying the ordinary differential equation

∂

∂t
Φ(t; x) = µ (Φ(t; x)) , t ∈ [0,∞[, x ∈ Rd,

Φ(0; x) = x.
(ODE)

The mapping Φ(·; x) is known as the solution flow of (ODE) satisfying the flow
properties. These functions are ∞-times continuously differentiable with respect to
x for every fixed t ∈ [0,∞[, i.e.

Φ(t; ·) : Rd → Rd, x 7−→ Φ(t; x) is smooth ∀ t ∈ [0,∞[.

For a similar result we refer to [73, Lemma 3.1] and for its proof to [69, Section 2.1].
The family T (t) : Cb(R

d,R) → Cb(R
d,R), t ∈ [0,∞[, of linear operators defined by

[T (t)u0] (x) := u0 (Φ(t; x)) , x ∈ Rd, t ∈ [0,∞[, u0 ∈ Cb(R
d,R),

is called the transition semigroup of the (ODE). (T (t))t>0 satisfies the semi-
group properties

T (0) = I and T (t1)T (t2) = T (t1 + t2) ∀ t1, t2 ∈ [0,∞[,

which follow immediately by the flow properties of Φ, and it satisfies

T (t)Ck
b(R

d,R) ⊆ Ck
b(R

d,R) ∀ t ∈ [0,∞[ ∀ k ∈ N0 ∪ {∞} .

Let us fix u0 ∈ C1
b(R

d,R) and consider u : Rd × [0,∞[→ R given by

u(x, t) := [T (t)u0] (x) = u0 (Φ(t; x)) , t ∈ [0,∞[, x ∈ Rd,
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then u is the classical solution of the first-order linear PDE

∂

∂t
u(x, t) =

d∑

i=1

µi(x)
∂

∂xi
u(x, t) =: 〈µ(x),∇u(x, t)〉 , x ∈ Rd, t ∈ [0,∞[,

u(x, 0) = u0(x).

(PDE1st)

As we will see in Section 2.2.2, the forward advection equation (PDE1st) is a
special case of a Kolmogorov equation. In particular, the solution preserves the
smoothness of the initial data, i.e. for every k ∈ N ∪ {∞} with k 6 r

u(·, 0) = u0(·) ∈ Ck
b(R

d,R) ⇒ u(·, t) ∈ Ck
b(R

d,R) ∀ t ∈ [0,∞[

Example 2.4 (Drift term of the Ornstein-Uhlenbeck operator). Let d ∈ N and
µ : Rd → Rd with µ(x) = Sx for some 0 6= S ∈ Rd,d, then Φ(·; x) : [0,∞[→ Rd with
Φ(t; x) = etSx, x ∈ Rd, t ∈ [0,∞[, is the unique smooth solution of

∂

∂t
Φ(t; x) = SΦ(t; x), t ∈ [0,∞[, x ∈ Rd,

Φ(0; x) = x.

The corresponding transition semigroup is given by T (t) : Cb(R
d,R) → Cb(R

d,R),
t ∈ [0,∞[, with

[T (t)u0] (x) := u0
(
etSx

)
, x ∈ Rd, t ∈ [0,∞[, u0 ∈ Cb(R

d,R).

If we fix u0 ∈ C1
b(R

d,R), then u : Rd × [0,∞[→ R given by

u(x, t) := [T (t)u0] (x) = u0
(
etSx

)
, t ∈ [0,∞[, x ∈ Rd,

is a classical solution of the first-order linear PDE

∂

∂t
u(x, t) =

d∑

i=1

(Sx)i
∂

∂xi
u(x, t) =: 〈Sx,∇u(x, t)〉 , x ∈ Rd, t ∈ [0,∞[,

u(x, 0) = u0(x).

Later we consider skew-symmetric matrices S, in which case etS describes rigid
rotations. We will denote the semigroup (T (t))t>0, that generates even a group, by
(R(t))t>0 and call (R(t))t>0 the rotation group.

2.2.2 From SODE to second-order PDE

Let us consider d,m ∈ N and two globally Lipschitz continuous functions
µ ∈ C∞(Rd,Rd) and σ ∈ C∞(Rd,Rd,m), which are at most linearly growing, i.e.

∃C > 0 : |µ(x)| 6 C (1 + |x|) ∀ x ∈ Rd,

∃C > 0 : |σ(x)| 6 C (1 + |x|) ∀ x ∈ Rd.

Furthermore, let (Ω,F ,P) denote a probability space with a standard Brownian
motion

W : [0,∞[×Ω → Rm, (t, ω) 7→ W (t, ω).
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Then there exists a family

Φ(·, ·; x) : [0,∞[×Ω → Rd, (t, ω) 7→ Φ(t, ω; x), x ∈ Rd,

of solution processes of the stochastic ordinary differential equation

dΦ(t; x) = µ (Φ(t; x)) dt+ σ (Φ(t; x)) dW (t), t ∈ [0,∞[, x ∈ Rd,

Φ(0; x) = x.
(SODE)

This is an abbreviating notation for the integral equation

Φ(t; x) = x+

∫ t

0

µ (Φ(s; x)) ds+

∫ t

0

σ (Φ(s; x)) dW (s).

It is well known from [70, Section 2.3], that the solution processes are unique up
to indistinguishability. As usual, we suppress the dependency on ω ∈ Ω and write
Φ(t; x) instead of Φ(t, ω; x). Note, that the (SODE) describes for instance the
random motion of a particle in a fluid, [107]. The family T (t) : Cb(R

d,R) →
Cb(R

d,R), t ∈ [0,∞[, of linear operators defined by

[T (t)u0] (x) := IE [u0 (Φ(t; x))] , x ∈ Rd, t ∈ [0,∞[, u0 ∈ Cb(R
d,R),

is called the transition semigroup of the (SODE). (T (t))t>0 satisfies the semi-
group properties

T (0) = I and T (t1)T (t2) = T (t1 + t2) ∀ t1, t2 ∈ [0,∞[

and

T (t)Cb(R
d,R) ⊆ C∞

b (Rd,R) ∀ t ∈]0,∞[.

Such smoothing properties were established by Hörmander in 1967 under the Hör-
mander condition, [54]. This condition is for example satisfied, if

span {σ1(x), . . . , σm(x)} = Rd ∀ x ∈ Rd.

Let us fix u0 ∈ C2
b(R

d,R) and consider u : Rd × [0,∞[→ R given by

u(x, t) := [T (t)u0] (x) = IE [u0 (Φ(t; x))] , t ∈ [0,∞[, x ∈ Rd.

If u(·, t) is smooth for all t ∈]0,∞[, then u is the classical solution of the second-
order linear PDE

∂

∂t
u(x, t) =

d∑

i=1

µi(x)
∂

∂xi
u(x, t) +

1

2

d∑

i=1

d∑

j=1

(
σ(x)σT (x)

)

ij

∂2

∂xi∂xj
u(x, t),

=: 〈µ(x),∇u(x, t)〉+ 1

2
tr
(
σ(x)σT (x)D2u(x, t)

)

u(x, 0) = u0(x),

(PDE2nd)
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for x ∈ Rd and t ∈]0,∞[. The smoothness of u is guaranteed for instance by
[57, Theorem 4.8.6] assuming further properties on µ, σ and u0, or alternatively
by [66, Theorem 14.2.7] in case of a linear drift. (PDE2nd) is called the forward
Kolmogorov equation. The second-order differential operator

[LKolu] (x, t) :=
1

2
tr
(
σ(x)σT (x)D2u(x, t)

)
+ 〈µ(x),∇u(x, t)〉 , x ∈ Rd, t ∈]0,∞[

is called Kolmogorov operator with diffusion term 1
2
tr
(
σ(x)σT (x)D2u(x, t)

)

and drift term 〈µ(x),∇u(x, t)〉 , x ∈ Rd, t ∈]0,∞[. Note that the Kolmogorov
operator LKol can be considered as the infinitesimal generator of the transition
semigroup of (SODE).

Example 2.5 (Ornstein-Uhlenbeck operator). Let m = d ∈ N, µ : Rd → Rd with
µ(x) = Sx for some 0 6= S ∈ Rd,d and σ : Rd → Rd,d with σ(x) =

√
Q for some

symmetric and positive definite matrix Q ∈ Rd,d, where
√
Q denotes the unique

symmetric and positive definite square root of Q. Then σ satisfies σ(x)σT (x) = Q
for every x ∈ Rd. Furthermore, let (Ω,F ,P) be a probability space with a standard
Brownian motion W : [0,∞[×Ω → Rd. Then the family Φ(·, ·; x) : [0,∞[×Ω → Rd

given by

Φ(t; x) = etSx+

∫ t

0

e(t−τ)SdW (τ), t ∈ [0,∞[, x ∈ Rd,

are the ’up to indistinguishability’ unique solution processes of

dΦ(t; x) = SΦ(t; x)dt+
√

QdW (t), t ∈ [0,∞[, x ∈ Rd,

Φ(0; x) = x.

The solution process Φ(·, x) is called the Ornstein-Uhlenbeck process on Rd and
the corresponding SODE is also known as the Langevin equation. A prototype
of this equation, ut = u + xux + uxx, was considered by Ornstein and Uhlenbeck
in 1930, [107]. The corresponding transition semigroup, or sometimes called the
Ornstein-Uhlenbeck semigroup, is given by T (t) : Cb(R

d,R) → Cb(R
d,R),

t ∈ [0,∞[, with

[T (t)u0] (x) :=IE [u0 (Φ(t; x))]

=

{

(4π)−
d
2 (detQt)

− 1
2
∫

Rd e
− 1

4〈Q−1
t ψ,ψ〉v0(etSx− ψ)dψ , t > 0,

u0(x) , t = 0,

=

{∫

Rd H(x, ξ, t)v0(ξ)dξ , t > 0,

u0(x) , t = 0,

for x ∈ Rd, t ∈ [0,∞[ and u0 ∈ Cb(R
d,R) where

H(x, ξ, t) = (4π)−
d
2 (detQt)

− 1
2 exp

(

−1

4

〈
Q−1
t (etSx− ξ), (etSx− ξ)

〉
)

,
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for x, ξ ∈ Rd, t ∈]0,∞[ and

Qt =

∫ t

0

eτSQ
(
eτS
)T
dτ,

for t ∈]0,∞[. The explicit representation of (T (t))t>0 is due to Kolmogorov, [58].

The function H : Rd × Rd×]0,∞[→ R denotes the heat kernel of the Ornstein-
Uhlenbeck operator and is called the Kolmogorov kernel, or sometimes the
Ornstein-Uhlenbeck kernel. Since Q ∈ Rd,d is symmetric and positive defi-
nite, the following relation holds between the heat kernel and the d-dimensional
Gaussian measure Nd, see [66, Chapter 9.1] and [13, Satz 30.4],

Nd

(
etSx, 2Qt

)
(dξ) = H(x, ξ, t)dξ, x ∈ Rd, t > 0,

i.e. H(x, ·, t) is the density function of the normal distribution Nd

(
etSx, 2Qt

)
with

respect to the Lebesgue measure. 2Qt denotes the covariance matrix and etSx the
mean value vector. Let us fix u0 ∈ C2

b(R
d,R) and let us define u : Rd × [0,∞[→ R

by

u(x, t) := [T (t)u0] (x) = IE [u0 (Φ(t; x))] , t ∈ [0,∞[, x ∈ Rd,

then, if u(·, t) is smooth for all t ∈]0,∞[, u is the classical solution of the Kolmogorov
equation

∂

∂t
u(x, t) =

d∑

i=1

(Sx)i
∂

∂xi
u(x, t) +

1

2

d∑

i=1

d∑

j=1

Qij

∂2

∂xi∂xj
u(x, t)

= 〈Sx,∇u(x, t)〉+ 1

2
tr
(
QD2u(x, t)

)
, x ∈ Rd, t ∈]0,∞[,

u(x, 0) = u0(x).

The smoothness of u follows for instance directly from [66, Theorem 9.1.1] even if
u0 ∈ Cb(R

d,R). The second-order differential operator

[LOUu] (x, t) :=
1

2
tr
(
QD2u(x, t)

)
+ 〈Sx,∇u(x, t)〉

is called the Ornstein-Uhlenbeck operator with diffusion term 1
2
tr (QD2u(x, t))

and drift term 〈Sx,∇u(x, t)〉. This operator can be considered as the infinitesimal
generator of the Ornstein-Uhlenbeck semigroup (T (t))t>0. In addition, if Q is only
assumed to be symmetric and positive semidefinite, LOU is called the degenerate
Ornstein-Uhlenbeck operator. Several interpretations in physics and finance of
this operator or its evolutionary counterpart - the Kolmogorov-Fokker-Planck
operator LOU − ∂t - are explained in the survey by Pascucci [82]. Finally, we
observe that for Q = 2Id we have 1

2
tr (QD2u(x, t)) = △u(x, t), where △ denotes

the Laplacian on Rd.
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2.3 The real-valued Ornstein-Uhlenbeck operator

in function spaces

Before we start to investigate nonlinear Ornstein-Uhlenbeck problems in com-
plex systems, let us present some well-known results about the scalar Ornstein-
Uhlenbeck operator

[LOUu] (x) :=
1

2
tr
(
QD2u(x)

)
+ 〈Sx,∇u(x)〉

considered in real-valued function spaces, where Q ∈ Rd,d with Q = QT , Q > 0 and
0 6= S ∈ Rd,d. Note, that the properties of the matrix S play a fundamental role in
the study of this operator.

The space Lp(Rd,R). The Ornstein-Uhlenbeck semigroup (T (t))t>0 on Lp(Rd,R)
related to the Lebesgue measure is indeed a semigroup for every 1 6 p 6 ∞. A
general problem is to show that (T (t))t>0 is strongly continuous. On Lp(Rd,R) one
can verify that (T (t))t>0 is a C0-semigroup for every 1 6 p <∞. A further problem
that occurs, caused by the unbounded coefficients in the drift term, is to give an
explicit representation for the domain of the infinitesimal generator Ap, which can
be considered as the maximal realization of LOU in Lp(Rd,R) for 1 < p < ∞. In
this context it was proved that the maximal domain is given by

Dp
max(LOU) = {v ∈ W 2,p(Rd,R) | 〈Sx,∇v(x)〉 ∈ Lp(Rd,R)}

for every 1 < p < ∞, which can be shown directly, [73], or with the aid of the
Dore-Venni theorem, [83]. In case of p = 1 no such representation is available,
but it was proved that D1(LOU) is the closure of C∞

c (Rd,R) with respect to the

graph norm ‖·‖LOU
:= ‖·‖L1 + ‖LOU·‖L1, i.e. D1(LOU) = C∞

c

‖·‖LOU . Moreover, it

was established that the semigroup (T (t))t>0 is not analytic on Lp(Rd,R) for every
1 6 p < ∞, if S 6= 0, which can be verified by analyzing the Lp-spectrum of
LOU, [71]. It was shown that the spectrum of the infinitesimal generator Ap of the
Ornstein-Uhlenbeck semigroup (T (t))t>0 considered on Lp(Rd,R) is given by

σ(Ap) =

{

z ∈ C | Re z 6 −tr(S)

p

}

for every 1 < p < ∞, if σ(S) ⊂ C+, σ(S) ⊂ C− or S symmetric and Q and S
commute, [71]. Thus, since (T (t))t>0 is not analytic for every 1 < p < ∞, the
parabolic equation vt = LOUv does not satisfy the standard parabolic regularity
properties on Lp(Rd,R).

The space Lp(Rd,R, µ). Under the additional assumption that σ(S) ⊂ C−, which
is very interesting from the point of view of diffusion processes, the Ornstein-
Uhlenbeck semigroup (T (t))t>0 considered on Lp(Rd,R, µ) with uniquely deter-
mined invariant probability measure

µ(x) = (4π)−
d
2 (detQ∞)−

1
2 e−

1
4〈Q−1

∞ x,x〉
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is a semigroup of positive contractions on Lp(Rd,R, µ) for every 1 6 p 6 ∞ and a
C0-semigroup for every 1 6 p <∞. The maximal domain is given by

Dp
max,µ(LOU) =W

2,p(Rd,R, µ)

={v ∈ Lp(Rd,R, µ) | Div,DjDiv ∈ Lp(Rd,R, µ), i, j = 1, . . . , d}

for every 1 < p <∞, [75], [68]. In case of p = 1 no such representation is available.
A major difference to the usual Lp-cases is that (T (t))t>0 is compact and analytic
on Lp(Rd,R, µ) for every 1 < p <∞, [41]. In [72], it was shown for 1 < p <∞ that
the spectrum of the infinitesimal generator Ap of the Ornstein-Uhlenbeck semigroup
(T (t))t>0 considered on Lp(Rd,R, µ) is a discrete set, independent of p and given
by

σ(Ap) =

{

λ =
r∑

i=1

niλi | ni ∈ N0, i = 1, . . . , r

}

,

where λ1, . . . , λr denote the distinct eigenvalues of S. This is in strong contrast
to the Lp-case. The eigenvalues are semisimple if and only if S is diagonalizable
over C. Moreover, the eigenfunctions of Ap are polynomials of degree at most
Reλ
s(S)

. In case p = 1 the situation changes drastically and the spectrum is given by

σ(A1) = C− ∪ iR.

The space Cb(R
d,R). The Ornstein-Uhlenbeck semigroup (T (t))t>0 is a semi-

group on Cb(R
d,R). To guarantee the strong continuity of (T (t))t>0 one usually

considers the semigroup on the closed subspace Cub(R
d,R) if the operator has

constant or smooth bounded coefficients. But in case of the Ornstein-Uhlenbeck
operator this space leads only to a weakly continuous semigroup, since the rota-
tional term 〈Sx,∇v(x)〉 has smooth but unbounded coefficients, and hence, the
space Cub(R

d,R) is too large in order to guarantee strong continuity of (T (t))t>0.
One can show that T (t)v0 tends to v0 in Cb(R

d,R) as t tends to 0+, if and only if
v0 ∈ Cub(R

d,R) and v0(e
tS·) tends to v0 uniformly in Rd as t tends to 0+. Hence,

(T (t))t>0 is a C0-semigroup on the much smaller subspace

Crub(R
d,R) :=

{
f ∈ Cub(R

d,R) | f(etS ·) → f(·) as t→ 0+ uniformly in Rd
}
,

[29], [30, see I.6]. The domain is completely characterized by

D(LOU) = {v ∈ Crub(R
d,R) ∩W 2,p

loc (R
d,R) ∀ p > 1 | LOUv ∈ Crub(R

d,R)},

[29]. Therein, it was also observed that (T (t))t>0 in not analytic on Crub(R
d,R)

and hence not analytic on Cb(R
d,R) and Cub(R

d,R). Further investigations of the
Ornstein-Uhlenbeck operator in spaces of Hölder-continuous functions can also be
found in [29].

In Table 2.1, we summarize these facts. For a detailed treatment of the Ornstein-
Uhlenbeck operator we refer the reader e.g. to [66, Chapter 9].
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Table 2.1: Properties of the Ornstein-Uhlenbeck semigroup

T (t) semigroup C0-semigroup analytic semigroup
Lp(Rd,R) 1 6 p 6 ∞ 1 6 p <∞ no
Lp(Rd,R, µ) 1 6 p 6 ∞ 1 6 p <∞ 1 < p <∞, if σ(S) ⊂ C−
Cb(R

d,R) yes no no
Cub(R

d,R) yes no no
Crub(R

d,R) yes yes no



3 Notations and definitions

In this chapter we introduce the basic definitions and notations that we use through-
out the present thesis.

In Section 3.1 we summarize general facts about the special Euclidean group.
Details about the special Euclidean group can also be found in [37]. For general
theory about matrix analysis and matrix computations we refer to [53] and [42],
respectively.

In Section 3.2 we introduce the exponentially weighted Sobolev spaces, which
we will use for all estimates in the sequel. For the weight functions of exponential
growth rate, see Definition 1.7, and we follow [114, Section 3] for the exponentially
weighted Sobolev spaces.

3.1 Special Euclidean group SE(d)

We denote by N the set of positive integers, by Z the set of integers, by Q the set
of rational numbers, by R the set of real numbers and by C the set of complex
numbers. For an element z ∈ C we denote by Re z the real part of z, by Im z the
imaginary part of z and by arg z the argument of z.

Let d ∈ N with d > 2 and let

SE(d) = SO(d)⋉ Rd

denote the special Euclidean group consisting of all pairs

g = (R, τ) ∈ SE(d), R ∈ SO(d), τ ∈ Rd

with the group operation

g2 ◦ g1 = (R2, τ2) ◦ (R1, τ1) = (R2R1, τ2 +R2τ1),

the unit element (Id, 0) and inverse element (R, τ)−1 = (R−1,−R−1τ). Here

SO(d) = {R ∈ Rd,d | RT = R−1 and det(R) = 1}

denotes the special orthogonal group. SE(d) is a Lie group of dimension d(d+1)
2

,

which is the sum of dim(SO(d)) = d(d−1)
2

and dim(Rd) = d. The associated Lie
algebra of SE(d), given by

se(d) = so(d)× Rd,

is the product of Rd and the space

so(d) = {S ∈ Rd,d | ST = −S}
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of skew-symmetric matrices, which generate rotations by the exponential mapping.
The exponential mapping

exp : (so(d),+) → (SO(d), ·), S 7→ exp(S) :=

∞∑

j=1

1

j!
Sj

is onto, i.e.

∀R ∈ SO(d) ∃S ∈ so(d) : exp(S) = R.

Thus, the inverse of the matrix R satisfies

R−1 = (exp(S))−1 = exp(−S) = exp
(
ST
)
= (exp(S))T ,

and the determinant

det (exp(S)) = det(R) = 1.

Since multiplication with orthogonal matrices preserve the vector lengths we have

|exp(S)x| = |Rx| = |x| ∀ x ∈ Rd,

where |·| = ‖·‖2 denotes the Euclidean norm. Moreover, note that the matrix ex-
ponential maps the unit element 0 ∈ so(d) to the unit element Id ∈ SO(d), i.e.
exp(S + ST ) = exp(0) = Id. Let el ∈ Rd denote the l-th unit vector in Rd for
l = 1, . . . , d. Defining the matrices Iij := eie

T
j ∈ Rd,d for every i = 1, . . . , d − 1

and j = i + 1, . . . , d with entry 1 in the i-th row and j-th column and 0 other-
wise, the matrices Iij − Iji form a basis of so(d) from which we deduce the unique
representation

∀S ∈ so(d) ∃ (Sij)i=1,...,d−1
j=i+1,...,d

∈ R : S =
d−1∑

i=1

d∑

j=i+1

Sij (Iij − Iji) .

This yields

∀R ∈ SO(d) ∃ (Sij)i=1,...,d−1
j=i+1,...,d

∈ R : R = exp

( d−1∑

i=1

d∑

j=i+1

Sij (Iij − Iji)

)

and we conclude

R−1 = exp

(

−
d−1∑

i=1

d∑

j=i+1

Sij (Iij − Iji)

)

.

Later on, we also need the derivative of the matrix exponential in the following
form

d

dt
eX(t) =

∫ 1

0

e(1−α)X(t)

[
d

dt
X(t)

]

eαX(t)dα.(3.1)
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Note that for every real skew-symmetric matrix S ∈ so(d) the eigenvalues lie on
the imaginary axis, i.e. σ(S) ⊂ iR, and they appear in complex conjugate pairs.
Thus, for odd space dimensions d we have 0 ∈ σ(S). Let ±iσ1, . . . ,±iσk denote the
nonzero eigenvalues of S, i.e. 0 6= σj ∈ R for every j = 1, . . . , k and 1 6 k 6 ⌊d

2
⌋.

Since every real skew-symmetric matrix is a normal matrix, an application of the
spectral theorem yields that S is unitarily diagonalizable (over C), i.e.

∃U ∈ Cd,d unitary (i.e. ŪTU = UŪT = Id): ΛS = ŪTSU,(3.2)

with ΛS = diag
(
λS1 , . . . , λ

S
d

)
∈ Cd,d and λS1 , . . . , λ

S
d ∈ σ(S). Because of σ(S) ⊂ iR,

it is in general not possible to diagonalize S by a real-valued matrix U . However,
we can transform every S ∈ so(d) into a block diagonal form by an orthogonal
transformation, i.e.

∃P ∈ Rd,d orthogonal matrix : S = PΛSblockP
T ,

where ±iσ1, . . . ,±iσk denote the nonzero eigenvalues of S with σ1, . . . , σk ∈ R,
1 6 k 6 ⌊d

2
⌋,

ΛSblock =












ΛS1 0
. . .

ΛSk
0

. . .

0 0












∈ Rd,d, ΛSj =

(
0 σj

−σj 0

)

∈ R2,2,

for every j = 1, . . . , k. The singular value decomposition (SVD) of ΛSj is given by

ΛSj = LjΣjR
T
j , Σj = |σj | I2, Lj :=

(
0 1
1 0

)

, Rj := sgn(σj)

(
−1 0
0 1

)

and thus, the SVD for ΛSblock is

ΛSblock = LΣRT , Σ :=












Σ1 0
. . .

Σk
0

. . .

0 0












∈ Rd,d

with orthogonal matrices

L :=












L1 0
. . .

Lk
1

. . .

0 1












, R :=












R1 0
. . .

Rk

1
. . .

0 1












.
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This yields the singular value decomposition for any real skew-symmetric ma-
trix S ∈ so(d)

S = UΣV T , U := PL, V := PR.(3.3)

3.2 Exponentially weighted function spaces

Sobolev Spaces. Let K ∈ {R,C}, N ∈ N, p ∈ R with 1 6 p 6 ∞ and let
θ ∈ C(Rd,R) be a weight function of exponential growth rate η > 0 in the sense
of Definition 1.7. We define the exponentially weighted Lp–spaces and their
associated norms by

Lpθ(R
d,KN) := {u ∈ L1

loc(R
d,KN ) | ‖u‖Lp

θ
<∞},

‖u‖Lp
θ
:=

(∫

Rd

θp(x) |u(x)|p dx
) 1

p

, 1 6 p <∞,

‖u‖L∞
θ
:= ess sup

x∈Rd

θ(x) |u(x)| , p = ∞.

By definition (Lpθ(R
d,KN), ‖·‖Lp

θ
) is a Banach space.

Let k ∈ N0 and 1 6 p 6 ∞, then we define the exponentially weighted
Sobolev spaces of order k with exponent p and their associated norms by

W k,p
θ (Rd,KN) := {u ∈ Lpθ(R

d,KN) | Dβu ∈ Lpθ(R
d,KN) ∀ |β| 6 k},

‖u‖
W

k,p
θ

:=

(
∑

|β|6k

∥
∥Dβu

∥
∥
p

L
p
θ

) 1
p

, 1 6 p <∞,

‖u‖
W

k,∞
θ

:= max
|β|6k

∥
∥Dβu

∥
∥
L∞
θ

, p = ∞.

Let l ∈ N0, 1 6 p < ∞, T > 0, ΩT = Rd×]0, T [, then we define the space-time
Sobolev space of order (2l, l) with exponent p and their associated norms by

W (2l,l),p(ΩT ,K
N) := {u ∈ Lp(ΩT ,K

N ) | ‖u‖W (2l,l),p <∞},

‖u‖W (2l,l),p(ΩT ,KN ) :=

(
∑

062r+|β|62l

∥
∥Dr

tD
β
xu
∥
∥
p

Lp(ΩT ,KN )

) 1
p

,

[62, p. 5, (1.4)]. The summation
∑

062r+|β|62l is taken over all nonnegative integers

r ∈ N0 and all multiindices β ∈ Nd satisfying the condition 0 6 2r + |β| 6 2l. In
the special case l = 1 we have

‖u‖W (2,1),p(ΩT ,KN ) =

(

‖u‖p
Lp(ΩT ,KN ) + ‖Dtu‖pLp(ΩT ,KN ) +

∑

|β|=1

∥
∥Dβ

xu
∥
∥
p

Lp(ΩT ,KN )

+
∑

|β|=2

∥
∥Dβ

xu
∥
∥
p

Lp(ΩT ,KN )

) 1
p

, 1 6 p <∞.
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Let Ω = Rd or Ω = ΩT and 1 6 p 6 ∞, then we define the local Lp–spaces by

Lploc(Ω,K
N ) := {u : Ω → KN measurable | ‖u‖Lp(A,KN ) <∞ ∀A ⊂ Ω compact}.

The local Sobolev space W k,p
loc (R

d,KN) can be defined in the same way.

Spaces of continuous functions. Let K ∈ {R,C}, N ∈ N. We define the space
of bounded continuous functions and its associated norm by

Cb(R
d,KN ) := {u ∈ C(Rd,KN) | ‖u‖Cb(Rd,KN ) <∞},

‖u‖Cb(Rd,KN ) := ‖u‖∞ := sup
x∈Rd

|u(x)| .

By definition (Cb(R
d,KN ), ‖·‖Cb(Rd,KN)) is a Banach space.

Let k ∈ N0, then we define the space of k-times continuously-differentiable
functions, that are bounded up to order k, and its associated norm by

Ck
b(R

d,KN ) := {u ∈ Cb(R
d,KN ) | Dβu ∈ Cb(R

d,KN ) ∀ |β| 6 k},
‖u‖Ck

b (R
d,KN ) := ‖u‖k,∞ := max

|β|6k

∥
∥Dβu

∥
∥
Cb(Rd,KN )

.

Further, we define the space of bounded uniformly continuous functions
and the space of k-times continuously-differentiable functions, that are bounded
and uniformly continuous up to order k, by

Cub(R
d,KN) := {u ∈ Cb(R

d,KN ) | u is uniformly continuous on Rd},
Ck

ub(R
d,KN) := {u ∈ Cub(R

d,KN ) | Dβu ∈ Cub(R
d,KN) ∀ |β| 6 k}.

Then, (Cub(R
d,KN), ‖·‖Cb(Rd,KN )), (C

k
ub(R

d,KN), ‖·‖Ck
b (R

d,KN )) are Banach spaces.

Let S ∈ Rd,d be skew-symmetric, then we define the spaces

Crub(R
d,KN) := {u ∈ Cub(R

d,KN ) | lim
t→0

∥
∥u(etS·)− u(·)

∥
∥
Cb(Rd,KN )

= 0},
Ck

rub(R
d,KN) := {u ∈ Crub(R

d,KN) | Dβu ∈ Crub(R
d,KN) ∀ |β| 6 k}.

Then, (Crub(R
d,KN), ‖·‖Cb(Rd,KN )), (C

k
rub(R

d,KN), ‖·‖Ck
b (R

d,KN )) are Banach spaces.

Let θ ∈ C(Rd,R) be a weight function of exponential growth rate η > 0. We
define the exponentially weighted space of bounded continuous functions
and its associated norm by

Cb,θ(R
d,KN) := {u ∈ Cb(R

d,KN) | ‖u‖Cb,θ(Rd,KN ) <∞},
‖u‖Cb,θ(Rd,KN ) := ‖u‖∞,θ := ‖θu‖Cb(Rd,KN ) .

and the exponentially weighted space of k-times continuously-differentiable
functions, that are exponentially bounded up to order k, by

Ck
b,θ(R

d,KN) := {u ∈ Ck
b(R

d,KN) | θDβu ∈ Cb(R
d,KN) ∀ |β| 6 k},

‖u‖Ck
b,θ(R

d,KN ) := ‖u‖k,∞,θ := max
|β|6k

∥
∥θDβu

∥
∥
Cb(Rd,KN )

.
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We define the space of smooth functions C∞(Rd,KN), i.e. it contains func-
tions that are continuously differentiable of arbitrary order. Finally, we define
the space of bump functions C∞

c (Rd,KN), i.e. of all smooth functions hav-
ing a compact support. The support of a function u : Rd → KN is defined by
supp(u) := {x ∈ Rd | u(x) 6= 0}.

Schwartz space. Let K ∈ {R,C} and N ∈ N. A function φ : Rd → KN

is said to be rapidly decreasing if it is infinitely many times differentiable, i.e.
φ ∈ C∞(Rd,KN) and

lim
|x|→∞

xαDβφ(x) = 0 ∈ KN ∀α, β ∈ Nd
0.(3.4)

The space

S(Rd,KN) :=
{
φ ∈ C∞(Rd,KN ) | φ is rapidly decreasing

}

is called the Schwartz space, [34, VI.5.1 Definition]. When endowed with the
family of seminorms

|φ|α,β := sup
x∈Rd

∣
∣xαDβφ(x)

∣
∣

the space S(Rd,KN ) becomes a Fréchet space containing C∞
c (Rd,KN) as a dense

subspace.



4 Heat kernel for operators of

Ornstein-Uhlenbeck type in

complex systems

In this chapter we derive a complex-valued heat kernel matrix for the operator

[L∞v] (x) := A△v(x) + 〈Sx,∇v(x)〉 − Bv(x), x ∈ Rd, d > 2,(4.1)

with v : Rd → CN , A,B ∈ CN,N , skew-symmetric S ∈ Rd,d and N ∈ N.

In Section 4.1 we extend the approach from [14], [4] and [22, Chapter 13] to
determine a heat kernel of L∞, where A and B are assumed to be simultaneously
diagonalizable matrices. Assuming (A1), (A2), (A5) and (A8B) for K = C, Theo-
rem 4.4 states that the heat kernel matrix of L∞ is given by

H(x, ξ, t) = (4πtA)−
d
2 exp

(

−Bt− (4tA)−1
∣
∣etSx− ξ

∣
∣
2
)

, x, ξ ∈ Rd, t > 0.

To clarify the connection with the differential operator L∞, we denote the kernel in
the following chapters by H∞. For the choice B = 0, we denote the kernel byH0 and
the differential operator by L0. In this context, H0 is called the complex-valued
Ornstein-Uhlenbeck kernel and L0 the Ornstein-Uhlenbeck operator. In
general, having an explicit expression for the heat kernel of a differential opera-
tor, one can introduce the corresponding semigroup of the underlying differential
operator in a simple way. This will be the starting point in the next chapter.

In Section 4.2 we collect some necessary information about the heat kernel H
that are relevant to apply the semigroup theory to the associated semigroup. For
this purpose, we first show in Lemma 4.5 that H satisfies the Chapman-Kolmogorov
formula

∫

Rd

H(x, ξ̃, t1)H(ξ̃, ξ, t2)dξ̃ = H(x, ξ, t1 + t2), x, ξ ∈ Rd, t1, t2 > 0,

that is used in the next chapter to verify the semigroup properties. In Lemma 4.6
we derive exponentially weighted integral estimates involving the spectral norm of
the modified kernel K(ψ, t) = H(x, etSx − ψ, t), that are used later on to prove
boundedness as well as strong continuity of the associated semigroup. The three
integrals calculated in Lemma 4.7 are used to verify that the Schwartz space is a
core for the infinitesimal generator of the semigroup.

In Section 4.3, we show in Lemma 4.8 some integral estimates, that are necessary
to prove exponential decay for solutions of the resolvent equation.
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4.1 Complex-valued Ornstein-Uhlenbeck kernel

We introduce the definition for a heat kernel of L∞, [22, Section 1.2]:

Definition 4.1. A heat kernel (or a fundamental solution) of L∞ given by
(4.1) is a function

H : Rd × Rd × R∗
+ → CN,N , (x, ξ, t) 7→ H(x, ξ, t)

with R∗
+ :=]0,∞[ such that

H ∈ C2,2,1(Rd × Rd × R∗
+,C

N,N),(H1)

∂

∂t
H(x, ξ, t) = L∞H(x, ξ, t) ∀ x, ξ ∈ Rd, t > 0,(H2)

lim
t↓0

H(x, ξ, t) = δx(ξ)IN ∀ x, ξ ∈ Rd,(H3)

where the convergence in (H3) is meant in the sense of distributions and
δx(ξ) = δ(x− ξ) denotes the Dirac delta function. A heat kernel H with N > 1 is
called a heat kernel matrix (or matrix fundamental solution) of L∞.

The next theorem provides an explicit representation for the heat kernel of L∞
in the scalar complex-valued case. The proof contains a formal derivation of this
heat kernel, which could also be of interest for the computation of heat kernels
for more general complex-valued heat operators. For the scalar real-valued case a
formal derivation of this kernel can be found in [14], [4] and [22, Section 13.2].

Theorem 4.2 (Scalar case). Let the assumptions (A2) and (A5) be satisfied for
K = C and N = 1, then the function H : Rd × Rd × R∗

+ → C defined by

H(x, ξ, t) = (4παt)−
d
2 exp

(

−δt− (4αt)−1
∣
∣etSx− ξ

∣
∣
2
)

(4.2)

is a heat kernel of L∞ given by

[L∞v] (x) := α△v(x) + 〈Sx,∇v(x)〉 − δv(x).(4.3)

Remark. In the scalar case N = 1 we write α and δ instead of A and B, respec-
tively.

Proof. Before we verify that the heat kernel from (4.2) satisfies the properties
(H1)–(H3) we discuss a formal derivation of this kernel. To compute the heat
kernel (4.2) of (4.3) we generalize the approach from [14], [4] to the complex case
and use the complexified ansatz

H(x, ξ, t) = ϕ(t) · exp
(

−1

2

〈

M(t)

(
x
ξ

)

,

(
x
ξ

)〉)

(4.4)

where

ϕ : R∗
+ → C, t 7→ ϕ(t),

M : R∗
+ → C2d,2d, t 7→M(t)
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have to be determined and 〈u, v〉 := uTv denotes the Euclidean inner product on
C2d. Note at this point that it is sufficient to determine the symmetric part of the
complex-valued matrix M which we denote by N , i.e.

N : R∗
+ → C2d×2d, t 7→ N(t) :=

1

2

(
M(t) +MT (t)

)
=

(
A(t) B(t)
C(t) D(t)

)

,

A,B,C,D : R∗
+ → Cd×d, t 7→ A(t), B(t), C(t), D(t).

Note that N is a symmetric but in general not a Hermitian matrix. In particular
A and D are symmetric and BT = C. Since x, ξ ∈ Rd we have

H(x, ξ, t) = ϕ(t) · exp
(

−1

2

〈

M(t)

(
x
ξ

)

,

(
x
ξ

)〉)

= ϕ(t) · exp
(

−1

2

〈
1

2

(
M(t) +MT (t)

)
(
x
ξ

)

,

(
x
ξ

)〉)

= ϕ(t) · exp
(

−1

2

〈

N(t)

(
x
ξ

)

,

(
x
ξ

)〉)

.

Since the heat kernel must satisfy (H2) we introduce the extended matrices

P̃ =

(
Id 0
0 0

)

, S̃ =

(
S 0
0 0

)

∈ R2d,2d

and obtain from the general Leibniz rule, the chain rule and the symmetry of N

Ht(x, ξ, t) = H(x, ξ, t)

[
ϕt(t)

ϕ(t)
− 1

2

〈

Nt(t)

(
x
ξ

)

,

(
x
ξ

)〉]

,

∂

∂xi
H(x, ξ, t) = H(x, ξ, t)

∂

∂xi

[

−1

2

〈

N(t)

(
x
ξ

)

,

(
x
ξ

)〉]

= H(x, ξ, t)

[

−1

2

(〈

N
T
(t)

(
x
ξ

)

, ei

〉

+

〈

N(t)

(
x
ξ

)

, ei

〉)]

= −H(x, ξ, t)

〈

N(t)

(
x
ξ

)

, ei

〉

,

∂2

∂x2i
H(x, ξ, t) =H(x, ξ, t)

[〈

N(t)

(
x
ξ

)

, ei

〉2

− 〈N(t)ei, ei〉
]

,

α△H(x, ξ, t) = αH(x, ξ, t)

[
d∑

i=1

〈

N(t)

(
x
ξ

)

, ei

〉2

−
d∑

i=1

〈N(t)ei, ei〉
]

= αH(x, ξ, t)

[
d∑

i=1

〈

N(t)

(
x
ξ

)

, ei

〉〈

ei, N(t)

(
x
ξ

)〉

− tr
(

A
T
(t)
)
]
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= αH(x, ξ, t)

[(
x
ξ

)T

N
T
(t)

(
d∑

i=1

eie
T
i

)

N(t)

(
x
ξ

)

− tr
(
A(t)

)

]

= αH(x, ξ, t)

[〈

N(t)

(
x
ξ

)

,

(
Id 0
0 0

)

N(t)

(
x
ξ

)〉

− tr
(
A(t)

)
]

= H(x, ξ, t)

[〈

αN(t)P̃N(t)

(
x
ξ

)

,

(
x
ξ

)〉

− α tr
(
A(t)

)
]

,

〈Sx,∇H(x, ξ, t)〉 =
(

∂

∂x1
H(x, ξ, t), . . . ,

∂

∂xd
H(x, ξ, t)

)

Sx

= −H(x, ξ, t)

(〈

N(t)

(
x
ξ

)

, e1

〉

, . . . ,

〈

N(t)

(
x
ξ

)

, ed

〉)

Sx

= −H(x, ξ, t)

〈

N(t)

(
x
ξ

)

,

(
S 0
0 0

)(
x
ξ

)〉

= −H(x, ξ, t)

〈

S̃TN(t)

(
x
ξ

)

,

(
x
ξ

)〉

= −H(x, ξ, t)
1

2

[〈

S̃TN(t)

(
x
ξ

)

,

(
x
ξ

)〉

+

〈(
x
ξ

)

, N
T
(t)S̃

(
x
ξ

)〉]

= −H(x, ξ, t)

〈
1

2

(

S̃TN(t) +N(t)S̃
)(

x
ξ

)

,

(
x
ξ

)〉

,

for every i = 1, . . . , d. Therefore, we end up with

0 =H(x, ξ, t)

[
ϕt(t)

ϕ(t)
+ α tr

(
A(t)

)
+ δ

+

〈(

−1

2
Nt(t)− αN(t)P̃N(t) +

1

2
S̃TN(t) +

1

2
N(t)S̃

)(
x
ξ

)

,

(
x
ξ

)〉]

.

Thus, the kernel satisfies (H2) if the following differential equations hold

ϕt(t) = −
(
α tr

(
A(t)

)
+ δ
)
ϕ(t) , t > 0,(4.5)

Nt(t) = −2αN(t)P̃N(t) + S̃TN(t) +N(t)S̃ , t > 0.(4.6)

Since (4.5) depends on the solution of (4.6), we will first solve the matrix-Riccati
equation (4.6), see [5, sec. 3.1]. It is obvious that the solutions of (4.5) and (4.6)
are not unique but one can select appropriate initial values, see [14] and [4].

Let us first eliminate linear terms in (4.6) by the following transformation

N̂(t) = exp
(

−tS̃T
)

N(t) exp
(

−tS̃
)

=

(
exp

(
−tST

)
0

0 Id

)(
A(t) B(t)
C(t) D(t)

)(
exp (−tS) 0

0 Id

)

=

(
exp(−tST )A(t) exp(−tS) exp(−tST )B(t)

C(t) exp(−tS) D(t)

)

=:

(
Â(t) B̂(t)

Ĉ(t) D̂(t)

)

.

(4.7)
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Differentiating N̂ with respect to t and using (A5), N = NT and (4.6) we obtain

N̂t(t) =− S̃T exp
(

−tS̃T
)

N(t) exp
(

−tS̃
)

+ exp
(

−tS̃T
)

Nt(t) exp
(

−tS̃
)

− exp
(

−tS̃T
)

N(t)S̃ exp
(

−tS̃
)

=− 2αN̂(t) exp
(

tS̃
)

P̃ exp
(

tS̃T
)

N̂(t)

and hence

N̂t(t) = −2αN̂(t) exp
(

tS̃
)

P̃ exp
(

tS̃T
)

N̂(t) , t > 0.(4.8)

Writing this equation blockwise

N̂t(t) = −2αN̂(t) exp
(

tS̃
)

P̃ exp
(

tS̃T
)

N̂(t)

= −2α

(
Â(t) exp

(
t
(
S + ST

))
Â(t) Â(t) exp

(
t
(
S + ST

))
B̂(t)

Ĉ(t) exp
(
t
(
S + ST

))
Â(t) Ĉ(t) exp

(
t
(
S + ST

))
B̂(t)

)

=

(
−2αÂ2(t) −2αÂ(t)B̂(t)

−2αĈ(t)Â(t) −2αĈ(t)B̂(t)

)

=:

(
Ât(t) B̂t(t)

Ĉt(t) D̂t(t)

)

we arrive at the matrix ODE systems

Ât(t) = −2αÂ2(t) , t > 0,(4.9)

B̂t(t) = −2αÂ(t)B̂(t) , t > 0,(4.10)

Ĉt(t) = −2αĈ(t)Â(t) , t > 0,(4.11)

D̂t(t) = −2αĈ(t)B̂(t) , t > 0.(4.12)

Note that Â = ÂT , D̂ = D̂T and B̂T = Ĉ due to the corresponding properties
of A,B,C and D. Therefore, solving (4.10) gives us automatically a solution of
(4.11). Now we will successively solve the equations (4.9)–(4.12):

(4.9): Using the transformation Ã(t) =
(

Â(t)
)−1

we obtain

Ãt(t) =
d

dt

(

Â(t)
)−1

= −
(

Â(t)
)−1

Ât(t)
(

Â(t)
)−1

= 2α
(

Â(t)
)−1 (

Â(t)
)2 (

Â(t)
)−1

= 2αId.

Componentwise integration of both sides from 0 to t w.r.t. t yields

Ã(t)−A0 = Ã(t)− Ã(0) =

∫ t

0

Ãs(s)ds =

∫ t

0

2αIdds = 2αtId.

Using the transformation once more yields the solution of (4.9)

Â(t) = (2αtId + A0)
−1 , t > 0.
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Note that the initial data A0 ∈ Cd,d must fulfill the relation A0 = AT0 due to the
symmetry of Â(t) for t > 0.

(4.10): Obviously, the general solution of (4.10) is of the form B̂ = ÂB0 for some
constant matrix B0 ∈ Cd,d and hence

B̂(t) = (2αtId + A0)
−1B0, t > 0.

(4.11): Thanks to the condition that B̂T = Ĉ we easily obtain the general solution
of (4.11) by transposing B̂ and using the symmetry of A0

Ĉ(t) = BT
0 (2αtId + A0)

−1 , t > 0.

(4.12): Finally, the general solution of equation (4.12) has the form BT
0 ÂB0 +D0

for some constant matrix D0 ∈ Cd,d with D0 = DT
0 due to the symmetry of D̂. This

can be easily seen by rewriting the system as follows

D̂t(t) = −2αĈ(t)B̂(t) = −2αBT
0 Â

2(t)B0.

Hence, we obtain

D̂(t) = BT
0 (2αtId + A0)

−1B0 +D0, t > 0.

As in [14] and [4], we now choose A0 = 0, B0 = −Id and D0 = 0 which will
guarantee (H3). Inserting the solutions into (4.7) yields

N̂(t) =
1

2αt

(
Id −Id
−Id Id

)

Transforming N̂ to N , cf. (4.7), we obtain by (A5)

N(t) = exp
(

tS̃T
)

N̂(t) exp
(

tS̃
)

=

(
exp(tST )Â(t) exp(tS) exp(tST )B̂(t)

Ĉ(t) exp(tS) D̂(t)

)

(4.13)

=
1

2αt

(
Id − exp(tST )

− exp(tS) Id

)

.

Thus, tr
(
A(t)

)
= d

2αt
and (4.5) can be written as

ϕt(t) = −
(
α tr

(
A(t)

)
+ δ
)
ϕ(t) = −

(
d

2t
+ δ

)

ϕ(t)

Hence, the general solution of (4.5) is given by

ϕ(t) = C exp

(

−
∫ (

d

2t
+ δ

)

dt

)

= C exp

(

−d
2
ln(t)− δt

)

= Ct−
d
2 e−δt(4.14)
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where C ∈ C. Below we choose C ∈ C such that the normalization condition

lim
t↓0

∫

Rd

H(x, ξ, t)dξ = 1 ∀ x ∈ Rd(4.15)

holds. First note that from
〈

1

2αt

(
Id − exp(tST )

− exp(tS) Id

)(
x
ξ

)

,

(
x
ξ

)〉

=
1

2αt

∣
∣etSx− ξ

∣
∣
2

we obtain

H(x, ξ, t) =Ct−
d
2 e−δt−

1
4αt |etSx−ξ|2 .

Now, integrating over Rd w.r.t. ξ, we obtain from the transformation theorem and
assumption (A2)

∫

Rd

H(x, ξ, t)dξ = Ct−
d
2 e−δt

∫

Rd

e−
1

4αt |etSx−ξ|2dξ

=Ct−
d
2 e−δt

∫

Rd

e−
1

4αt
|x−ψ|2dψ = Ct−

d
2 e−δt

d∏

j=1

∫ ∞

−∞
e−

1
4αt

x2jdxj

=Ct−
d
2 e−δt (4παt)

d
2 = C (4πα)

d
2 e−δt

t→0→ C (4πα)
d
2

!
= 1.

Hence, we choose C = (4πα)−
d
2 such that (4.15) is satisfied. Here α− d

2 denotes
the principal root (main branch) of α−d. Finally, we obtain the heat kernel (4.2)
from (4.13) and (4.14). The properties (H1) and (H2) follow directly from the
construction of the heat kernel. It remains to verify property (H3). For this we use
the integral

∫ ∞

0

rn−1e−zr
2

dr =
z−

n
2

2Γ
(
n
2

) ,(4.16)

which holds for n ∈ R with n > 0 and z ∈ C with Re z > 0, [2]. Using the
transformation theorem (with transformations for d-dimensional polar coordinates

and Φ(ξ) = 2−1t−
1
2

(
etSx− ξ

)
) and formula (4.16) (with n = d and z = α−1) we

obtain, similarly to the proof of [22, Prop. 3.4.1], for every φ ∈ C∞
c (Rd,C)

lim
t↓0

H(x, ξ, t)(φ) = lim
t↓0

∫

Rd

H(x, ξ, t)φ(ξ)dξ

= lim
t↓0

∫

Rd

(4παt)−
d
2 exp

(

−δt− (4αt)−1
∣
∣etSx− ξ

∣
∣
2
)

φ(ξ)dξ

= lim
t↓0

(4παt)−
d
2 (4t)

d
2

∫

Rd

exp
(
−δt− α−1 |ψ|2

)
φ(etSx− 2t

1
2ψ)dψ

= (πα)−
d
2

∫

Rd

exp
(
−α−1 |ψ|2

)
dψφ(x)

= (πα)−
d
2 2π

d
2Γ

(
d

2

)∫ ∞

0

rd−1e−α
−1r2drφ(x)

= (πα)−
d
2 2π

d
2Γ

(
d

2

)
α

d
2

2Γ
(
d
2

)φ(x) = φ(x) = δx(ξ)(φ).

Note that Re z = Re (α−1) = Reα
|α|2 = Reα

|α|2 > 0 is true by assumption (A2).
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The next statement yields a heat kernel representation of L∞ for complex-valued
diagonal matrices A and B. This follows from an application of Theorem 4.2.

Theorem 4.3 (Case of diagonal matrices). Let ΛA,ΛB ∈ CN,N be two diagonal
matrices and let the assumptions (A2) and (A5) be satisfied for K = C, then the
function H : Rd × Rd × R∗

+ → CN,N defined by

H(x, ξ, t) = (4πtΛA)
− d

2 exp
(

−ΛBt− (4tΛA)
−1
∣
∣etSx− ξ

∣
∣
2
)

(4.17)

is a heat kernel of L∞ given by

[L∞v] (x) := ΛA△v(x) + 〈Sx,∇v(x)〉 − ΛBv(x).(4.18)

Remark. In case of diagonal matrices we write ΛA and ΛB instead of A and B,
respectively.

Proof. Let v = (v1, . . . , vN) ∈ CN , ΛA = diag
(
λA1 , . . . , λ

A
N

)
∈ CN,N and ΛB =

diag
(
λB1 , . . . , λ

B
N

)
∈ CN,N . Since the matrices ΛA and ΛB are diagonal, the compo-

nents of the operator L∞ from (4.18) are decoupled, i.e.

[L∞v]k (x) = λAk△vk(x) + 〈Sx,∇vk(x)〉 − λBk vk(x), k = 1, . . . , N.

Using (A2) and (A5) we infer from Theorem 4.2 that

Hk(x, ξ, t) := (4πtλAk )
− d

2 exp
(

−λBk t− (4tλAk )
−1
∣
∣etSx− ξ

∣
∣
2
)

is a heat kernel for the k-th component of L∞. Indeed, an easy computation shows
thatH(x, ξ, t) := diag (H1(x, ξ, t), . . . , HN(x, ξ, t)) is a heat kernel of L∞ from (4.18)
that coincides with H from (4.17). The properties (H1)–(H3) for the heat kernel
H of L∞ follow directly from those of Hk for k = 1, . . . , N .

The following theorem is an extension of Theorem 4.3 and provides a heat kernel
of L∞ for complex-valued simultaneously diagonalizable matrices A and B. Note
that assumption (A8B) implies (A1) and that they coincide for B = 0.

Theorem 4.4 (Case of simultaneously diagonalizable matrices). Let the assump-
tions (A1), (A2), (A5) and (A8B) be satisfied for K = C, then the function
H : Rd × Rd × R∗

+ → CN,N defined by

H(x, ξ, t) = (4πtA)−
d
2 exp

(

−Bt− (4tA)−1
∣
∣etSx− ξ

∣
∣
2
)

(4.19)

is a heat kernel of L∞ given by

[L∞v] (x) := A△v(x) + 〈Sx,∇v(x)〉 − Bv(x).(4.20)
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Proof. Let us define the diagonalized operator L̃∞ := Y −1L∞Y with Y from (A8B).
Multiplying (4.20) from left by Y −1 and using the transformations
A = Y ΛAY

−1 and B = Y ΛBY
−1, the substitution u(x) := Y −1v(x), the prop-

erty Y −1 〈Sx,∇v(x)〉 = 〈Sx,∇Y −1v(x)〉 we obtain
[

L̃∞u
]

(x) =
[
Y −1L∞Y u

]
(x) = Y −1 [L∞v] (x)

= Y −1 (A△v(x) + 〈Sx,∇v(x)〉 − Bv(x))

= ΛAY
−1△v(x) + Y −1 〈Sx,∇v(x)〉 − ΛBY

−1v(x)

= ΛA△u(x) + 〈Sx,∇u(x)〉 − ΛBu(x)

In this way we have decoupled the operator L∞ from (4.20). Since ΛA,ΛB ∈ CN,N

are diagonal matrices, σ(ΛA) = σ(A) ⊂ {λ ∈ C | Reλ > 0} by (A1) and (A2) hold,
we deduce from Theorem 4.3 that

H̃(x, ξ, t) = (4πtΛA)
− d

2 exp
(

−ΛBt− (4tΛA)
−1
∣
∣etSx− ξ

∣
∣
2
)

is a heat kernel of L̃∞. Again, an easy computation shows that H(x, ξ, t) :=
Y H̃(x, ξ, t)Y −1 is a heat kernel of L∞ from (4.20) that coincides with H from
(4.19):

H(x, ξ, t) =Y H̃(x, ξ, t)Y −1

=Y (4πtΛA)
− d

2Y −1Y exp
(

−ΛBt− (4tΛA)
−1
∣
∣etSx− ξ

∣
∣
2
)

Y −1

=(4πt)−
d
2Y Λ

− d
2

A Y −1 exp
(

−Y
(

ΛBt− (4tΛA)
−1
∣
∣etSx− ξ

∣
∣
2
)

Y −1
)

=(4πt)−
d
2Y Λ

− d
2

A Y −1 exp
(

−Y ΛBY
−1t− (4t)−1Y Λ−1

A Y −1
∣
∣etSx− ξ

∣
∣
2
)

=(4πtA)−
d
2 exp

(

−Bt− (4tA)−1
∣
∣etSx− ξ

∣
∣
2
)

.

The properties (H1)–(H3) for the heat kernel H of L∞ follow again directly from
those of H̃.

Simultaneous diagonalization of A and B. Note that the condition (A8B) in
Theorem 4.4 is crucial. For arbitrary matrices A,B ∈ CN,N satisfying only (A1) and
(A2) the heat kernel of (4.20) is in general not given by (4.19), as we will see later
in Theorem 6.1 and Theorem 6.2. To extend Theorem 4.4 for arbitrary matrices
A,B ∈ CN,N , one can try to use the Hadamard lemma or the Baker-Campbell-
Hausdorff formula. But in this case one can expect at most a series representation
for the heat kernel. This seems to be an open problem.

Ellipticity assumption. As mentioned above, the assumption (A2) in Theorem
4.2, 4.3 and 4.4 states that L∞ is an elliptic differential operator. Using the weaker
assumption Re σ(A) > 0, which includes coupled parabolic-hyperbolic differential
operators as for instance the Barkley model from Example 2.3, no heat kernel
representation seems to be known.

Generalized heat kernel ansatz. For the computation of heat kernels with more
general operators, Beals used in [14, (2)] - instead of (4.4) - the generalized ansatz

H(x, ξ, t) = ϕ(t) exp (−Qt(x, ξ)) , t > 0, x, ξ ∈ Rd
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where Qt is a quadratic form of 2d variables. This formula is motivated by the
Trotter product formula and the Feynman-Kac formula, [70, section 2.8]. Such a
general ansatz was also used in [22, (13.2.14)] for the construction of heat kernels
for degenerate elliptic operators.

Generalized Ornstein-Uhlenbeck operator. Let the assumptions (A1), (A2),
(A8B), Q ∈ Rd,d, Q > 0, Q = QT and S ∈ Rd,d be satisfied for K = C and consider
the generalized N -dimensional complex-valued Ornstein-Uhlenbeck operator

[LOUv] (x) =Atr
(
QD2v(x)

)
+ 〈Sx,∇v(x)〉 −Bv(x)

=A
d∑

i=1

d∑

j=1

QijDiDjv(x) +
d∑

i=1

d∑

j=1

SijxjDiv(x)− Bv(x), x ∈ Rd,

Then one can show that

H(x, ξ, t) = (4πA)−
d
2 (detQt)

− 1
2 exp

(
−Bt− (4A)−1 〈Q−1

t (etSx− ψ), (etSx− ψ)
〉)

with

Qt =

∫ t

0

exp (τS)Q exp
(
τST

)
dτ

is a heat kernel of LOU. This is true, even if (A5) is not satisfied.

Heat kernel via Fourier-Bessel method. The Fourier-Bessel method, [15],
which is summarized in Section 1.6, provides a further possibility to determine
a heat kernel for L∞ on R2. There one computes Green’s function of L∞ and
discovers that Green’s function equals the time integral over the heat kernel. This
method can easily be extended to circular disks (bounded domains) with Dirichlet,
Neumann and Robin boundary conditions, see Section 1.6.

Heat kernel for the diffusion operator. Let us emphasize that all results are
also valid for S = 0 and B = 0, which provides us a heat kernel for the diffusion
operator

[
Ldiff

0 v
]
(x) = A△v(x).

4.2 Some properties of the Ornstein-Uhlenbeck

kernel

The heat kernel satisfies the following Chapman-Kolmogorov formula, which plays
an important role for the generation of semigroups, [66, Proposition C.3.2]. This
formula can be understood as the semigroup property on the basis of heat kernels.

Lemma 4.5 (Chapman-Kolmogorov formula). Let the assumptions (A1), (A2),
(A5) and (A8B) be satisfied for K = C. Then

∫

Rd

H(x, ξ̃, t1)H(ξ̃, ξ, t2)dξ̃ = H(x, ξ, t1 + t2) ∀ x, ξ ∈ Rd, ∀ t1, t2 > 0.
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Remark. For the proof we need the following integral
∫ ∞

−∞
exp

(
−c1 (a− ψ)2 − c2 (ψ − b)2

)
dψ

=

(
π

c1 + c2

) 1
2

exp

(

− c1c2
c1 + c2

(a− b)2
)(4.21)

for a, b, c1, c2 ∈ C with Re c1 > 0, Re c2 > 0.

Proof. First let us prove the assertion for the diagonalized kernel

H̃(x, ξ, t) = (4πtΛA)
− d

2 exp
(

−ΛBt− (4tΛA)
−1
∣
∣etSx− ξ

∣
∣
2
)

.

Because of (A5) we have
∣
∣etSx

∣
∣ = |x| and hence

∫

Rd

H̃(x, ξ̃, t1)H̃(ξ̃, ξ, t2)dξ̃

=(4πt1ΛA)
− d

2 (4πt2ΛA)
− d

2 exp (−ΛB(t1 + t2))

·
∫

Rd

exp

(

− (4t1ΛA)
−1
∣
∣
∣et1Sx− ξ̃

∣
∣
∣

2

− (4t2ΛA)
−1
∣
∣
∣ξ̃ − e−t2Sξ

∣
∣
∣

2
)

dξ̃

(4.22)

From (A2) we deduce that ReλAj > 0 and hence Re
(
λAj
)−1

= Re
λAj

|λAj |2
> 0 for

every j = 1, . . . , N . Using formula (4.21) componentwise with c1 =
(
4t1λ

A
j

)−1
,

c2 =
(
4t2λ

A
j

)−1
, ψ = ξ̃i, a =

(
et1Sx

)

i
, b =

(
e−t2Sξ

)

i
, i = 1, . . . , d we obtain

∫ ∞

−∞
exp

(

− (4t1ΛA)
−1
((
et1Sx

)

i
− ξ̃i

)2

− (4t2ΛA)
−1
(

ξ̃i −
(
e−t2Sξ

)

i

)2
)

dξ̃i

=(4πt1ΛA)
1
2 (4πt2ΛA)

1
2 (4π (t1 + t2) ΛA)

− 1
2

· exp
(

− (4 (t1 + t2) ΛA)
−1 ((et1Sx

)

i
−
(
e−t2Sξ

)

i

)2
)

Using this integral and again
∣
∣etSx

∣
∣ = |x| we are able to compute the latter integral

in (4.22)

∫

Rd

exp

(

− (4t1ΛA)
−1
∣
∣
∣et1Sx− ξ̃

∣
∣
∣

2

− (4t2ΛA)
−1
∣
∣
∣ξ̃ − e−t2Sξ

∣
∣
∣

2
)

dξ̃

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

( d∑

i=1

[

− (4t1ΛA)
−1
(

(et1Sx)i − ξ̃i

)2

− (4t2ΛA)
−1
(

ξ̃i − (e−t2Sξ)i

)2
])

dξ̃1 · · · dξ̃d

=

∫ ∞

−∞
· · ·
∫ ∞

−∞

d∏

i=1

exp

(

− (4t1ΛA)
−1
(

(et1Sx)i − ξ̃i

)2

− (4t2ΛA)
−1
(

ξ̃i − (e−t2Sξ)i

)2
)

dξ̃1 · · · dξ̃d
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=
d∏

i=1

∫ ∞

−∞
exp

(

− (4t1ΛA)
−1
(

(et1Sx)i − ξ̃i

)2

− (4t2ΛA)
−1
(

ξ̃i − (e−t2Sξ)i

)2
)

dξ̃i

= (4πt1ΛA)
d
2 (4πt2ΛA)

d
2 (4π (t1 + t2) ΛA)

− d
2

· exp
(

− (4 (t1 + t2) ΛA)
−1

d∑

i=1

((
et1Sx

)

i
−
(
e−t2Sξ

)

i

)2

)

= (4πt1ΛA)
d
2 (4πt2ΛA)

d
2 (4π (t1 + t2) ΛA)

− d
2

· exp
(

− (4 (t1 + t2) ΛA)
−1
∣
∣e(t1+t2)Sx− ξ

∣
∣
2
)

Using this in (4.22) we obtain

∫

Rd

H̃(x, ξ̃, t1)H̃(ξ̃, ξ, t2)dξ̃

= (4π (t1 + t2) ΛA)
− d

2 exp (−ΛB(t1 + t2)) exp
(

− (4 (t1 + t2) ΛA)
−1
∣
∣e(t1+t2)Sx− ξ

∣
∣
2
)

=H̃(x, ξ, t1 + t2) ∀ x, ξ ∈ Rd, ∀ t1, t2 > 0.

Let us now consider the general case: Since H(x, ξ, t) = Y H̃(x, ξ, t)Y −1 with Y
from (A8B) we obtain

∫

Rd

H(x, ξ̃, t1)H(ξ̃, ξ, t2)dξ̃

=Y

∫

Rd

H̃(x, ξ̃, t1)H̃(ξ̃, ξ, t2)dξ̃Y
−1

=Y H̃(x, ξ, t1 + t2)Y
−1 = H(x, ξ, t1 + t2) ∀ x, ξ ∈ Rd, ∀ t1, t2 > 0.

The first two partial derivatives of H with respect to x are given by

DiH(x, ξ, t) =− (2tA)−1
〈
etSx− ξ, etSei

〉
H(x, ξ, t),

DjDiH(x, ξ, t) =
(
− (2tA)−1 δij + (2tA)−2 〈etSx− ξ, etSei

〉 〈
etSx− ξ, etSej

〉)

·H(x, ξ, t)

for i, j = 1, . . . , d, where we used (A8B) once more. Let us define the kernels

K̃(ψ, t) := (4πtΛA)
− d

2 exp
(
−ΛBt− (4tΛA)

−1 |ψ|2
)
,(4.23)

K(ψ, t) :=H(x, etSx− ψ, t) = Y K̃(ψ, t)Y −1(4.24)

= (4πtA)−
d
2 exp

(
−Bt− (4tA)−1 |ψ|2

)
,

K̃i(ψ, t) :=− (2tΛA)
−1 〈ψ, etSei

〉
K̃(ψ, t),(4.25)

Ki(ψ, t) := [DiH(x, ξ, t)]ξ=etSx−ψ = Y K̃i(ψ, t)Y −1(4.26)

=− (2tA)−1 〈ψ, etSei
〉
K(ψ, t),

K̃ji(ψ, t) :=
(
(2tΛA)

−2 〈ψ, etSei
〉 〈
ψ, etSej

〉
− (2tΛA)

−1 δij
)
K̃(ψ, t),(4.27)
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Kji(ψ, t) := [DjDiH(x, ξ, t)]
ξ=etSx−ψ = Y K̃ji(ψ, t)Y −1(4.28)

=
(
(2tA)−2 〈ψ, etSei

〉 〈
ψ, etSej

〉
− (2tA)−1 δij

)
K(ψ, t).

To prove boundedness of the associated semigroup in exponentially weighted
function spaces, that we will both perform in the next chapter, we need some
upper bounds of the exponentially weighted integrals over the kernels K, Ki and
Kji.

Lemma 4.6. Let the assumptions (A1), (A2), (A5) and (A8B) be satisfied for
K = C, p, η ∈ R and let K, Ki, Kji be given by (4.24), (4.26), (4.28) for every
i, j = 1, . . . , d, then

(1)

∫

Rd

eηp|ψ| |K(ψ, t)|2 dψ 6 C1(t) , t > 0,

(2)

∫

Rd

eηp|ψ|
∣
∣Ki(ψ, t)

∣
∣
2
dψ 6 C2(t) , t > 0,

(3)

∫

Rd

eηp|ψ|
∣
∣Kji(ψ, t)

∣
∣
2
dψ 6 C3(t) , t > 0,

where |·|2 denotes the spectral norm and the functions are given by

C1(t) =M
d
2 e−b0t

[

1F1

(
d

2
;
1

2
; κt

)

+ 2
Γ
(
d+1
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 1

2
;
3

2
; κt

)]

,

C2(t) =M
d+1
2 e−b0t (tamin)

− 1
2

[
Γ
(
d+1
2

)

Γ
(
d
2

) 1F1

(
d+ 1

2
;
1

2
; κt

)

+ 2
Γ
(
d+2
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 2

2
;
3

2
; κt

)]

,

C3(t) =M
d+2
2 e−b0t (tamin)

−1

[
Γ
(
d+2
2

)

Γ
(
d
2

) 1F1

(
d+ 2

2
;
1

2
; κt

)

+ 2
Γ
(
d+3
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 3

2
;
3

2
; κt

)

+
δij
2
M−1

1F1

(
d

2
;
1

2
; κt

)

+ δijM
−1Γ

(
d+1
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 1

2
;
3

2
; κt

)]

,

with M := a2max

amina0
> 1 and κ := a2maxη

2p2

a0
> 0. Note that C1+|β|(t) ∼ t

d−1
2 e−(b0−κ)t as

t→ ∞ and C1+|β|(t) ∼ t−
|β|
2 as t→ 0 for every |β| = 0, 1, 2.

Remark. The function 1F1(a; b; z) denotes the Kummer confluent hypergeometric
function M(a, b, z) and satisfies the formula

∫ ∞

0

sne−s
2+rsds =

1

2
Γ

(
n + 1

2

)

1F1

(
n + 1

2
;
1

2
;
r2

4

)

+
B

2
Γ
(n

2
+ 1
)

1F1

(
n

2
+ 1;

3

2
;
r2

4

)(4.29)
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for r ∈ R with r > 0 and n ∈ C with Ren > −1, see [2], that we need to prove
Lemma 4.6. Moreover, in Lemma 4.8 we will need the connection formula

1F1 (a; b; x) = ex1F1 (b− a; b;−x)(4.30)

for a, b, x ∈ C with b 6= 0,−1,−2, . . . (see [81] 13.2.39) and the integral

∫ ∞

0

tα−1e−ct1F1 (a; b;−t) dt = c−αΓ (α) 2F1

(

a, α; b;−1

c

)

(4.31)

for a, b, c, α ∈ C with b 6= 0,−1,−2, . . ., Reα > 0 and Re c > 0 (see [81] 16.5.3)
where 2F1 (a1, a2; b1; z) denotes the generalized hypergeometric function. To verify
the asymptotic behavior of the function 1F1 (a, b, z) at infinity we need the limiting
form

1F1 (a, b, z) ∼
Γ(b)

Γ(a)
za−bez, as z → ∞, |arg z| < π

2
(4.32)

for z ∈ C and a, b ∈ C\{0,−1,−2, . . .} (see [81] 13.2.4 and 13.2.23). Observe
that 1F1 (a; b; 0) = 1 and 2F1 (a1, a2; b1; 0) = 1 which induce a simplification of the
constants in Lemma 4.6 in case of η = 0.

Proof. First note that by (A8B), (4.24),(4.26),(4.28) it hold

∣
∣Kβ(ψ, t)

∣
∣
2
=
∣
∣
∣Y K̃β(ψ, t)Y −1

∣
∣
∣
2
=
∣
∣
∣K̃β(ψ, t)

∣
∣
∣
2
= max

k=1,...,N

∣
∣
∣K̃

β
kk(ψ, t)

∣
∣
∣ ,(4.33)

for every multi-index β ∈ Nd
0 with |β| 6 2. Note that K̃β(ψ, t) ∈ CN,N is diagonal.

(1): Using (4.23) a simple computation shows that

max
k=1,...,N

∣
∣
∣K̃kk(ψ, t)

∣
∣
∣ 6 (4πtamin)

− d
2 e

−b0t− a0
4ta2max

|ψ|2
(4.34)

for every ψ ∈ Rd and t > 0. From (4.33) with |β| = 0, (4.34), the transfor-
mation theorem (with transformations for d-dimensional polar coordinates and

Φ(r) =
(

a0
4ta2max

) 1
2

r) and formula (4.29) (since (A2) is satisfied) we obtain

∫

Rd

eηp|ψ| |K(ψ, t)|2 dψ

6

∫

Rd

eηp|ψ| (4πtamin)
− d

2 e
−b0t− a0

4ta2max
|ψ|2
dψ

= (4πtamin)
− d

2 e−b0t
2π

d
2

Γ
(
d
2

)

∫ ∞

0

rd−1e
− a0

4ta2max
r2+ηpr

dr

=

(
a2max

amina0

) d
2

e−b0t
2

Γ
(
d
2

)

∫ ∞

0

sd−1e
−s2+

(

4a2maxη
2p2t

a0

) 1
2
s
ds = C1(t).
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(2): Using (4.25) for every i = 1, . . . , d, ψ ∈ Rd and t > 0 we obtain

max
k=1,...,N

∣
∣
∣K̃i

kk(ψ, t)
∣
∣
∣ 6 (2tamin)

−1
∣
∣
〈
ψ, etSei

〉∣
∣ max
k=1,...,N

∣
∣
∣K̃kk(ψ, t)

∣
∣
∣ .(4.35)

From (4.33) with |β| = 1, (4.35) with (4.34), Cauchy-Schwarz inequality with as-
sumption (A5) (

∣
∣
〈
ψ, etSei

〉∣
∣ 6 |ψ||etSei| = |ψ|), the transformation theorem (with

transformations from (1)) and formula (4.29) we obtain

∫

Rd

eηp|ψ|
∣
∣Ki(ψ, t)

∣
∣
2
dψ

6

∫

Rd

eηp|ψ| (2tamin)
−1
∣
∣
〈
ψ, etSei

〉∣
∣ max
k=1,...,N

∣
∣
∣K̃kk(ψ, t)

∣
∣
∣ dψ

6

∫

Rd

eηp|ψ|(2tamin)
−1 |ψ| (4πtamin)

− d
2 e

−b0t− a0
4ta2max

|ψ|2
dψ

=(2tamin)
−1(4πtamin)

− d
2 e−b0t

2π
d
2

Γ
(
d
2

)

∫ ∞

0

rde
− a0

4ta2max
r2+ηpr

dr

=

(
a2max

amina0

) d+1
2

e−b0t
2

Γ
(
d
2

) (tamin)
− 1

2

∫ ∞

0

sde
−s2+

(

4a2maxη
2p2t

a0

) 1
2
s
ds = C2(t).

(3): Using (4.27), the triangle inequality and Cauchy-Schwarz inequality with as-
sumption (A5) (see (2)) yield for every i, j = 1, . . . , d, ψ ∈ Rd and t > 0

max
k=1,...,N

∣
∣
∣K̃

ji
kk(ψ, t)

∣
∣
∣ 6

(
(2tamin)

−2 |ψ|2 + (2tamin)
−1 δij

)
max

k=1,...,N

∣
∣
∣K̃kk(ψ, t)

∣
∣
∣ .(4.36)

From (4.33) with |β| = 2, (4.36) with (4.34), the transformation theorem (with
transformations from (1)) and formula (4.29) we obtain

∫

Rd

eηp|ψ|
∣
∣Kji(ψ, t)

∣
∣
2
dψ

6

∫

Rd

eηp|ψ|
(
(2tamin)

−2 |ψ|2 + (2tamin)
−1 δij

)
max

k=1,...,N

∣
∣
∣K̃kk(ψ, t)

∣
∣
∣ dψ

6

∫

Rd

eηp|ψ|
(
(2tamin)

−2 |ψ|2 + (2tamin)
−1 δij

)
(4πtamin)

− d
2 e

−b0t− a0
4ta2max

|ψ|
dψ

=(4πtamin)
− d

2 e−b0t
2π

d
2

Γ
(
d
2

)

∫ ∞

0

(
(2tamin)

−2 r2 + (2tamin)
−1 δij

)
rd−1e

− a0
4ta2max

r2+ηpr
dr

=

(
a2max

amina0

) d+2
2

e−b0t
2

Γ
(
d
2

) (tamin)
−1

∫ ∞

0

sd+1e
−s2+

(

4a2maxη
2p2t

a0

) 1
2
s
ds

+ δij

(
a2max

amina0

) d
2

e−b0t
1

Γ
(
d
2

) (tamin)
−1

∫ ∞

0

sd−1e
−s2+

(

4a2maxη
2p2t

a0

) 1
2
s
ds = C3(t).
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To show that the Schwartz space is a core for the infinitesimal generator of the
Ornstein-Uhlenbeck semigroup we need the following lemma.

Lemma 4.7. Let the assumptions (A1), (A2) and (A8B) be satisfied for K = C

and let K be given by (4.24), then for every i, j = 1, . . . , d and t > 0 we have

(1)

∫

Rd

K(ψ, t)dψ = e−Bt,

(2)

∫

Rd

K(ψ, t)ψidψ = 0,

(3)

∫

Rd

K(ψ, t)ψiψjdψ =

{

2te−BtA , i = j

0 , i 6= j
.

Remark. Throughout this proof we will use d-dimensional polar coordinates: Let
x ∈ Rd, Ω :=]0,∞[×[0, 2π[×[0, π]d and (r, φ, θ1, . . . , θd−2) ∈ Ω, then we define

x1 =Φ1(r, φ, θ1, . . . , θd−2) := r cosφ

d−2∏

k=1

sin θk,

x2 =Φ2(r, φ, θ1, . . . , θd−2) := r sin φ
d−2∏

k=1

sin θk,(4.37)

xi =Φi(r, φ, θ1, . . . , θd−2) := r cos θi−2

d−2∏

k=i−1

sin θk, 3 6 i 6 d.

The transformation Φ : Ω → Rd is a C∞-diffeomorphism, [8, X.8.8 Lemma], satis-
fying Φ(Ω) = Rd and

detDΦ(r, φ, θ1, . . . , θd−2) = (−1)drd−1
d−2∏

k=1

(sin θk)
k .

Proof. First note that (A2), (A8B) and componentwise integration yields for every
n > −1

∫ ∞

0

rne−(4tA)−1r2dr =

∫ ∞

0

rne−Y (4tΛA)−1Y −1r2dr

=Y

∫ ∞

0

rne−(4tΛA)−1r2drY −1 =
Γ
(
n+1
2

)

2
Y (4tΛA)

n+1
2 Y −1

=
Γ
(
n+1
2

)

2
(4tA)

n+1
2 .

(4.38)

(1): From (4.24), (4.38) (with n = d − 1), the transformation theorem (with
d-dimensional polar coordinates) and (A8B) we directly obtain for t > 0

∫

Rd

K(ψ, t)dψ = (4πtA)−
d
2 e−Bt

∫

Rd

e−(4tA)−1|ψ|2dψ

= (4πtA)−
d
2 e−Bt

2π
d
2

Γ
(
d
2

)

∫ ∞

0

rd−1e−(4tA)−1r2dr
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=(4πtA)−
d
2 e−Bt

2π
d
2

Γ
(
d
2

)
Γ
(
d
2

)

2
(4tA)

d
2 = e−Bt.

(2): Now we must use d-dimensional polar coordinates. From the transformation
theorem we obtain

∫

Rd

e−(4tA)−1|ψ|2ψidψ

=

∫

Ω

e−(4tA)−1r2 ·







r cosφ
∏d−2

k=1 sin θk , i = 1

r sinφ
∏d−2

k=1 sin θk , i = 2

r cos θi−2

∏d−2
k=i−1 sin θk , 3 6 i 6 d− 2







· |detDΦ(r, φ, θ1, . . . , θd−2)| drdφdθ1 · · · dθd−2

=

∫

Ω

e−(4tA)−1r2 ·







r cosφ
∏d−2

k=1 sin θk , i = 1

r sinφ
∏d−2

k=1 sin θk , i = 2

r cos θi−2

∏d−2
k=i−1 sin θk , 3 6 i 6 d− 2







· rd−1
d−2∏

k=1

|sin θk|k drdφdθ1 · · ·dθd−2

=

(∫ ∞

0

rde−(4tA)−1r2dr

)∫ 2π

0

∫ π

0

· · ·
∫ π

0






cosφ
∏d−2

k=1 sin θk
∏d−2

k=1 |sin θk|
k , i = 1

sinφ
∏d−2

k=1 sin θk
∏d−2

k=1 |sin θk|k , i = 2

cos θi−2

∏d−2
k=i−1 sin θk

∏d−2
k=1 |sin θk|k , 3 6 i 6 d− 2






dφdθ1 · · · dθd−2

In case of i = 1 and i = 2 the φ-integrals vanishes and in case of 3 6 i 6 d− 2 the
θi−2-integral vanishes, since using for example

(sin a)n =
1

2n

n∑

k=0

(
n
k

)

cos
(

(n− 2k)
(

a− π

2

))

, n ∈ N,

we obtain
∫ π

0

cos θi−2 |sin θi−2|i−2 dθi−2 =

∫ π

0

cos θi−2 (sin θi−2)
i−2 dθi−2 = 0.(4.39)

Hence, we have for every i = 1, . . . , d and t > 0

∫

Rd

K(ψ, t)ψidψ = (4πtA)−
d
2 e−Bt

∫

Rd

e−(4tA)−1|ψ|2ψidψ = 0.

(3): Finally, let us use d-dimensional polar coordinates once more. Similar to (2)
from the transformation theorem we obtain

∫

Rd

e−(4tA)−1|ψ|2ψiψjdψ

=

(∫ ∞

0

rd+1e−(4tA)−1r2dr

)∫ 2π

0

∫ π

0

· · ·
∫ π

0
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





cosφ
∏d−2

k=1 sin θk , i = 1

sin φ
∏d−2

k=1 sin θk , i = 2

cos θi−2

∏d−2
k=i−1 sin θk , 3 6 i 6 d− 2







d−2∏

k=1

|sin θk|k







cosφ
∏d−2

k=1 sin θk , j = 1

sinφ
∏d−2

k=1 sin θk , j = 2

cos θj−2

∏d−2
k=j−1 sin θk , 3 6 j 6 d− 2






dφdθ1 · · · dθd−2

=

{
π

d
2

2
(4tA)

d
2
+1 , i = j

0 , i 6= j
.

Accept the last equality, we first deduce from (4.38) with n = d+ 1

∫ ∞

0

rd+1e−(4tA)−1r2dr =
Γ
(
d+2
2

)

2
(4tA)

d
2
+1.(4.40)

Moreover, for Re l > −1, a, b ∈ N0 with a 6 b it holds

b∏

l=a

∫ π

0

(sin θ)l dθ =

b∏

l=a

π
1
2
Γ
(
l+1
2

)

Γ
(
l+2
2

) = π
b−a+1

2
Γ
(
a+1
2

)

Γ
(
b+2
2

) .(4.41)

Let is first consider the cases i = j = 1 and i = j = 2. Here we must use

∫ 2π

0

(cos φ)2 dφ = π,

∫ 2π

0

(sinφ)2 dφ = π

and (4.41) with a = 3 and b = d

d−2∏

k=1

∫ π

0

(sin θk)
2 |sin θk|k dθk =

d−2∏

k=1

∫ π

0

(sin θ)k+2 dθ =

d∏

l=3

∫ π

0

(sin θ)l dθ

=π
d
2
−1 Γ

(
4
2

)

Γ
(
d+2
2

) =
π

d
2
−1

Γ
(
d+2
2

) .

Now, let us consider the case 3 6 i = j 6 d. Here we can deduce from (4.41) (with
a = 1 and b = i− 3, a = b = i− 2, a = b = i as well as a = i+ 1 and b = d)

i−3∏

k=1

∫ π

0

|sin θk|k dθk =
i−3∏

k=1

∫ π

0

(sin θ)k dθ = π
i−3
2

Γ(1)

Γ
(
i−1
2

) =
π

i−3
2

Γ
(
i−1
2

) ,

∫ π

0

(cos θi−2)
2 |sin θi−2|i−2 dθi−2 =

∫ π

0

(
1− (sin θi−2)

2) (sin θi−2)
i−2 dθi−2

=

∫ π

0

(sin θ)i−2 dθ −
∫ π

0

(sin θ)i dθ = π
1
2

(

Γ
(
i−1
2

)

Γ
(
i
2

) − Γ
(
i+1
2

)

Γ
(
i+2
2

)

)

,

d−2∏

k=i−1

∫ π

0

(sin θk)
2 |sin θk|k dθk =

d−2∏

k=i−1

∫ π

0

(sin θ)k+2 dθ

=

d∏

l=i+1

∫ π

0

(sin θ)l dθ = π
d−i
2
Γ
(
i+2
2

)

Γ
(
d+2
2

) ,
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∫ 2π

0

1dφ = 2π.

Multiplying these four terms with (4.40) and using Γ(x + 1) = xΓ(x) we obtain
π

d
2

2
(4tA)

d
2
+1. Next, we consider the cases 3 6 i < j 6 d and 3 6 j < i 6 d. Let

w.l.o.g. i < j, then the term from (4.39) vanishes. For all the other cases exactly
one term vanishes, namely

∫ 2π

0

sin φ cosφdφ = 0, if (i = 1, j = 2) or (i = 2, j = 1),

∫ 2π

0

cosφdφ = 0, if (i = 1, 3 6 j 6 d) or (3 6 i 6 d, j = 1),

∫ 2π

0

sin φdφ = 0, if (i = 2, 3 6 j 6 d) or (3 6 i 6 d, j = 2).

4.3 Some useful integrals

Using the notation from Section 1.2 and assuming (A2) we define

C4(t) =CθM
d
2 e−b0t

[

1F1

(
d

2
;
1

2
; κt

)

+ 2
Γ
(
d+1
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 1

2
;
3

2
; κt

)] 1
p

,

C5(t) =CθM
d+1
2 e−b0t (tamin)

− 1
2

[
Γ
(
d+1
2

)

Γ
(
d
2

) 1F1

(
d+ 1

2
;
1

2
; κt

)

+ 2
Γ
(
d+2
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 2

2
;
3

2
; κt

)] 1
p

,

C6(t) =CθM
d+2
2 e−b0t (tamin)

−1

[
Γ
(
d+2
2

)

Γ
(
d
2

) 1F1

(
d+ 2

2
;
1

2
; κt

)

+ 2
Γ
(
d+3
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 3

2
;
3

2
; κt

)

+
δij
2
M−1

1F1

(
d

2
;
1

2
; κt

)

+ δijM
−1Γ

(
d+1
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 1

2
;
3

2
; κt

)] 1
p

,

with M := a2max

amina0
> 1, κ := a2maxη

2p2

a0
> 0, 1 6 p 6 ∞ and η > 0. In case of p = ∞

the constants are given by C4+|β|(t) with p = 1 for every |β| = 0, 1, 2. Moreover, in
case of p = 1 it holds C4+|β|(t) = CθC1+|β|(t).

In order to show that the solutions of the steady state problem for the Ornstein-
Uhlenbeck operator decay exponentially, see Theorem 5.8, we need the following
lemma. The upper bound for η2 can be considered as the maximal decay rate.
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Lemma 4.8. Let the assumption (A2) be satisfied for 1 6 p < ∞ and K = C.
Moreover, let 0 < ϑ < 1, ω̃ ∈ R, ω := ω̃ − b0, λ ∈ C with Reλ > ω and
0 6 η2 6 ϑa0(Re λ−ω)

a2maxp
2 , then we have

(1)

∫ ∞

0

e−ReλtC4(t)dt 6
C7

Reλ− ω
,

(2)

∫ ∞

0

e−ReλtC5(t)dt 6
C8

(Reλ− ω)
1
2

,

with M := a2max

amina0
> 1 and

C7 =CθM
d
2

(
1

1− ϑ

) 1
p
(

2F1

(

−d− 1

2
, 1;

1

2
;− ϑ

1 − ϑ

)

+ π
1
2
Γ
(
d+1
2

)

Γ
(
d
2

)

(
ϑ

1− ϑ

) 1
2

2F1

(

−d− 2

2
,
3

2
;
3

2
;− ϑ

1− ϑ

)) 1
p

,

C8 =CθM
d+1
2
Γ
(
1
2

)

a
1
2
min

(
1

1− ϑ

) 1
2p
(
Γ
(
d+1
2

)

Γ
(
d
2

) 2F1

(

−d
2
,
1

2
;
1

2
;− ϑ

1− ϑ

)

+ 2
Γ
(
d+2
2

)

Γ
(
1
2

)
Γ
(
d
2

)

(
ϑ

1− ϑ

) 1
2

2F1

(

−d− 1

2
, 1;

3

2
;− ϑ

1− ϑ

)) 1
p

.

Proof. (1): From c0 := Reλ − ω, Hölder’s inequality (with 1
p
+ 1

q
= 1 and

1 6 p < ∞), the transformation theorem (with transformation Φ(t) = a2maxη
2p2t

a0
),

formula (4.30) (with a = d
2
, b = 1

2
, x = s and a = d+1

2
, b = 3

2
, x = s) and formula

(4.31) (with α = 1, c = a0c0−a2maxη
2p2

a2maxη
2p2

, a = −d−1
2

, b = 1
2

and α = 3
2
, c = a0c0−a2maxη

2p2

a2maxη
2p2

,

a = −d−2
2

, b = 3
2

– note that because of (A2), c0 > 0 and η2 < a0c0
a2maxp

2 we have

Re c > 0) we obtain
∫ ∞

0

e−ReλtC4(t)dt

=

∫ ∞

0

Cθ

(
a2max

amina0

) d
2

e−c0t
[

1F1

(
d

2
;
1

2
;
a2maxη

2p2t

a0

)

+ 2
Γ
(
d+1
2

)

Γ
(
d
2

)

(
a2maxη

2p2t

a0

) 1
2

1F1

(
d+ 1

2
;
3

2
;
a2maxη

2p2t

a0

)] 1
p

dt

6Cθ

(
a2max

amina0

) d
2
(∫ ∞

0

e−c0tdt

) 1
q
(∫ ∞

0

e−c0t1F1

(
d

2
;
1

2
;
a2maxη

2p2t

a0

)

dt

+ 2
Γ
(
d+1
2

)

Γ
(
d
2

)

∫ ∞

0

(
a2maxη

2p2t

a0

) 1
2

e−c0t1F1

(
d+ 1

2
;
3

2
;
a2maxη

2p2t

a0

)

dt

) 1
p

=CθM
d
2

(
1

c0

) 1
q
((

a2maxη
2p2

a0

)−1 ∫ ∞

0

e
− a0c0

a2maxη
2p2

s
1F1

(
d

2
;
1

2
; s

)

ds

+ 2
Γ
(
d+1
2

)

Γ
(
d
2

)

(
a2maxη

2p2

a0

)−1 ∫ ∞

0

s
1
2 e

− a0c0
a2maxη

2p2
s
1F1

(
d+ 1

2
;
3

2
; s

)

ds

) 1
p
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=CθM
d
2

(
1

c0

)((
a2maxη

2p2

a0c0

)−1 ∫ ∞

0

e
−
(

a0c0
a2maxη

2p2
−1

)

s

1F1

(

−d− 1

2
;
1

2
;−s

)

ds

+ 2
Γ
(
d+1
2

)

Γ
(
d
2

)

(
a2maxη

2p2

a0c0

)−1 ∫ ∞

0

s
1
2 e

−
(

a0c0
a2maxη

2p2
−1

)

s

1F1

(

−d− 2

2
;
3

2
;−s

)

ds

) 1
p

=CθM
d
2

(
1

c0

)(
a0c0

a0c0 − a2maxη
2p2

) 1
p
(

2F1

(

−d− 1

2
, 1;

1

2
;− a2maxη

2p2

a0c0 − a2maxη
2p2

)

+ π
1
2
Γ
(
d+1
2

)

Γ
(
d
2

)

(
a2maxη

2p2

a0c0 − a2maxη
2p2

) 1
2

2F1

(

−d − 2

2
,
3

2
;
3

2
;− a2maxη

2p2

a0c0 − a2maxη
2p2

)) 1
p

.

Finally, to obtain C7 we must use that 2F1 is strictly monotonically decreasing in
]−∞, 0] as well as the inequalities

a0c0
a0c0 − a2maxη

2p2
6

1

1− ϑ
and

a2maxη
2p2

a0c0 − a2maxη
2p2

6
ϑ

1− ϑ
.(4.42)

(2): From c0 := Reλ − ω, Hölder’s inequality (with 1
p
+ 1

q
= 1 and 1 6 p < ∞),

the transformation theorem (with transformation Φ(t) = a2maxη
2p2t

a0
), formula (4.30)

(with a = d+1
2

, b = 1
2
, x = s and a = d+2

2
, b = 3

2
, x = s) and formula (4.31) (with

α = 1
2
, c = a0c0−a2maxη

2p2

a2maxη
2p2

, a = −d
2
, b = 1

2
and α = 1, c = a0c0−a2maxη

2p2

a2maxη
2p2

, a = −d−1
2

,

b = 3
2

– note that because of (A2), c0 > 0 and η2 < a0c0
a2maxp

2 we have Re c > 0) we
obtain
∫ ∞

0

e−ReλtC5(t)dt

=

∫ ∞

0

Cθ

(
a2max

amina0

) d+1
2

e−c0t (tamin)
− 1

2

[
Γ
(
d+1
2

)

Γ
(
d
2

) 1F1

(
d+ 1

2
;
1

2
;
a2maxη

2p2t

a0

)

+ 2
Γ
(
d+2
2

)

Γ
(
d
2

)

(
a2maxη

2p2t

a0

) 1
2

1F1

(
d+ 2

2
;
3

2
;
a2maxη

2p2t

a0

)] 1
p

dt

6Cθ

(
a2max

amina0

) d+1
2

a
− 1

2
min

(∫ ∞

0

t−
1
2 e−c0tdt

) 1
q

·
(
Γ
(
d+1
2

)

Γ
(
d
2

)

∫ ∞

0

t−
1
2 e−c0t1F1

(
d+ 1

2
;
1

2
;
a2maxη

2p2t

a0

)

dt

+ 2
Γ
(
d+2
2

)

Γ
(
d
2

)

(
a2maxη

2p2

a0

) 1
2
∫ ∞

0

e−c0t1F1

(
d+ 2

2
;
3

2
;
a2maxη

2p2t

a0

)

dt

) 1
p

=CθM
d+1
2

((
1

c0

) 1
2

Γ

(
1

2

))
1
q

a
− 1

2
min

·
(
Γ
(
d+1
2

)

Γ
(
d
2

)

(
a2maxη

2p2

a0

)− 1
2
∫ ∞

0

s−
1
2 e

− a0c0
a2maxη

2p2
s
1F1

(
d+ 1

2
;
1

2
; s

)

ds

+ 2
Γ
(
d+2
2

)

Γ
(
d
2

)

(
a2maxη

2p2

a0

)− 1
2
∫ ∞

0

e
− a0c0

a2maxη
2p2

s
1F1

(
d+ 2

2
;
3

2
; s

)

ds

) 1
p
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=CθM
d+1
2

(
1

c0

) 1
2 Γ
(
1
2

)

a
1
2
min

·
(

Γ
(
d+1
2

)

Γ
(
1
2

)
Γ
(
d
2

)

(
a2maxη

2p2

a0c0

)− 1
2
∫ ∞

0

s−
1
2 e

−
(

a0c0
a2maxη

2p2
−1

)

s

1F1

(

−d
2
;
1

2
;−s

)

ds

+ 2
Γ
(
d+2
2

)

Γ
(
1
2

)
Γ
(
d
2

)

(
a2maxη

2p2

a0c0

)− 1
2
∫ ∞

0

e
−
(

a0c0
a2maxη

2p2
−1

)

s

1F1

(

−d− 1

2
;
3

2
;−s

)

ds

) 1
p

=CθM
d+1
2

(
1

c0

) 1
2 Γ
(
1
2

)

a
1
2
min

(
a0c0

a0c0 − a2maxη
2p2

) 1
2p

·
(
Γ
(
d+1
2

)

Γ
(
d
2

) 2F1

(

−d
2
,
1

2
;
1

2
;− a2maxη

2p2

a0c0 − a2maxη
2p2

)

+ 2
Γ
(
d+2
2

)

Γ
(
1
2

)
Γ
(
d
2

)

(
a2maxη

2p2

a0c0 − a2maxη
2p2

) 1
2

2F1

(

−d− 1

2
, 1;

3

2
;− a2maxη

2p2

a0c0 − a2maxη
2p2

)) 1
p

.

Finally, to obtain C8 we use again that 2F1 is strictly monotonically decreasing in
]−∞, 0] and the inequalities (4.42).



5 The complex Ornstein-Uhlenbeck

operator in Lp(Rd,CN )

In this chapter we apply semigroup theory to the Ornstein-Uhlenbeck operator

[L0v] (x) := A△v(x) + 〈Sx,∇v(x)〉 , x ∈ Rd, d > 2,

in Lp(Rd,CN) for 1 6 p 6 ∞, where v : Rd → CN , A ∈ CN,N , S ∈ Rd,d skew-
symmetric and N ∈ N.

In Section 5.1 we introduce the Ornstein-Uhlenbeck semigroup (T0(t))t>0 by the
heat kernel of L0 as

[T0(t)v] (x) :=

∫

Rd

H0(x, ξ, t)v(ξ)dξ, t > 0, x ∈ Rd.

Assuming (A1), (A2) and (A5) for K = C, we show in Theorem 5.1–5.3 that
(T0(t))t>0 is a strongly continuous semigroup in Lp(Rd,CN) for every 1 6 p < ∞.

Hence, we can define Ap : D(Ap) ⊆ Lp(Rd,CN) → Lp(Rd,CN), the infinitesimal
generator of (T0(t))t>0 for every 1 6 p < ∞. Assuming (A1), (A2) and (A5) for
K = C, we prove in Corollary 5.7 that the resolvent equation for Ap, which is

(λI − Ap) v = g,

admits a unique solution v⋆ ∈ D(Ap) for every g ∈ Lp(Rd,CN) and λ ∈ C with
Reλ > 0. This follows from some applications of abstract semigroup theory, [34,
II.1].

In Section 5.2 we derive a-priori estimates for the resolvent equation for Ap in
exponentially weighted Lp-spaces. Assuming (A1), (A2) and (A5) for K = C,
we prove in Theorem 5.8 that the solution v⋆ belongs to W 1,p

θ (Rd,CN) for ev-
ery g ∈ Lpθ(R

d,CN) and λ ∈ C with Reλ > 0. In particular, we conclude that
D(Ap) ⊆W 1,p(Rd,CN) for every 1 6 p <∞.

In Section 5.3–5.6 we analyze the relation between the abstract Ornstein-Uhlen-
beck operator Ap and the formal Ornstein-Uhlenbeck operator L0 and derive a
precise characterization of the maximal domain D(Ap), which means that we solve
the identification problem for the Ornstein-Uhlenbeck operator in Lp(Rd,CN) for
1 < p <∞. This approach comes originally from [71] and [73], where such a result
was proved for the scalar real-valued Ornstein-Uhlenbeck operator. The procedure
is structured as follows:

In Section 5.3, assuming (A1), (A2) and (A5) for K = C, we prove in Theorem
5.10 that the Schwartz space S(Rd,CN) is a core for the infinitesimal generator
(Ap,D(Ap)) for every 1 6 p < ∞. The main idea of the proof comes from [71,
Proposition 2.2 and 3.2] and partially from [34, II.2.13].
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In Section 5.4 we consider the formal complex-valued Ornstein-Uhlenbeck oper-
ator L0 : Dp

loc(L0) ⊆ Lp(Rd,CN) → Lp(Rd,CN) on its domain

Dp
loc(L0) :=

{
v ∈ W 2,p

loc (R
d,CN) ∩ Lp(Rd,CN) | L0v ∈ Lp(Rd,CN)

}
, 1 < p <∞.

Assuming (A3), (A4) and (A5) for 1 < p < ∞ and K = C, we prove in Theorem
5.13 that the resolvent equation for L0, which is given by

(λI − L0) v = g,

admits a unique solution v⋆ ∈ Dp
loc(L0) for every g ∈ Lp(Rd,CN) and λ ∈ C with

Reλ > 0. The main idea of the proof comes from [73, Theorem 2.2 and Remark
2.3] for the scalar real-valued case. But we refer also to [15, Theorem 3.1] for the
special case d = 2 with A ∈ RN,N . In contrast to [73] and [15], our proof requires an
additional Lp-dissipativity condition stating that for fixed 1 < p < ∞ there exists
some positive constant γA > 0 such that

|z|2Re 〈w,Aw〉+ (p− 2)Re 〈w, z〉Re 〈z, Aw〉 > γA|z|2|w|2 ∀ z, w ∈ CN .(5.1)

This condition seems to be new in the literature and guarantees that the operator
L0 is a dissipative operator in Lp(Rd,CN).

In Section 5.5 we derive a complete characterization of the Lp-dissipativity con-
dition (5.1) in terms of the antieigenvalues of the diffusion matrix A. Assuming
A ∈ KN,N for K ∈ {R,C}, we prove in Theorem 5.18 that (5.1) is satisfied if and
only if

µ1(A) := inf
w∈KN

w 6=0
Aw 6=0

Re 〈w,Aw〉
|w||Aw| >

|p− 2|
p

, 1 < p <∞,(5.2)

for N > 2 (if K = R) and N > 1 (if K = C), where µ1(A) denotes the first
antieigenvalue of A, see [47]. The antieigenvalue condition (5.2) for the matrix A
is nothing but a p-dependent lower bound for the first antieigenvalue of A. In case
of N = 1 and K = R, condition (5.1) is equivalent to A > 0. The main idea of the
proof is to apply the Lagrange multiplier method twice, first in the z component
and afterwards in the w component. Concluding, for normal matrices A and for
Hermitian positive-definite matrices A we specify well known explicit expressions
for µ1(A) in terms of the eigenvalues of A. These representations come originally
from [49, Theorem 5.1] for normal matrices A and from [53, 7.4.P4] for Hermitian
positive-definite matrices A.

In Section 5.6, assuming (A1)–(A5) for 1 < p < ∞ and K = C, we prove that
the abstract and the formal Ornstein-Uhlenbeck operator Ap and L0, respectively,
coincide on D(Ap) and that the maximal domain D(Ap) equals Dp

loc(L0). The main
idea for the first part of the proof comes from [71, Proposition 2.2 and 3.2], where
such a result was proved for the scalar real-valued case.

In Section 5.7–5.8 we derive a second characterization of the maximal domain
D(Ap), which even contains second order derivatives. We stress that this additional
characterization is not necessary to prove the main result from Theorem 1.8, but
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later in Section 10.1 we will apply the result for equivariant evolution equations.
The approach is based on the results from Section 5.3–5.6 and comes originally
from [73]. The procedure is structured as follows:

In Section 5.7 we investigate abstract Cauchy problems

vt(t) =Apv(t) + f(t), t ∈]0, T ],
v(0) =v0, t = 0,

in Lp(Rd,CN), 1 6 p < ∞, for the infinitesimal generator Ap. Recall that Ap
coincides with L0 if we require the assumptions (A1)–(A5) for 1 < p < ∞ and
K = C. Assuming (A1), (A2) and (A5) for 1 < p <∞ and K = C and considering
v0 ∈ Lpθ(R

d,CN) and a time-independent inhomogeneity f ∈ Lpθ(R
d,CN), we prove

in Theorem 5.22 and Theorem 5.23 spatial Lpθ-regularity results for the mild solu-
tion of the homogeneous and inhomogeneous Cauchy problem. Their proofs follow
directly from Theorem 5.1. Assuming (A1)–(A5) for 1 < p < ∞ and K = C, we
prove in Theorem 5.24 a time-space Lp-regularity result for the mild solution of the
inhomogeneous problem. The main idea of the proof comes from [73, Theorem 3.4]
for the scalar real-valued case and is based on an application of [67, Proposition
6.1.3] and [62, IV. Theorem 9.1].

In Section 5.8 we derive a further and even stronger characterization of the max-
imal domain D(Ap) = Dp

loc(L0). Recall the decomposition L0v = Ldiff
0 v + Ldrift

0 v of
the Ornstein-Uhlenbeck operator into diffusion and drift term

[
Ldiff

0 v
]
(x) := A△v(x),

[
Ldrift

0 v
]
(x) := 〈Sx,∇v(x)〉

with domains

Dp
max(Ldiff

0 ) :=W 2,p(Rd,CN),

Dp
max(Ldrift

0 ) :=
{
v ∈ Lp(Rd,CN) | 〈S·,∇v〉 ∈ Lp(Rd,CN)

}

for 1 < p < ∞, where 〈S·,∇v〉 is meant in the sense of distributions. Assuming
(A1)–(A5) for 1 < p <∞ and K = C, we prove in Theorem 5.25 that the maximal
domain Dp

loc(L0) of the Ornstein-Uhlenbeck operator coincides with the intersection
of the domains of its diffusion and drift part

Dp
loc(L0) = Dp

max(L0) := Dp
max(Ldiff

0 ) ∩ Dp
max(Ldrift

0 )

i.e. Dp
loc(L0) coincides with

Dp
max(L0) :=

{
v ∈ W 2,p(Rd,CN) | 〈S·,∇v〉 ∈ Lp(Rd,CN)

}
.

The main idea of this result comes from [73, Theorem 1] for the scalar real-valued
case. Assuming (A1)–(A5) for 1 < p <∞ and K = C and considering the norms

‖v‖Ap
:= ‖Apv‖Lp(Rd,CN ) + ‖v‖Lp(Rd,CN ) = ‖L0v‖Lp(Rd,CN ) + ‖v‖Lp(Rd,CN ) ,

‖v‖L0
:= ‖v‖W 2,p(Rd,CN ) + ‖〈S·,∇v〉‖Lp(Rd,CN ) ,

for v ∈ Dp
max(L0), we prove in Corollary 5.26 that these norms are equivalent, i.e.

there exist C1, C2 > 1 such that

C1 ‖v‖L0
6 ‖v‖Ap

6 C2 ‖v‖L0
∀ v ∈ Dp

max(L0).
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Requiring the same assumptions, we prove in Corollary 5.27 that the unique solution
v⋆ ∈ Dp

max(L0) of the resolvent equation for L0 with g ∈ Lp(Rd,CN) satisfies

‖v⋆‖W 2,p(Rd,CN ) 6 C ‖g‖Lp(Rd,CN ) , ‖〈S·,∇v⋆〉‖Lp(Rd,CN ) 6 C ‖g‖Lp(Rd,CN ) .

For the sake of completeness note that, assuming (A1)–(A5) for 1 < p <∞ and
K = C, every λ ∈ C of the form

λ = −λ(ω)− i
k∑

l=1

nlσl, nl ∈ Z, ω ∈ R, λ(ω) ∈ σ(ω2A),

belongs to the essential spectrum σess(L0) of L0 in Lp(Rd,CN). Hence, L0 is not
sectorial in Lp(Rd,CN) and (T0(t))t>0 is not analytic on Lp(Rd,CN), whenever
S 6= 0. These results will be proved later in Section 7.4 for more general perturbed
Ornstein-Uhlenbeck operators. Their proofs combine and extend the results from
[71] and [15].

5.1 Application of semigroup theory

Let us consider the Ornstein-Uhlenbeck kernel of L0 from Theorem 4.4 (with
B = 0)

H0(x, ξ, t) = (4πtA)−
d
2 exp

(

− (4tA)−1
∣
∣etSx− ξ

∣
∣
2
)

and the family of mappings (T0(t))t>0 given by

[T0(t)v] (x) :=

{∫

Rd H0(x, ξ, t)v(ξ)dξ , t > 0

v(x) , t = 0
, x ∈ Rd(5.3)

on the (complex-valued) Banach space
(
Lp(Rd,CN), ‖·‖Lp

)
, 1 6 p 6 ∞. In the

scalar real-valued case, formula (5.3) is due to Kolmogorov, [58]. The next three
theorems show that the family of mappings (T0(t))t>0 defined in (5.3) generates

a strongly continuous semigroup on Lp(Rd,CN) for every 1 6 p < ∞. In order
to show exponential decay of the solutions of the resolvent equation via a-priori
estimates, we have to prove the boundedness of T0 and its derivatives up to order
2 in exponentially weighted function spaces.

Theorem 5.1 (Boundedness on Lpθ(R
d,CN)). Let the assumptions (A1), (A2) and

(A5) be satisfied for 1 6 p 6 ∞ and K = C. Then for every radial weight function
θ ∈ C(Rd,R) of exponential growth rate η > 0 and for every v ∈ Lpθ(R

d,CN)

‖T0(t)v‖Lp
θ
(Rd,CN ) 6 C4(t) ‖v‖Lp

θ
(Rd,CN ) , t > 0,(5.4)

‖DiT0(t)v‖Lp
θ
(Rd,CN ) 6 C5(t) ‖v‖Lp

θ
(Rd,CN ) , t > 0, i = 1, . . . , d,(5.5)

‖DjDiT0(t)v‖Lp
θ(R

d,CN ) 6 C6(t) ‖v‖Lp
θ(R

d,CN ) , t > 0, i, j = 1, . . . , d,(5.6)
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where the constants C4+|β|(t) = C4+|β|(t; b0 = 0) are from Section 4.3 for every
|β| = 0, 1, 2, i.e.

C4(t; b0 = 0) =CθM
d
2

[

1F1

(
d

2
;
1

2
; κt

)

+ 2
Γ
(
d+1
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 1

2
;
3

2
; κt

)] 1
p

,

C5(t; b0 = 0) =CθM
d+1
2 (tamin)

− 1
2

[
Γ
(
d+1
2

)

Γ
(
d
2

) 1F1

(
d+ 1

2
;
1

2
; κt

)

+ 2
Γ
(
d+2
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 2

2
;
3

2
; κt

)] 1
p

,

C6(t; b0 = 0) =CθM
d+2
2 (tamin)

−1

[
Γ
(
d+2
2

)

Γ
(
d
2

) 1F1

(
d+ 2

2
;
1

2
; κt

)

+ 2
Γ
(
d+3
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 3

2
;
3

2
; κt

)

+
δij
2
M−1

1F1

(
d

2
;
1

2
; κt

)

+ δijM
−1Γ

(
d+1
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 1

2
;
3

2
; κt

)] 1
p

.

In case p = ∞ they are given by C4+|β|(t; b0 = 0) with p = 1, where M := a2max

amina0
> 1

and κ := a2maxη
2p2

a0
> 0. Note that C4+|β|(t) ∼ t

−p|β|+d+|β|−1
2p e

κ
p
t as t → ∞ and

C4+|β|(t) ∼ t−
|β|
2 as t→ 0 for every |β| = 0, 1, 2.

Proof. Let v ∈ Lpθ(R
d,CN). In the following β ∈ Nd

0 denotes a d-dimensional multi-
index with |β| 6 2 and we will use the notation

Dβv =







v ,|β| = 0

Div ,|β| = 1

DjDiv ,|β| = 2

, DβH0 =







H0 ,|β| = 0

DiH0 ,|β| = 1

DjDiH0 ,|β| = 2

, Kβ =







K ,|β| = 0

Ki ,|β| = 1

Kji ,|β| = 2

where i, j = 1, . . . , d. Note that H0(x, ξ, t) = H(x, ξ, t) since we have B = 0.
Moreover, in this proof K, Ki and Kji are given by (4.24), (4.26) and (4.28)
with B = 0. To show (5.4), (5.5) and (5.6) for 1 6 p < ∞ we use (5.3), the
transformation theorem (with transformation Φ(ξ) = etSx−ξ in ξ, Φ(x) = etSx−ψ
in x), (4.24), (4.26), (4.28), the triangle inequality, Hölder’s inequality (with q such
that 1

p
+ 1

q
= 1), Fubini’s theorem, (W1)–(W3), Lemma 4.6 (1),(2),(3)

∥
∥DβT0(t)v

∥
∥
L
p
θ

=

(∫

Rd

θp(x)
∣
∣Dβ [T0(t)v] (x)

∣
∣
p
dx

) 1
p

=

(∫

Rd

θp(x)

∣
∣
∣
∣

∫

Rd

[
DβH0(x, ξ, t)

]
v(ξ)dξ

∣
∣
∣
∣

p

dx

) 1
p

=

(∫

Rd

θp(x)

∣
∣
∣
∣

∫

Rd

Kβ(ψ, t)v(etSx− ψ)dψ

∣
∣
∣
∣

p

dx

) 1
p

6

(∫

Rd

(∫

Rd

θ(x)
∣
∣Kβ(ψ, t)

∣
∣
2

∣
∣v(etSx− ψ)

∣
∣ dψ

)p

dx

) 1
p
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6

(
∫

Rd

(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2
dψ

) p
q
∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2

(
θ(x)

∣
∣v(etSx− ψ)

∣
∣
)p
dψdx

) 1
p

=

(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2
dψ

) 1
q
(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2

∫

Rd

(
θ(x)

∣
∣v(etSx− ψ)

∣
∣
)p
dxdψ

) 1
p

=

(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2
dψ

) 1
q
(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2

∫

Rd

(
θ(e−tS(y + ψ)) |v(y)|

)p
dydψ

) 1
p

6

(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2
dψ

) 1
q
(∫

Rd

Cp
θ e
ηp|ψ| ∣∣Kβ(ψ, t)

∣
∣
2

∫

Rd

(θ(y) |v(y)|)p dydψ
)1

p

6Cθ

(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2
dψ

) p−1
p
(∫

Rd

eηp|ψ|
∣
∣Kβ(ψ, t)

∣
∣
2
dψ

) 1
p

‖v‖Lp
θ

6C4+|β|(t; b0 = 0) ‖v‖Lp
θ

for t > 0, if |β| = 0 and for t > 0, if |β| = 1 or |β| = 2. Similarly, to show (5.4), (5.5)
and (5.6) for p = ∞ we use (5.3), the transformation theorem (with transformation
Φ(ξ) = etSx− ξ in ξ and Φ(x) = etSx− ψ in x), (4.24), (4.26), (4.28), the triangle
inequality, (W1)–(W3), Lemma 4.6 (1),(2),(3) and obtain
∥
∥DβT0(t)v

∥
∥
L∞
θ

=ess sup
x∈Rd

θ(x)
∣
∣Dβ [T0(t)v] (x)

∣
∣

=ess sup
x∈Rd

θ(x)

∣
∣
∣
∣

∫

Rd

[
DβH0(x, ξ, t)

]
v(ξ)dξ

∣
∣
∣
∣

=ess sup
x∈Rd

θ(x)

∣
∣
∣
∣

∫

Rd

Kβ(ψ, t)v(etSx− ψ)dψ

∣
∣
∣
∣

6ess sup
x∈Rd

∫

Rd

θ(x)
∣
∣Kβ(ψ, t)

∣
∣
2

∣
∣v(etSx− ψ)

∣
∣ dψ

6

∫

Rd

ess sup
x∈Rd

θ(x)
∣
∣Kβ(ψ, t)

∣
∣
2

∣
∣v(etSx− ψ)

∣
∣ dψ

=

∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2
ess sup
y∈Rd

θ(e−tS(y + ψ)) |v(y)| dψ

6Cθ

(∫

Rd

eη|ψ|
∣
∣Kβ(ψ, t)

∣
∣
2
dψ

)

‖v‖L∞
θ
6 C4+|β|(t; b0 = 0) ‖v‖L∞

θ
.

Theorem 5.2 (Semigroup on Lp(Rd,CN)). Let the assumptions (A1), (A2) and
(A5) be satisfied for 1 6 p 6 ∞ and K = C. Then the operators (T0(t))t>0 given by

(5.3) generate a semigroup on Lp(Rd,CN), i.e. T0(t) : Lp(Rd,CN) → Lp(Rd,CN)
is linear and bounded for every t > 0 and satisfies the semigroup properties

T0(0) = I,(5.7)

T0(t)T0(s) = T0(t+ s), ∀ s, t > 0.(5.8)

Proof. The boundedness of T0(t) in Lp(Rd,CN) for every t > 0 can be deduced
from (5.4) (with θ ≡ 1, η = 0, Cθ = 1). The linearity of T0(t) and property (5.7)
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follow from the definition of T0(t) in (5.3). Property (5.8) can easily be verified
by using (5.3), Lemma 4.5 (with B = 0, i.e. with H0 instead of H) and Fubini’s
theorem

[T0(t) (T0(s)v)] (x) =

∫

Rd

H0(x, ξ̃, t) [T0(s)v] (ξ̃)dξ̃

=

∫

Rd

H0(x, ξ̃, t)

∫

Rd

H0(ξ̃, ξ, s)v(ξ)dξdξ̃

=

∫

Rd

∫

Rd

H0(x, ξ̃, t)H0(ξ̃, ξ, s)dξ̃v(ξ)dξ

=

∫

Rd

H0(x, ξ, t+ s)v(ξ)dξ = [T0(t+ s)v] (x), x ∈ Rd.

The next theorem states that the semigroup (T0(t))t>0 is strongly continuous on

Lp(Rd,CN) for every 1 6 p <∞, which justifies to define its infinitesimal generator.

Theorem 5.3 (Strong continuity on Lp(Rd,CN)). Let the assumptions (A1), (A2)
and (A5) be satisfied for 1 6 p <∞ and K = C. Then (T0(t))t>0 is a C0-semigroup

(or strongly continuous semigroup) on Lp(Rd,CN), i.e.

lim
t↓0

‖T0(t)v − v‖Lp(Rd,CN ) = 0 ∀ v ∈ Lp(Rd,CN).(5.9)

Proof. 1. Let us define the (d-dimensional) diffusion semigroup (Gaussian
semigroup, heat semigroup)

[G(t, 0)v] (y) :=

∫

Rd

H0(e
−tSy, ξ, t)v(ξ)dξ

=

∫

Rd

(4πtA)−
d
2 exp

(
− (4tA)−1 |y − ξ|2

)
v(ξ)dξ

(5.10)

then we have [T0(t)v] (x) = [G(t, 0)v] (etSx). Let 1 6 p < ∞. Motivated by [29],
we consider the decomposition

‖T0(t)v − v‖Lp 6
∥
∥[G(t, 0)v] (etS·)− v(etS·)

∥
∥
Lp +

∥
∥v(etS·)− v(·)

∥
∥
Lp

=: ‖v1(·, t)‖Lp + ‖v2(·, t)‖Lp

Here and in the sequel of the proof we abbreviate ‖·‖Lp(Rd,CN ) by ‖·‖Lp.
2. First we compute the v1-term. Therefore, we use the transformation theorem
with Φ(x) = etSx and consider the decomposition

‖v1(·, t)‖Lp =
∥
∥[G(t, 0)v] (etS·)− v(etS·)

∥
∥
Lp = ‖[G(t, 0)v] (·)− v(·)‖Lp

6

∥
∥
∥
∥

∫

Rd

H0(e
−tS·, ξ, t) (v(ξ)− v(·)) dξ

∥
∥
∥
∥
Lp

+

∥
∥
∥
∥

(∫

Rd

H0(e
−tS ·, ξ, t)dξ − IN

)

v(·)
∥
∥
∥
∥
Lp

=: ‖v3(·, t)‖Lp + ‖v4(·, t)‖Lp
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3. Let us consider the v4-term. Using the transformation theorem (with transfor-
mation Φ(ξ) = y − ξ) and Lemma 4.7 (1) (with B = 0), we obtain

‖v4(·, t)‖Lp

=

(∫

Rd

∣
∣
∣
∣

(∫

Rd

H0(e
−tSy, ξ, t)dξ − IN

)

v(y)

∣
∣
∣
∣

p

dy

) 1
p

=

(∫

Rd

∣
∣
∣
∣

(∫

Rd

(4πtA)−
d
2 exp

(
− (4tA)−1 |y − ξ|2

)
dξ − IN

)

v(y)

∣
∣
∣
∣

p

dy

) 1
p

=

(∫

Rd

∣
∣
∣
∣

(∫

Rd

K(ψ, t)dψ − IN

)

v(y)

∣
∣
∣
∣

p

dy

) 1
p

6

∣
∣
∣
∣

∫

Rd

K(ψ, t)dψ − IN

∣
∣
∣
∣
2

‖v‖Lp

= |IN − IN |2 ‖v‖Lp = 0 for t > 0.

4. The v3-term is much more delicate: First we need the following integral for
b0 = 0 and some constant δ0 > 0, compare proof of Lemma 4.6,

∫

|ψ|>δ0
|K(ψ, t)|2 dψ

6

∫

|ψ|>δ0
(4πtamin)

− d
2 e

−b0t− a0
4ta2max

|ψ|2
dψ

= (4πtamin)
− d

2 e−b0t
2π

d
2

Γ
(
d
2

)

∫ ∞

δ0

rd−1e
− a0

4ta2max
r2

dr

=

(
a2max

amina0

) d
2

e−b0t
2

Γ
(
d
2

)

∫ ∞
(

a0
4ta2max

) 1
2
δ0

sd−1e−s
2

ds =: C(t, δ0)

where we used the transformation theorem (with transformations for d-dimensional

polar coordinates and Φ(r) =
(

a0
4ta2max

) 1
2
r). Note, that C(t, δ0) → 0 as t → 0

for every fixed δ0 > 0. Using the transformation theorem (with transformations
Φ(ξ) = y − ξ and Φ(y) = y − ψ), the triangle inequality, Hölder’s inequality (with
q such that 1

p
+ 1

q
= 1), Fubini’s theorem, the Lp-continuity from [7, Satz 2.14(1)],

(4.24) and Lemma 4.6(1) (with η = 0 and b0 = 0) we obtain

‖v3(·, t)‖Lp

=

(∫

Rd

∣
∣
∣
∣

∫

Rd

H0(e
−tSy, ξ, t) (v(ξ)− v(y))dξ

∣
∣
∣
∣

p

dy

) 1
p

=

(∫

Rd

∣
∣
∣
∣

∫

Rd

(4πtA)−
d
2 exp

(
− (4tA)−1 |y − ξ|2

)
(v(ξ)− v(y))dξ

∣
∣
∣
∣

p

dy

) 1
p

=

(∫

Rd

∣
∣
∣
∣

∫

Rd

K(ψ, t) (v(y − ψ)− v(y))dψ

∣
∣
∣
∣

p

dy

) 1
p

6

(∫

Rd

(∫

Rd

|K(ψ, t)|2 |v(y − ψ)− v(y)| dψ
)p

dy

) 1
p
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6

(
∫

Rd

(∫

Rd

|K(ψ, t)|2 dψ
) p

q
∫

Rd

|K(ψ, t)|2 |v(y − ψ)− v(y)|p dψdy
) 1

p

=

(∫

Rd

|K(ψ, t)|2 dψ
) 1

q
(∫

Rd

|K(ψ, t)|2
∫

Rd

|v(y − ψ)− v(y)|p dydψ
) 1

p

=

(∫

Rd

|K(ψ, t)|2 dψ
) 1

q
(∫

Rd

|K(ψ, t)|2 ‖v(· − ψ)− v(·)‖pLp dψ

) 1
p

=

(∫

Rd

|K(ψ, t)|2 dψ
) 1

q
(∫

|ψ|6δ0
|K(ψ, t)|2 ‖v(· − ψ)− v(·)‖pLp dψ

+

∫

|ψ|>δ0
|K(ψ, t)|2 ‖v(· − ψ)− v(·)‖pLp dψ

) 1
p

6

(∫

Rd

|K(ψ, t)|2 dψ
) 1

q
(

εp0

∫

|ψ|6δ0
|K(ψ, t)|2 dψ

+ 2p−1

∫

|ψ|>δ0
|K(ψ, t)|2 (‖v(· − ψ)‖pLp + ‖v‖pLp) dψ

) 1
p

6

(∫

Rd

|K(ψ, t)|2 dψ
) 1

q
(

εp0

∫

Rd

|K(ψ, t)|2 dψ + 2p
∫

|ψ|>δ0
|K(ψ, t)|2 dψ ‖v‖pLp

) 1
p

6C
1
q

1 (t) (ε
p
0C1(t) + 2pC(t, δ0) ‖v‖pLp)

1
p

Hence, limt→0 ‖v3(·, t)‖Lp 6 ε0C1(0) = ε0M
d
2 . Now, choose ε0 > 0 arbitrary small.

5. Finally, let us consider the v2-term. Let ε > 0. Since C∞
c (Rd,CN) is dense

in Lp(Rd,CN) w.r.t. ‖·‖Lp for every 1 6 p < ∞, see [7, Satz 2.14(3)], we can
choose ϕε ∈ C∞

c (Rd,CN) such that ‖v − ϕε‖Lp 6
ε
3
. Since ϕε ∈ C∞

c (Rd,CN), ϕε is
uniformly continuous on supp(ϕε), i.e.

∀ ε0 > 0 ∃ δ0 = δ0(ε0) > 0 ∀ x, x0 ∈ supp(ϕε)

with |x− x0| 6 δ0 : |ϕε(x)− ϕε(x0)| 6 ε0

Choosing x0 := etSx we have

∃ t0 = t0(δ0) > 0 ∀ 0 6 t 6 t0 :
∣
∣etSx− x

∣
∣ 6 δ0

Thus, choosing ε0 := ε
(

3 |supp(ϕε)|
1
p

)−1

and combining this facts yields

∥
∥ϕε(e

tS ·)− ϕε(·)
∥
∥
Lp =

(∫

supp(ϕε)

∣
∣ϕε(e

tSx)− ϕε(x)
∣
∣
p

) 1
p

6 ε ∀ 0 6 t 6 t0(ε).

This implies

‖v2(·, t)‖Lp =
∥
∥v(etS ·)− v(·)

∥
∥
Lp

6
∥
∥v(etS·)− ϕε(e

tS ·)
∥
∥
Lp +

∥
∥ϕε(e

tS ·)− ϕε(·)
∥
∥
Lp + ‖ϕε(·)− v(·)‖Lp

6
ε

3
+
ε

3
+
ε

3
= ε ∀ 0 6 t 6 t0(ε).

Hence, limt→0 ‖v2(·, t)‖Lp 6 ε. Now, choose ε > 0 arbitrary small.
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Strong continuity on spaces of continuous functions. Note, that the original
Ornstein-Uhlenbeck semigroup is also strongly continuous in certain subspaces of
bounded uniformly continuous functions and certain subspaces of Hölder spaces.
These function spaces were analyzed in [29] for the first time.

Strong continuity on exponentially weighted function spaces. We suggest
that the Ornstein-Uhlenbeck semigroup (T0(t))t>0 is also strongly continuous on the

exponentially weighted spaces Lpθ(R
d,CN) for every 1 6 p <∞ and for every radi-

ally weight function θ ∈ C(Rd,R) of exponential growth rate η > 0. Moreover, one
can prove that the Ornstein-Uhlenbeck semigroup is strongly continuous on certain
exponentially weighted subspaces of bounded uniformly continuous functions.

Now, the infinitesimal generator Ap : D(Ap) ⊆ Lp(Rd,CN) → Lp(Rd,CN) of
the Ornstein-Uhlenbeck semigroup (T0(t))t>0 in Lp(Rd,CN) for 1 6 p < ∞, short
(Ap,D(Ap)), can be defined by, [34, II.1.2 Definition],

Apv := lim
t↓0

T0(t)v − v

t
, 1 6 p <∞

for every v ∈ D(Ap), where the domain (or maximal domain) of Ap is given by

D(Ap) :=

{

v ∈ Lp(Rd,CN) | lim
t↓0

T0(t)v − v

t
exists in Lp(Rd,CN)

}

=
{
v ∈ Lp(Rd,CN) | Apv ∈ Lp(Rd,CN)

}
.

Note that D(Ap) is a linear subspace of Lp(Rd,CN).
An application of [34, II.1.3 Lemma, II.1.4 Theorem] yields the following result:

Lemma 5.4. Let the assumptions (A1), (A2) and (A5) be satisfied for 1 6 p <∞
and K = C.
(1) The generator Ap : D(Ap) ⊆ Lp(Rd,CN) → Lp(Rd,CN) is a linear, closed and
densely defined operator that determines the semigroup (T0(t))t>0 uniquely.
(2) For every v ∈ D(Ap) and t > 0 we have

T0(t)v ∈ D(Ap)

d

dt
T0(t)v = T0(t)Apv = ApT0(t)v

(3) For every v ∈ Lp(Rd,CN) and every t > 0 we have

∫ t

0

T0(s)vds ∈ D(Ap)

(4) For every t > 0 we have

T0(t)v − v =Ap

∫ t

0

T0(s)vds , for v ∈ Lp(Rd,CN)

=

∫ t

0

T0(s)Apvds , for v ∈ D(Ap)
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Since (Ap,D(Ap)) is a closed operator on the Banach space Lp(Rd,CN) for every
1 6 p <∞, we can introduce

σ(Ap) := {λ ∈ C | λI −Ap is not bijective} spectrum of Ap,

ρ(Ap) :=C\σ(Ap) resolvent set of Ap,

R(λ,Ap) := (λI − Ap)
−1 , for λ ∈ ρ(Ap) resolvent of Ap.

In particular,
(

D(Ap), ‖·‖Ap

)

is a Banach space w.r.t. the graph norm of Ap

‖v‖Ap
:= ‖Apv‖Lp(Rd,CN ) + ‖v‖Lp(Rd,CN ) , v ∈ D(Ap),

see [34, B.1 Definition]. The next identities follow from [34, II.1.9 Lemma].

Lemma 5.5. Let the assumptions (A1), (A2) and (A5) be satisfied for 1 6 p <∞
and K = C. Then for every λ ∈ C and t > 0,

e−λtT0(t)v − v = (Ap − λI)

∫ t

0

e−λsT0(s)vds , for v ∈ Lp(Rd,CN),

=

∫ t

0

e−λsT0(s) (Ap − λI) vds , for v ∈ D(Ap).

By (5.4) from Theorem 5.1 (with θ ≡ 1, η = 0 and Cθ = 1) we have

∃ω0 ∈ R ∧ ∃M0 > 1 : ‖T0(t)‖L(Lp,Lp) 6M0e
ω0t ∀ t > 0,(5.11)

where M0 :=
(

a2max

amina0

)d
2

and ω0 := 0. For the next statement we refer to [34, II.1.10

Theorem].

Theorem 5.6. Let the assumptions (A1), (A2) and (A5) be satisfied for 1 6 p <∞
and K = C.
(1) If λ ∈ C is such that R(λ)v :=

∫∞
0
e−λsT0(s)vds exists for every v ∈ Lp(Rd,CN),

then

λ ∈ ρ(Ap) and R(λ,Ap) = R(λ).

(2) If λ ∈ C satisfies Reλ > ω0, then

λ ∈ ρ(Ap), R(λ,Ap) = R(λ)

and

‖R(λ,Ap)‖L(Lp,Lp) 6
M0

Reλ− ω0
.

Theorem 5.6(2) states that the complete right half–plane Reλ > ω0 belongs to
the resolvent set ρ(Ap). Therefore, the spectrum σ(Ap) is contained in the left
half–plane Reλ 6 ω0. The spectral bound s(Ap) of Ap, [34, II.1.12 Definition],
defined by

−∞ 6 s(Ap) := sup
λ∈σ(Ap)

Reλ 6 ω0 = 0 < +∞
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can be considered as the smallest value ω ∈ R such that the spectrum is contained
in the half–plane Reλ 6 ω. This value is an important characteristic for linear
operators.

A direct consequence of Theorem 5.6 is the following:

Corollary 5.7 (Solvability and uniqueness in Lp(Rd,CN)). Let the assumptions
(A1), (A2) and (A5) be satisfied for 1 6 p < ∞ and K = C. Moreover, let λ ∈ C

with Reλ > ω0. Then for every g ∈ Lp(Rd,CN) the resolvent equation

(λI − Ap) v = g

admits a unique solution v⋆ ∈ D(Ap), which is given by the integral expression

v⋆ = R(λ)g =

∫ ∞

0

e−λsT0(s)gds

=

∫ ∞

0

e−λs
∫

Rd

H0(·, ξ, s)g(ξ)dξds.

Moreover, the following resolvent estimate holds

‖v⋆‖Lp(Rd,CN ) 6
M0

Reλ− ω0
‖g‖Lp(Rd,CN ) .

5.2 Exponential decay

In this section we prove a-priori estimates for the solution v of the resolvent equation
(λI − Ap) v = g in exponentially weighted Lp-spaces. We show that the solution
v⋆ ∈ D(Ap) decays exponentially (at least) with the same rate as the inhomogeneity
g. Note, that this result needs neither an explicit representation for the domain
D(Ap) nor for the infinitesimal generator Ap. The proof requires only the integral
expression for v⋆ from Corollary 5.7.

Theorem 5.8 (A-priori estimates in Lpθ(R
d,CN)). Let the assumptions (A1), (A2)

and (A5) be satisfied for 1 6 p < ∞ and K = C. Moreover, let 0 < ϑ < 1
and λ ∈ C with Reλ > ω0. Then for every radially nondecreasing weight function
θ ∈ C(Rd,R) of exponential growth rate η > 0 with 0 6 η2 6 ϑa0(Reλ−ω0)

a2maxp
2 and for

every g ∈ Lpθ(R
d,CN) we have v⋆ ∈ W 1,p

θ (Rd,CN) with

‖v⋆‖Lp
θ(R

d,CN ) 6
C7

Reλ− ω0
‖g‖Lp

θ(R
d,CN ) ,(5.12)

‖Div⋆‖Lp
θ(R

d,CN ) 6
C8

(Reλ− ω0)
1
2

‖g‖Lp
θ(R

d,CN ) , i = 1, . . . , d,(5.13)

where v⋆ ∈ D(Ap) denotes the unique solution of (λI − Ap)v = g in Lp(Rd,CN)
and the λ-independent constants C7, C8 are given by Lemma 4.8 (with b0 = 0 and
ω = ω0).
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Proof. By Corollary 5.7 we have the representation

v⋆(x) =

∫ ∞

0

e−λt
∫

Rd

H0(x, ξ, t)g(ξ)dξdt,(5.14)

where H0(x, ξ, t) = H(x, ξ, t) since we have B = 0. In the following we make use of
the notation from Theorem 5.1 once more. To show (5.12) and (5.13) for 1 6 p <∞
we use (5.14), the transformation theorem (with transformation Φ(ξ) = etSx− ξ in
ξ and Φ(x) = etSx−ψ in x), (4.24) and (4.26) (with B = 0), the triangle inequality,
Hölder’s inequality (with q such that 1

p
+ 1

q
= 1), Fubini’s theorem, (W1)–(W4),

Lemma 4.8 (with b0 = 0 and ω = ω0) and obtain for every β ∈ Nd
0 with |β| ∈ {0, 1}

∥
∥Dβv⋆

∥
∥
L
p
θ

=

(∫

Rd

θp(x)
∣
∣Dβv⋆(x)

∣
∣
p
dx

) 1
p

=

(∫

Rd

θp(x)

∣
∣
∣
∣

∫ ∞

0

e−λt
∫

Rd

[
DβH0(x, ξ, t)

]
g(ξ)dξdt

∣
∣
∣
∣

p

dx

) 1
p

=

(∫

Rd

θp(x)

∣
∣
∣
∣

∫ ∞

0

e−λt
∫

Rd

Kβ(ψ, t)g(etSx− ψ)dψdt

∣
∣
∣
∣

p

dx

) 1
p

6

∫ ∞

0

e−Re λt

(∫

Rd

θp(x)

∣
∣
∣
∣

∫

Rd

Kβ(ψ, t)g(etSx− ψ)dψ

∣
∣
∣
∣

p

dx

) 1
p

dt

6

∫ ∞

0

e−Re λt

(∫

Rd

(∫

Rd

θ(x)
∣
∣Kβ(ψ, t)

∣
∣
2

∣
∣g(etSx− ψ)

∣
∣ dψ

)p

dx

) 1
p

dt

6

∫ ∞

0

e−Re λt

(∫

Rd

Z
p
q (t)

∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2

(
θ(x)

∣
∣g(etSx− ψ)

∣
∣
)p
dψdx

) 1
p

dt

=

∫ ∞

0

e−Re λtZ
1
q (t)

(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2

∫

Rd

(
θ(x)

∣
∣g(etSx− ψ)

∣
∣
)p
dxdψ

) 1
p

dt

=

∫ ∞

0

e−Re λtZ
1
q (t)

(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2

∫

Rd

(
θ(e−tS(y + ψ)) |g(y)|

)p
dydψ

) 1
p

dt

6

∫ ∞

0

e−Re λtZ
1
q (t)

(∫

Rd

Cp
θ e
ηp|ψ| ∣∣Kβ(ψ, t)

∣
∣
2

∫

Rd

θp(y) |g(y)|p dydψ
)1

p

dt

=

∫ ∞

0

e−Re λtCθ

(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2
dψ

) p−1
p
(∫

Rd

eηp|ψ|
∣
∣Kβ(ψ, t)

∣
∣
2
dψ

) 1
p

dt ‖g‖Lp
θ

6

∫ ∞

0

e−Re λtC4+|β|(t; b0 = 0)dt ‖g‖Lp
θ
6

C7+|β|

(Reλ− ω0)
1− |β|

2

‖g‖Lp
θ
,

where we used the abbreviation

Z(t) :=

∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2
dψ.

A superset of the domain of Ap. An application of Theorem 5.8 for θ ≡ 1 (with
η = 0 and Cθ = 1) shows that

D(Ap) ⊆W 1,p(Rd,CN), for every 1 6 p <∞.
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Second order derivatives. With the procedure as in the proof of Theorem 5.8
it is in general not possible to specify also an estimate for ‖DjDiv⋆‖Lp

θ
(Rd,CN ) since

C4+|β|(t) ∼ t−
|β|
2 as t → 0, cf. Theorem 5.1, and consequently we have the sin-

gularity t−1 at t = 0 for |β| = 2. In Hölder spaces, for instance, there one uses
interpolation theory to derive estimates for the second order derivatives, [67].

A-priori estimates for L0. We suggest that if we require additionally 1 < p <∞,
assumption (A3) and the Lp–antieigenvalue condition (A4), then we can actually
replace Ap by L0 and D(Ap) by Dp

loc(L0) in Theorem 5.8, compare Theorem 5.19
below.

5.3 A core for the infinitesimal generator

In the next three sections we investigate the relation between the formal Ornstein-
Uhlenbeck operator L0 and the abstract Ornstein-Uhlenbeck operator Ap and
derive a precise characterization of the maximal domain D(Ap), that is necessary
to prove our main result. The approach is motivated by [73] and [71], where this
was performed for the scalar real-valued Ornstein-Uhlenbeck operator.

In general, it is very difficult to identify maximal domains of infinitesimal gener-
ators, such as D(Ap). In the case of the Ornstein-Uhlenbeck operator (on Rd) we
suggest that there arises an additional complication caused by the unbounded (in
fact linearly growing) coefficients, that are contained in the drift term.

A useful concept to analyze subspaces of D(Ap) is the following, see [34, II.1.6
Definition].

Definition 5.9. A subspace D ⊂ D(Ap) of the maximal domain D(Ap) of the
linear operator Ap : D(Ap) ⊆ Lp(Rd,CN) → Lp(Rd,CN) with 1 6 p < ∞ is called
a core for (Ap,D(Ap)) if D is dense in D(Ap) with respect to the graph norm of
Ap

‖v‖Ap
:= ‖Apv‖Lp(Rd,CN ) + ‖v‖Lp(Rd,CN ) , v ∈ D(Ap).

The next theorem states that the Schwartz space S(Rd,CN) is a core for the in-
finitesimal generator (Ap,D(Ap)) of the Ornstein-Uhlenbeck semigroup (T0(t))t>0.
Moreover, it turns out that the formal Ornstein-Uhlenbeck operator L0 and the ab-
stract Ornstein-Uhlenbeck operator Ap coincide on the Schwartz space S(Rd,CN).
This is an extension of the real-valued scalar result in [71, Proposition 2.2 and 3.2]
to complex valued systems.

Theorem 5.10 (Core for the infinitesimal generator). Let the assumptions (A1),
(A2) and (A5) be satisfied for 1 6 p <∞ and K = C. Then:
(1) S ⊂ Lp(Rd,CN) is dense w.r.t. the Lp–norm ‖·‖Lp(Rd,CN ).
(2) S is a subspace of D(Ap), i.e. S ⊂ D(Ap), and

Apφ = L0φ for every φ ∈ S.



5.3 A core for the infinitesimal generator 81

(3) S is invariant under the semigroup (T0(t))t>0, i.e.

T0(t)S ⊆ S for every t > 0.

(4) S ⊂ D(Ap) is a core for (Ap,D(Ap)), i.e.

D(Ap) = S‖·‖Ap .

Proof. (1): Due to the inclusion

C∞
c (Rd,CN) ⊂ S(Rd,CN) ⊂ Lp(Rd,CN)

and since C∞
c (Rd,CN) is dense in Lp(Rd,CN) w.r.t. ‖·‖Lp for every 1 6 p <∞, we

deduce that S(Rd,CN) is also dense in Lp(Rd,CN) w.r.t. ‖·‖Lp for every 1 6 p <∞.
(2): Let φ ∈ S(Rd,CN) be arbitrary. In order to prove S ⊂ D(Ap) we must show
that

φ ∈ Lp(Rd,CN), L0φ ∈ Lp(Rd,CN), lim
t↓0

1

t
(T0(t)φ− φ) exists in Lp(Rd,CN).

1. Since S(Rd,CN) is a subspace of Lp(Rd,CN) for 1 6 p < ∞, we deduce
φ ∈ Lp(Rd,CN). Therefore, it is sufficient to show L0φ ∈ S(Rd,CN). Then we de-
duce L0φ ∈ Lp(Rd,CN) by the same argument. Since φ ∈ S(Rd,CN) ⊆ C∞(Rd,CN)
and since L0 has smooth coefficients we infer that L0φ ∈ C∞(Rd,CN). Considering
the operator

[L0φ] (x) = A△φ(x) + 〈Sx,∇φ(x)〉 = A
d∑

i=1

D2
i φ(x) +

d∑

i=1

d∑

j=1

SijxjDiφ(x)

and

xα̃Dβ̃ [L0φ] (x) = A
d∑

i=1

xα̃Dβ̃D2
i φ(x) +

d∑

i=1

d∑

j=1

Sijx
α̃xjD

β̃Diφ(x)

for α̃, β̃ ∈ Nd
0 and using the fact that φ is rapidly decreasing, we conclude from

(3.4) with α = α̃, β = β̃ + 2ei and α = α̃ + ej , β = β̃ + ei, that every term on
the right hand side vanishes as |x| goes to infinity. Hence, L0φ ∈ S. It remains to
verify that the limit exists in Lp(Rd,CN).
2. We first give a motivation how the limit looks like: Using the heat kernel
properties (H2) and (H3) with B = 0, in this case we have H(x, ξ, t) = H0(x, ξ, t)
and L∞ = L0, a formal computation shows

[Apφ] (x) := lim
t↓0

[T0(t)φ] (x)− φ(x)

t
= lim

t↓0

[
T0(t)− T0(0)

t− 0

]

φ(x)

=

[
d

dt
[T0(t)φ] (x)

]

t=0

=

[∫

Rd

d

dt
H0(x, ξ, t)φ(ξ)dξ

]

t=0

=

[

L0

∫

Rd

H0(x, ξ, t)φ(ξ)dξ

]

t=0

= L0

∫

Rd

δx(ξ)φ(ξ)dξ = [L0φ] (x).
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This suggests that the limit tends (pointwise) to Apφ(x) := L0φ(x) ∈ Lp(Rd,CN),
provided that all steps in the calculation are justified. We next prove that the limit
even exists in Lp(Rd,CN) w.r.t. ‖·‖Lp, which is indeed much more involved, [71,
Proposition 2.2 and 3.2].
3. Our aim is to apply Lebesgue’s dominated convergence theorem in Lp from [7,
Satz 1.23] with

ft(x) :=
[T0(t)φ] (x)− φ(x)

t
, f(x) := [L0φ] (x)

to deduce that ft, f ∈ Lp(Rd,CN) for t > 0 and ft → f in Lp(Rd,CN) as t ↓ 0.
We then directly conclude φ ∈ D(Ap), thus S(Rd,CN) ⊂ D(Ap). In particular, we
have Apφ := L0φ for every φ ∈ S(Rd,CN). To justify the application of dominated
convergence we must show that

(a) ft(x) → f(x) pointwise for a.e. x ∈ Rd as t ↓ 0,

(b) |ft(x)| 6 g(x) pointwise for a.e. x ∈ Rd and for every 0 < t 6 t0,

(c) g ∈ Lp(Rd,R),

where the function g will be determined during the proof. Before we start to verify
the properties (a)–(c) we simplify the term ft, [71, Proposition 2.2 and 3.2]: Since
φ ∈ S(Rd,CN), Taylor’s formula up to order 2 yields

φ(etSx− ψ) =φ(x) +

d∑

i=1

(
etSx− x− ψ

)

i
Diφ(x)

+
d∑

i=1

d∑

j=1

1

2

(
etSx− x− ψ

)

i

(
etSx− x− ψ

)

j
DjDiφ(x)

+Rx,2

(
etSx− x− ψ

)

with remainder

Rx,2 (z − x) =
∑

|β|=3

|β|
β!

(z − x)β
∫ 1

0

(1− τ)|β|−1Dβφ (x+ τ (z − x)) dτ

for z := etSx− ψ satisfying

|Rx,2 (z − x)| 6 CβCφ |z − x|3 ,(5.15)

where Cβ :=
∑

|β|=3
1
β!

and Cφ := max|β|=3 supy∈Rd

∣
∣Dβφ(y)

∣
∣. Thus, using (5.3),

the transformation theorem (with transformation Φ(ξ) = etSx− ξ) and (4.24) with
B = 0 we obtain

ft(x) :=
[T0(t)φ] (x)− φ(x)

t
=

1

t

[∫

Rd

H0(x, ξ, t)φ(ξ)dξ − φ(x)

]

=
1

t

[∫

Rd

K(ψ, t)φ
(
etSx− ψ

)
dψ − φ(x)

]
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=
1

t

[∫

Rd

K(ψ, t)dψ − IN

]

φ(x) +
1

t

∫

Rd

K(ψ, t)
d∑

i=1

(
etSx− x− ψ

)

i
Diφ(x)dψ

+
1

t

∫

Rd

K(ψ, t)
d∑

i=1

d∑

j=1

1

2

(
etSx− x− ψ

)

i

(
etSx− x− ψ

)

j
DjDiφ(x)dψ

+
1

t

∫

Rd

K(ψ, t)Rx,2

(
etSx− x− ψ

)
dψ =:

4∑

i=1

Ti(x, t), t > 0.

T1: Using Lemma 4.7 (1) with B = 0 the term T1 vanishes for every t > 0

T1(x, t) =
1

t

[∫

Rd

K(ψ, t)dψ − IN

]

φ(x) = 0.

T2: A decomposition of T2 leads to

T2(x, t) =
1

t

∫

Rd

K(ψ, t)
d∑

i=1

(
etSx− x− ψ

)

i
Diφ(x)dψ

=
1

t

∫

Rd

K(ψ, t)dψ
d∑

i=1

(
etSx− x

)

i
Diφ(x)−

1

t

d∑

i=1

∫

Rd

K(ψ, t)ψidψDiφ(x)

=
d∑

i=1

(
etSx− x

t

)

i

Diφ(x)

for every t > 0, where we used Lemma 4.7 (1) with B = 0 for the first and Lemma
4.7 (2) with B = 0 for the second term.
T3: Similarly, a decomposition of T3 leads to

T3(x, t) =
1

t

∫

Rd

K(ψ, t)

d∑

i=1

d∑

j=1

1

2

(
etSx− x− ψ

)

i

(
etSx− x− ψ

)

j
DjDiφ(x)dψ

=
1

2t

d∑

i=1

d∑

j=1

∫

Rd

K(ψ, t)ψiψjdψDjDiφ(x)

+
1

2t

d∑

i=1

d∑

j=1

∫

Rd

K(ψ, t)dψ
(
etSx− x

)

i

(
etSx− x

)

j
DjDiφ(x)

− 1

2t

d∑

i=1

d∑

j=1

∫

Rd

K(ψ, t)
[(
etSx− x

)

i
ψj +

(
etSx− x

)

j
ψi

]

dψDjDiφ(x)

=
1

2t

d∑

i=1

2tAD2
i φ(x) +

t

2

d∑

i=1

d∑

j=1

(
etSx− x

t

)

i

(
etSx− x

t

)

j

DjDiφ(x)

− 1

2t

d∑

i,j=1

[∫

Rd

K(ψ, t)ψjdψ(e
tSx− x)i +

∫

Rd

K(ψ, t)ψidψ(e
tSx− x)j

]

DjDiφ(x)

=A△φ(x) + t

2

d∑

i=1

d∑

j=1

(
etSx− x

t

)

i

(
etSx− x

t

)

j

DjDiφ(x)
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for every t > 0, where we used Lemma 4.7 (3), (1) and (2) with B = 0 for the first,
second and third term, respectively.
This yields a simplified representation for ft(x) for every t > 0 given by

ft(x) =A△φ(x) +
d∑

i=1

(
etSx− x

t

)

i

Diφ(x)

+
t

2

d∑

i=1

d∑

j=1

(
etSx− x

t

)

i

(
etSx− x

t

)

j

DjDiφ(x)

+
1

t

∫

Rd

K(ψ, t)Rx,2(e
tSx− x− ψ)dψ.

(5.16)

(a): Using limt↓0
1
t

(
etSx− x

)
= Sx we deduce that

[Apφ] (x) = lim
t↓0

[T0(t)φ] (x)− φ(x)

t
= lim

t↓0
ft(x)

=A△φ(x) + lim
t↓0

d∑

i=1

(
etSx− x

t

)

i

Diφ(x)

+ lim
t↓0

t

2

d∑

i=1

d∑

j=1

(
etSx− x

t

)

i

(
etSx− x

t

)

j

DjDiφ(x)

+ lim
t↓0

1

t

∫

Rd

K(ψ, t)Rx,2(e
tSx− x− ψ)dψ

=A△φ(x) + 〈Sx,∇φ(x)〉 = [L0φ] (x) = f(x),

i.e. ft(x) → f(x) pointwise for a.e. x ∈ Rd as t ↓ 0, provided that the last limit
tends to zeros. This can be seen as follows: Using (5.15), the inequality

(∣
∣etSx− x

∣
∣ + |ψ|

)3
6 4

(∣
∣etSx− x

∣
∣
3
+ |ψ|3

)

and

∫

Rd

|K(ψ, t)|2 |ψ|k =M
d
2 e−b0t

(
4a2max

a0

)k
2 Γ
(
d+k
2

)

Γ
(
d
2

) t
k
2 , t > 0, k ∈ N0(5.17)

with M := a2max

amina0
, B = 0 for k = 0 and k = 3, we obtain

∣
∣
∣
∣

1

t

∫

Rd

K(ψ, t)Rx,2(e
tSx− x− ψ)dψ

∣
∣
∣
∣

6
1

t

∫

Rd

|K(ψ, t)|2
∣
∣Rx,2(e

tSx− x− ψ)
∣
∣ dψ

6
CβCφ
t

∫

Rd

|K(ψ, t)|2
∣
∣etSx− x− ψ

∣
∣
3
dψ

6
CβCφ
t

∫

Rd

|K(ψ, t)|2
(∣
∣etSx− x

∣
∣ + |ψ|

)3
dψ
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6
4CβCφ
t

[∫

Rd

|K(ψ, t)|2 dψ
∣
∣etSx− x

∣
∣
3
+

∫

Rd

|K(ψ, t)|2 |ψ|3 dψ
]

=4CβCφM
d
2

[

t2
∣
∣
∣
∣

etSx− x

t

∣
∣
∣
∣

3

+
Γ
(
d+3
2

)

Γ
(
d
2

)

(
4a2max

a0

) 3
2

t
1
2

]

for every t > 0. Therefore, using limt↓0
1
t

(
etSx− x

)
= Sx once more, the right

hand side vanishes for a.e. x ∈ Rd as t ↓ 0. Note, that the inequality above follows
from a discrete version of Hölder’s inequality. The equality (5.17) can be proved in
the same way as in Lemma 4.6.
(b): Given some ε > 0 we choose t0 = t0(ε) > 0 such that

∣
∣1
t

(
etS − Id

)∣
∣ 6 |S|+ ε

for every 0 < t 6 t0. Then (5.16) yields

|ft(x)| 6A
d∑

i=1

∣
∣D2

i φ(x)
∣
∣+

d∑

i=1

∣
∣
∣
∣

etS − Id
t

∣
∣
∣
∣
|x| |Diφ(x)|

+
t

2

d∑

i=1

d∑

j=1

∣
∣
∣
∣

etS − Id
t

∣
∣
∣
∣

2

|x|2 |DjDiφ(x)|

+

∣
∣
∣
∣

1

t

∫

Rd

K(ψ, t)Rx,2(e
tSx− x− ψ)dψ

∣
∣
∣
∣

6A

d∑

i=1

∣
∣D2

i φ(x)
∣
∣+

d∑

i=1

(|S|+ ε) |x| |Diφ(x)|(5.18)

+
t0
2

d∑

i=1

d∑

j=1

(|S|+ ε)2 |x|2 |DjDiφ(x)|

+

∣
∣
∣
∣

1

t

∫

Rd

K(ψ, t)Rx,2(e
tSx− x− ψ)dψ

∣
∣
∣
∣

for every 0 < t 6 t0. Now the first three terms do not depend on t any more.
In particular, since φ ∈ S(Rd,CN), the first three terms belong to Lp(Rd,CN).
Therefore, it remains to estimate the last term in such a way, that the bound
doesn’t depend on t any more and belongs to Lp(Rd,CN) as a function of x. For
this purpose, we must handle the last term very carefully.

∣
∣
∣
∣

1

t

∫

Rd

K(ψ, t)Rx,2(e
tSx− x− ψ)dψ

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

1

t

∫

Rd

K(ψ, t)
∑

|β|=3

|β|
β!

(z − x)β
∫ 1

0

(1− τ)2Dβφ (x+ τ (z − x)) dτdψ

∣
∣
∣
∣
∣
∣

6
1

t

∑

|β|=3

|β|
β!

∫

Rd

|K(ψ, t)|2
∣
∣
∣(z − x)β

∣
∣
∣

∫ 1

0

(1− τ)2
∣
∣Dβφ (x+ τ (z − x))

∣
∣ dτdψ

6
4Cβ
t

∫

Rd

|K(ψ, t)|2
(∣
∣etSx− x

∣
∣
3
+ |ψ|3

)

max
|β|=3

sup
τ∈[0,1]

∣
∣Dβφ (x+ τ (z − x))

∣
∣ dψ

=
4Cβ
t

∫

Rd

|K(ψ, t)|2
(∣
∣etSx− x

∣
∣
3
+ |ψ|3

)

max
|β|=3

sup
τ∈[0,1]

∣
∣Dβφ (x+ τ (z − x))

∣
∣ dψ,
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where z := etSx−ψ, Cβ =
∑

|β|=3
1
β!

. We now must distinguish between four cases:
Let R > 1 be arbitrary.

Case 1: (|x| > R, |ψ| 6 |x|
4

). In this case we use φ ∈ S(Rd,CN), i.e. that φ has
nice behavior in the far-field. Given ε > 0 we now choose t0 = t0(ε) > 0 such
that both

∣
∣1
t

(
etS − Id

)∣
∣ 6 |S| + ε and t (|S|+ ε) 6

1
2

is satisfied for every
0 < t 6 t0, then we have
∣
∣x+ τ

(
etSx− x− ψ

)∣
∣ > |x| − τ

∣
∣etSx− x

∣
∣− τ |ψ| > |x| −

∣
∣etSx− x

∣
∣− |ψ|

>

(

1− t

∣
∣
∣
∣

etS − Id
t

∣
∣
∣
∣

)

|x| − |ψ| > (1− t (|S|+ ε)) |x| − |ψ| > |x|
2

− |ψ| > |x|
4
.

Moreover, since φ ∈ S(Rd,CN), we have

∀α, β ∈ Nd
0 ∃Cα,β > 0 :

∣
∣yαDβφ(y)

∣
∣ 6 Cα,β ∀ y ∈ Rd,

and therefore, for arbitrary R0 > 0
∣
∣Dβφ(y)

∣
∣ 6 Cα,β |y|−|α| ∀ y ∈ Rd, |y| > R0.(5.19)

Thus, using (5.17) with B = 0 for k = 0 and k = 3, we obtain, z := etSx− ψ

4Cβ
t

∫

|ψ|6 |x|
4

|K(ψ, t)|2
(∣
∣etSx− x

∣
∣
3
+ |ψ|3

)

max
|β|=3
τ∈[0,1]

∣
∣Dβφ (x+ τ (z − x))

∣
∣ dψ

64Cβ

∫

|ψ|6 |x|
4

|K(ψ, t)|2

(

t2
∣
∣
∣
∣

etS − Id
t

∣
∣
∣
∣

3

|x|3 + 1

t
|ψ|3

)

·max
|β|=3

sup
τ∈[0,1]

Cα,β
∣
∣x+ τ

(
etSx− x− ψ

)∣
∣
−|α|

dψ

64Cβ

∫

|ψ|6 |x|
4

|K(ψ, t)|2
(

t2 (|S|+ ε)3 |x|3 + 1

t
|ψ|3

)

max
|β|=3

Cα,β4
|α| |x|−|α| dψ

64|α|+1CβCφ

[

t2 (|S|+ ε)3 |x|−(|α|−3)

∫

Rd

|K(ψ, t)|2 dψ

+
1

t
|x|−|α|

∫

Rd

|K(ψ, t)|2 |ψ|
3 dψ

]

=4|α|+1CβCφM
d
2

[

t2 (|S|+ ε)3 |x|−(|α|−3) + t
1
2 |x|−|α| Γ

(
d+3
2

)

Γ
(
d
2

)

(
4a2max

a0

) 3
2

]

64|α|+1CβCφM
d
2

[

t20 (|S|+ ε)3 + t
1
2
0

1

R3

Γ
(
d+3
2

)

Γ
(
d
2

)

(
4a2max

a0

) 3
2

]

|x|−(|α|−3) =: h1(x)

for every 0 < t 6 t0 and |x| > R, where Cφ := max|β|=3Cα,β. Here, we must
choose |α| > d

p
+3 to guarantee the Lp–integrability of h1(x) in |x| > R, since

∫ ∞

a

s−nds =
a1−n

n− 1
, n ∈ N with n > 1, a ∈ R with a > 0,(5.20)

and
∫

|x|>R
|x|−(|α|−3)pdx =

2π
d
2

Γ
(
d
2

)

∫ ∞

R

r−((|α|−3)p−(d−1))dr.
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Case 2: (|x| > R, |ψ| > |x|
4

). In this case we must use that K(·, t) ∈ S(Rd,CN), i.e.
the kernel K(·, t) is a Schwartz function and therefore, it has nice behavior
in the far-field. First of all, using e−s

2 ∈ S(R,R), i.e.

∀m ∈ N0 ∀R > 0 ∃CR,m > 0 :
∣
∣
∣e−s

2
∣
∣
∣ 6 CR,m |s|−m ∀ |s| > R

and (5.20), we deduce

∫

|ψ|> |x|
4

|K(ψ, t)|2 |ψ|
k dψ 6

∫

|ψ|> |x|
4

(4πtamin)
− d

2 e
− a0

4ta2max
|ψ|2 |ψ|k dψ

=(4πtamin)
− d

2
2π

d
2

Γ
(
d
2

)

∫ ∞

|x|
4

rd−1e
− a0

4ta2max
r2

rkdr

=

(
a2max

amina0

) d+k
2

(4tamin)
k
2

2

Γ
(
d
2

)

∫ ∞
(

a0
4ta2max

) 1
2 |x|

4

sd−1e−s
2

skds

6

(
a2max

amina0

) d+k
2

(4tamin)
k
2

2

Γ
(
d
2

)

∫ ∞
(

a0
4ta2max

) 1
2 |x|

4

sd−1+k−mds

=
2M

d+k
2 (4tamin)

k
2

(m− d− k)Γ
(
d
2

)

[(
a0

4ta2max

) 1
2 |x|

4

]−(m−d−k)

=: Ct
m−d

2 |x|−(m−d−k)

whenever m > d+ k + 1. Therefore, we obtain for 0 < t 6 t0, z := etSx− ψ

4Cβ
t

∫

|ψ|> |x|
4

|K(ψ, t)|2
(∣
∣etSx− x

∣
∣
3
+ |ψ|3

)

max
|β|=3
τ∈[0,1]

∣
∣Dβφ (x+ τ (z − x))

∣
∣ dψ

6
4CβCφ
t

∫

|ψ|> |x|
4

|K(ψ, t)|2

(

t3
∣
∣
∣
∣

etS − Id
t

∣
∣
∣
∣

3

43 + 1

)

|ψ|3dψ

6
4CβCφ
t

(
43

23
+ 1

)∫

|ψ|> |x|
4

|K(ψ, t)|2 |ψ|3 dψ

64CβCφ

(
43

23
+ 1

)

Ct
m−d−2

2 |x|−(m−d−3)

64CβCφ

(
43

23
+ 1

)

Ct
m−d−2

2
0 |x|−(m−d−3) =: h2(x)

for every 0 < t 6 t0 and |x| > R, where Cφ := max|β|=3 supy∈Rd

∣
∣Dβφ(y)

∣
∣.

Here, we must choose m > d
p
+ d+3 to guarantee Lp-integrability in |x| > R.

Case 3: (|x| 6 R, |ψ| > |x|
4

). In this case we use that Schwartz functions, as e.g.
φ and their derivatives, are bounded on compact sets, e.g. on BR(0). Using
(5.17) with B = 0 for k = 3, we obtain with z := etSx− ψ

4Cβ
t

∫

|ψ|> |x|
4

|K(ψ, t)|2
(∣
∣etSx− x

∣
∣
3
+ |ψ|3

)

max
|β|=3
τ∈[0,1]

∣
∣Dβφ (x+ τ (z − x))

∣
∣ dψ
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6
4CβCφ
t

∫

|ψ|> |x|
4

|K(ψ, t)|2

(

t3
∣
∣
∣
∣

etS − Id
t

∣
∣
∣
∣

3

|x|3 + |ψ|3
)

dψ

6
4CβCφ
t

(
43

23
+ 1

)∫

|ψ|> |x|
4

|K(ψ, t)|2 |ψ|3 dψ

6
4CβCφ
t

(
43

23
+ 1

)∫

Rd

|K(ψ, t)|2 |ψ|
3 dψ

=4CβCφ

(
43

23
+ 1

)

M
d
2

(
4a2max

a0

) 3
2 Γ
(
d+3
2

)

Γ
(
d
2

) t
1
2

64CβCφ

(
43

23
+ 1

)

M
d
2

(
4a2max

a0

) 3
2 Γ
(
d+3
2

)

Γ
(
d
2

) t
1
2
0 =: h3

for every 0 < t 6 t0 and |x| 6 R, where Cφ := max|β|=3 supy∈Rd

∣
∣Dβφ(y)

∣
∣.

Case 4: (|x| 6 R, |ψ| 6 |x|
4

). This case is similar to case 3. Using (5.17) with
B = 0 for k = 0 and k = 3, we obtain for z := etSx− ψ

4Cβ
t

∫

|ψ|6 |x|
4

|K(ψ, t)|2
(∣
∣etSx− x

∣
∣
3
+ |ψ|3

)

max
|β|=3
τ∈[0,1]

∣
∣Dβφ (x+ τ (z − x))

∣
∣ dψ

64CβCφ

∫

|ψ|6 |x|
4

|K(ψ, t)|2

(

t2
∣
∣
∣
∣

etS − Id
t

∣
∣
∣
∣

3

|x|3 + 1

t
|ψ|3

)

dψ

64CβCφ

[

t20 (|S|+ ε)3R3

∫

Rd

|K(ψ, t)|2 dψ +
1

t

∫

Rd

|K(ψ, t)|2 |ψ|
3 dψ

]

=4CβCφM
d
2

[

t20 (|S|+ ε)R3 +
Γ
(
d+3
2

)

Γ
(
d
2

)

(
4a2max

a0

) 3
2

t
1
2

]

64CβCφM
d
2

[

t20 (|S|+ ε)R3 +
Γ
(
d+3
2

)

Γ
(
d
2

)

(
4a2max

a0

) 3
2

t
1
2
0

]

=: h4

for every 0 < t 6 t0 and |x| 6 R, where Cφ := max|β|=3 supy∈Rd

∣
∣Dβφ(y)

∣
∣.

Now choosing |α| = d
p
+ 4 and m = d

p
+ d+ 4 and defining

h : Rd → R, h(x) :=

{

max{h3, h4} , |x| 6 R

max{h1(x), h2(x)} , |x| > R

we deduce from (5.18)

|ft(x)| 6A
d∑

i=1

∣
∣D2

i φ(x)
∣
∣ +

d∑

i=1

(|S|+ ε) |x| |Diφ(x)|

+
t0
2

d∑

i=1

d∑

j=1

(|S|+ ε)2 |x|2 |DjDiφ(x)|+ h(x) =: g(x)
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for every 0 < t 6 t0.
(c): Using the decomposition

‖g‖p
Lp(Rd,CN )

=

∫

|x|>R
|g(x)|p dx+

∫

|x|6R
|g(x)|p dx

and (5.19) since φ ∈ S(Rd,CN), we deduce g ∈ Lp(Rd,R) and the application of
dominated convergence is justified.
(3): The proof can partially be found in [34, II.2.13]. Let φ ∈ S := S(Rd,CN).
1. Recall the (d-dimensional) diffusion semigroup (G(t, 0))t>0 from (5.10)

[G(t, 0)φ] (y) :=

∫

Rd

H0(e
−tSy, ξ, t)φ(ξ)dξ

=

∫

Rd

(4πtA)−
d
2 exp

(
− (4tA)−1 |y − ξ|2

)
φ(ξ)dξ

and recall the kernel K from (4.24) with B = 0

K(ψ, t) = (4πtA)−
d
2 exp

(
− (4tA)−1 |ψ|2

)
,

which satisfies K(·, t) ∈ S for every t > 0, see [34, VI.5.3 Example]. Then we have

[T0(t)φ] (x) = [G(t, 0)φ] (etSx), [G(t, 0)φ] (x) = [K(t) ∗ φ] (x)

and hence

[T0(t)φ] (x) = [G(t, 0)φ] (etSx) = [K(t) ∗ φ] (etSx).(5.21)

2. First we show that

[
Fφ(etS·)

]
(ξ) = [Fφ(·)] (etSξ) ∀φ ∈ S,(5.22)

where Fφ denotes the Fourier transform of φ ∈ S. From the transformation the-
orem (with transformation Φ(x) = etSx), (A5) and the definition of the Fourier
transform [34, VI.5.2 Definition] we obtain

[
Fφ(etS·)

]
(ξ) :=

∫

Rd

e−i〈x,ξ〉φ(etSx)dx =

∫

Rd

e−i〈e−tSy,ξ〉φ(y)dy

=

∫

Rd

e−i〈y,etSξ〉φ(y)dy = [Fφ(·)] (etSξ).

3. Next we show that

[F [T0(t)φ] (·)] (ξ) = [FK(·, t)] (etSξ) · [Fφ] (etSξ).(5.23)

From (5.21) and (5.22) we obtain for every t > 0

[F [T0(t)φ] (·)] (ξ) =
[
F [K(t) ∗ φ] (etS·)

]
(ξ) = [F [K(t) ∗ φ] (·)] (etSξ)

= [(FK(t)) (·) · (Fφ) (·)] (etSξ) = [FK(t)] (etSξ) · [Fφ] (etSξ).
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4. Since φ ∈ S it follows that [Fφ] (·) ∈ S and thus [Fφ] (etS·) ∈ S for every t > 0.
Analogously, since K(·, t) ∈ S for every t > 0 it follows that [FK(t)] (·) ∈ S
and hence [FK(t)] (etS·) ∈ S for every t > 0. Using (5.23) we deduce that
[F [T0(t)φ] (·)] (·) ∈ S for every t > 0 (since S is closed under pointwise multi-
plication), i.e. F (T0(t)S) ⊂ S for every t > 0 and hence T0(t)S ⊂ F−1(S) = S for
every t > 0, see [90, II.7.7 The inversion theorem]. The case t = 0 follows directly
from the definition of T0 in (5.3), that gives T (0)S = S.
(4): Using Theorem 5.10 (1)-(3) the assertion can be deduced by [34, II.1.7 Propo-
sition].

Remark. Indeed, one can show that also C∞
c (Rd,CN) is a core for (Ap,D(Ap)), but

not with the same argument as before. Since C∞
c (Rd,CN) is not invariant under

the semigroup (T0(t))t>0, we cannot apply [34, II.1.7 Proposition]. In this case one
must perform a direct proof as in [71, Proposition 3.2].

5.4 Resolvent estimates

In this section we prove resolvent estimates for L0 in Lp(Rd,CN) for 1 < p < ∞.
For this purpose, we consider the formal Ornstein-Uhlenbeck operator

[L0v] (x) = A△v(x) + 〈Sx,∇v(x)〉 , x ∈ Rd

in Lp(Rd,CN) for 1 < p <∞ and define the domain

Dp
loc(L0) :=

{
v ∈ W 2,p

loc (R
d,CN) ∩ Lp(Rd,CN) | A△v + 〈S·,∇v〉 ∈ Lp(Rd,CN)

}

=
{
v ∈ W 2,p

loc (R
d,CN) ∩ Lp(Rd,CN) | L0v ∈ Lp(Rd,CN)

}
.

The following lemma states that L0 : Dp
loc(L0) ⊆ Lp(Rd,CN) → Lp(Rd,CN) is a

closed operator in Lp(Rd,CN) for every 1 < p < ∞, which justifies to define the
resolvent of L0. A proof for the real-valued case can be found in [74, Lemma 3.1],
that uses a local elliptic Lp-regularity result from [40, Theorem 9.11].

Lemma 5.11. Let the assumption (A3) be satisfied for K = C, then the opera-
tor L0 : Dp

loc(L0) ⊆ Lp(Rd,CN) → Lp(Rd,CN) is closed in Lp(Rd,CN) for every
1 < p <∞.

Proof. Let (vn)n∈N be such that vn ∈ Dp
loc(L0) converges to v ∈ Lp(Rd,CN) and

L0vn converges to u ∈ Lp(Rd,CN) both w.r.t. ‖·‖Lp . To show the closedness of L0

we must verify that v ∈ Dp
loc(L0) and L0v = u in Lp(Rd,CN).

Let Ω ⊂ Rd be an open bounded set. From L0vn → u in Lp(Rd,CN) we infer
that L0vn|Ω → u|Ω in Lp(Ω,CN) and therefore, (L0vn|Ω)n∈N is a Cauchy sequence
in Lp(Ω,CN ). Analogously, we deduce from vn → v in Lp(Rd,CN) that vn|Ω → v|Ω
in Lp(Ω,CN) and thus (vn|Ω)n∈N is a Cauchy sequence in Lp(Ω,CN). Since Sx is
bounded in Ω by the boundedness of Ω, [40, Theorem 9.11] yields that for every
Ω′ ⊂⊂ Ω there exists some constant C = C(Ω′,Ω, p, A, S, d) > 0 such that

‖vn|Ω′ − vm|Ω′‖W 2,p(Ω′,CN )

6C
(

‖vn|Ω − vm|Ω‖Lp(Ω,CN ) + ‖L0vn|Ω −L0vm|Ω‖Lp(Ω,CN )

)

6 ε.
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Therefore, (vn|Ω′)n∈N is a Cauchy sequence in W 2,p(Ω′,CN) and consequently, there

exists some vΩ
′ ∈ W 2,p(Ω′,CN) such that vn|Ω′ → vΩ

′
in W 2,p(Ω′,CN) and hence

in particular in Lp(Ω′,CN). Moreover, since vn → v in Lp(Rd,CN) we deduce
vn|Ω′ → v|Ω′ in Lp(Ω′,CN). Therefore, vΩ

′
= v|Ω′ in Lp(Ω′,CN) and we further

infer that vn|Ω′ → v|Ω′ in W 2,p(Ω′,CN) and v|Ω′ ∈ W 2,p(Ω′,CN).

Now, by the arbitrariness of Ω and Ω′ we deduce that v ∈ W 2,p
loc (R

d,CN). More-
over, vn|Ω′ → v|Ω′ ∈ W 2,p(Ω′,CN) implies L0vn|Ω′ → L0v|Ω′ in Lp(Ω′,CN) and
hence L0v|Ω′ = u|Ω′ in Lp(Ω′,CN). By arbitrariness of Ω and Ω′ we deduce
L0v = u ∈ Lp(Rd,CN) and thus v ∈ Dp

loc(L0).

Since (L0,Dp
loc(L0)) is a closed operator on the Banach space Lp(Rd,CN) for

every 1 < p <∞, we can introduce

σ(L0) := {λ ∈ C | λI −L0 is not bijective} spectrum of L0,

ρ(L0) :=C\σ(L0) resolvent set of L0,

R(λ,L0) := (λI − L0)
−1 , for λ ∈ ρ(L0) resolvent of L0.

The following Lemma 5.12 is crucial in order to derive an optimal Lp-dissipativity
condition as well as resolvent estimates for L0. This is a complex-valued version of
[73, Lemma 2.1].

Lemma 5.12. Let the assumption (A3) be satisfied for K = C. Moreover, let
Ω ⊂ Rd be a bounded domain with a C2-boundary or Ω = Rd, 1 < p < ∞,
v ∈ W 2,p(Ω,CN ) ∩W 1,p

0 (Ω,CN ) and η ∈ C1
b (Ω,R) be nonnegative, then

− Re

∫

Ω

ηvT |v|p−2A△v

>(p− 1)Re

∫

Ω

η|v|p−2
d∑

j=1

Djv
T
ADjv1{v 6=0} + Re

∫

Ω

vT |v|p−2
d∑

j=1

DjηADjv

+ (p− 2)Re

∫

Ω

η|v|p−4
d∑

j=1

[

Re
(

Djv
T
v
)

vT − |v|2Djv
T

]

ADjv1{v 6=0}.

Remark. For the parameter regime 2 6 p < ∞ Lemma 5.12 follows directly
from the integration by parts formula and therefore, the estimate is satisfied with
equality. In this case, the real parts in front of the integrals can also be dropped
and the assumption (A3) is not used. If 1 < p < 2, then Lemma 5.12 is satisfied
only with inequality, which is a direct consequence of Fatou’s lemma. In particular,
in this case we need the assumption (A3) that yields positivity of the quadratic
term, that is necessary for the application of Fatou’s lemma.

Proof. We only provide the proof for Ω ⊂ Rd bounded. In case Ω = Rd integration
by parts yields no boundary terms due to decay at infinity and thus it can be treated
in an analogous way but without boundary integrals. Let Ω ⊂ Rd be bounded with
C2-boundary ∂Ω.
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Case 1: (2 6 p <∞). Multiplying −A△v from left by ηvT |v|p−2, integrating over
Ω and using integration by parts formula we obtain

−
∫

Ω

ηvT |v|p−2A△v = −
d∑

j=1

∫

Ω

ηvT |v|p−2AD2
jv

=
d∑

j=1

∫

Ω

(Djη)v
T |v|p−2ADjv +

d∑

j=1

∫

Ω

ηDj(v
T |v|p−2)ADjv

=
d∑

j=1

∫

Ω

(Djη)v
T |v|p−2ADjv + (p− 1)

d∑

j=1

∫

Ω

η|v|p−2Djv
T
ADjv1{v 6=0}

+ (p− 2)
d∑

j=1

∫

Ω

η|v|p−4
[

Re (Djv
T
v)vT − |v|2Djv

T
]

ADjv1{v 6=0}

=(p− 1)

∫

Ω

η|v|p−2
d∑

j=1

Djv
T
ADjv1{v 6=0} +

∫

Ω

vT |v|p−2
d∑

j=1

DjηADjv

+ (p− 2)

∫

Ω

η|v|p−4
d∑

j=1

[

Re
(

Djv
T
v
)

vT − |v|2Djv
T

]

ADjv1{v 6=0}.

Now applying real parts we deduce the desired estimates with equality. In the
computations above we used the following auxiliaries: The relation
z + z = 2Re z yields

Dj (|v|p) = Dj

((
|v|2
) p

2

)

=
p

2

(
|v|2
) p

2
−1
Dj

(
|v|2
)
=
p

2
|v|p−2Dj(v

Tv)

=
p

2
|v|p−2

[

Djv
T
v + vTDjv

]

=
p

2
|v|p−2

[

Djv
T
v +Djv

T
v
T
]

=p|v|p−2Re
(

Djv
T
v
)

(5.24)

for every v ∈ CN , p > 2 and j = 1, . . . , d. This formula remains valid for
every p > 0 and v 6= 0. Using the formula (5.24) we obtain for every v 6= 0
and p > 2

Dj

(
vT |v|p−2

)
= Djv

T |v|p−2 + vTDj

(
|v|p−2

)

=Djv
T |v|p−2 + (p− 2)vT |v|p−4Re

(

Djv
T
v
)

=(p− 1)|v|p−2Djv
T
+ (p− 2)|v|p−4

[

Re
(

Djv
T
v
)

vT − |v|2Djv
T
]

.

Case 2: (1 < p < 2). This case is much more involved and one has to be very
careful, since the expression |v|p is not differentiable at v = 0 for 1 < p < 2.
We prove the assertion in three steps.
1. First we consider v ∈ C2(Ω,CN)∩Cc(Ω,C

N). Multiplying −A△v from left

by ηvT (|v|2 + ε)
p
2
−1

for some ε > 0, integrating over Ω and using integration
by parts formula we obtain
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−
∫

Ω

ηvT
(
|v|2 + ε

)p
2
−1
A△v = −

d∑

j=1

∫

Ω

ηvT
(
|v|2 + ε

)p
2
−1
AD2

jv

=

d∑

j=1

[
∫

Ω

Dj

(

ηvT
(
|v|2 + ε

)p
2
−1
)

ADjv −
∫

∂Ω

ηvT
(
|v|2 + ε

)p
2
−1
ADjvν

jdS

]

=

d∑

j=1

[
∫

Ω

(Djη)v
T
(
|v|2 + ε

)p
2
−1
ADjv +

∫

Ω

ηDj

(

vT
(
|v|2 + ε

)p
2
−1
)

ADjv

]

=

∫

Ω

η
(
|v|2 + ε

)p
2
−2 (

(p− 1)|v|2 + ε
)

d∑

j=1

Djv
T
ADjv

+

∫

Ω

vT
(
|v|2 + ε

)p
2
−1

d∑

j=1

DjηADjv

+ (p− 2)

∫

Ω

η
(
|v|2 + ε

) p
2
−2

d∑

j=1

[

Re (Djv
T
v)vT − |v|2Djv

T
]

ADjv.

The boundary integral vanishes because from v ∈ Cc(Ω,C
N) follows v(x) = 0

for every x ∈ ∂Ω. Moreover, we used the relations

Dj

((
|v|2 + ε

)p
2
−1
)

=
(p

2
− 1
) (

|v|2 + ε
)p

2
−2
Dj

(
|v|2 + ε

)

=(p− 2)
(
|v|2 + ε

) p
2
−2

Re
(

Djv
T
v
)

,

cf. (5.24) for p = 2, and

Dj

(

vT
(
|v|2 + ε

)p
2
−1
)

= Djv
T (|v|2 + ε

)p
2
−1

+ vTDj

((
|v|2 + ε

) p
2
−1
)

=Djv
T (|v|2 + ε

) p
2
−1

+ (p− 2)
(
|v|2 + ε

) p
2
−2
vTRe

(

Djv
T
v
)

=
(
|v|2 + ε

)p
2
−2
[

Djv
T (|v|2 + ε

)
+ (p− 2)vTRe

(

Djv
T
v
)]

=
(
|v|2 + ε

)p
2
−2 (

(p− 1)|v|2 + ε
)
Djv

T

+
(
|v|2 + ε

)p
2
−2

(p− 2)
[

Re
(

Djv
T
v
)

vT − |v|2Djv
T
]

.

Note that both formulas are valid for 1 < p < 2, v ∈ C and j = 1, . . . , d if
ε > 0 and for 1 < p < 2, v 6= 0 and j = 1, . . . , d if ε = 0.
2. We now apply Lebesgue’s dominated convergence theorem, see [7, A1.21]:
Putting the last two terms of the equation from step 1 to the left hand side,
taking the limit ε→ 0 and applying dominated convergence twice we obtain

(p− 1)

∫

Ω

η|v|p−2

d∑

j=1

Djv
T
ADjv1{v 6=0}

= lim
ε→0

∫

Ω

η
(
|v|2 + ε

) p
2
−2 (

(p− 1)|v|2 + ε
)

d∑

j=1

Djv
T
ADjv
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=− lim
ε→0

[
∫

Ω

ηvT
(
|v|2 + ε

)p
2
−1
A△v +

∫

Ω

vT
(
|v|2 + ε

)p
2
−1

d∑

j=1

DjηADjv

+ (p− 2)

∫

Ω

η
(
|v|2 + ε

) p
2
−2

d∑

j=1

[

Re
(

Djv
T
v
)

vT − |v|2Djv
T
]

ADjv

]

=−
∫

Ω

ηvT |v|p−2A△v −
∫

Ω

vT |v|p−2
d∑

j=1

DjηADjv

− (p− 2)

∫

Ω

η|v|p−4
d∑

j=1

[

Re
(

Djv
T
v
)

vT − |v|2Djv
T
]

ADjv1{v 6=0}.

To justify the applications of Lebesgue’s theorem, we discuss the assumptions
in both cases: First, we define

fε :=η
(
|v|2 + ε

)p
2
−2 (

(p− 1)|v|2 + ε
)

d∑

j=1

Djv
T
ADjv

f :=(p− 1)η|v|p−2
d∑

j=1

Djv
T
ADjv.

Using v ∈ C2(Ω,CN) ∩ Cc(Ω,C
N ), η ∈ Cb(Ω,R) and (|v|2 + ε)

p
2
−k

6 |v|p−2k

for k = 1, 2 and 1 < p < 2 we obtain that fε is dominated by g as follows

|fε| =
∣
∣
∣
∣
∣
η
(

(p− 2)|v|2
(
|v|2 + ε

)p
2
−2

+
(
|v|2 + ε

)p
2
−1
) d∑

j=1

Djv
T
ADjv

∣
∣
∣
∣
∣

6|η| (|p− 2|+ 1) |v|p−2|A|
d∑

j=1

|Djv|2

=|p− 3||A||η||v|p−2|∇v|21{v 6=0}

6|p− 3||A| ‖η‖∞ ‖v‖p−2
∞ ‖∇v‖2∞ 1{v 6=0} =: g.

Since v is compactly supported, i.e. 1{v 6=0} is compact, g belongs to L1(Ω,R).
In particular, fε → f pointwise a.e. as ε → 0. Thus, by dominated conver-
gence, fε, f ∈ L1(Ω,CN ) and fε → f in L1(Ω,CN ) as ε→ 0. Next, consider

fε :=v
T
(
|v|2 + ε

)p
2
−1

(

ηA△v +
d∑

j=1

DjηADjv

)

+ (p− 2)η
(
|v|2 + ε

) p
2
−2

d∑

j=1

[

Re
(

Djv
T
v
)

vT − |v|2Djv
T
]

ADjv.

f :=vT |v|p−2

(

ηA△v +
d∑

j=1

DjηADjv

)

+ (p− 2)η|v|p−4

d∑

j=1

[

Re
(

Djv
T
v
)

vT − |v|2Djv
T
]

ADjv
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Using v ∈ C2(Ω,CN) ∩ Cc(Ω,C
N), η ∈ C1

b (Ω,R) and (|v|2 + ε)
p
2
−k

6 |v|p−2k

for k = 1, 2 and 1 < p < 2 we obtain that fε is dominated by g as follows

|fε| 6|v|
(
|v|2 + ε

)p
2
−1

(

|η||A||△v|+ |A|
d∑

j=1

|Djη||Djv|
)

+ |p− 2||η|
(
|v|2 + ε

) p
2
−2

d∑

j=1

[∣
∣
∣Re

(

Djv
T
v
)∣
∣
∣ |v|+ |v|2|Djv|

]

|A||Djv|

6|v|p−1

(

|η||A||△v|+ |A|
d∑

j=1

|Djη||Djv|
)

1{v 6=0}

+ 2|p− 2||η||v|p−2

d∑

j=1

|Djv|2|A|1{v 6=0}

6

[

|A| ‖η‖∞ ‖v‖p−1
∞ ‖△v‖∞ + d|A| ‖η‖1,∞ ‖v‖1,∞

2d|p− 2||A| ‖η‖∞ ‖v‖p−2
∞ ‖v‖21,∞

]

1{v 6=0} =: g.

Since v is compactly supported, we deduce once more that g belongs to
L1(Ω,R). In particular, fε → f pointwise a.e. as ε → 0. Thus, by dom-
inated convergence, fε, f ∈ L1(Ω,CN ) and fε → f in L1(Ω,CN ) as ε→ 0.
3. Now let v ∈ W 2,p(Ω,CN) ∩ W 1,p

0 (Ω,CN ). In this case we use a density
argument and Fatou’s lemma, that yields the inequality. Note that we have
to take real parts on both sides in order to apply Fatou’s lemma. Since
C2(Ω,CN) ∩ Cc(Ω,C

N) is a dense subspace of W 2,p(Ω,CN ) ∩ W 1,p
0 (Ω,CN)

w.r.t. ‖·‖W 2,p, there exists a sequence vn ∈ C2(Ω,CN) ∩ Cc(Ω,C
N ) such that

vn → v w.r.t. ‖·‖W 2,p as n → ∞, n ∈ N. Furthermore, there exists a subset
N′ ⊂ N such that vn → v and ∇vn → ∇v pointwise a.e. as n→ ∞, n ∈ N′. In
the following we consider this subsequence (vn)n∈N′ ⊂ C2(Ω,CN)∩Cc(Ω,C

N):
Inserting vn into the equation from step 2, taking real parts and the limit in-
ferior n→ ∞ (n ∈ N′) on both sides and applying Fatou’s lemma on the left
hand side we obtain

(p− 1)Re

∫

Ω

η|v|p−2

d∑

j=1

Djv
T
ADjv1{v 6=0}

=

∫

Ω

lim
n→∞

(p− 1)η|vn|p−2Re

d∑

j=1

Djvn
T
ADjvn1{vn 6=0}

=

∫

Ω

lim inf
n→∞

(p− 1)η|vn|p−2Re

d∑

j=1

Djvn
T
ADjvn1{vn 6=0}

6lim inf
n→∞

∫

Ω

(p− 1)η|vn|p−2Re

d∑

j=1

Djvn
T
ADjvn1{vn 6=0}
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=lim inf
n→∞

[

− Re

∫

Ω

ηvn
T |vn|p−2A△vn − Re

∫

Ω

vn
T |vn|p−2

d∑

j=1

DjηADjvn

− (p− 2)Re

∫

Ω

η|vn|p−4
d∑

j=1

[

Re
(

Djvn
T
vn

)

vn
T − |vn|2Djvn

T
]

ADjvn1{vn 6=0}

]

= lim
n→∞

[

− Re

∫

Ω

ηvn
T |vn|p−2A△vn − Re

∫

Ω

vn
T |vn|p−2

d∑

j=1

DjηADjvn

− (p− 2)Re

∫

Ω

η|vn|p−4
d∑

j=1

[

Re
(

Djvn
T
vn

)

vn
T − |vn|2Djvn

T
]

ADjvn1{vn 6=0}

]

=− Re

∫

Ω

ηvT |v|p−2A△v − Re

∫

Ω

vT |v|p−2
d∑

j=1

DjηADjv

− (p− 2)Re

∫

Ω

η|v|p−4
d∑

j=1

[

Re
(

Djv
T
v
)

vT − |v|2Djv
T
]

ADjv1{v 6=0}.

In the first equality we used the fact that vn → v and ∇vn → ∇v pointwise
a.e. as n → ∞, n ∈ N′. The last equality can be accepted as follows:
Let fn → f in Lq and gn → g in Lp with 1

p
+ 1

q
= 1, i.e. q = p

p−1
, then

∫
fngn →

∫
fg by Hölder’s inequality, since

∫

(fngn − fg) =

∫

(fn − f)g +

∫

f(gn − g)

6 ‖fn − f‖Lq ‖qn‖Lp + ‖f‖Lq ‖gn − g‖Lp → 0.

Thus,

vn
T |vn|p−2 Lq

→ vT |v|p−2, A△vn Lp

→ A△v,
vn

T |vn|p−2 Lq

→ vT |v|p−2, ADjvn
Lp

→ ADjv,

|vn|p−4Re
(

Djvn
T
vn

)

vn
T Lq

→ |v|p−4Re
(

Djv
T
v
)

vT , ADjvn
Lp

→ ADjv,

|vn|p−2Djvn
T Lq

→ |v|p−2Djv
T
, ADjvn

Lp

→ ADjv,

together with η ∈ C1
b(R

d,R) yields the last equality in the above equation. It
remains to justify the application of Fatou’s lemma, [7, A1.20]: Consider

fn := (p− 1)η|vn|p−2Re

d∑

j=1

Djvn
T
ADjvn1{vn 6=0}, n ∈ N′.

By Hölder’s inequality we have already seen that lim infn→∞ fn <∞ is satis-
fied. Moreover, fn > 0 pointwise a.e., since A satisfies assumption (A3) and
η is nonnegative. Finally, fn ∈ L1(Ω,R), since vn ∈ C2(Ω,CN) ∩ Cc(Ω,C

N)
and η ∈ C1

b(R
d,R). Thus, by Fatou’s, lim infn→∞ fn ∈ L1(Ω,R) and

∫

Ω

lim inf
n→∞

fn 6 lim inf
n→∞

∫

Ω

fn,
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that proves the lemma. Note, that it is in general not possible to apply
Lebesgue’s theorem in case of v ∈ W 2,p(Ω,CN ) ∩ W 1,p

0 (Ω,CN), since one
cannot determine a n-independent bound for |fn| 6 g a.e. for every n ∈ N′.
In fact, we only know positivity of fn due to (A3), that justifies the application
of Fatou’s lemma and generates an inequality for 1 < p < 2.

We are now able to prove sharp resolvent estimates for the formal Ornstein-
Uhlenbeck operator L0 in Lp(Rd,CN) for 1 < p < ∞, which then yield the unique
solvability of the resolvent equation for L0 in Dp

loc(L0). The main idea of the
proof comes from [73, Theorem 2.2, Remark 2.3] for the scalar real-valued case
and from [15, Theorem 3.1] for d = 2. In our situation, the proof requires the
additional Lp-dissipativity condition (5.1), that seems to be new in the literature.
This condition seems to be the optimal choice in order to derive resolvent estimates
for L0 in Lp(Rd,CN) for 1 < p < ∞. It contains an additional, more restrictive
requirement of the spectrum of the diffusion matrix A, even through it looks slightly
complicated. We show later on in Theorem 5.18 that the Lp-dissipativity condition
(5.1) is equivalent to the Lp-antieigenvalue condition (A4).

Theorem 5.13 (Resolvent Estimates for L0 in Lp(Rd,CN) with 1 < p < ∞). Let
the assumptions (A3), (A4) and (A5) be satisfied for 1 < p < ∞ and K = C.
Moreover, let λ ∈ C with Reλ > ω0 and let v⋆ ∈ Dp

loc(L0) denote a solution of

(λI − L0) v = g

in Lp(Rd,CN) for some g ∈ Lp(Rd,CN). Then v⋆ is the unique solution in Dp
loc(L0)

and satisfies the resolvent estimate

‖v⋆‖Lp(Rd,CN ) 6
1

Reλ− ω0
‖g‖Lp(Rd,CN ) .

In addition, for 1 < p 6 2 the following gradient estimate is satisfied

|v⋆|W 1,p(Rd,CN ) 6
d

1
p

γ
1
2
A (Reλ− ω0)

1
2

‖g‖Lp(Rd,CN ) .

Remark. (1) Note that the proof deals with cut-off functions. These are necessary
because v ∈ W 2,p

loc (R
d,CN) implies only that △v ∈ Lploc(R

d,CN). What this really
means is that v is not p-integrable over the whole Rd and therefore, we must restrict
the solution to a bounded domain.
(2) The gradient estimate is proved only for 1 < p 6 2 but not for p > 2. Its proof
is based on Hölder’s inequality that requires exactly 1 < p 6 2.
(3) An Lp-dissipativity condition for the operator ∇T (Q∇v) + 〈b,∇v〉 + av in
Lp(Ω,C) with 1 < p < ∞ can be found in [26], namely for constant coefficients
Q ∈ Cd,d, b ∈ Cd, a ∈ C with Ω ⊆ Rd open in [26, Theorem 2], and for variable
coefficients Qij , bj ∈ C1(Ω,C), a ∈ C0(Ω,C) with Ω ⊂ Rd bounded in [26, Lemma
2].
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Proof. Assume v⋆ ∈ Dp
loc(L0) satisfies

(λI −L0) v⋆ = g(5.25)

in Lp(Rd,CN) for some g ∈ Lp(Rd,CN) with 1 < p <∞. Let us define

ηn(x) = η
(x

n

)

, η ∈ C∞
c (Rd,R), η(x) =







1 , |x| 6 1

∈ [0, 1], smooth , 1 < |x| < 2

0 , |x| > 2

.

1. Multiplying (5.25) from left by η2nv⋆
T |v⋆|p−2 with 1 < p < ∞, integrating over

Rd and taking real parts yields

Re

∫

Rd

η2n |v⋆|p−2 v⋆
Tg =(Reλ)

∫

Rd

η2n |v⋆|p − Re

∫

Rd

η2nv⋆
T |v⋆|p−2A△v⋆

− Re

∫

Rd

η2nv⋆
T |v⋆|p−2

d∑

j=1

(Sx)jDjv⋆.

2. Using (A5), i.e. −S = ST , then integration by parts formula and (5.24) imply

0 =
1

p

∫

Rd

η2n

(
d∑

j=1

Sjj

)

|v⋆|p =
1

p

∫

Rd

η2ndiv (Sx) |v⋆|p

=
1

p

∫

Rd

η2n

(
d∑

j=1

Dj ((Sx)j)

)

|v⋆|p =
1

p

d∑

j=1

∫

Rd

η2nDj ((Sx)j) |v⋆|p

=− 1

p

d∑

j=1

∫

Rd

Dj

(
η2n
)
(Sx)j |v⋆|p −

1

p

d∑

j=1

∫

Rd

η2n(Sx)jDj (|v⋆|p)

=− 2

p

d∑

j=1

∫

Rd

ηn(Djηn)(Sx)j |v⋆|p −
d∑

j=1

∫

Rd

η2n(Sx)jRe
(

Djv⋆
T
v⋆

)

|v⋆|p−2

=− 2

p

∫

Rd

ηn |v⋆|p
d∑

j=1

(Djηn)(Sx)j − Re

∫

Rd

η2nv⋆
T |v⋆|p−2

d∑

j=1

(Sx)jDjv⋆.

An application of Lemma 5.12 (with Ω = Rd and η = η2n) yields

Re

∫

Rd

η2n |v⋆|p−2 v⋆
Tg

>(Reλ)

∫

Rd

η2n |v⋆|p + Re

∫

Rd

2ηnv⋆
T |v⋆|p−2

d∑

j=1

DjηnADjv⋆

+ (p− 1)Re

∫

Rd

η2n |v⋆|p−2
d∑

j=1

Djv⋆
T
ADjv⋆ +

2

p

∫

Rd

ηn |v⋆|p
d∑

j=1

(Djηn)(Sx)j

+ (p− 2)Re

∫

Rd

η2n |v⋆|p−4
d∑

j=1

[

Re
(

Djv⋆
T
v⋆

)

v⋆
T − |v⋆|2Djv⋆

T
]

ADjv⋆
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3. Putting the 2nd and 4th term from the right hand to the left hand side yields

(Reλ)

∫

Rd

η2n |v⋆|p + (p− 1)Re

∫

Rd

η2n |v⋆|p−2
d∑

j=1

Djv⋆
T
ADjv⋆

+ (p− 2)Re

∫

Rd

η2n |v⋆|p−4
d∑

j=1

[

Re
(

Djv⋆
T
v⋆

)

v⋆
T − |v⋆|2Djv⋆

T
]

ADjv⋆

6Re

∫

Rd

η2n |v⋆|p−2 v⋆
Tg − Re

∫

Rd

2ηnv⋆
T |v⋆|p−2

d∑

j=1

DjηnADjv⋆

− 2

p

∫

Rd

ηn |v⋆|p
d∑

j=1

(Djηn)(Sx)j

For the 1st term on the right hand side we use Re z 6 |z| and Hölder’s inequality
(with q such that 1

p
+ 1

q
= 1)

Re

∫

Rd

η2n |v⋆|p−2 v⋆
Tg =

∫

Rd

η2n |v⋆|p−2Re
(
v⋆
Tg
)

6

∫

Rd

η2n |v⋆|p−1 |g| 6
(
∫

Rd

(

η
2(p−1)

p
n |v⋆|p−1

) p
p−1

) p−1
p (∫

Rd

(

η
2
p
n |g|

)p) 1
p

=

(∫

Rd

η2n |v⋆|p
) p−1

p
(∫

Rd

η2n |g|p
) 1

p

For the 2nd term we use Re z 6 |z|, Hölder’s inequality (with p = q = 2) and
Cauchy’s inequality (with ε > 0)

− Re

∫

Rd

2ηnv⋆
T |v⋆|p−2

d∑

j=1

DjηnADjv⋆

62|A|
∫

Rd

ηn |v⋆|p−1
d∑

j=1

|Djηn| |Djv⋆| 6
2|A| ‖η‖1,∞

n

d∑

j=1

∫

Rd

ηn |Djv⋆| |v⋆|p−1

6
2|A| ‖η‖1,∞

n

d∑

j=1

(∫

Rd

η2n |Djv⋆|2 |v⋆|p−2

) 1
2
(∫

Rd

|v⋆|p
) 1

2

6
2|A| ‖η‖1,∞ ε

n

d∑

j=1

∫

Rd

η2n |Djv⋆|2 |v⋆|p−2 +
2d|A| ‖η‖1,∞

4nε

∫

Rd

|v⋆|p .

Here we used that for every x ∈ Rd and j = 1, . . . , d

|Djηn(x)| =
∣
∣
∣Dj

(

η
(x

n

))∣
∣
∣ =

1

n

∣
∣
∣(Djη)

(x

n

)∣
∣
∣ 6

1

n
max
j=1,...,d

max
y∈Rd

|Djη(y)| =
‖η‖1,∞
n

For the 3rd term we use that ηn(x) = 0 for |x| > 2n and ηn(x) = 1 for |x| 6 n.
Hence Djηn(x) = 0 for |x| 6 n and we obtain

− 2

p

∫

Rd

ηn |v⋆|p
d∑

j=1

(Djηn)(Sx)j 6
2

p

d∑

j=1

∫

Rd

ηn |v⋆|p |(Sx)j| |Djηn|
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=
2

p

d∑

j=1

∫

n6|x|62n

ηn |v⋆|p |(Sx)j | |Djηn| 6
4d |S| ‖η‖1,∞

p

∫

n6|x|62n

|v⋆|p .

The last inequality is justified by ηn(x) 6 1 and

|(Sx)j| |Djηn(x)| =
1

n
|(Sx)j |

∣
∣
∣(Djη)

(x

n

)∣
∣
∣ 6

1

n
|S||x|

∣
∣
∣(Djη)

(x

n

)∣
∣
∣

6
|S|
n

(

sup
n6|x|62n

|x|
)

max
j=1,...,d

max
y∈Rd

|Djη(y)| = 2 |S| ‖η‖1,∞ .

Altogether, combining the 2nd and 3rd term on the left hand side and using the
notation 〈u, v〉 := uTv for the Euclidean inner product on CN , we obtain

(Reλ)

∫

Rd

η2n |v⋆|p +
∫

Rd

η2n |v⋆|p−4
d∑

j=1

[

|v⋆|2Re 〈Djv⋆, ADjv⋆〉

+ (p− 2)Re 〈Djv⋆, v⋆〉Re 〈v⋆, ADjv⋆〉
]

6

(∫

Rd

η2n |v⋆|p
) p−1

p
(∫

Rd

η2n |g|p
) 1

p

+
2|A| ‖η‖1,∞ ε

n

d∑

j=1

∫

Rd

η2n |Djv⋆|2 |v⋆|p−2

+
2d|A| ‖η‖1,∞

4nε

∫

Rd

|v⋆|p +
4d |S| ‖η‖1,∞

p

∫

n6|x|62n

|v⋆|p .

4. The Lp-antieigenvalue condition (A4) yields some constant γA > 0 such that

|z|2Re 〈w,Aw〉+ (p− 2)Re 〈w, z〉Re 〈z, Aw〉 > γA|z|2|w|2 ∀ z, w ∈ CN

(see Theorem 5.18 below), which guarantees positivity of the term appearing in
brackets [· · · ]. Therefore, putting the 2nd term from the right hand to the left
hand side in the latter inequality from step 3 we obtain

(Reλ)

∫

Rd

η2n |v⋆|p +
d∑

j=1

∫

Rd

η2n

(

γA −
2|A| ‖η‖1,∞ ε

n

)

|Djv⋆|2 |v⋆|p−2

6(Reλ)

∫

Rd

η2n |v⋆|p +
∫

Rd

η2n |v⋆|p−4
d∑

j=1

[

|v⋆|2Re 〈Djv⋆, ADjv⋆〉

+ (p− 2)Re 〈Djv⋆, v⋆〉Re 〈v⋆, ADjv⋆〉
]

−
2|A| ‖η‖1,∞ ε

n

d∑

j=1

∫

Rd

η2n |Djv⋆|2 |v⋆|p−2

6

(∫

Rd

η2n |v⋆|p
) p−1

p
(∫

Rd

η2n |g|p
) 1

p

+
2d|A| ‖η‖1,∞

4nε

∫

Rd

|v⋆|p

+
4d |S| ‖η‖1,∞

p

∫

n6|x|62n

|v⋆|p .

5. Choosing ε > 0 such that γA − 2|A|‖η‖1,∞ε

n
> 0 for every n ∈ N, using ω0 = 0

from (5.11), i.e. Reλ = Reλ − ω0, and taking the limit inferior for n → ∞, an
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application of Lebesgue’s dominated convergence theorem and Fatou’s lemma yield

(Reλ− ω0) ‖v⋆‖pLp(Rd,CN )
6 (Reλ)

∫

Rd

|v⋆|p + γA

d∑

j=1

∫

Rd

|Djv⋆|2 |v⋆|p−2

=(Reλ)

∫

Rd

lim
n→∞

η2n |v⋆|p +
d∑

j=1

∫

Rd

lim inf
n→∞

η2n

(

γA −
2|A| ‖η‖1,∞ ε

n

)

|Djv⋆|2 |v⋆|p−2

6lim inf
n→∞

[

(Reλ)

∫

Rd

η2n |v⋆|p +
d∑

j=1

∫

Rd

η2n

(

γA −
2|A| ‖η‖1,∞ ε

n

)

|Djv⋆|2 |v⋆|p−2

]

6lim inf
n→∞

[(∫

Rd

η2n |v⋆|p
) p−1

p
(∫

Rd

η2n |g|p
) 1

p

+
2d|A| ‖η‖1,∞

4nε

∫

Rd

|v⋆|p

+
4d |S| ‖η‖1,∞

p

∫

n6|x|62n

|v⋆|p
]

=

(∫

Rd

lim
n→∞

η2n |v⋆|p
) p−1

p
(∫

Rd

lim
n→∞

η2n |g|p
) 1

p

+
2d|A| ‖η‖1,∞

4ε

∫

Rd

lim
n→∞

1

n
|v⋆|p

+
4d |S| ‖η‖1,∞

p

∫

Rd

lim
n→∞

|v⋆|p 1{n6|x|62n}

=

(∫

Rd

|v⋆|p
) p−1

p
(∫

Rd

|g|p
) 1

p

= ‖v⋆‖p−1
Lp(Rd,CN )

‖g‖Lp(Rd,CN ) .

Finally, using Reλ − ω0 > 0 the Lp–resolvent estimate follows by dividing both
sides by Reλ−ω0 and ‖v⋆‖p−1

Lp(Rd,CN )
. Indeed, we must check that the assumptions of

Lebesgue’s theorem and Fatou’s lemma are satisfied. We suggest that first one must
apply Lebesgue’s theorem, which then yields that the assumptions of Fatou’s lemma
are satisfied. For the application of Lebesgue’s theorem we have the pointwise
convergence η2n|v⋆|p → |v⋆|p, η2n|g|p → |g|p, 1

n
|v⋆|p → 0 and |v⋆|p 1{n6|x|62n} → 0 a.e.

as n → ∞. Furthermore, they are dominated by |η2n|v⋆|p| 6 |v⋆|p, |η2n|g|p| 6 |g|p,
1
n
|v⋆|p 6 |v⋆|p, |v⋆|p 1{n6|x|62n} 6 |v⋆|p and the bounds belong to L1(Rd,R) since
v⋆, g ∈ Lp(Rd,CN). For the application of Fatou’s lemma we observe that η2n|v⋆|p
and η2n

(

γA − 2|A|‖η‖1,∞ε

n

)

|Djv⋆|2 |v⋆|p−2 belong to L1(Rd,R), are positive and the

limit inferior of their integrals is bounded by Lebesgue’s theorem.
6. To show uniqueness in Dp

loc(L0), let both u⋆, v⋆ ∈ Dp
loc(L0) be a solution of

(λI −L0) u⋆ = g and (λI − L0) v⋆ = g

in Lp(Rd,CN). Then w⋆ := v⋆ − u⋆ ∈ Dp
loc(L0) is a solution of the homogeneous

problem (λI − L0)w⋆ = 0 in Lp(Rd,CN). From the Lp–resolvent estimate we obtain
‖w⋆‖Lp 6 0, hence u⋆ and v⋆ coincide in Lp(Rd,CN). Since u⋆, v⋆ ∈ Dp

loc(L0) and
Dp

loc(L0) ⊂ Lp(Rd,CN) we deduce that v⋆ = u⋆ in Dp
loc(L0).

7. From step 5 we obtain for every j = 1, . . . , N

∫

Rd

|Djv⋆|2 |v⋆|p−2
6

1

γA
‖v⋆‖p−1

Lp ‖g‖Lp .
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Using the Lp–resolvent estimate, we deduce from Hölder’s inequality for 1 < p 6 2

‖Djv⋆‖pLp(Rd,CN )
=

∫

Rd

|Djv⋆|p =
∫

Rd

|Djv⋆|p |v⋆|−
p(2−p)

2 |Djv⋆|
p(2−p)

2

6

(∫

Rd

|Djv⋆|2 |v⋆|p−2

) p
2
(∫

Rd

|v⋆|p
) 2−p

2

6
1

γ
p
2
A

1

(Reλ− ω0)
p
2

‖g‖p
Lp(Rd,CN )

.

Taking the sum over j from 1 to d and the pth root we end up with

|v⋆|W 1,p(Rd,CN ) =

( d∑

j=1

‖Djv⋆‖pLp(Rd,CN )

) 1
p

6
d

1
p

γ
1
2
A (Reλ− ω0)

1
2

‖g‖Lp(Rd,CN ) .

Recall the following definition of a dissipative operator, [34, II.3.13 Definition].

Definition 5.14. The operator L0 : Dp
loc(L0) ⊂ Lp(Rd,CN) → Lp(Rd,CN) with

1 < p <∞, is called Lp-dissipative (or dissipative in Lp(Rd,CN)) if

‖(λ−L0) v‖Lp(Rd,CN ) > λ ‖v‖Lp(Rd,CN ) , ∀λ > 0 ∀ v ∈ Dp
loc(L0).

A direct consequence of Theorem 5.13 is that the Ornstein-Uhlenbeck operator
L0 is a dissipative operator in Lp(Rd,CN) for 1 < p <∞.

Corollary 5.15. Let the assumptions (A3), (A4) and (A5) be satisfied for
1 < p < ∞ and K = C. Then, L0 : Dp

loc(L0) ⊂ Lp(Rd,CN) → Lp(Rd,CN) is
Lp-dissipative.

5.5 The Lp-dissipativity condition

In this section we give a complete characterization of the optimal Lp-dissipativity
condition (5.1) for the complex-valued Ornstein-Uhlenbeck operator L0 in
Lp(Rd,CN) for 1 < p <∞. For this purpose, recall the following definitions.

Definition 5.16. Let A ∈ KN,N with K ∈ {R,C} and N ∈ N, then A is called

• accretive, if inf
w∈KN

|w|=1

Re 〈w,Aw〉 > 0

• strongly accretive, if inf
w∈KN

|w|=1

Re 〈w,Aw〉 > 0

• dissipative, if sup
w∈KN

|w|=1

Re 〈w,Aw〉 6 0

• strongly dissipative, if sup
w∈KN

|w|=1

Re 〈w,Aw〉 < 0

For selfadjoint matrices A, replace accretive and dissipative by positive and neg-
ative, respectively.
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Definition 5.17. Let A ∈ KN,N with K ∈ {R,C} and N ∈ N. Then we define by

µ1(A) := inf
w∈KN

w 6=0
Aw 6=0

Re 〈w,Aw〉
|w||Aw| = inf

w∈KN

|w|=1
Aw 6=0

Re 〈w,Aw〉
|Aw|(5.26)

the first antieigenvalue of A. A vector 0 6= w ∈ KN with Aw 6= 0 for which the
infimum is attained, is called an antieigenvector of A. Moreover, we define the
(real) angle of A by

ΦR(A) := cos−1 (µ1(A)) .

The Definitions 5.16 and 5.17 come originally from [47]. Related to the Definition
5.16, we suggest that the assumption (A3) is satisfied if and only if A is strongly
accretive. The following lower and upper bounds for the first antieigenvalue of A
are well known from [31]

Caccr(A)

|A| =
1

|A| inf
w∈KN

|w|=1

Re 〈w,Aw〉 6 µ1(A) 6
1

|A| sup
w∈KN

|w|=1

Re 〈w,Aw〉 = Cdiss(A)

|A| ,

where we call Caccr(A) and Cdiss(A) the accretivity and dissipativity constant
of A, respectively. They describe the inner and outer real numerical radius of
A, respectively. In Definition 5.17, µ1(A) measures the maximum (real) turning
capability of A. The expression for µ1(A) is sometimes denoted by cosA and is
called the cosine of A. In [59] the expression for µ1(A) is denoted by devA and is
called the deviation of A.

The next theorem shows that the Lp-dissipativity condition is equivalent to a
lower bound for the first antieigenvalue of the diffusion matrix A. Later, the theo-
rem is applied to b := p− 2 for 1 < p <∞.

Theorem 5.18 (Lp-dissipativity condition vs. Lp-antieigenvalue condition). Let
A ∈ KN,N for K = R if N > 2 and K = C if N > 1, and let b ∈ R with b > −1.
(a) Given some γA > 0, then the following statements are equivalent:

(1) |z|2Re 〈w,Aw〉+ bRe 〈w, z〉Re 〈z, Aw〉 > γA|z|2|w|2 ∀w, z ∈ KN ,

(2) Re 〈w,Aw〉+ bRe 〈w, z〉Re 〈z, Aw〉 > γA ∀w, z ∈ KN , |z| = |w| = 1,

(3)

(

1 +
b

2

)

Re 〈w,Aw〉 − |b|
2
|Aw| > γA ∀w ∈ KN , |w| = 1.

(b) Moreover, the following statements are equivalent

(4) ∃ γA > 0 :

(

1 +
b

2

)

Re 〈w,Aw〉 − |b|
2
|Aw| > γA ∀w ∈ KN , |w| = 1,

(5) ∃ δA > 1 :
(2 + b)

|b| · Re 〈w,Aw〉
|w||Aw| > δA ∀w ∈ KN , w 6= 0, Aw 6= 0,

(6) ∃ δA > 1 :
(2 + b)

|b| · µ1(A) > δA,

(7) µ1(A) >
|b|

(2 + b)
,

where µ1(A) denotes the first antieigenvalue of A in the sense of Definition 5.17.
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The scalar real case: Positivity. In the scalar real case A = a ∈ R (with K = R

and N = 1) the statements (1) and (2) are equivalent, but they are in general not
equivalent with (3). In particular, there exists a constant γa with (2) if and only if
(1 + b)a > 0.

The scalar complex case: A cone condition. In the scalar complex case
A = α ∈ C (with K = C and N = 1) there exists a constant γα with (3) if and
only if one of the following cone conditions hold

(8) |Imα| < 2
√
1 + b

|b| Reα,

(9) |argα| < arctan

(
2
√
1 + b

|b|

)

.

This conditions will be discussed below for normal matrices in more details.

First antieigenvalue and real angle. The statement (7) coincides with the Lp-
antieigenvalue condition from (A4) and yields a lower p-dependent bound for the
first antieigenvalue of the diffusion matrix A

µ1(A) >
|p− 2|
p

∈ [0, 1[, 1 < p <∞.

This implies an upper p-dependent bound for the (real) angle of A

ΦR(A) := cos−1 (µ1(A)) < cos−1

( |p− 2|
p

)

∈]0, π
2
], 1 < p <∞.

In general, one cannot derive an explicit expression for the first antieigenvalue
µ1(A) of a matrix A. However, for certain classes of matrices such as Hermitian
and normal matrices it is possible to derive a closed formula for µ1(A) as it is shown
in the following two remarks.

µ1(A) for Hermitian matrices. If A is a Hermitian matrix, then µ1(A) from
(7) is given by

µ1(A) =

√

λA1 λ
A
N

1
2
(λA1 + λAN)

=
2
√
κA

κA + 1
,

where 0 < λA1 6 λA2 6 · · · 6 λAN denote the (real) eigenvalues of A and κA :=
λAN
λA1

denotes the spectral condition number of A. In this case µ1(A) is the quotient
of the geometric mean

√

λA1 λ
A
N and the arithmetic mean 1

2

(
λA1 + λAN

)
of the smallest

and largest eigenvalue of A. In particular, the equality µ1(A) =
Re 〈w,Aw〉

|Aw| is satisfied

for the antieigenvector w =
(
λAN
) 1

2 u1+
(
λA1
) 1

2 uN , where u1, uN ∈ KN are orthogonal
vectors with Au1 = λA1 u1 and AuN = λANuN such that |w| = 1. This follows directly
from the Greub-Rheinboldt inequality, [53, (7.4.12.11)], and can be found in [53,
7.4.P4].
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If we define q := |p−2|
p

for 1 < p < ∞, see Figure 5.1(a), then q ∈ [0,∞[ and the

Lp-antieigenvalue condition (A4) is equivalent with

2− q2 − 2
√

1− q2

q2
< κA <

2− q2 + 2
√

1− q2

q2
, for 0 < q < 1.

Using the definition of q, this inequality implies

CL(p) :=
p2 + 4p− 4− 4p

√
p− 1

(p− 2)2
< κA <

p2 + 4p− 4 + 4p
√
p− 1

(p− 2)2
=: CR(p),

for 1 < p <∞ and p 6= 2, that is a lower and upper bound for the spectral condition

number of A. Of course, since 0 < λA1 6 λA2 6 · · · 6 λAN not only κA =
λAN
λA1

but

also
λAj

λA1
must be contained in the open interval ]CL(p), CR(p)[ for every 1 6 j 6 N .

The behavior of the constants CL(p) and CR(p) is depicted in Figure 5.1(b). In
particular, to satisfy this condition for arbitrary very large p, i.e. p near ∞, the
matrix A must be of the form A = aIN for some 0 < a ∈ R.

0 20 40 60 80 100
0

0.5

1

1.5

2

p

q(
p)

(a)

0 20 40 60 80 100
0

2

4

6

8

10

p

C
L(p

),
 C

R
(p

)

(b)

Figure 5.1: q as a function on p (a) and constants CL (red) and CR (blue) in dependence
on p (b)

µ1(A) for normal matrices. If A is a normal matrix, then µ1(A) from (7) is
given by µ1(A) = minE ∪ F , where

E :=

{

aj
∣
∣λAj
∣
∣

∣
∣
∣
∣
∣
1 6 j 6 N

}

,

F :=







2

√

(aj − ai)
(

ai
∣
∣λAj
∣
∣
2 − aj |λAi |

2
)

∣
∣λAj
∣
∣
2 − |λAi |

2

∣
∣
∣
∣
∣
∣
∣
∣

0 <
aj
∣
∣λAj
∣
∣2 − 2ai

∣
∣λAj
∣
∣2 + aj

∣
∣λAi
∣
∣2

(

|λAi |
2 −

∣
∣λAj
∣
∣2
)

(ai − aj)
< 1,

1 6 i, j 6 N,
∣
∣λAi
∣
∣ 6=

∣
∣λAj
∣
∣







,
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and λAj = aj + ibj with aj, bj ∈ R, 1 6 j 6 N , denote the eigenvalues of A. In
particular, if

µ1(A) =
aj
∣
∣λAj
∣
∣

for some 1 6 j 6 N ,(5.27)

then µ1(A) =
Re 〈w,Aw〉

|Aw| for an antieigenvector w ∈ KN with |wj | = 1 and |wi| = 0
for 1 6 i 6 N with i 6= j. Conversely, if

µ1(A) =

2

√

(aj − ai)
(

ai
∣
∣λAj
∣
∣2 − aj |λAi |

2
)

∣
∣λAj
∣
∣
2 − |λAi |

2
for some 1 6 i, j 6 N , i 6= j,(5.28)

with
∣
∣λAi
∣
∣ 6=

∣
∣λAj
∣
∣, then µ1(A) =

Re 〈w,Aw〉
|Aw| for an antieigenvector w ∈ KN with

|wi|2 =
aj
∣
∣λAj
∣
∣2 − 2ai

∣
∣λAj
∣
∣2 + aj

∣
∣λAi
∣
∣2

(

|λAi |
2 −

∣
∣λAj
∣
∣2
)

(ai − aj)
,

|wj|2 =
ai
∣
∣λAi
∣
∣2 − 2aj

∣
∣λAi
∣
∣2 + ai

∣
∣λAj
∣
∣2

(

|λAi |
2 −

∣
∣λAj
∣
∣2
)

(ai − aj)

and |wk| = 0 for 1 6 k 6 N with k 6= i and k 6= j. This result can be found in [49,
Theorem 5.1], [50, Theorem 3.1], [97, Theorem 1.1] and [95, Theorem 1]. The proof
in [49, Theorem 5.1] is based on an application of the Lagrange multiplier method
in order to solve a minimization problem. Furthermore, in [31] it was proved that
the expression on the right hand side of (5.28) is an upper bound for µ1(A). In [31]
one can also find a geometrical interpretation of this equality by a semiellipse.

If µ1(A) is given by (5.27) for some 1 6 j 6 N , then the Lp-antieigenvalue
condition (A4) is equivalent with

ReλAj >
|p− 2|
2
√
p− 1

∣
∣ImλAj

∣
∣ , 1 < p <∞.

This leads to a cone condition which postulates that every eigenvalues of A is
even contained in a p-dependent sector Σp in the open right half-plane, called a
conic section,

Σp :=
{

λ ∈ C | |Imλ| |p− 2| < 2
√

p− 1Reλ
}

=

{

λ ∈ C | |arg λ| < arctan

(
2
√
p− 1

|p− 2|

)}

, 1 < p <∞,

see Figure 5.2. The opening angle |ϕ| is close to 0 for small and large p, i.e. p close
to 1 or ∞, and it is π

2
for p = 2. Indeed, this is the same requirement as in the

scalar complex case. In particular, to satisfy the cone condition for arbitrary very
large p, the matrix A must be of the form A = diag(a1, . . . , aN) for some positive
a1, . . . , aN ∈ R.
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Reλ

Im λ

C+

(a)

Reλ

Imλ

1 < p < 2

2 < p < ∞

|ϕ| = arctan
(

2
√
p−1

|p−2|

)

Σp

(b)

Figure 5.2: Sector for ellipticity assumption (A2) (a) and cone condition for antieigenvalue
assumption (A4) for normal matrices A (b)

If µ1(A) is given by (5.28) for some 1 6 i, j 6 N with i 6= j, then the Lp-
antieigenvalue condition (A4) is equivalent with

2

√

(aj − ai)
(

ai
∣
∣λAj
∣
∣
2 − aj |λAi |

2
)

∣
∣λAj
∣
∣
2 − |λAi |

2
>

|p− 2|
p

, 1 < p <∞.

that must be satisfied for every 1 6 i, j 6 N with |λAj | 6= |λAi |. We emphasize the
following equalities from [49, Section 6] and [31]

2

√

(aj − ai)
(

ai
∣
∣λAj
∣
∣2 − aj |λAi |

2
)

∣
∣λAj
∣
∣
2 − |λAi |

2

=

2

√
|λAj |
|λAi |

[(
ai

|λAi |

)( |λAj |
|λAi |

)

− aj

|λAj |

] [(
aj

|λAj |

)( |λAj |
|λAi |

)

− ai
|λAi |

]

(

|λAj |
|λAi |

)2

− 1

=
2
√

(riρij − rj) (rjρij − ri) ρij
ρ2ij − 1

,

where ρij :=
|λAj |
|λAi | and rk := Re

λAk
|λAk | =

ak
|λAk | for k = i, j.

µ1(A) for arbitrary matrices. If A is an arbitrary matrix, then for µ1(A) from
(7) there are only approximation results available. Such results are quite new and
can be found in [96, Theorem 2].
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Proof. The equivalence of (1), (2) and (3) is trivial for b = 0, so assume w.l.o.g.
b 6= 0.
(1)⇐⇒(2): This follows directly by dividing both sides by |z|2|w|2.
(2)⇐⇒(3): We distinguish between the cases K = R and K = C.

Case 1: (K = R) Let N > 2. In this case we show the equivalence of

〈w,Aw〉+ b 〈w, z〉 〈z, Aw〉 > γA ∀w, z ∈ RN , |z| = |w| = 1,(5.29)
(

1 +
b

2

)

〈w,Aw〉 − |b|
2
|Aw| > γA ∀w ∈ RN , |w| = 1,(5.30)

for some γA > 0 by minimizing (5.29) with respect to z subject to |z|2 = 1.
Note that the minimum exists due to the boundedness of

|〈z, Aw〉 〈w, z〉| 6 |z|2|Aw||w| = |Aw|.

Subcase 1: (w, Aw linearly dependent) Let w and Aw be linearly de-
pendent, then there exists λ ∈ R such that Aw = λw. Since |w| = 1, we
conclude w 6= 0 and therefore, λ ∈ σ(A). Applying (5.29) with z := w

0 < γA 6 〈w,Aw〉+ b 〈w,w〉 〈w,Aw〉 = (1 + b)λ

we deduce λ > 0, since 1 + b > 0. In this case (5.29) and (5.30) reads as

λ |w|2 + λb 〈w, z〉2 > γA ∀w, z ∈ RN , |z| = |w| = 1,(5.31)
(

1 +
b

2

)

λ |w|2 − |b|
2

|λ| |w| > γA ∀w ∈ RN , |w| = 1.(5.32)

The aim follows by minimization of λb 〈w, z〉2 with respect to z subject to
|z|2 = 1. If b > 0 then λb > 0 and therefore, λb 〈w, z〉2 is minimal iff 〈w, z〉2
is minimal. Choose z ∈ w⊥ with |z| = 1 then the minimum is

min
z∈RN

|z|=1

λb 〈w, z〉2 = min
z∈w⊥

|z|=1

λb 〈w, z〉2 = 0.

If b < 0 then λb < 0 and therefore, λb 〈w, z〉2 is minimal iff 〈w, z〉2 is maximal.
Choose z ∈ {w,−w} then the minimum is

min
z∈RN

|z|=1

λb 〈w, z〉2 = λb < 0.

Subcase 2: (w, Aw linearly independent) For this purpose we use the
method of Lagrange multipliers for finding the local minima of (5.29) w.r.t.
z. Consider the functions

f(w, z) := 〈w,Aw〉+ b 〈w, z〉 〈z, Aw〉 − γA,

g(z) :=|z|2 − 1 = 0

for every fixed w ∈ RN with |w| = 1. The optimization problem is to minimize
f(w, z) w.r.t. z ∈ RN subject to the constraint g(z) = 0.
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1. We introduce a new variable µ ∈ R, called the Lagrange multiplier, and
define the Lagrange function (Lagrangian)

Λ : RN × R → R, Λ(z, µ) := f(z, w) + µg(z).

The solution of the minimization problem corresponds to a critical point of
the Lagrange function. A necessary condition for critical point of Λ is that
the Jacobian vanishes, i.e. JΛ(z, µ) = 0. This leads to the equations

b 〈z, Aw〉w + b 〈w, z〉Aw + 2µz = 0,(5.33)

|z|2 − 1 = 0,(5.34)

i.e. every local minimizer z satisfies (5.33) and (5.34).
2. Multiplying (5.33) from the left by zT we obtain

0 = 2b 〈z, Aw〉 〈w, z〉+ 2µ|z|2 = 2bαβ + 2µ,

and thus µ = −bαβ, where α := 〈z, Aw〉 and β := 〈w, z〉 are still to be
determined. Now, inserting µ = −bαβ into (5.33) and dividing both sides by
b 6= 0 we obtain

αw + βAw − 2αβz = 0.(5.35)

From (5.35) we deduce that if α = 0 then β = 0 and vice versa. If α = β = 0
then z ∈ {w,Aw}⊥ and the minimum of f(w, z) in z subject to g(z) = 0 is
〈w,Aw〉 − γA.
In the following we consider the case α 6= 0 and β 6= 0 and we show that in this
case the minimum of f(w, z) in z subject to g(z) = 0 is even smaller. Note
that, assuming α 6= 0 and β 6= 0, (5.35) yields the following representation
for z

z =
1

2αβ
(αw + βAw) =

1

2β
w +

1

2α
Aw,(5.36)

We now look for possible solutions for α and β.
3. Multiplying (5.35) from the left by wT and using |w| = 1 we obtain

0 = α|w|2 + β 〈w,Aw〉 − 2αβ 〈w, z〉 = α + βq − 2αβ2,(5.37)

where q := 〈w,Aw〉. Multiplying (5.35) from the left by (Aw)T we obtain

0 = αβ 〈Aw,w〉+ β 〈Aw,Aw〉 − 2αβ 〈Aw, z〉 = αq + βr2 − 2α2β,(5.38)

where r := |Aw|. From (5.29) with z := w we deduce that q > 0 since
1 + b > 0. Moreover, we have r > 0: Assuming r = |Aw| = 0 yields Aw = 0
for some |w| = 1 which contradicts γA > 0, compare (5.29). Since r > 0,
q > 0 and by assumption α 6= 0 and β 6= 0, there exist four solutions of
(5.37), (5.38) given by

(α, β) ∈
{(

∓
√

r(r − q)

2
,±
√

r − q

2r

)

,

(

±
√

r(r + q)

2
,±
√

r + q

2r

)}

.

(5.39)
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Note, that r ± q > 0 and therefore (α, β) 6= (0, 0). This follows from the
Cauchy-Schwarz inequality and |w| = 1

±q 6 |q| = |〈w,Aw〉| < |w||Aw| = r.

Note that we have indeed a strict inequality since w and Aw are linearly
independent by our subcase.
4. Instead of investigating whether the Hessian of f at these points is positive
definite or not, we evaluate the function f at the points (5.36) with (α, β)
from (5.39) directly. First we observe that

f(w, z) = 〈w,Aw〉+ b 〈w, z〉 〈z, Aw〉 − γA = q + bαβ − γA.(5.40)

We now distinguish between the two cases b > 0 and b < 0. If b > 0 then
the function f(w, z) is minimal if sgnα = −sgn β and if b < 0 then f(w, z) is
minimal if sgnα = sgn β. Therefore, for the choice of

(α, β) =







(

∓
√

r(r−q)
2

,±
√

r−q
2r

)

, b > 0,
(

±
√

r(r+q)
2

,±
√

r+q
2r

)

, b < 0,
(5.41)

the term bαβ is negative and we have found the global minimum. Thus, for
b > 0 we obtain

bαβ = −b
√

r(r − q)

2

√

r − q

2r
= − b

2
(r − q) = −|b|

2
r +

b

2
q < 0(5.42)

and similarly for b < 0 we obtain

bαβ = b

√

r(r + q)

2

√

r + q

2r
=
b

2
(r + q) = −|b|

2
r +

b

2
q < 0.(5.43)

Therefore, using (5.40), (5.42) and (5.43), the global minimum of f(w, z) in
z subject to the constraint g(z) = 0 is given by

min
z∈RN

|z|=1

f(w, z) = min
z∈RN

|z|=1

(q + bαβ − γA) =

(

1 +
b

2

)

q − |b|
2
r − γA

for every fixed w ∈ RN with |w| = 1. In particular, defining

(z⋆, µ⋆) =

(
1

2β
w +

1

2α
Aw,−bαβ

)

with α, β from (5.41).(5.44)

the above minimum is attained at z⋆ from (5.44) since

f(w) := f(w, z⋆) =

(

1 +
b

2

)

q − |b|
2
r − γA(5.45)

for every fixed w ∈ RN with |w| = 1. Now, (5.45) must be nonnegative for
every w ∈ RN with |w| = 1, which corresponds exactly (3).
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Case 2: (K = C) In this case we apply Case 1 with K = R. For this purpose, we
write

CN ∋ w = w1 + iw2
∼=
(
w1

w2

)

= wR ∈ R2N ,

CN ∋ z = z1 + iz2 ∼=
(
z1
z2

)

= zR ∈ R2N ,

CN,N ∋ A = A1 + iA2
∼=
(
A1 −A2

A2 A1

)

= AR ∈ R2N,2N .

From

〈w, z〉 = 〈w1, z1〉+ 〈w2, z2〉+ i (〈w1, z2〉 − 〈w2, z1〉)

we deduce

Re 〈w, z〉 = 〈wR, zR〉 , Re 〈w,Aw〉 = 〈wR, ARwR〉 , |Aw| = |ARwR| .

Therefore,

Re 〈w,Aw〉+ bRe 〈w, z〉Re 〈z, Aw〉 > γA ∀w, z ∈ CN , |z| = |w| = 1,

translates into

〈wR, ARwR〉+ b 〈wR, zR〉 〈zR, ARwR〉 > γA ∀wR, zR ∈ R2N , |zR| = |wR| = 1.

Due to Case 1 this is equivalent to
(

1 +
b

2

)

〈wR, ARwR〉 −
|b|
2
|ARwR| > γA ∀wR ∈ R2N , |wR| = 1,

that translates back into
(

1 +
b

2

)

Re 〈w,Aw〉 − |b|
2

|Aw| > γA ∀w ∈ CN , |w| = 1,

which proves the case K = C.

(4)⇐=(5): Multiplying (5) from the left by |b|
2
|w||Aw| and using |w| = 1 we obtain

(

1 +
b

2

)

Re 〈w,Aw〉 > |b|
2
|w||Aw|δA =

|b|
2
|Aw|+ |b|

2
|Aw| (δA − 1)

>
|b|
2
|Aw|+ |b|

2

1

|A−1| (δA − 1) =
|b|
2
|Aw|+ γA,

for every w ∈ KN with |w| = 1, where γA := |b|
2

1
|A−1| (δA − 1). Here we used

|w| = |A−1Aw| 6 |A−1||Aw|.
(4)=⇒(5): Dividing (4) by |b|

2
|Aw| we obtain

2
(
1 + b

2

)
Re 〈w,Aw〉

|b||Aw| >
2

|b|
γA
|Aw| + 1 ∀w ∈ KN , |w| = 1.
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Now, let w ∈ KN with w 6= 0, then
∣
∣
∣
w
|w|

∣
∣
∣ = 1 and we further obtain

2
(
1 + b

2

)
Re 〈w,Aw〉

|b||w||Aw| >
2

|b|
γA
|A| + 1 =: δA > 1 ∀ 0 6= w ∈ KN .

(5)⇐⇒(6): This follows by the definition of the first antieigenvalue of A.
(6)⇐⇒(7): trivial.

5.6 The maximal domain (Part 1)

In this section we derive a characterization of the infinitesimal generator
Ap : D(Ap) ⊆ Lp(Rd,CN) → Lp(Rd,CN) and of its maximal domain D(Ap) in
Lp(Rd,CN) for 1 < p < ∞. Problems of this type are also called identification
problems.
The next theorem shows that the maximal domain D(Ap) coincide with Dp

loc(L0)
and that the formal Ornstein-Uhlenbeck operator L0 coincide with the infinitesimal
generator Ap on D(Ap), that can be considered as the abstract Ornstein Uhlen-
beck operator. Therefore, Ap is called the maximal realization (or maximal
extension) of the complex-valued Ornstein-Uhlenbeck operator L0 in Lp(Rd,CN)
for every 1 < p <∞ with maximal domain D(Ap) = Dp

loc(L0).
The main idea for the first part of the proof comes from [71, Proposition 2.2 and
3.2]. For the maximal domain of the scalar real-valued Ornstein-Uhlenbeck oper-
ator we refer to [73] and [83] for the Lp-spaces and to [75] for the Lp-spaces with
invariant measure. In particular, we suggest that in the proof we apply Theorem
5.10(4), which states that S(Rd,CN) is a core for (Ap,D(Ap)), and Theorem 5.13,
which yields unique solvability of the resolvent equation for L0.

Theorem 5.19 (Maximal domain, Part 1). Let the assumptions (A1)–(A5) be
satisfied for 1 < p <∞ and K = C, then

D(Ap) = Dp
loc(L0),

where Dp
loc(L0) is given by

Dp
loc(L0) :=

{
v ∈ W 2,p

loc (R
d,CN) ∩ Lp(Rd,CN) | A△v + 〈S·,∇v〉 ∈ Lp(Rd,CN)

}
.

In particular,

Apv = L0v for every v ∈ D(Ap),

i.e. Ap is the maximal realization of L0 in Lp(Rd,CN).

Proof. ⊆: Let v ∈ D(Ap). Since S is dense in D(Ap) with respect to the graph
norm ‖·‖Ap

by Theorem 5.10(4), we have

∃ (vn)n∈N ⊂ S : ‖vn − v‖Ap
→ 0 as n→ ∞.

This yields

‖vn − v‖Lp → 0 as n→ ∞.
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and using Theorem 5.10(2)

‖L0vn − Apv‖Lp = ‖Apvn −Apv‖Lp → 0 as n→ ∞,

where Apv ∈ Lp(Rd,CN) because v ∈ D(Ap). Since obviously S ⊂ Dp
loc(L0), we have

(vn)n∈N ⊂ Dp
loc(L0) and we deduce by the closedness of L0 : Dp

loc(L0) → Lp(Rd,CN)
from Lemma 5.11 that v ∈ Dp

loc(L0) and L0v = Apv.
⊇: Let v ∈ Dp

loc(L0). Choose λ ∈ C with Reλ > ω0 and define g := (λI − L0) v,
thus g ∈ Lp(Rd,CN). Then Corollary 5.7 yields a unique solution v⋆ ∈ D(Ap) of
(λI − Ap) v⋆ = g. Since v⋆ ∈ D(Ap) ⊆ Dp

loc(L0) we conclude v⋆ ∈ Dp
loc(L0) and

Apv⋆ = L0v⋆. Thus, we have

(λI − L0) v⋆ = g and (λI − L0) v = g.

From the uniqueness of the resolvent equation for L0 from Theorem 5.13 we deduce
v = v⋆ in Lp(Rd,CN) w.r.t. ‖·‖Lp. Recall D(Ap) ⊆ Dp

loc(L0) ⊆ Lp(Rd,CN). Since
v, v⋆ coincide in Lp(Rd,CN) w.r.t. ‖·‖Lp, v, v⋆ ∈ Dp

loc(L0) and v⋆ ∈ D(Ap), we
conclude v ∈ D(Ap) and L0v = Apv.

A superset of the domain of L0. Combining Theorem 5.8, which yields
D(Ap) ⊆ W 1,p(Rd,CN) for 1 6 p < ∞, and Theorem 5.19, which yields
D(Ap) = Dp

loc(L0) for 1 < p <∞, we even obtain that

Dp
loc(L0) = D(Ap) ⊆W 1,p(Rd,CN), 1 < p <∞,

and therefore

Dp
loc(L0) =

{
v ∈ W 2,p

loc (R
d,CN) ∩W 1,p(Rd,CN) | L0v ∈ Lp(Rd,CN)

}
, 1 < p <∞.

Note that, in contrast to Theorem 5.8, Theorem 5.13 shows Dp
loc(L0) ⊆ W 1,p(Rd,CN)

only for 1 < p 6 2 but not for general 1 < p <∞.

Identification problem in Lpθ(R
d,CN). As already mentioned after Theorem 5.3,

the Ornstein-Uhlenbeck semigroup (T0(t))t>0 is strongly continuous on the expo-

nentially weighted spaces Lpθ(R
d,CN) for 1 6 p <∞, that justifies to introduce the

infinitesimal generator Ap,θ. The identification of D(Ap,θ) is now much more com-
plicated, since on the one hand one must check that the Schwartz space S(Rd,CN)
is a core for (Ap,θ,D(Ap,θ)) and on the other hand one must prove resolvent es-
timates for L0 in exponentially weighted spaces Lpθ(R

d,CN) for 1 < p < ∞ with
domain

Dp
loc,θ(L0) :=

{
v ∈ W 2,p

loc (R
d,CN) ∩ Lpθ(Rd,CN) | L0v ∈ Lpθ(R

d,CN)
}
.

The complete theory from Section 5.1–5.6 is also satisfied for S = 0. However,
in this case we even have stronger results which are necessary for the next section.
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Diffusion semigroup in Lp(Rd,CN). Consider the heat kernel

K(ψ, t) := (4πtA)−
d
2 exp

(
− (4tA)−1 |ψ|2

)
,

for the differential operator
[
Ldiff

0 v
]
(x) := A△v(x), compare (4.24) with B = 0.

Then we define the (d-dimensional) diffusion semigroup (Gaussian semi-
group, heat semigroup)

[G(t, 0)v] (x) :=

{∫

Rd K(x− ξ, t)v(ξ)dξ , t > 0

v(x) , t = 0
, x ∈ Rd,(5.46)

Requiring assumption (A1) and (A2), Theorem 5.1–5.3 (with S = 0) yield that
(G(t, 0))t>0 generates a strongly continuous semigroup in Lp(Rd,CN) for
1 6 p < ∞. If we additionally require that the assumptions (A3) and (A4) are
satisfied, then Theorem (5.19) (with S = 0) states that the infinitesimal genera-
tor Adiff

p of (G(t, 0))t>0 coincides with the diffusion operator Ldiff
0 on its maximal

domain given by

D
(
Ldiff

0

)
:=
{
v ∈ W 2,p

loc (R
d,CN) ∩ Lp(Rd,CN) | A△v ∈ Lp(Rd,CN)

}

for 1 < p <∞. In particular, the graph norm of Adiff
p is given by

‖v‖Adiff
p

= ‖v‖Lp(Rd,CN ) + ‖A△‖Lp(Rd,CN ) , v ∈ D(Ldiff
0 ).

But in case S = 0, we even have maximal Lp-regularity results, since the semigroup
(G(t, 0))t>0 is (in contrast to (T0(t))t>0 for S 6= 0) analytic: Using the assumptions
(A1)–(A4), we deduce from [67, Theorem 3.1.2 and 3.1.3] for the scalar complex-
valued case that Ldiff

0 is a sectorial operator in the sense of [67, Definition 2.0.1]
and its maximal domain is even given by

D
(
Ldiff

0

)
:=W 2,p(Rd,CN)

for every 1 < p <∞ with N = 1. By our assumption (A1), this result extends also
for N > 1. We further conclude from [67, Lemma 6.1.1] for every 1 < p < ∞ that
the graph norm is equivalent to ‖·‖W 2,p, i.e. there exists some Cdiff > 1 such that

C−1
diff ‖v‖W 2,p(Rd,CN ) 6 ‖v‖Lp(Rd,CN ) + ‖A△v‖Lp(Rd,CN ) 6 Cdiff ‖v‖W 2,p(Rd,CN )(5.47)

for every v ∈ W 2,p(Rd,CN). Later, we still prove in Theorem 7.9 (with S = Q = 0)

{
λ ∈ C | λ ∈ σ(−ω2A), ω ∈ R

}
⊆ σess(Ldiff

0 ).

in Lp(Rd,CN) for 1 < p <∞. Concluding we define the parabolic evolution family

[G(t, s)v] (x) :=

{∫

Rd K(x− ξ, t− s)v(ξ)dξ , t > s

v(x) , t = s
, x ∈ Rd.
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Rotation group in Lp(Rd,CN). For any skew-symmetric matrix S ∈ Rd,d we
define the rotation group by

[R(t)v] (x) := v(etSx), t ∈ R, x ∈ Rd.

Obviously, (R(t))t∈R is a strongly continuous group in W k,p(Rd,CN) for k = 0, 1, 2
and 1 6 p < ∞, compare proof of Theorem 5.3. The infinitesimal generator Adrift

p

of (R(t))t∈R coincides with the drift term
[
Ldrift

0 v
]
(x) := 〈Sx,∇v〉 on its maximal

domain given by

D
(
Ldrift

0

)
:=
{
v ∈ Lp(Rd,CN) | 〈S·,∇v〉 ∈ Lp(Rd,CN)

}

for 1 < p < ∞. For a proof of these results we refer to [71, Proposition 2.2] and
suggest that these results trivially extends to complex-valued systems.

We stress the following relations that follows directly from the definitions of T0,
R and G:

T0(t) =R(t)G(t, 0) ∀ t > 0,(5.48)

G(t− s, 0)R(s) =R(s)G(t, s) ∀ t > s.(5.49)

5.7 Cauchy problems and exponential decay

In this section we study the abstract Cauchy problem

vt(t) =Apv(t) + f(t), t ∈]0, T ],
v(0) =v0, t = 0,

(5.50)

in Lp(Rd,CN) for 1 6 p < ∞, where Ap : D(Ap) ⊆ Lp(Rd,CN) → Lp(Rd,CN)
denotes the infinitesimal generator of the strongly continuous semigroup (T0(t))t>0,

v0 ∈ Lp(Rd,CN) the initial data, f : [0, T ] → Lp(Rd,CN) the inhomogeneity and
v : [0, T ] → Lp(Rd,CN) the solution of (5.50). Our aim in this section is to derive
regularity results for the homogeneous and inhomogeneous initial value problem
(5.50). For this purpose we introduce mild and classical solutions of (5.50), [34,
Chapter VI.7].

Definition 5.20. Let the assumptions (A1), (A2), (A5) be satisfied for 1 6 p <∞
and K ∈ {R,C}. Moreover, let v0 ∈ Lp(Rd,KN ) and f ∈ L1([0, T ], Lp(Rd,KN)) for
some T > 0. Then the function v : [0, T ] → Lp(Rd,KN) given by

v(t) := T0(t)v0 +

∫ t

0

T0(t− s)f(s)ds, t ∈ [0, T ],(5.51)

is called the mild solution of (5.50) in [0, T ]. A function v : [0,∞[→ Lp(Rd,KN)
is called the mild solution of (5.50) in [0,∞[ if v|[0,T ] is the mild solution of
(5.50) in [0, T ] for every T > 0.

Note that for v0 ∈ Lp(Rd,KN ) and f ∈ L1([0, T ], Lp(Rd,KN)) the mild solution
of (5.50) is unique by its definition.
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Definition 5.21. Let the assumptions (A1), (A2) and (A5) be satisfied for
1 6 p <∞ and K ∈ {R,C}. Moreover, v0 ∈ D(Ap) and f ∈ L1([0, T ], Lp(Rd,KN))
for some T > 0. Then the function v : [0, T ] → Lp(Rd,KN ) is called a classical
solution of (5.50) in [0, T ] if

v ∈ C([0, T ],D(Ap)) ∩ C1(]0, T [, Lp(Rd,KN)) and (5.50) holds.

A function v : [0,∞[→ Lp(Rd,KN ) is called a classical solution of (5.50) in
[0,∞[ if v|[0,T ] is a classical solution of (5.50) in [0, T ] for every T > 0.

Assuming v0 ∈ Lp(Rd,KN) and f ∈ L1([0, T ], Lp(Rd,KN)) one can show that
every classical solution of (5.50) is also a mild solution of (5.50) and hence unique,
[34, Chapter VI.7, 7.10 Exercise].

The following spatial Lp-regularity result for the mild solution of the homoge-
neous initial value problem (5.50), i.e. with f = 0, is a direct consequence of
Theorem 5.1.

Theorem 5.22 (A-priori estimates in Lpθ(R
d,CN)). Let the assumptions (A1),

(A2) and (A5) be satisfied for 1 6 p < ∞ and K = C. Then for every radially
nondecreasing weight function θ ∈ C(Rd,R) of exponential growth rate η > 0 and
for every initial data v0 ∈ Lpθ(R

d,CN) we have v(t) ∈ W 2,p
θ (Rd,CN) for every t > 0

with

‖v(t)‖Lp
θ
6 C4(t) ‖v0‖Lp

θ
(Rd,CN ) , t > 0,(5.52)

‖Div(t)‖Lp
θ
6 C5(t) ‖v0‖Lp

θ
(Rd,CN ) , t > 0, i = 1, . . . , d,(5.53)

‖DjDiv(t)‖Lp
θ
6 C6(t) ‖v0‖Lp

θ
(Rd,CN ) , t > 0, i, j = 1, . . . , d,(5.54)

where v : [0,∞[→ Lp(Rd,CN) given by v(t) = T0(t)v0 denotes the unique mild
solution of (5.50) in [0,∞[ with f = 0 and the constants C4+|β|(t) are given by
Theorem 5.1 for every |β| = 0, 1, 2.

Remark. In order to investigate the temporal regularity for mild solutions of (5.50)
with f = 0, one can show that

v ∈ C([0, T ], Lp(Rd,CN)) ∩ C(]0, T [,W 2,p(Rd,CN)) ∩ C1(]0, T [, Lploc(R
d,CN)).

This statement was proved in [73, Theorem 3.3] for the scalar real-valued Ornstein-
Uhlenbeck operator.

The following spatial Lp-regularity result for the mild solution of the inhomo-
geneous initial value problem (5.50) is an extension of Theorem 5.22 and follows
again directly from Theorem 5.1. The major difference to Theorem 5.22 is that we
are only able to prove that the mild solution of (5.50) belongs to W 1,p(Rd,CN) for
t > 0.
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Theorem 5.23 (A-priori estimates in Lpθ(R
d,CN)). Let the assumptions (A1),

(A2) and (A5) be satisfied for 1 6 p < ∞ and K = C. Then for every radially
nondecreasing weight function θ ∈ C(Rd,R) of exponential growth rate η > 0, for
every initial data v0 ∈ Lpθ(R

d,CN) and for every inhomogeneity f ∈ Lpθ(R
d,CN) we

have v(t) ∈ W 1,p
θ (Rd,CN) for every t > 0 with

‖v(t)‖Lp
θ
6 C4(t) ‖v0‖Lp

θ
(Rd,CN ) + C9(t) ‖f‖Lp

θ
(Rd,CN ) , t > 0,

‖Div(t)‖Lp
θ
6 C5(t) ‖v0‖Lp

θ(R
d,CN ) + C10(t) ‖f‖Lp

θ(R
d,CN ) , t > 0, i = 1, . . . , d,

where v : [0,∞[→ Lp(Rd,CN) given by (5.51) denotes the unique mild solution of
(5.50) in [0,∞[ and the constants C4+|β|(t) and C9+|β|(t) are given by Theorem 5.1
and

C9+|β|(t) :=

∫ t

0

C4+|β|(s)ds,

respectively, for every |β| = 0, 1.

Concluding, we prove a time-space Lp-regularity result for the mild solution of
(5.50). For this purpose, we mimic the proof of [73, Theorem 3.4]. Note, that
one can identify Lp([0, T ], Lp(Rd,CN)) by Lp(Rd × [0, T ],CN). In the following
we abbreviate ΩT := Rd×]0, T [. Moreover, we suggest that the theorem requires
f ∈ Lp(ΩT ,C

N) ∼= Lp([0, T ], Lp(Rd,CN)) that belongs to L1([0, T ], Lp(Rd,CN)) on
compact time intervals for every 1 < p <∞.

Theorem 5.24 (Regularity for mild solution). Let the assumptions (A1)–(A5) be
satisfied for 1 < p < ∞ and K = C. Moreover, let v given by (5.51) denote the
unique mild solution of (5.50) in [0, T ] with v0 = 0 and f ∈ Lp(ΩT ,C

N), then

v ∈ W
(2,1),p
loc (ΩT ,C

N)

and satisfies

v, vt − 〈S·,∇v〉 , Div,DjDiv ∈ Lp(ΩT ,C
N).

Remark. Note that Theorem 5.24 does neither say that vt ∈ Lp(ΩT ,C
N) not that

〈S·,∇v〉 ∈ Lp(ΩT ,C
N). Only their difference vt − 〈S·,∇v〉 belongs to Lp(ΩT ,C

N).

Proof. Let v be the unique mild solution of (5.50) with initial data v0 = 0 and in-
homogeneity f ∈ Lp(ΩT ,C

N) ⊆ L1([0, T ], Lp(Rd,CN)). By Theorem 5.19 problem
(5.50) can be written as

vt(t) =A△v(t) + 〈S·,∇v(t)〉+ f(t), t ∈]0, T ],
v(0) =0 , t = 0.

(5.55)

From (5.51), (5.48), (5.49) and R(t)R(s) = R(t+ s) for t, s ∈ R we obtain

v(t) =

∫ t

0

T0(t− s)f(s)ds =

∫ t

0

R(t− s)G(t− s, 0)f(s)ds
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=

∫ t

0

R(t− s)G(t− s, 0)R(s)R(−s)f(s)ds

=

∫ t

0

R(t− s)R(s)G(t, s)R(−s)f(s)ds

=

∫ t

0

R(t)G(t, s)R(−s)f(s)ds = R(t)

∫ t

0

G(t, s)R(−s)f(s)ds, t ∈ [0, T ].

Defining h(t) := R(−t)f(t) for t ∈ [0, T ] and

u(t) :=

∫ t

0

G(t, s)h(s)ds, t ∈ [0, T ],

we further obtain the relation v(t) = R(t)u(t), i.e. u(t) = R(−t)v(t) for every
t ∈ [0, T ]. f ∈ Lp(ΩT ,C

N) implies h ∈ Lp(ΩT ,C
N) ⊆ L1(]0, T [, Lp(Rd,CN)) and

hence u is the unique mild solution of

ut(t) =A△u(t) + h(t), t ∈]0, T ],
u(0) =0 , t = 0.

(5.56)

Note that v ∈ W
(2,1),p
loc (ΩT ,C

N) is equivalent to u ∈ W
(2,1),p
loc (ΩT ,C

N).
In the following we even prove that u ∈ W (2,1),p(ΩT ,C

N): Since h ∈ Lp(ΩT ,C
N)

and since C∞
c (ΩT ,C

N) is dense in Lp(ΩT ,C
N), there exists hn ∈ C∞

c (ΩT ,C
N),

n ∈ N, such that hn → h in Lp(ΩT ,C
N) as n→ ∞. Let us define

un(t) :=

∫ t

0

G(t, s)hn(s)ds, t ∈ [0, T ],

then un is the unique mild solution of (5.56) with inhomogeneity hn. Moreover,
from hn → h in Lp(ΩT ,C

N) we deduce that un → u in Lp(ΩT ,C
N) as n → ∞

and hence u ∈ Lp(ΩT ,C
N). Since A△ : W 2,p(Rd,CN) → Lp(Rd,CN) is a sectorial

operator in the sense of [67, Definition 2.0.1], an application of [67, Proposition
6.1.3] yields

un ∈ C([0, T ],W 2,p(Rd,CN)) ∩ C1([0, T ], Lp(Rd,CN)), n ∈ N,

and hence, un is even a classical solution of (5.56) with inhomogeneity hn for every
fixed n ∈ N. Moreover, an application of [62, IV. Theorem 9.1] implies that there
exists some n-independent constant C = C(A, d, p, T ) > 0 such that

‖un‖W (2,1),p(ΩT ,CN ) 6 C ‖hn‖Lp(ΩT ,CN ) , n ∈ N.(5.57)

From (5.57) and hn → h in Lp(ΩT ,C
N) we deduce that (un)n∈N is a Cauchy sequence

in W (2,1),p(ΩT ,C
N). This follows from the fact that un − um is a classical solution

of (5.56) with inhomogeneity hn−hm and thus using (5.57) we find for every ε > 0
some N0 > 0 such that

‖un − um‖W (2,1),p(ΩT ,CN ) 6 C ‖hn − hm‖Lp(ΩT ,CN ) 6 ε ∀n,m > N0.
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Consequently, un converges to some ũ ∈ W (2,1),p(ΩT ,C
N) as n → ∞. Since we

already know that un → u in Lp(ΩT ,C
N) as n → ∞, we conclude that u = ũ in

Lp(ΩT ,C
N), thus u ∈ W (2,1),p(ΩT ,C

N). In particular, we deduce

‖u‖W (2,1),p(ΩT ,CN ) 6 ‖u− un‖W (2,1),p(ΩT ,CN ) + ‖un‖W (2,1),p(ΩT ,CN )

6 ‖u− un‖W (2,1),p(ΩT ,CN ) + C ‖hn‖Lp(ΩT ,CN )

6 ‖u− un‖W (2,1),p(ΩT ,CN ) + C ‖hn − h‖Lp(ΩT ,CN )

+ C ‖h‖Lp(ΩT ,CN )

for every n ∈ N. Taking the limit as n→ ∞, we obtain

‖u‖W (2,1),p(ΩT ,CN ) 6 C ‖h‖Lp(ΩT ,CN ) .

Using h(t) := R(−t)f(t) and v(t) = R(t)u(t) we obtain

(

‖v‖p
Lp(ΩT ,CN )

+ ‖vt − 〈S·,∇v〉‖p
Lp(ΩT ,CN )

+
d∑

i=1

‖Dxiv‖pLp(ΩT ,CN )

+
d∑

j=1

d∑

i=1

∥
∥DxjDxiv

∥
∥p

Lp(ΩT ,KN )

) 1
p

6 C ‖f‖Lp(ΩT ,CN )

This proves that v ∈ W
(2,1),p
loc (ΩT ,C

N), meaning that vt − 〈S·,∇v〉 ∈ Lp(ΩT ,C
N)

but only vt, 〈S·,∇v〉 ∈ Lploc(ΩT ,C
N).

Remark. Note that [62, IV. Theorem 9.1] holds only for the scalar real-valued
case, but it can be extended to the scalar complex-valued case, i.e. for N = 1. We
do not outline the proof here. Using assumption (A1), this result also extends to
complex-valued systems, i.e. with N > 1.

5.8 The maximal domain (Part 2)

In this section we prove a complete characterization for the maximal domain of the
complex-valued Ornstein-Uhlenbeck operator L0, that is motivated by [73].

The next theorem states that the maximal domain of the Ornstein-Uhlenbeck
operator L0 coincides with the intersection of the domains of its diffusion Ldiff

0 and
drift part Ldrift

0 , i.e.

Dp
loc(L0) = Dp

loc(Ldiff
0 + Ldrift

0 ) = Dp
max(Ldiff

0 ) ∩ Dp
max(Ldrift

0 ).

This was proved in [73, Theorem 1] for the scalar real case.

Theorem 5.25 (Maximal domain, Part 2). Let the assumptions (A1)–(A5) be
satisfied for 1 < p <∞ and K = C, then

Dp
loc(L0) = Dp

max(L0),

where Dp
max(L0) is given by

Dp
max(L0) :=

{
v ∈ W 2,p(Rd,CN) | 〈S·,∇v〉 ∈ Lp(Rd,CN)

}
.
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Proof. ⊇: Let v ∈ Dp
max(L0), then we have v ∈ W 2,p

loc (R
d,CN) and v ∈ Lp(Rd,CN)

since v ∈ W 2,p(Rd,CN). Moreover, v ∈ W 2,p(Rd,CN) implies A△v ∈ Lp(Rd,CN).
Thus, using 〈S·,∇v〉 ∈ Lp(Rd,CN) we conclude L0v ∈ Lp(Rd,CN).
⊆: Let v ∈ Dp

loc(L0), then g := L0v ∈ Lp(Rd,CN). Then w(t) = v is a classical
solution of

d

dt
w(t) = L0w(t)− g, t ∈ [0, T ]

w(0) = v.

in the sense of Definition 5.21 and hence also a mild solution. On the other hand,
since v ∈ Lp(Rd,CN) and g ∈ Lp([0, T ], Lp(Rd,CN)) for every fixed T > 0, the
unique mild solution is given by

v = w(t) = T0(t)v −
∫ t

0

T0(t− s)gds =: w1(t) + w2(t), t ∈ [0, T ],

where w1 is the mild solution of (5.50) in [0, T ] with initial data v0 = v and
inhomogeneity f = 0. Theorem 5.22 states that w1(t) ∈ W 2,p(Rd,CN) for every
t ∈]0, T ]. Similarly, w2 is the mild solution of (5.50) in [0, T ] with initial data v0 = 0
and inhomogeneity f = −g. Because g ∈ Lp([0, T ], Lp(Rd,CN)) ∼= Lp(ΩT ,C

N),
Theorem 5.24 states that w2 ∈ Lp(]0, T [,W 2,p(Rd,CN)), i.e. w2(t) ∈ W 2,p(Rd,CN)
for almost every t ∈]0, T [. If we consider such a t̄ ∈]0, T [, we can deduce that

v = w(t̄) = T0(t̄)v +

∫ t̄

0

T0(t̄− s)gds = w1(t̄) + w2(t̄) ∈ W 2,p(Rd,CN)

and thus we have A△v ∈ Lp(Rd,CN). Consequently, using L0v ∈ Lp(Rd,CN), we
conclude

〈S·,∇v〉 = L0v − A△v ∈ Lp(Rd,CN),

that means v ∈ Dp
max(L0). This completes the proof. For the identification of the

graph norm of Ap we need additionally an estimate for v in W 2,p(Rd,CN): Let
0 < ε < T be arbitrary. By Theorem 5.1 (with θ ≡ 1, Cθ = 1, κ = 0) there exists
a constant C = C(A, d, p, ε, T ) > 0 such that

‖w1‖Lp([ε,T ],W 2,p(Rd,CN )) 6 C ‖v‖Lp(Rd,CN ) .

Moreover, by the last inequality from the proof of Theorem 5.24 there exists a
constant C = C(A, d, p, T ) > 0 such that

‖w2‖Lp([ε,T ],W 2,p(Rd,CN )) 6

(
∑

|β|62

∥
∥Dβ

xw2

∥
∥
p

Lp(ΩT ,CN )

) 1
p

6 C ‖g‖Lp(ΩT ,CN )

=CT ‖L0v‖Lp(Rd,CN ) .
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Combining these estimates we deduce

(T − ε)
1
p ‖v‖W 2,p(Rd,CN ) = ‖v‖Lp([ε,T ],W 2,p(Rd,CN ))

6 ‖w1‖Lp([ε,T ],W 2,p(Rd,CN )) + ‖w2‖Lp([ε,T ],W 2,p(Rd,CN ))

6C
(

‖v‖Lp(Rd,CN ) + ‖L0v‖Lp(Rd,CN )

)

.

To make the constant independent on T and ε, we choose e.g. T = 1 and ε = T
2

and conclude that there exists a constant C = C(A, d, p) > 0 such that

‖v‖W 2,p(Rd,CN ) 6 C
(

‖v‖Lp(Rd,CN ) + ‖L0v‖Lp(Rd,CN )

)

.(5.58)

The following result yields an identification of the graph norm for Ap. The same
result for the scalar real-valued case can also be found in [66, Proposition 9.4.2].
The techniques therein are based on bounded imaginary powers.

Corollary 5.26. Let the assumptions (A1)–(A5) be satisfied for 1 < p < ∞ and
K = C, then the norms

‖v‖Ap
:= ‖Apv‖Lp(Rd,CN ) + ‖v‖Lp(Rd,CN ) = ‖L0v‖Lp(Rd,CN ) + ‖v‖Lp(Rd,CN ) ,

‖v‖L0
:= ‖v‖W 2,p(Rd,CN ) + ‖〈S·,∇v〉‖Lp(Rd,CN ) ,

are equivalent for v ∈ Dp
max(L0), i.e. there exist C1, C2 > 1 such that

C1 ‖v‖L0
6 ‖v‖Ap

6 C2 ‖v‖L0

for every v ∈ Dp
max(L0).

Remark. Corollary 5.26 says that we can identify (Ap, ‖·‖Ap
) with (L0, ‖·‖L0

).

Proof. The second inequality in based on maximal Lp-regularity for Ldiff
0 : Using

the triangle inequality, (5.47) and defining C2 := Cdiff > 1, we obtain

‖v‖Ap
= ‖L0v‖Lp + ‖v‖Lp = ‖A△v + 〈S·,∇v〉‖Lp + ‖v‖Lp

6 ‖A△v‖Lp + ‖v‖Lp + ‖〈S·,∇v〉‖Lp = ‖v‖Adiff
p

+ ‖〈S·,∇v〉‖Lp

6Cdiff ‖v‖W 2,p + ‖〈S·,∇v〉‖Lp

6Cdiff (‖v‖W 2,p + ‖〈S·,∇v〉‖Lp) = C2 ‖v‖L0
.

The first inequality follows from the characterization of the maximal domain from
Theorem 5.25: Using (5.47) and the elliptic estimate (5.58) we obtain

‖v‖L0
= ‖v‖W 2,p(Rd,CN ) + ‖〈S·,∇v〉‖Lp(Rd,CN )

6 ‖v‖W 2,p(Rd,CN ) + ‖A△v + 〈S·,∇v〉‖Lp(Rd,CN ) + ‖A△v‖Lp(Rd,CN )

6 ‖L0v‖Lp(Rd,CN ) + (1 + Cdiff) ‖v‖W 2,p(Rd,CN )

6(C(1 + Cdiff) + 1)
(

‖L0v‖Lp(Rd,CN ) + ‖v‖Lp(Rd,CN )

)

= C1 ‖v‖Ap
,

where C1 := C(1 + Cdiff) + 1 > 1.
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As a consequence of Corollary 5.26 we deduce resolvent estimates for v⋆ in
W 2,p(Rd,CN) and for 〈S·,∇v〉 in Lp(Rd,CN). This is an extension of Theorem
5.13 and Theorem 5.7, respectively.

Corollary 5.27 (Resolvent Estimates for L0 in Lp(Rd,CN) with 1 < p <∞). Let
the assumptions (A1)–(A5) be satisfied for 1 < p < ∞ and K = C. Moreover, let
λ ∈ C with Reλ > 0. Then for every g ∈ Lp(Rd,CN) the resolvent equation

(λI −L0) v = g

admits a unique solution v⋆ ∈ Dp
max(L0). Moreover, v⋆ satisfies the resolvent esti-

mates

‖v⋆‖Lp(Rd,CN ) 6
1

Reλ
‖g‖Lp(Rd,CN ) ,(5.59)

‖v⋆‖W 2,p(Rd,CN ) 6
1

C1

(
1 + |λ|
Reλ

+ 1

)

‖g‖Lp(Rd,CN ) ,(5.60)

‖〈S·,∇v⋆〉‖Lp(Rd,CN ) 6
C2max{1, |λ|}

C1

(
1 + |λ|
Reλ

+ 1 +
C1

C2

)

‖g‖Lp(Rd,CN ) .(5.61)

Proof. Inequality (5.59) was already proved in Theorem 5.13. Let us now prove
inequality (5.60): Using (5.59), Corollary 5.26 and Theorem 5.13 we obtain

‖v⋆‖W 2,p(Rd,CN ) 6 ‖v⋆‖L0
6

1

C1
‖v⋆‖Ap

=
1

C1

(

‖L0v⋆‖Lp(Rd,CN ) + ‖v⋆‖Lp(Rd,CN )

)

=
1

C1

(

‖λv⋆ − g‖Lp(Rd,CN ) + ‖v⋆‖Lp(Rd,CN )

)

6
1

C1

(

(1 + |λ|) ‖v⋆‖Lp(Rd,CN ) + ‖g‖Lp(Rd,CN )

)

6
1

C1

(
1 + |λ|
Reλ

+ 1

)

‖g‖Lp(Rd,CN ) .

Finally, let us prove inequality (5.61): Using (5.47), (5.60) and C2 = Cdiff we obtain

‖〈S·,∇v⋆〉‖Lp(Rd,CN ) = ‖λv⋆ −A△v⋆ − g‖Lp(Rd,CN )

6|λ| ‖v⋆‖Lp(Rd,CN ) + ‖A△v⋆‖Lp(Rd,CN ) + ‖g‖Lp(Rd,CN )

6max{1, |λ|}
(

‖v⋆‖Lp(Rd,CN ) + ‖A△v⋆‖Lp(Rd,CN ) + ‖g‖Lp(Rd,CN )

)

6max{1, |λ|}
(

Cdiff ‖v⋆‖W 2,p(Rd,CN ) + ‖g‖Lp(Rd,CN )

)

6max{1, |λ|}
(
C2

C1

(
1 + |λ|
Reλ

+ 1

)

+ 1

)

‖g‖Lp(Rd,CN ) .



6 Constant coefficient perturbations

in Lp(Rd,CN )

In this chapter we apply perturbation theory of semigroups to the operator

[L∞v] (x) := A△v(x) + 〈Sx,∇v(x)〉 − Bv(x), x ∈ Rd, d > 2,

in Lp(Rd,CN) for 1 6 p < ∞, where v : Rd → CN , A,B ∈ CN,N , S ∈ Rd,d

skew-symmetric and N ∈ N. Writing the operator as

[L∞v] (x) = [L0v] (x)− Bv(x), x ∈ Rd, d > 2,

L∞ can be seen as a constant coefficient perturbation of the complex-valued Ornstein-
Uhlenbeck operator L0, that was analyzed in Chapter 5 before.

In Section 6.1 we investigate constant coefficient perturbations of Ap in Lp(Rd,CN)
for 1 6 p < ∞, where (Ap,D(Ap)) denotes the infinitesimal generator of the
complex-valued Ornstein-Uhlenbeck semigroup (T0(t))t>0 on Lp(Rd,CN): Consider
the bounded linear operator

Ep : L
p(Rd,CN) → Lp(Rd,CN), [Epv] (x) := −Bv(x)(6.1)

on Lp(Rd,CN) for some 1 6 p < ∞ and some matrix B ∈ CN,N . Then we analyze
perturbations of the form

Bp : D(Bp) ⊆ Lp(Rd,CN) → Lp(Rd,CN), [Bpv] (x) := [Apv] (x) + [Epv] (x).

This means that the infinitesimal generator Ap is perturbed by the bounded op-
erator Ep, which means that Ep is a bounded constant coefficient perturbation
of Ap. Assuming (A1), (A2) and (A5) for K = C, we show in Theorem 6.1 that Bp

with maximal domain D(Bp) = D(Ap) is the infinitesimal generator of a strongly
continuous semigroup (T∞(t))t>0 in Lp(Rd,CN) for every 1 6 p < ∞. Moreover,
this theorem yields a series representation for the semigroup (T∞(t))t>0, where the
summands are defined recursively. This follows directly from an application of the
bounded perturbation theorem, [34, III.1.3]. In Theorem 6.2 we require additionally
assumption (A8B) and prove that the semigroup is given by

[T∞(t)v] (x) :=

{∫

Rd H∞(x, ξ, t)v(ξ)dξ , t > 0

v(x) , t = 0
, x ∈ Rd,

where H∞(x, ξ, t) = H(x, ξ, t) denotes the heat kernel from Theorem 4.4. Note that
for this result assumption (A8B) is crucial and guarantees that H0 and B commute.
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Assuming (A1), (A2), (A5) and (A8B) for 1 6 p < ∞ and K = C, we prove in
Corollary 6.7 that the resolvent equation for Bp, which is given by

(λI − Bp) v = g,

admits a unique solution v⋆ ∈ D(Ap) for every g ∈ Lp(Rd,CN) and λ ∈ C

with Reλ > −b0, where −b0 := s(−B) denotes the spectral bound of −B, cf.
(1.18). This follows from some applications of abstract semigroup theory, [34,
II.1]. In particular, if we require in addition the assumptions (A3) and (A4) for
1 < p < ∞, then the identification problem for Bp is solved by Theorem 5.19 and
5.25, respectively, and we obtain Bp = L∞ on D(Ap) = Dp

loc(L0) = Dp
max(L0).

In Section 6.2 we derive a-priori estimates for the resolvent equation for Bp

in exponentially weighted Lp-spaces. Assuming (A1), (A2), (A5) and (A8B) for
K = C, we prove in Theorem 6.8 that the solution v⋆ belongs to W 1,p

θ (Rd,CN) for
every g ∈ Lp(Rd,CN) and λ ∈ C with Reλ > −b0. This is an extended version of
Theorem 5.8.

For the sake of completeness note that, assuming (A1)–(A5) and (A8B) for 1 <
p <∞ and K = C, every λ ∈ C of the form

λ = −λ(ω)− i
k∑

l=1

nlσl, nl ∈ Z, ω ∈ R, λ(ω) ∈ σ(ω2A+B),

belongs to the essential spectrum σess(L∞) of L∞ in Lp(Rd,CN). Hence, L∞ is
not sectorial in Lp(Rd,CN) and (T∞(t))t>0 is not analytic on Lp(Rd,CN), whenever
S 6= 0. These results will be proved later in Section 7.4 for more general perturbed
Ornstein-Uhlenbeck operators. Their proofs combine and extend the results from
[71] and [15].

6.1 Application of semigroup theory

Let the assumptions (A1), (A2) and (A5) be satisfied for K = C, then we denote by
(Ap,D(Ap)) the infinitesimal generator of the complex Ornstein-Uhlenbeck semi-
group (T0(t))t>0 from (5.3) on Lp(Rd,CN) for 1 6 p <∞. The semigroup (T0(t))t>0

is strongly continuous in Lp(Rd,CN) for every 1 6 p <∞ and satisfies

‖T0(t)‖L(Lp,Lp) 6M0 ∀ t > 0,

with M0 :=
(

a2max

amina0

)d
2
> 1. Moreover, if we additionally require the assump-

tions (A3) and (A4) for 1 < p < ∞, then Ap is the maximal realization of L0 in
Lp(Rd,CN) on its maximal domain, which is D(Ap) = Dp

loc(L0) = Dp
max(L0).

In this section we investigate constant coefficient perturbations of Ap in Lp(Rd,CN)
for 1 6 p < ∞. For this purpose, let Ep be given by (6.1). An application of [34,
III.1.3 Bounded Perturbation Theorem, III.1.7 Corollary and III.1.10 Theorem]
yields the following result.
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Theorem 6.1 (Bounded Perturbation Theorem). Let the assumptions (A1), (A2),
(A5) and B ∈ KN,N be satisfied for 1 6 p <∞ and K = C. Then the operator

Bp := Ap + Ep with D(Bp) := D(Ap)

generates a strongly continuous semigroup (T∞(t))t>0 on Lp(Rd,CN) satisfying

‖T∞(t)‖L(Lp,Lp) 6M0e
M0t‖Ep‖L(Lp,Lp) ∀ t > 0.(6.2)

Moreover, for every v ∈ Lp(Rd,CN) and t > 0 the semigroup (T∞(t))t>0 satisfies
the integral equation (variation of parameters formula)

T∞(t)v = T0(t)v +

∫ t

0

T0(t− s)EpT∞(s)vds,

is unique and can be obtained by

T∞(t) =
∞∑

n=0

T (n)
∞ (t)(6.3)

where

T (0)
∞ (t) := T0(t), T (n+1)

∞ (t) :=

∫ t

0

T0(t− s)EpT
(n)
∞ (s)ds.(6.4)

Identification problem for Bp. Theorem 6.1 states that (Bp,D(Ap)) is the in-
finitesimal generator of (T∞(t))t>0 in Lp(Rd,CN) for 1 6 p <∞. If we additionally
require the assumptions (A3) and (A4) for 1 < p <∞, then an application of The-
orem 5.19 and Theorem 5.25 solves the identification problem for Bp in Lp(Rd,CN)
and we infer that

Bp = L∞ on D(Ap) = Dp
loc(L0) = Dp

max(L0).

To investigate the nonlinear problem for the Ornstein-Uhlenbeck operator, it is
obligatory to have a more convenient representation for the semigroup of the per-
turbed operator Bp, since the estimate (6.2) shows that the semigroup (T∞(t))t>0

doesn’t remain bounded as t → ∞. The next theorem provides an explicit repre-
sentation for the semigroup (T∞(t))t>0 for matrices A,B ∈ CN,N that are simulta-
neously diagonalizable (over C). This can easily be inferred from (6.3) using that
the matrix B commutes with the Ornstein-Uhlenbeck kernel H0(x, ξ, t).

Theorem 6.2 (Semigroup representation). Let the assumptions (A1), (A2), (A5)
and (A8B) be satisfied for 1 6 p < ∞ and K = C. Then the semigroup (T∞(t))t>0

in Lp(Rd,CN) is given by

[T∞(t)v] (x) :=

{∫

Rd H∞(x, ξ, t)v(ξ)dξ , t > 0

v(x) , t = 0
, x ∈ Rd,(6.5)

where H∞(x, ξ, t) = H(x, ξ, t) denotes the heat kernel from Theorem 4.4.
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Proof. From Theorem 6.1 we know that the semigroup (T∞(t))t>0 is given by (6.3)
and (6.4). By induction over n ∈ N0 we show that

T (n)
∞ (t) = T0(t)

(−tB)n

n!
, n ∈ N0, t > 0.(6.6)

The case n = 0 is satisfied by (6.4). Let us consider the case n → n + 1: Using
(6.4), (6.1), (6.6), (5.3), (A8B) (that guarantees BH0(x, ξ, t) = H0(x, ξ, t)B) and
Lemma 4.5 we obtain for every v ∈ Lp(Rd,CN) with 1 6 p <∞ and every t > 0

T (n+1)
∞ (t)v(x) =

∫ t

0

T0(t− s)EpT
(n)
∞ (s)v(x)ds

=−
∫ t

0

T0(t− s)BT0(s)
(−sB)n

n!
v(x)ds

=−
∫ t

0

∫

Rd

∫

Rd

H0(x, ψ, t− s)BH0(ψ, ξ, s)
(−sB)n

n!
v(ξ)dψdξds

=−
∫ t

0

∫

Rd

∫

Rd

H0(x, ψ, t− s)H0(ψ, ξ, s)dψ
(−sB)n

n!
Bv(ξ)dξds

=

∫ t

0

sn
∫

Rd

H0(x, ξ, t)
(−B)n+1

n!
v(ξ)dξds

=

∫

Rd

H0(x, ξ, t)
(−tB)n+1

(n+ 1)!
v(ξ)dξ

=T0(t)
(−tB)n+1

(n + 1)!
v(x).

This proves (6.6). Now, (6.3), (5.3) and (A8B) yield

T∞(t)v(x) =T0(t)

[ ∞∑

n=0

(−tB)n

n!

]

v(x) = T0(t)e
−Btv(x)

=

∫

Rd

H0(x, ξ, t)e
−Btv(ξ)dξ =

∫

Rd

H∞(x, ξ, t)v(ξ)dξ, t > 0.

Finally, T∞(0)v(x) = v(x) follows from (6.3) and (6.6), since T
(0)
∞ (0)v(x) = v(x)

and T
(n)
∞ (0)v(x) = 0 for n > 1.

Simultaneous diagonalization of A and B. Note that if A,B ∈ CN,N are diago-
nalizable matrices then A and B commute if and only if A and B are simultaneously
diagonalizable (over C), [53, Theorem 1.3.12]. Therefore, condition (A8B) ensures
that the matrices A and B commute. Moreover, also the inverse A−1, that exists
by assumption (A2), commutes with the matrix B. Furthermore, this yields that

A− d
2 and B commute and also that B and exp(A−1) commute by an application of

the Baker-Campbell-Hausdorff formula. Combining these facts we obtain that

H0(x, ξ, t)B = BH0(x, ξ, t), x, ξ ∈ Rd, t > 0,

i.e. [B,H0(x, ξ, t)] := BH0(x, ξ, t)−H0(x, ξ, t)B = 0.
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As already mentioned after Theorem 4.4, the situation changes dramatically if
the assumption (A8B) is not satisfied. In this case the kernel H0 and B in general
do not commute: Consider X1, X2, Y ∈ CN,N then the Hadamard lemma states
that

eX1Y e−X1 =
∞∑

m=0

1

m!
[X1, Y ]m = Y + [X1, Y ] +

1

2
[X1, [X1, Y ]] + · · · ,

where [X, Y ]0 = Y , [X, Y ]1 = [X, Y ] = XY − Y X and [X, Y ]m =
[
X, [X, Y ]m−1

]
.

This yields the following formula

X2e
X1Y = Y X2e

X1 + [X2, Y ] e
X1 +

∞∑

m=1

1

m!
X2 [X1, Y ]m e

X1 ,

which we must apply for

X1 = − (4tA)−1
∣
∣etSx− ξ

∣
∣
2
, X2 = (4πtA)−

d
2 , Y = B.

Theorem 6.3 (Boundedness on Lpθ(R
d,CN)). Let the assumptions (A1), (A2),

(A5) and (A8B) be satisfied for 1 6 p 6 ∞ and K = C. Then for every ra-
dial weight function θ ∈ C(Rd,R) of exponential growth rate η > 0 and for every
v ∈ Lpθ(R

d,CN)

‖T∞(t)v‖Lp
θ
(Rd,CN ) 6 C4(t) ‖v‖Lp

θ
(Rd,CN ) , t > 0,(6.7)

‖DiT∞(t)v‖Lp
θ
(Rd,CN ) 6 C5(t) ‖v‖Lp

θ
(Rd,CN ) , t > 0, i = 1, . . . , d,(6.8)

‖DjDiT∞(t)v‖
L
p
θ(R

d,CN ) 6 C6(t) ‖v‖Lp
θ(R

d,CN ) , t > 0, i, j = 1, . . . , d,(6.9)

where the constants C4+|β|(t) are from Section 4.3 for every |β| = 0, 1, 2, i.e.

C4(t) =CθM
d
2 e−b0t

[

1F1

(
d

2
;
1

2
; κt

)

+ 2
Γ
(
d+1
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 1

2
;
3

2
; κt

)] 1
p

,

C5(t) =CθM
d+1
2 e−b0t (tamin)

− 1
2

[
Γ
(
d+1
2

)

Γ
(
d
2

) 1F1

(
d+ 1

2
;
1

2
; κt

)

+ 2
Γ
(
d+2
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 2

2
;
3

2
; κt

)] 1
p

,

C6(t) =CθM
d+2
2 e−b0t (tamin)

−1

[
Γ
(
d+2
2

)

Γ
(
d
2

) 1F1

(
d+ 2

2
;
1

2
; κt

)

+ 2
Γ
(
d+3
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 3

2
;
3

2
; κt

)

+
δij
2
M−1

1F1

(
d

2
;
1

2
; κt

)

+ δijM
−1Γ

(
d+1
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 1

2
;
3

2
; κt

)] 1
p

.

In case p = ∞ they are given by C4+|β|(t) with p = 1, where M := a2max

amina0
> 1

and κ := a2maxη
2p2

a0
> 0. Note that C4+|β|(t) ∼ t

−p|β|+d+|β|−1
2p e−(b0−κ

p
)t as t → ∞ and

C4+|β|(t) ∼ t−
|β|
2 as t→ 0 for every |β| = 0, 1, 2.
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Proof. Using the semigroup representation from Theorem 6.2, the proof can be
adopted from Theorem 5.1, where we have to replace T0 andH0 by T∞ andH∞ = H ,
respectively.

For the next statement we refer to [34, II.1.3 Lemma, II.1.4 Theorem]:

Lemma 6.4. Let the assumptions (A1), (A2), (A5) and (A8B) be satisfied for
1 6 p <∞ and K = C.
(1) The generator Bp : D(Ap) ⊆ Lp(Rd,CN) → Lp(Rd,CN) is a linear, closed and
densely defined operator.
(2) For every v ∈ D(Ap) and t > 0 we have

T∞(t)v ∈ D(Ap)

d

dt
T∞(t)v = T∞(t)Bpv = BpT∞(t)v

(3) For every v ∈ Lp(Rd,CN) and every t > 0 we have
∫ t

0

T∞(s)vds ∈ D(Ap)

(4) For every t > 0 we have

T∞(t)v − v =Bp

∫ t

0

T∞(s)vds , for v ∈ Lp(Rd,CN),

=

∫ t

0

T∞(s)Bpvds , for v ∈ D(Ap).

Since (Bp,D(Ap)) is a closed operator on the Banach space Lp(Rd,CN) for every
1 6 p <∞, we can introduce

σ(Bp) := {λ ∈ C | λI − Bp is not bijective} spectrum of Bp,

ρ(Bp) :=C\σ(Bp) resolvent set of Bp,

R(λ,Bp) := (λI −Bp)
−1 , for λ ∈ ρ(Bp) resolvent of Bp.

The next identities follow from [34, II.1.9 Lemma].

Lemma 6.5. Let the assumptions (A1), (A2), (A5) and (A8B) be satisfied for
1 6 p <∞ and K = C. Then for every λ ∈ C and t > 0,

e−λtT∞(t)v − v = (Bp − λI)

∫ t

0

e−λsT∞(s)vds , for v ∈ Lp(Rd,CN),

=

∫ t

0

e−λsT∞(s) (Bp − λI) vds , for v ∈ D(Ap).

By (6.7) from Theorem 6.3 (with θ ≡ 1, η = 0 and Cθ = 1) we have

∃ω∞ ∈ R ∧ ∃M∞ > 1 : ‖T∞(t)‖L(Lp,Lp) 6M∞e
ω∞t ∀ t > 0,(6.10)

where M∞ := M0 =
(

a2max

amina0

) d
2

> 1 and ω∞ := −b0, which gives a better estimate

as in (6.2). For the next statement we refer to [34, II.1.10 Theorem].
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Theorem 6.6. Let the assumptions (A1), (A2), (A5) and (A8B) be satisfied for
1 6 p <∞ and K = C.
(1) If λ ∈ C is such that R(λ)v :=

∫∞
0
e−λsT∞(s)vds exists for every v ∈ Lp(Rd,CN),

then

λ ∈ ρ(Bp) and R(λ,Bp) = R(λ).

(2) If λ ∈ C satisfies Reλ > ω∞, then

λ ∈ ρ(Bp), R(λ,Bp) = R(λ)

and

‖R(λ,Bp)‖L(Lp,Lp) 6
M∞

Reλ− ω∞
.

Theorem 6.6(2) states that the half–plane Reλ > ω∞ belongs to the resolvent set
ρ(Bp). Therefore, the spectrum σ(Bp) is contained in the half–plane Reλ 6 ω∞.
The spectral bound s(Bp) of Bp, [34, II.1.12 Definition], defined by

−∞ 6 s(Bp) := sup
λ∈σ(Bp)

Reλ 6 ω∞ = −b0 < +∞.

can be considered as the smallest value ω ∈ R such that the spectrum is contained
in the half–plane Reλ 6 ω.

A direct consequence of Theorem 6.6 is the following:

Corollary 6.7 (Solvability and uniqueness in Lp(Rd,CN)). Let the assumptions
(A1), (A2), (A5) and (A8B) be satisfied for 1 6 p <∞ and K = C. Moreover, let
λ ∈ C with Reλ > ω∞. Then for every g ∈ Lp(Rd,CN) the resolvent equation

(λI − Bp) v = g

admits a unique solution v⋆ ∈ D(Ap), which is given by the integral expression

v⋆ = R(λ)g =

∫ ∞

0

e−λsT∞(s)gds

=

∫ ∞

0

e−λs
∫

Rd

H∞(·, ξ, s)g(ξ)dξds.
(6.11)

Moreover, the following resolvent estimate holds

‖v⋆‖Lp(Rd,CN ) 6
M∞

Reλ− ω∞
‖g‖Lp(Rd,CN ) .
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Green’s function of Bp. Let the assumptions (A1), (A2), (A5), (A8B) and (A9B)
be satisfied for 1 6 p < ∞ and K = C. By Corollary 6.7 (with λ = 0) we obtain
for every g ∈ Lp(Rd,CN) a unique solution v⋆ ∈ D(Ap) of the resolvent equation

Bpv = g

which is given by (6.11). We believe one can apply Fubini’s theorem in (6.11) to
obtain

v⋆(x) = − [R(0)g] (x) =

∫

Rd

G(x, ξ)g(ξ)dξ,

where

G(x, ξ) := −
∫ ∞

0

H∞(x, ξ, s)ds

denotes the Green’s function of Bp. In particular, by Corollary 6.7 with λ = 0 the
following resolvent estimate holds:

‖v⋆‖Lp(Rd,CN ) 6
M∞
−ω∞

‖g‖Lp(Rd,CN ) .

6.2 Exponential decay

In this section we prove a-priori estimates for the solution v⋆ of the resolvent equa-
tion (λI − Bp) v = g in exponentially weighted Lp-spaces. We show that the so-
lution v⋆ ∈ D(Ap) decays exponentially (at least) with the same rate as the inho-
mogeneity g. Note, that this result needs neither an explicit representation for the
domain D(Ap) nor for the infinitesimal generator Bp. But the proof requires the
integral expression for v⋆ from Corollary 6.7, that needs the explicit representation
for the semigroup (T∞(t))t>0 from Theorem 6.2. The proof of the following result
is similar to that one of Theorem 5.8.

Theorem 6.8 (A-priori estimates in Lpθ(R
d,CN)). Let the assumptions (A1), (A2),

(A5) and (A8B) be satisfied for 1 6 p < ∞ and K = C. Moreover, let 0 < ϑ < 1
and λ ∈ C with Reλ > ω∞. Then for every radially nondecreasing weight function
θ ∈ C(Rd,R) of exponential growth rate η > 0 with 0 6 η2 6 ϑa0(Reλ−ω∞)

a2maxp
2 and for

every g ∈ Lpθ(R
d,CN) we have v⋆ ∈ W 1,p

θ (Rd,CN) with

‖v⋆‖Lp
θ
(Rd,CN ) 6

C7

Reλ− ω∞
‖g‖Lp

θ
(Rd,CN ) ,(6.12)

‖Div⋆‖Lp
θ
(Rd,CN ) 6

C8

(Reλ− ω∞)
1
2

‖g‖Lp
θ
(Rd,CN ) , i = 1, . . . , d,(6.13)

where v⋆ ∈ D(Ap) denotes the unique solution of (λI−Bp)v = g in Lp(Rd,CN) and
the λ-independent constants C7, C8 are given by Lemma 4.8 (with ω = ω∞).

Proof. By Corollary 6.7 (with H∞(x, ξ, t) = H(x, ξ, t)) we have the representation

v⋆(x) =

∫ ∞

0

e−λt
∫

Rd

H∞(x, ξ, t)g(ξ)dξdt,(6.14)

Using this representation, the proof can be adopted from Theorem 5.8. In the last
inequality, we must apply Lemma 4.8 with ω = ω∞.
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in Lp(Rd,CN )

In this chapter we apply perturbation theory of semigroups to the operator

[LQv] (x) :=A△v(x) + 〈Sx,∇v(x)〉 − Bv(x) +Q(x)v(x), x ∈ Rd, d > 2,

in Lp(Rd,CN) for 1 6 p < ∞, where v : Rd → CN , A,B ∈ CN,N , S ∈ Rd,d

skew-symmetric, Q ∈ L∞(Rd,CN,N) and N ∈ N. Writing the operator as

[LQv] (x) = [L∞v] (x) +Q(x)v(x), x ∈ Rd, d > 2,

LQ can be seen as a variable coefficient perturbation of the perturbed complex-
valued Ornstein-Uhlenbeck operator L∞, that was analyzed in Chapter 6.

In Section 7.1 we investigate variable coefficient perturbations ofBp in Lp(Rd,CN)
for 1 6 p < ∞, where (Bp,D(Ap)) denotes the infinitesimal generator of the semi-
group (T∞(t))t>0 on Lp(Rd,CN): Consider the bounded linear operator

Fp : L
p(Rd,CN) → Lp(Rd,CN), [Fpv] (x) := Q(x)v(x)(7.1)

on Lp(Rd,CN) for some 1 6 p < ∞ and some function Q ∈ L∞(Rd,CN,N). Then
we analyze perturbations of the form

Cp : D(Cp) ⊆ Lp(Rd,CN) → Lp(Rd,CN), [Cpv] (x) := [Bpv] (x) + [Fpv] (x).

This signifies, similarly to Chapter 6, that the infinitesimal generator Bp is per-
turbed by the bounded operator Fp, which means that Fp is a bounded vari-
able coefficient perturbation of Bp. Assuming (A1), (A2), (A5), (A8B) and
Q ∈ L∞(Rd,KN,N) for K = C, we show in Theorem 7.1 that Cp with maximal
domain D(Cp) = D(Ap) is the infinitesimal generator of a strongly continuous
semigroup (TQ(t))t>0 in Lp(Rd,CN) for every 1 6 p < ∞. This follows directly
by the bounded perturbation theorem, [34, III.1.3]. In contrast to the constant
coefficient perturbation from Chapter 6, we do not have an explicit representation
for the semigroup (TQ(t))t>0 in this case. Nevertheless, assuming (A1), (A2), (A5),

(A8B) and Q ∈ L∞(Rd,KN,N ) for 1 6 p <∞ and K = C, we show in Corollary 7.5
that the resolvent equation for Cp, which is given by

(λI − Cp) v = g,

admits a unique solution v⋆ ∈ D(Ap) for every g ∈ Lp(Rd,CN) and λ ∈ C with

Reλ > −b0 +M∞ ‖Q‖L∞ , where −b0 := s(−B) and M∞ :=
(

a2max

amina0

)d
2

, cf. (1.18).

This follows once more from some applications of abstract semigroup theory, [34,
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II.1]. In particular, if we require additonally the assumptions (A3) and (A4) for
1 < p <∞, then the identification problem for Cp is again solved by Theorem 5.19
and 5.25, respectively, and we obtain Cp = LQ on D(Ap) = Dp

loc(L0) = Dp
max(L0).

In Section 7.2 we apply the results from Section 7.1 to small perturbations
Q = Qε ∈ L∞(Rd,CN,N) of Bp, meaning that Qε is small with respect to ‖·‖L∞. De-
noting by Cε

p the infinitesimal generator of (TQε(t))t>0, we then derive some a-priori

estimates for the resolvent equation
(
λI − Cε

p

)
v = g in exponentially weighted

Lp-spaces. Assuming (A1), (A2), (A5), (A8B) and (A9B) for 1 6 p < ∞ and
K = C and Qε ∈ L∞(Rd,CN,N) satisfying

‖Qε‖L∞ 6
b0
3
min

{
1

C7
,

1

M∞

}

=: K,

we prove in Theorem 7.6 that the solution v⋆ belongs to W 1,p
θ (Rd,CN) for every

g ∈ Lpθ(R
d,CN) and λ ∈ C with Reλ > − b0

3
. Note that for small perturbations the

bound Reλ > − b0
3

does not depend on the perturbation Qε. Moreover, the upper
bound of the decay rate does not depend on λ any more.

In Section 7.3 we apply the results from Section 7.1 to perturbations Q ∈
L∞(Rd,CN,N) of Bp, where Q falls below the constant K at infinity. Note that
such perturbations Q can always be decomposed into the sum Q = Qε + Qc of a
function Qε ∈ L∞(Rd,CN,N), that is small with respect to ‖·‖L∞ , and a function
Qc ∈ L∞(Rd,CN,N), that is compactly supported on Rd. Denoting by Cp the in-
finitesimal generator of (TQ(t))t>0, we then derive some a-priori estimates for the
resolvent equation (λI − Cp) v = g in exponentially weighted Lp-spaces. Assuming
(A1), (A2), (A5), (A8B), (A9B) for 1 6 p < ∞ and K = C, Q ∈ L∞(Rd,CN,N)
satisfying

ess sup
|x|>R0

|Q(x)|2 6
b0
3
min

{
1

C7
,

1

M∞

}

, for some R0 > 0,

λ ∈ C with Reλ > − b0
3

and g ∈ Lpθ(R
d,CN), we prove in Theorem 7.7 that every

solution v⋆ belongs to W 1,p
θ (Rd,CN).

In Section 7.4 we investigate the essential spectrum of LQ. Assuming (A1)–(A5),
(A8B) and Q ∈ L∞(Rd,KN,N) with

ess sup
|x|>R

|Q(x)|2 → 0 as R → ∞

for 1 < p < ∞ and K = C, we show in Theorem 7.9 that every λ ∈ C satisfying
the dispersion relation for LQ

det

(

λIN + ω2A +B + i

k∑

l=1

nlσlIN

)

= 0, for someω ∈ R, nl ∈ Z,

belongs to the essential spectrum of LQ. As a consequence we show in Corollary 7.10
that LQ is not sectorial in Lp(Rd,CN) and (TQ(t))t>0 is not analytic on Lp(Rd,CN)
for every 1 < p <∞.



7.1 Application of semigroup theory 133

7.1 Application of semigroup theory

Let the assumptions (A1), (A2), (A5) and (A8B) be satisfied for K = C, then
we denote by (Bp,D(Ap)) the infinitesimal generator of the semigroup (T∞(t))t>0

from (6.5) on Lp(Rd,CN) for 1 6 p < ∞. The semigroup (T∞(t))t>0 is strongly

continuous in Lp(Rd,CN) for every 1 6 p <∞ and satisfies

‖T∞(t)‖L(Lp,Lp) 6M∞e
ω∞t ∀ t > 0,

with M0 := M∞ :=
(

a2max

amina0

) d
2

> 1 and ω∞ := −b0 ∈ R. Moreover, if we ad-

ditionally require the assumptions (A3) and (A4) for 1 < p < ∞, then Bp is
the maximal realization of L∞ in Lp(Rd,CN) on its maximal domain, which is
D(Ap) = Dp

loc(L0) = Dp
max(L0).

In this section we investigate variable coefficient perturbations ofBp in Lp(Rd,CN)
for 1 6 p < ∞. For this purpose, let Fp be given by (7.1). An application of [34,
III.1.3 Bounded Perturbation Theorem, III.1.7 Corollary and III.1.10 Theorem]
yields the following result.

Theorem 7.1 (Bounded Perturbation Theorem). Let the assumptions (A1), (A2),
(A5), (A8B) and Q ∈ L∞(Rd,KN,N) be satisfied for 1 6 p < ∞ and K = C. Then
the operator

Cp := Bp + Fp with D(Cp) := D(Ap)

generates a strongly continuous semigroup (TQ(t))t>0 on Lp(Rd,CN)satisfying

‖TQ(t)‖L(Lp,Lp) 6M∞e
(ω∞+M∞‖Fp‖L(Lp,Lp))t ∀ t > 0.(7.2)

Moreover, for every v ∈ Lp(Rd,CN) and t > 0 the semigroup (TQ(t))t>0 satisfies
the integral equation (variation of parameters formula)

TQ(t)v = T∞(t)v +

∫ t

0

T∞(t− s)FpTQ(s)vds,

is unique and can be obtained by

TQ(t) =
∞∑

n=0

T
(n)
Q (t)

where

T
(0)
Q (t) := T∞(t), T

(n+1)
Q (t) :=

∫ t

0

T∞(t− s)FpT
(n)
Q (s)ds.

Simultaneous diagonalization of A and B. Note that the statement from
Theorem 7.1 remains true, if we omit the assumption (A8B). In that case, we do
not have a semigroup representation for (T∞(t))t>0 any more and the bound from
(7.2) has accordingly to be modified.
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Identification problem for Cp. Theorem 7.1 states that (Cp,D(Ap)) is the in-
finitesimal generator of (TQ(t))t>0 in Lp(Rd,CN) for 1 6 p <∞. If we additionally
assume the conditions (A3) and (A4) for 1 < p <∞, then an application of Theo-
rem 5.19 and Theorem 5.25 solves the identification problem for Cp in Lp(Rd,CN)
and we infer that

Cp = LQ on D(Ap) = Dp
loc(L0) = Dp

max(L0).

Contrary to the case of constant coefficients, we cannot assume here, that Q(x)
commutes with both A and B for every x ∈ Rd, since this is in general not satisfied
in order to investigate the nonlinear problem of the Ornstein-Uhlenbeck operator.
Thus, we are not able to derive a closed form for the representation of the semigroup
(TQ(t))t>0. In particular, it is not possible in this case to optimize the boundedness
property of ‖TQ(t)‖L(Lp,Lp) from Theorem 7.1.

An application of [34, II.1.3 Lemma, II.1.4 Theorem] yields the following result:

Lemma 7.2. Let the assumptions (A1), (A2), (A5), (A8B) and Q ∈ L∞(Rd,KN,N)
be satisfied for 1 6 p <∞ and K = C.
(1) The generator Cp : D(Ap) ⊆ Lp(Rd,CN) → Lp(Rd,CN) is a linear, closed and
densely defined operator.
(2) For every v ∈ D(Ap) and t > 0 we have

TQ(t)v ∈ D(Ap)

d

dt
TQ(t)v = TQ(t)Cpv = CpTQ(t)v

(3) For every v ∈ Lp(Rd,CN) and every t > 0 we have

∫ t

0

TQ(s)vds ∈ D(Ap)

(4) For every t > 0 we have

TQ(t)v − v =Cp

∫ t

0

TQ(s)vds , for v ∈ Lp(Rd,CN),

=

∫ t

0

TQ(s)Cpvds , for v ∈ D(Ap).

Since (Cp,D(Ap)) is a closed operator on the Banach space Lp(Rd,CN) for every
1 6 p <∞, we use the standard notion

σ(Cp) := {λ ∈ C | λI − Cp is not bijective} spectrum of Cp,

ρ(Cp) :=C\σ(Cp) resolvent set of Cp,

R(λ, Cp) := (λI − Cp)
−1 , for λ ∈ ρ(Cp) resolvent of Cp.

The next identities follow from [34, II.1.9 Lemma].
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Lemma 7.3. Let the assumptions (A1), (A2), (A5), (A8B) and Q ∈ L∞(Rd,CN,N)
be satisfied for 1 6 p <∞ and K = C. Then for every λ ∈ C and t > 0,

e−λtTQ(t)v − v = (Cp − λI)

∫ t

0

e−λsTQ(s)vds , for v ∈ Lp(Rd,CN),

=

∫ t

0

e−λsTQ(s) (Cp − λI) vds , for v ∈ D(Ap).

The following statement comes from [34, II.1.10 Theorem].

Theorem 7.4. Let the assumptions (A1), (A2), (A5), (A8B) and Q ∈ L∞(Rd,KN,N)
be satisfied for 1 6 p <∞ and K = C.
(1) If λ ∈ C is such that R(λ)v :=

∫∞
0
e−λsTQ(s)vds exists for every v ∈ Lp(Rd,CN),

then

λ ∈ ρ(Cp) and R(λ, Cp) = R(λ).

(2) If λ ∈ C satisfies Reλ > ω∞ +M∞ ‖Q‖L∞, then

λ ∈ ρ(Cp), R(λ, Cp) = R(λ)

and

‖R(λ, Cp)‖L(Lp,Lp) 6
M∞

Reλ−
(
ω∞ +M∞ ‖Q‖Cb

) .

Theorem 7.4(2) states that the half–plane Reλ > ω∞ +M∞ ‖Q‖L∞ belongs to
the resolvent set ρ(Cp). Therefore, the spectrum σ(Cp) is contained in the half–
plane Reλ 6 ω∞ +M∞ ‖Q‖L∞. The spectral bound s(Cp) of Cp, [34, II.1.12
Definition], defined by

−∞ 6 s(Cp) := sup
λ∈σ(Cp)

Reλ 6 ω∞ +M∞ ‖Q‖L∞ < +∞

can be considered as the smallest value ω ∈ R such that the spectrum is contained
in the half–plane Reλ 6 ω.

A direct consequence of Theorem 7.4 is the following:

Corollary 7.5 (Solvability and uniqueness in Lp(Rd,CN)). Let the assumptions
(A1), (A2), (A5), (A8B) and Q ∈ L∞(Rd,KN,N) be satisfied for 1 6 p < ∞ and
K = C. Moreover, let λ ∈ C with Reλ > ω∞ + M∞ ‖Q‖L∞. Then for every
g ∈ Lp(Rd,CN) the resolvent equation

(λI − Cp) v = g

admits a unique solution v⋆ ∈ D(Ap) which satisfies the integral expression

v⋆ = R(λ)g =

∫ ∞

0

e−λsTQ(s)gds

=

∫ ∞

0

∫

Rd

e−λsH∞(·, ξ, s) (g(ξ) +Q(ξ)v⋆(ξ)) dξds.

Moreover, it holds the resolvent estimate

‖v⋆‖Lp(Rd,CN ) 6
M∞

Reλ− (ω∞ +M∞ ‖Q‖L∞)
‖g‖Lp(Rd,CN ) .
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7.2 Exponential decay for small perturbations

Let us consider the operator

[LQεv] (x) := A△v(x) + 〈Sx,∇v(x)〉 − Bv(x) +Qε(x)v(x), x ∈ Rd, d > 2,

for some sufficiently small Qε ∈ L∞(Rd,CN,N). Assuming (A1), (A2), (A5) and
(A8B) for 1 6 p <∞ and K = C, we can apply the results from Section 7.1. In the
following we denote by

(
Cε
p,D(Ap)

)
the infinitesimal generator of (TQε(t))t>0. We

suggest that if we additionally require (A3) and (A4) for 1 < p < ∞, then we can
replace the generator Cε

p by LQε and its domain D(Ap) by Dp
loc(L0) and Dp

max(L0),
respectively.

The next theorem yields a-priori estimates for the solution of the resolvent equa-
tion

(
λI − Cε

p

)
v = g in exponentially weighted Lp-spaces. This requires the ad-

ditional assumption (A9B). We show that for sufficiently small perturbations Qε

the solution v⋆ ∈ D(Ap) decays exponentially (at least) with the same rate as the
inhomogeneity g.Note that the bound Reλ > − b0

3
does not depend on the pertur-

bation Qε as in Corollary 7.5. Moreover, the upper bound for the decay rate does
not depend on λ any more. The proof is based on an application of Corollary 7.5
and Theorem 6.8.

Theorem 7.6 (A-priori estimates in Lpθ(R
d,CN)). Let the assumptions (A1), (A2),

(A5), (A8B) and (A9B) be satisfied for 1 6 p < ∞ and K = C. Then for every
0 < ϑ < 1 and for every radially nondecreasing weight function θ ∈ C(Rd,R) of
exponential growth rate η > 0 with 0 6 η2 6 ϑ2

3
a0b0
a2maxp

2 , for every Qε ∈ L∞(Rd,CN,N)

with ‖Qε‖L∞ 6
b0
3
min

{
1
C7
, 1
M∞

}

, for every λ ∈ C with Reλ > − b0
3

and for every

g ∈ Lpθ(R
d,CN) we have v⋆ ∈ W 1,p

θ (Rd,CN) with

‖v⋆‖Lp
θ
(Rd,CN ) 6

C7

Reλ+ 2b0
3

‖g‖Lp
θ
(Rd,CN ) ,(7.3)

‖Div⋆‖Lp
θ
(Rd,CN ) 6

√
2C8

(
Reλ+ 2b0

3

) 1
2

‖g‖Lp
θ
(Rd,CN ) , i = 1, . . . , d,(7.4)

where v⋆ ∈ D(Ap) denotes the unique solution of (λI−Cε
p)v = g in Lp(Rd,CN) and

the λ-independent constants C7, C8 are given by Lemma 4.8 (with ω = ω∞).

Proof. 1. Existence and uniqueness in Lp(Rd,CN) (by Corollary 7.5): First we show
that there exists a unique solution v⋆ ∈ D(Ap) of (λI − Cε

p)v = g in Lp(Rd,CN).
Since θ is nondecreasing we have g ∈ Lpθ(R

d,CN) ⊆ Lp(Rd,CN). Moreover, from
Reλ > − b0

3
, the choice of Qε and b0 > 0, cp. (A9B), we obtain

Reλ > −b0
3

> −2

3
b0 +M∞ ‖Qε‖L∞ > ω∞ +M∞ ‖Qε‖L∞ , ω∞ := −b0.

Thus, the statement follows directly from Corollary 7.5. In order to verify that this
v⋆ belongs to W 1,p

θ (Rd,CN) and satisfies the inequalities (7.3) and (7.4) we must
analyze (λI − Cε

p)v = g in Lpθ(R
d,CN).
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2. Existence in Lpθ(R
d,CN) (by fixed point argument): Consider the fixed point

equation

v = (λI −Bp)
−1 g + (λI − Bp)

−1Qεv =: Fv

in Lpθ(R
d,CN). Since Reλ > − b0

3
and b0 > 0 we obtain Reλ > −b0 and

0 6 η2 6 ϑ
2

3

a0b0
a2maxp

2
= ϑ

a0b0
a2maxp

2
+ ϑ

a0
a2maxp

2

(

−b0
3

)

6 ϑ
a0(Reλ+ b0)

a2maxp
2

.

Thus, for given v ∈ Lpθ(R
d,CN) an application of Theorem 6.8 implies Fv ∈ D(Ap)

and Fv ∈ Lpθ(R
d,CN). Moreover, the linear part of F is a contraction since (6.12)

yields

∥
∥(λI − Bp)

−1Qεv
∥
∥
L
p
θ

6 q ‖v‖Lp
θ

∀ v ∈ Lpθ(R
d,CN)

with Lipschitz constant

0 6 q :=
C7

Reλ+ b0
‖Qε‖L∞ 6

b0
3

Reλ+ b0
6

1

2
< 1.

The last inequality follows from Reλ > − b0
3

and the choice of Qε. Hence, by
the contraction mapping theorem F has a unique fixed point u⋆ ∈ Lpθ(R

d,CN)
which even belongs to D(Ap) and satisfies (λI − Cε

p)v = g in Lpθ(R
d,CN). Since

Lpθ(R
d,CN) ⊆ Lp(Rd,CN) both v⋆ and u⋆ solve (λI − Cε

p)v = g in Lp(Rd,CN)
and by uniqueness we deduce v⋆ = u⋆ in Lp(Rd,CN). Moreover, we conclude that
v⋆ = u⋆ ∈ Lpθ(R

d,CN).
3. Lpθ- and W 1,p

θ -estimates (by contraction mapping principle and bootstrapping):
The Lpθ-estimate (7.3) follows from the contraction mapping principle and

‖v⋆‖Lp
θ
= ‖u⋆‖Lp

θ
6

1

1− q
‖F0‖Lp

θ
6

Reλ+ b0
Reλ+ b0 − C7 ‖Qε‖L∞

C7

Reλ+ b0
‖g‖Lp

θ

6
C7

Reλ+ 2b0
3

‖g‖Lp
θ
.

Finally, the W 1,p
θ -estimate (7.4) is proved by bootstrapping using the inequalities

(6.13) and (7.3) for every i = 1, . . . , d

‖Div⋆‖Lp
θ
6

C8

(Reλ+ b0)
1
2

‖g +Qεv⋆‖Lp
θ

6
C8

(Reλ+ b0)
1
2

(

‖g‖Lp
θ
+ ‖Qε‖L∞ ‖v⋆‖Lp

θ

)

6
C8

(Reλ+ b0)
1
2

(

‖g‖Lp
θ
+

b0
3C7

C7

Reλ+ 2b0
3

‖g‖Lp
θ

)

=
C8

(
Reλ+ 2b0

3

) 1
2

(

Reλ+ b0

Reλ+ 2b0
3

) 1
2

‖g‖Lp
θ
6

√
2C8

(
Reλ+ 2b0

3

) 1
2

‖g‖Lp
θ
.
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For the last inequality we used Reλ 6 − b0
3

and

Reλ+ b0

Reλ+ 2b0
3

= 1 +
b0
3

Reλ+ 2b0
3

6 2.

This shows that v⋆ ∈ W 1,p
θ (Rd,CN).

7.3 Exponential decay for compactly supported

perturbations

Let us consider the operator

[LQv] (x) :=A△v(x) + 〈Sx,∇v(x)〉 − Bv(x) +Q(x)v(x), x ∈ Rd, d > 2,

for some Q ∈ L∞(Rd,CN,N) and let us assume for the moment that Q can de-
composed into Q = Qε + Qc, where Qε ∈ L∞(Rd,CN,N) is small with respect to
‖·‖L∞ and Qc ∈ L∞(Rd,CN,N) is compactly supported. Such a perturbation Qc is
also called a compactly supported perturbation of LQε. Assuming (A1), (A2),
(A5) and (A8B) for 1 6 p < ∞ and K = C, we can apply once more the results
from Section 7.1. Let (Cp,D(Ap)) denote the infinitesimal generator of (TQ(t))t>0

in Lp(Rd,CN), then using Q = Qε +Qc we obtain for every v ∈ D(Ap)

[Cpv] (x) = [Bpv] (x) + (Qε(x) +Qc(x)) v(x) =
[
Cε
pv
]
(x) +Qc(x)v(x),

where
(
Cε
p ,D(Ap)

)
denotes the infinitesimal generator of (TQε(t))t>0 in Lp(Rd,CN).

This means that the relatively compact perturbation Q of Bp is the same as a
compact perturbation Qc of Cε

p . The relation will be of importance in the following
proof.

In the next theorem we prove a-priori estimates for the solution of the resolvent
equation (λI − Cp) v = g in exponentially weighted Lp-spaces. We show that for
perturbations Q, that falls below a certain threshold in the far-field, the solution
v⋆ ∈ D(Ap) decays exponentially (at least) with the same rate as the inhomogeneity
g. Similar to Theorem 7.6, the bound Reλ > − b0

3
does not depend on the pertur-

bation Qε as in Corollary 7.5. The main idea of the proof is to combine the results
from Corollary 7.5 and Theorem 7.6.

Theorem 7.7 (A-priori estimates in Lpθ(R
d,CN)). Let the assumptions (A1), (A2),

(A5), (A8B) and (A9B) be satisfied for 1 6 p < ∞ and K = C. Then for every
0 < ϑ < 1, for every radially nondecreasing weight function θ ∈ C(Rd,R) of
exponential growth rate η > 0 with 0 6 η2 6 ϑ2

3
a0b0
a2maxp

2 , for every Q ∈ L∞(Rd,CN,N)
with

ess sup
|x|>R0

|Q(x)|2 6
b0
3
min

{
1

C7
,

1

M∞

}

, for some R0 > 0,(7.5)

for every λ ∈ C with Reλ > − b0
3

and for every g ∈ Lpθ(R
d,CN) the following

property is satisfies:
Every solution v⋆ ∈ D(Ap) of the resolvent equation (λI − Cp) v = g in Lp(Rd,CN)
satisfies v⋆ ∈ W 1,p

θ (Rd,CN).
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Proof. Let 0 < ϑ < 1 and let θ ∈ C(Rd,R) be a radially nondecreasing weight
function of exponential growth rate η > 0 with 0 6 η2 6 ϑ2

3
a0b0
a2maxp

2 .
1. Decomposition of Q: For positive real R choose a C∞ cut-off functio

χR : [0,∞[→ [0, 1] with χR(r) =







0 , r 6 R

smooth , R 6 r 6 2R

1 , r > 2R

.

Then, we decompose Q as follows

Q(x) = χR0(|x|)Q(x) + (1− χR0(|x|))Q(x) =: Qε(x) +Qc(x),

where R0 > 0 comes from (7.5). Note that Qε, Qc ∈ L∞(Rd,CN,N) since Q ∈
L∞(Rd,CN,N) and χR (|·|) ∈ Cb(R

d, [0, 1]). Moreover, Qc is compactly supported
because Qc(x) = 0 for every |x| > 2R0 and Qε is bounded by

‖Qε‖L∞(Rd,CN,N ) = ‖χR0(|·|)Q(·)‖L∞(Rd,CN,N )

= ‖χR0(|·|)Q(·)‖L∞(Rd\BR0
,CN,N )

6 ‖χR0(|·|)‖Cb(Rd\BR0
,[0,1]) ‖Q(·)‖L∞(Rd\BR0

,CN,N )

6
b0
3
min

{
1

C7
,

1

M∞

}

.

Now, let λ ∈ C with Reλ > − b0
3

and g ∈ Lpθ(R
d,CN) and let v⋆ ∈ D(Ap) a solution

of (λI − Cp) v = g in Lp(Rd,CN), i.e. v⋆ satisfies

(
λI − Cε

p

)
v⋆ = Qcv⋆ + g, in Lp(Rd,CN).(7.6)

In the following, we consider the problem

(
λI − Cε

p

)
u⋆ = Qcv⋆ + g, in Lp(Rd,CN) and in Lpθ(R

d,CN).(7.7)

Our aim is to show by Corollary 7.5 that u⋆ = v⋆ (in Lp(Rd,CN)) is the unique
solution of (7.7) in Lp(Rd,CN) and by Theorem 7.6 that u⋆ ∈ W 1,p

θ (Rd,CN).
2. Uniqueness in Lp(Rd,CN): Consider (7.7) in Lp(Rd,CN). Qε ∈ L∞(Rd,CN,N)
and λ ∈ C satisfy

Reλ > −b0
3

= −2

3
b0 +

b0
3

> −2

3
b0 +M∞ ‖Qε‖L∞ > ω∞ +M∞ ‖Qε‖L∞ .

Hence, Corollary 7.5 (with Q = Qε and inhomogeneity Qcv⋆ + g) implies a unique
solution u⋆ ∈ D(Ap) of (7.7) in Lp(Rd,CN). Thus, we deduce that w⋆ := u⋆ − v⋆ ∈
D(Ap) is a solution of

(
λI − Cε

p

)
w⋆ = 0, in Lp(Rd,CN).(7.8)

Now, we apply Corollary 7.5 once more (with Q = Qε and g = 0), which yields a
unique solution w⋆ ∈ D(Ap) of (7.8) in Lp(Rd,CN), which satisfies ‖w⋆‖Lp = 0 by
the resolvent estimate from Corollary 7.5. Hence, u⋆ = v⋆ in Lp(Rd,CN).
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3. Existence in Lpθ(R
d,CN): Consider (7.7) in Lpθ(R

d,CN). To apply Theorem
7.6, we only have to check that Qcv⋆ + g ∈ Lpθ(R

d,CN): From v⋆ ∈ D(Ap), g ∈
Lpθ(R

d,CN) and since Qc is compactly supported in B2R0(0) we obtain

‖Qcv⋆ + g‖Lp
θ
(Rd,CN ) 6 ‖θQcv⋆‖Lp(Rd,CN ) + ‖g‖Lp

θ
(Rd,CN )

= ‖θQcv⋆‖Lp(B2R0
,CN ) + ‖g‖Lp

θ
(Rd,CN )

6 ‖θ‖Cb(B2R0
,R) ‖(1− χR0(| · |))Q‖L∞(B2R0

,CN,N ) ‖v⋆‖Lp(B2R0
,CN ) + ‖g‖Lp

θ
(Rd,CN )

6 ‖θ‖Cb(B2R0
,R) ‖Q‖L∞(Rd,CN,N ) ‖v⋆‖Lp(Rd,CN ) + ‖g‖Lp

θ(R
d,CN )

=Cθ,Q,R0 ‖v⋆‖Lp(Rd,CN ) + ‖g‖Lp
θ
(Rd,CN )

i.e. Qcv⋆+g ∈ Lpθ(R
d,CN). Therefore, Theorem 7.6 implies that the unique solution

u⋆ ∈ D(Ap) of (7.7) in Lp(Rd,CN) satisfies u⋆ ∈ W 1,p
θ (Rd,CN). Since u⋆ = v⋆ in

Lp(Rd,CN) and since u⋆ ∈ W 1,p
θ (Rd,CN) ⊆ Lpθ(R

d,CN) ⊆ Lp(Rd,CN), we conclude
that v⋆ ∈ W 1,p

θ (Rd,CN) as well.

Remark. Since v⋆ ∈ Lpθ(R
d,CN) solves

(
λI − Cε

p

)
v⋆ = Qcv⋆+ g in Lpθ(R

d,CN), we
deduce from (7.3) that

‖v⋆‖Lp
θ
(Rd,CN ) 6

C7

Reλ+ 2b0
3

‖Qcv⋆ + g‖Lp
θ
(Rd,CN )

6
C7

Reλ+ 2b0
3

(

Cθ,Q,R0 ‖v⋆‖Lp(Rd,CN ) + ‖g‖Lp
θ(R

d,CN )

)

.

Similarly, using (7.4) we obtain

‖Div⋆‖Lp
θ
(Rd,CN ) 6

√
2C8

(
Reλ + 2b0

3

) 1
2

(

Cθ,Q,R0 ‖v⋆‖Lp(Rd,CN ) + ‖g‖Lp
θ
(Rd,CN )

)

,

for i = 1, . . . , d, where the constants C7, C8 are from Lemma 4.8 (with ω = ω∞).

7.4 Essential spectrum and analyticity

In this section we combine and extend the approaches from [15, Section 8.2, The-
orem 8.1] and [71, Theorem 2.6] to compute the essential spectrum of LQ in
Lp(Rd,CN) and 1 < p < ∞. In order to transfer the results to the infinitesimal
generator Cp, it is necessary to solve the identification problem for Cp. Therefore,
we restrict 1 < p <∞ and require additionally the assumptions (A3) and (A4). In
[15], Beyn and Lorenz have analyzed the case p = d = 2 for K = R. The spectrum
of the Ornstein-Uhlenbeck operator in Lp(Rd,R), 1 < p <∞, without perturbation
terms was studied by Metafune in [71].

First, let us introduce some notation about the spectrum of a closed and densely
defined operator, [52]:
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Definition 7.8. Let X be a (complex-valued) Banach space and let
A : D(A) ⊂ X → X be a closed, densely defined, linear operator. Moreover,
let λ ∈ C.
(1) λ ∈ ρ(A) if and only if the following properties hold

• (λI − A) : D(A) → X is 1− 1 (injective) and onto (surjective),

• (λI − A)−1 is bounded on X.

The set ρ(A) is called the resolvent set of A and (λI −A)−1 is called the resol-
vent of A. Moreover, the set σ(A) := C\ρ(A) is called the spectrum of A and
an element λ ∈ σ(A) is called an eigenvalue of A.
(2) λ0 ∈ σ(A) is called isolated if and only if

∃ ε > 0 ∀λ ∈ C with 0 < |λ− λ0| < ε : λ ∈ ρ(A).

(3) The multiplicity of λ0 ∈ σ(A) is defined as the dimension of the algebraic
eigenspace

{

v ∈ X | (λ0I − A)k = 0 for some k ∈ N

}

.

(4) λ ∈ C is called a normal point of A if and only if one of the following
properties hold

• λ ∈ ρ(A),

• λ ∈ σpoint(A) := {λ ∈ σ(A) | λ is isolated with finite multiplicity}.

The set σpoint(A) is called the point spectrum of A.
(5) The set

σess(A) = {λ ∈ C | λ is not a normal point of A}

is called the essential spectrum of A.

By definition it holds

C = ρ(A)
·∪ σ(A) = ρ(A)

·∪
(

σess(A)
·∪ σpoint(A)

)

.

We first give a short motivation, how we can determine the essential spectrum
of LQ, see [15, Section 8.2] for the case d = p = 2 and see [71, Theorem 2.6] for the
essential spectrum of the drift term in Lp(Rd,R), 1 < p <∞:

The main idea for detecting the essential spectrum is to look for solutions of the
initial value problem

vt(x, t) = [LQv] (x, t), x ∈ Rd, t > 0,

v(x, 0) = v0(x), x ∈ Rd, t = 0.
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1. Orthogonal transformation. For space dimensions d > 3 the axis of rotation
is in general not orthogonal to some plane (xl, xk), 1 6 l, k 6 d. Furthermore, in
space dimensions d > 4 the pattern can also rotate rigidly around several axes of
rotation simultaneously. The first step is to separate the axes of rotation in such
a way that they are orthogonal to (completely) different planes. For this purpose
we perform an orthogonal transformation: Since S ∈ Rd,d with ST = −S we have
σ(S) ⊂ iR. Let ±iσ1, . . . ,±iσk denote the nonzero eigenvalues of S, 1 6 k 6 ⌊d

2
⌋,

then

∃P ∈ Rd,d orthogonal matrix : S = PΛSblockP
T ,

where

ΛSblock =












ΛS1 0
. . .

ΛSk
0

. . .

0 0












∈ Rd,d, ΛSj =

(
0 σj

−σj 0

)

∈ R2,2,

for every j = 1, . . . , k. The orthogonal transformation of coordinates

x = T1(y) := Py, y ∈ Rd

and ṽ(y, t) := v(T1(y), t) yield the transformed equation

ṽt(y, t) = [LQ,T1ṽ] (y, t), y ∈ Rd, t > 0,

where the transformed operator is given by

[LQ,T1 ṽ] (y, t) = A△v(y, t) +
〈
ΛSblocky,∇ṽ(y, t)

〉
− Bṽ(y, t) +Q(T1(y))ṽ(y, t),

with

〈
ΛSblocky,∇ṽ(y, t)

〉
=

k∑

l=1

σl (y2lD2l−1 − y2l−1D2l) ṽ(y, t).

2. Transformation into several planar polar coordinates. Since now we
have k angular derivatives in k different planes it is advisable to transform the
coordinates of every such a plane into planar polar coordinates via

(
y2l−1

y2l

)

= T (rl, φl) :=

(
rl cosφl
rl sinφl

)

, l = 1, . . . , k, φl ∈]− π, π], rl > 0.

All further coordinates, i.e. y2k+1, . . . , yd, remain fixed. Denoting the total trans-
formation by T2(r1, φ1, . . . , rk, φk, y2k+1, . . . , yd) we obtain from v̂(ξ, t) := ṽ(T2(ξ), t)

v̂t(ξ, t) = [LQ,T2 v̂] (ξ, t), ξ ∈ (]0,∞[×]− π, π])k × Rd−2k, t > 0,
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where ξ := (r1, φ1, . . . , rk, φk, y2k+1, . . . , yd) and the transformed operator is given
by

[LQ,T2 v̂] (ξ, t) =A
[

k∑

l=1

(

∂2rl +
1

rl
∂rl +

1

r2l
∂2φl

)

+
d∑

l=2k+1

∂2yl

]

v̂(ξ, t)

−
k∑

l=1

σl∂φl v̂(ξ, t)−Bv̂(ξ, t) +Q(T1(T2(ξ)))v̂(ξ, t).

3. Simplified operator (limit operator, far-field operator). Since the essen-
tial spectrum depends only on the limiting equation for |x| → ∞, we let formally
rl → ∞ for every 1 6 l 6 k and obtain

v̂t(ξ, t) =
[
Lsim
Q,T2

v̂
]
(ξ, t), ξ ∈ (]0,∞[×]− π, π])k × Rd−2k, t > 0,

with the simplified operator

[
Lsim
Q,T2

v̂
]
(ξ, t) = A

[
k∑

l=1

∂2rl +

d∑

l=2k+1

∂2yl

]

v̂(ξ, t)−
k∑

l=1

σl∂φl v̂(ξ, t)− Bv̂(ξ, t).

where we assumed that sup|x|>R |Q(x)| → 0 as R → ∞.

4. Temporal Fourier transform. In order to eliminate the time derivative we
perform a Fourier transform with respect to the time variable t. From
v̌(ξ) := e−λtv̂(ξ, t), λ ∈ C, we obtain

[(
λI −Lsim

Q,T2

)
v̌
]
(ξ) = 0, ξ ∈ (]0,∞[×]− π, π])k × Rd−2k.

5. Angular Fourier transform. Using a Fourier transform with respect to the
space variable ξ, we eliminate all spatial derivatives, including radial and angular
derivatives. For this purpose, we choose

v̌(ξ) := exp

(

iω

k

k∑

l=1

rl

)

exp

(

i
k∑

l=1

nlφl

)

v, nl ∈ Z, ω ∈ R, v ∈ CN , |v| = 1,

φl ∈]− π, π], rl > 0, l = 1, . . . , k,

that is sometimes called the angular Fourier decomposition. This yields

[(
λI −Lsim

Q,T2

)
v̌
]
(ξ) =

(

λIN + ω2A+ i
k∑

l=1

nlσlIN +B

)

v̌(ξ).

The angular Fourier decomposition is a well-known tool for investigating essential
spectrum, also in case of spiral waves, see [38].

6. Finite-dimensional eigenvalue problem. Hence,
[(
λI − Lsim

Q,T2

)
v̌
]
(ξ) = 0

for every ξ if and only if λ ∈ C satisfies the following finite-dimensional eigenvalue
problem

(
ω2A+B

)
v = −

(

λ+ i

k∑

l=1

nlσl

)

v.
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Theorem 7.9 (Essential spectrum of LQ). Let the assumptions (A1)–(A5), (A8B)
and Q ∈ L∞(Rd,KN,N) with

ηR := ess sup
|x|>R

|Q(x)|2 → 0 as R → ∞

be satisfied for 1 < p < ∞ and K = C. Moreover, let λj(ω) denote the eigenvalues
of ω2A+B for j = 1, . . . , N . Then every number λ ∈ C with

λ = −λj(ω)− i
k∑

l=1

nlσl, nl ∈ Z, ω ∈ R, j = 1, . . . , N,(7.9)

belongs to the essential spectrum of LQ in Lp(Rd,CN), i.e. λ ∈ σess(LQ).

Dispersion relation for LQ. The dispersion relation for LQ in Lp(Rd,CN) with
1 < p <∞ states that every λ ∈ C satisfying

det

(

λIN + ω2A +B + i

k∑

l=1

nlσlIN

)

= 0, for someω ∈ R, nl ∈ Z,

belongs to the essential spectrum of LQ, i.e. λ ∈ σess(LQ). This condition is
necessary for the localization (and the existence) of the essential spectrum. Note
that we have not proved that every λ ∈ σess(LQ) can be represented as in (7.9).

Essential spectrum at localized rotating waves. Later on, in Theorem 9.10
we apply Theorem 7.9 to the linearized operator

[Lv] (x) = A△v(x) + 〈Sx,∇v(x)〉+Df(v⋆(x))v(x)

with

−B = Df(v∞), Q(x) = Df(v⋆(x))−Df(v∞), x ∈ Rd,

where v⋆(x) denotes the profile of a localized rotating pattern. This is motivated
by the fact, that the essential spectrum of L provides informations about the linear
(or spectral) stability of L at localized rotating waves v⋆.

Density of essential spectrum in a half-plane. Consider the set

σpart
ess (LQ) :=

{

λ ∈ C | det
(

λIN + ω2A +B + i
k∑

l=1

nlσlIN

)

= 0, ω ∈ R, nl ∈ Z

}

.

Theorem 7.9 shows that σpart
ess (LQ) ⊆ σess(LQ). Moreover, we have the inclusion

σpart
ess (LQ) ⊆ {λ ∈ C | Reλ 6 −b0}, where b0 = −s(−B). If there exists σn, σm such

that σnσ
−1
m /∈ Q then σpart

ess (LQ) is dense in the half-plane {λ ∈ C | Reλ 6 −b0}, i.e.
σpart
ess (LQ) = {λ ∈ C | Reλ 6 −b0}. Otherwise σpart

ess (LQ) is a discrete subgroup of
{λ ∈ C | Reλ 6 −b0} (independently of p). The reason for this conclusion is given
by Metafune in [71, Theorem 2.6]: There, it is proved that the essential spectrum of
the drift term is dense in iR, i.e. σess(〈Sx,∇v(x)〉) = iR, if and only if there exists
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σm, σm such that σnσm /∈ Q. Otherwise, σess(〈Sx,∇v(x)〉) is a discrete subgroup of
iR (independently of p).

Effect of assumption (A9B) on the location of essential spectrum. If we
require in addition the stability condition (A9B), then b0 = −s(−B) > 0. Hence,
Reλj(ω) > 0 and thus σpart

ess (LQ) ⊆ {λ ∈ C | Reλ 6 −b0} ⊂ C−, where C− :=
{λ ∈ C | Reλ < 0}.

Figure 7.1 illustrates the set σpart
ess (LQ) in the scalar case for A = 1

2
(1 + i), B = 1

2

and Q = 0. Figure 7.1(a) shows the part of the essential spectrum of LQ for
σ1 = 1.027 and space dimension d = 2 and d = 3. In this case σpart

ess (LQ) forms a
zig-zag curve, see [15] for d = 2, and is not dense in

{
λ ∈ C | Reλ 6 −1

2

}
. Note that

σpart
ess (LQ) can only be dense in

{
λ ∈ C | Reλ 6 −1

2

}
for space dimensions d > 4.

Figure 7.1(b) shows the part of essential spectrum of LQ for σ1 = 1, σ2 = 1.5
and d = 4. The eigenvalues σ1, σ2 satisfy σ1σ

−1
2 ∈ Q and σ2σ

−1
1 ∈ Q. Thus, the

set σpart
ess (LQ) is not dense in

{
λ ∈ C | Reλ 6 −1

2

}
. Figure 7.1(c) shows the part

of essential spectrum of LQ for σ1 = 1, σ2 = 1
2
exp(1) and d = 4. In this case,

the eigenvalues σ1, σ2 satisfy σ1σ
−1
2 /∈ Q and σ2σ

−1
1 /∈ Q. Thus, the set σpart

ess (LQ)
is dense in

{
λ ∈ C | Reλ 6 −1

2

}
. This shows, that also the essential spectrum

σess(LQ) changes dramatically depending on the eigenvalues of S.
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(a) d ∈ {2, 3}, not dense
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(b) d = 4, not dense
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(c) d = 4, dense

Figure 7.1: Essential spectrum of LQ for parameters A = 1
2 (1 + i), B = 1

2 and Q = 0
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Proof. 1. Let R > 2 be large and let χR : [0,∞[→ [0, 1] be a cut-off function such
that χR ∈ C2([0,∞[, [0, 1]) with bounded derivatives independently of R and

χR(r) =







0 , r ∈ [0, R− 1],

∈ [0, 1] , r ∈ [R− 1, R],

1 , r ∈ [R, 2R],

∈ [0, 1] , r ∈ [2R, 2R+ 1],

0 , r ∈ [2R + 1,∞[.

2. Define

vR(ξ) :=

(
k∏

l=1

χR(rl)

)

χR(|x̃|)v(ξ)

=

(
k∏

l=1

χR(rl)

)

χR(|x̃|) exp
(

iω

k∑

l=1

rl

)

exp

(

i

k∑

l=1

nlφl

)

v̂,

where x̃ := (x2k+1, . . . , xd), ξ := (r1, φ1, . . . , rk, φk, x̃), nl ∈ Z, ω ∈ R, v̂ ∈ CN with
|v̂| = 1, φl ∈]− π, π], rl > 0 and l = 1, . . . , k. By definition of χR we have

(
λI −Lsim

Q,T2

)
vR(ξ) = 0,(7.10)

whenever |x̃| ∈ [0, R − 1] ∪ [2R + 1,∞[ or rl ∈ [0, R − 1] ∪ [2R + 1,∞[ for some
1 6 l 6 k. Moreover, by the choice of λ and by definition of χR we have

(
λI −Lsim

Q,T2

)
vR(ξ) = 0,(7.11)

if |x̃|, rl ∈ [R, 2R] for every l = 1, . . . , k.
3. By the choice of λ,

∂2rl
(
χR(rl)e

iωrl
)
= χ′′

R(rl)e
iωrl + 2iωχ′

R(rl)e
iωrl + χR(rl)∂

2
rl
eiωrl , l = 1, . . . , k,

∂2xl (χR(|x̃|)) =
|x̃|2 − x2l

|x̃|3 χ′
R(|x̃|) +

x2l
|x̃|2χ

′′
R(|x̃|), l = 2k + 1, . . . , d,

the triangle inequality, |χR(r)| 6 1, χ′
R(r) 6 ‖χR‖C2

b
, χ′′

R(r) 6 ‖χR‖C2
b
, |v(ξ)| = 1

and 1
|x̃| 6

1
R−1

6 1, since R > 2, we have

∣
∣
(
λI − Lsim

Q,T2

)
vR(ξ)

∣
∣

=

∣
∣
∣
∣
∣

(

λI −A

[
k∑

l=1

∂2rl +
d∑

l=2k+1

∂2xl

]

+
k∑

l=1

σl∂φl +B

)(
k∏

l=1

χR(rl)

)

χR(|x̃|)v(ξ)
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(
k∏

l=1

χR(rl)

)

χR(|x̃|)
(

λI −A

[
k∑

l=1

∂2rl +

d∑

l=2k+1

∂2xl

]

+

k∑

l=1

nl∂φl +B

)

v(ξ)

︸ ︷︷ ︸

=0 (by the choice of λ)

− A

k∑

l=1

(χ′′
R(rl) + 2iωχ′

R(rl))

(
k∏

j=1
j 6=l

χR(rj)

)

χR(|x̃|)v(ξ)
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−A
d∑

l=2k+1

( |x̃|2 − x2l
|x̃|3 χ′

R(|x̃|) +
x2l
|x̃|2χ

′′
R(|x̃|)

)( k∏

j=1

χR(rj)

)

v(ξ)

∣
∣
∣
∣
∣

6 |A|2
k∑

l=1

(|χ′′
R(rl)|+ 2|ω| |χ′

R(rl)|)
(

k∏

j=1
j 6=l

|χR(rj)|
)

|χR(|x̃|)| |v(ξ)|

+ |A|2
( |d− 2k − 1|

|x̃| |χ′
R(|x̃|)|+ |χ′′

R(|x̃|)|
)( k∏

j=1

|χR(rj)|
)

|v(ξ)|

6 |A|2 (k(1 + 2|ω|) + |d− 2k − 1|+ 1) ‖χR‖C2
b
=: C,

for every |x̃|, rl ∈ [R− 1, R] ∪ [R, 2R] ∪ [2R, 2R + 1] and 1 6 l 6 k.
4. Furthermore, we have by the definition of χR, |v(ξ)|p = 1 and by the transfor-
mation theorem

‖vR‖pLp(Rd,CN )
=

∫

Rd

|vR(x)|p dx

=

∫ ∞

0

∫ π

−π
· · ·
∫ ∞

0

∫ π

−π

∫

Rd−2k

(
k∏

l=1

rl

)

|vR(ξ)|p dx̃dφkdrk · · · dφ1dr1

=

∫ 2R+1

R−1

∫ π

−π
· · ·
∫ 2R+1

R−1

∫ π

−π

∫

R−16|x̃|62R+1

(
k∏

l=1

rl

)

|vR(ξ)|p dξ

=

∫ 2R+1

R−1

∫ π

−π
· · ·
∫ 2R+1

R−1

∫ π

−π

∫

R−16|x̃|62R+1

(
k∏

l=1

rl

)(
k∏

l=1

χpR(rl)

)

χpR(|x̃|)dξ

=

∫

R−16|x̃|62R+1

χpR(|x̃|)dx̃
k∏

l=1

∫ 2R+1

R−1

∫ π

−π
rlχ

p
R(rl)dφldrl

=

(∫

R−16|x̃|6R
χpR(|x̃|)
︸ ︷︷ ︸

>0

dx̃+

∫

R6|x̃|62R

χpR(|x̃|)
︸ ︷︷ ︸

=1

dx̃+

∫

2R6|x̃|62R+1

χpR(|x̃|)
︸ ︷︷ ︸

>0

dx̃

)

·
k∏

l=1

2π

(∫ R

R−1

rl χ
p
R(rl)
︸ ︷︷ ︸

>0

drl +

∫ 2R

R

rl χ
p
R(rl)
︸ ︷︷ ︸

=1

drl +

∫ 2R+1

2R

rl χ
p
R(rl)
︸ ︷︷ ︸

>0

drl

)

>

∫

R6|x̃|62R

1dx̃ ·
k∏

l=1

2π

∫ 2R

R

rldrl = CRd̃

k∏

l=1

3πR2 = (3π)kCR2k+d̃ = CRd,

where dξ := dx̃dφkdrk · · · dφ1dr1 and d̃ := d − 2k denotes the dimension of the
x̃-integral. Moreover, we used the following formula with a = R and b = 2R

∫

a6|x̃|6b
1dx̃ =







1 , d̃ = 0,

b− a , d̃ = 1,

2π π
d̃−2
2

Γ
(

d̃
2

)

(bd̃−ad̃)
d̃

, d̃ > 2.

(7.12)

5. Furthermore, we have by (7.10)

∥
∥
(
λI − Lsim

Q,T2

)
vR
∥
∥
p

Lp(Rd,CN )
=

∫

Rd

∣
∣
(
λI −Lsim

Q,T2

)
vR(x)

∣
∣
p
dx
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=

∫ ∞

0

∫ π

−π
· · ·
∫ ∞

0

∫ π

−π

∫

Rd−2k

(
k∏

l=1

rl

)

∣
∣
(
λI − Lsim

Q,T2

)
vR(ξ)

∣
∣
p
dx̃dφkdrk · · · dφ1dr1

=

∫ 2R+1

R−1

∫ π

−π
· · ·
∫ 2R+1

R−1

∫ π

−π

∫

R−16|x̃|62R+1

(
k∏

l=1

rl

)

∣
∣
(
λI − Lsim

Q,T2

)
vR(ξ)

∣
∣
p
dξ

Defining d̃ := d− 2k we distinguish between the following cases:
Case 1: (d̃ = 0). From step 3, (7.11), the multinomial theorem,

∫ R

R−1

rldrl =
1

2
(2R− 1),

∫ 2R

R

rldrl =
1

2
3R2,

∫ 2R+1

2R

rldrl =
1

2
(4R + 1),(7.13)

k = d
2

and

(2R− 1)j1(3R2)j2(4R + 1)j3 6 CRj1+2j2+j3 = CRk+j2 6 CRk+k−1 = CRd−1

we further obtain

=

∫ 2R+1

R−1

∫ π

−π
· · ·
∫ 2R+1

R−1

∫ π

−π

(
k∏

l=1

rl

)

∣
∣
(
λI −Lsim

Q,T2

)
vR(ξ)

∣
∣
p
dx̃dφkdrk · · · dφ1dr1

6
∑

j1+j2+j3=k

j2 6=k

(
k

j1, j2, j3

)(∫ R

R−1

)j1 (∫ 2R

R

)j2 (∫ 2R+1

2R

)j3

Cp

(
k∏

l=1

rl

)

(2π)kdr1 · · ·drk

=
∑

j1+j2+j3=k

j2 6=k

(
k

j1, j2, j3

)

Cp(2π)k
1

2k
(2R− 1)j1(3R2)j2(4R + 1)j3 6 CRd−1.

Case 2: (d̃ > 1). Again from step 3, (7.11), the multinomial theorem, (7.12),
(2R− 1)j1 6 CRj1, (3R2)j2 6 CR2j2 and (4R + 1)j3 6 CRj3 we further obtain

6
∑

j1+j2+j3=k

(
k

j1, j2, j3

)(∫ R

R−1

)j1 (∫ 2R

R

)j2 (∫ 2R+1

2R

)j3

∫

R−16|x̃|6R
Cp

(
k∏

l=1

rl

)

(2π)kdx̃dr1 · · ·drk

+
∑

j1+j2+j3=k

j2 6=k

(
k

j1, j2, j3

)(∫ R

R−1

)j1 (∫ 2R

R

)j2 (∫ 2R+1

2R

)j3

∫

R6|x̃|62R

Cp

(
k∏

l=1

rl

)

(2π)kdx̃dr1 · · ·drk

+
∑

j1+j2+j3=k

(
k

j1, j2, j3

)(∫ R

R−1

)j1 (∫ 2R

R

)j2 (∫ 2R+1

2R

)j3

∫

2R6|x̃|62R+1

Cp

(
k∏

l=1

rl

)

(2π)kdx̃dr1 · · · drk
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=
∑

j1+j2+j3=k

(
k

j1, j2, j3

)
1

2k
(2R− 1)j1(3R2)j2(4R + 1)j3







1 , d̃ = 1

2π π
d̃−2
2

Γ
(

d̃
2

)

(Rd̃−(R−1)d̃)
d̃

, d̃ > 2






Cp(2π)k

+
∑

j1+j2+j3=k

j2 6=k

(
k

j1, j2, j3

)
1

2k
(2R− 1)j1(3R2)j2(4R + 1)j3







R , d̃ = 1

2π π
d̃−2
2

Γ
(

d̃
2

)

((2R)d̃−Rd̃)
d̃

, d̃ > 2






Cp(2π)k

+
∑

j1+j2+j3=k

(
k

j1, j2, j3

)
1

2k
(2R− 1)j1(3R2)j2(4R + 1)j3







1 , d̃ = 1

2π π
d̃−2
2

Γ
(

d̃
2

)

((2R)d̃−Rd̃)
d̃

, d̃ > 2






Cp(2π)k

6
∑

j1+j2+j3=k

(
k

j1, j2, j3

)

CRj1+2j2+j3+d̃−1 +
∑

j1+j2+j3=k

j2 6=k

(
k

j1, j2, j3

)

CRj1+2j2+j3+d̃

+
∑

j1+j2+j3=k

(
k

j1, j2, j3

)

CRj1+2j2+j3+d̃−1
6 CRd−1.

6. Now, let us consider the operator LQ,T2 instead of Lsim
Q,T2

. By definition of χR we
have

[(λI −LQ,T2) vR] (ξ) = 0,

whenever |x̃| ∈ [0, R − 1] ∪ [2R + 1,∞[ or rl ∈ [0, R − 1] ∪ [2R + 1,∞[ for some
1 6 l 6 k. Moreover, we have by the choice of λ, by definition of χR and since
R > 1

|(λI −LQ,T2) vR(ξ)|

=

∣
∣
∣
∣
∣

(
λI −Lsim

Q,T2

)
vR(ξ)−A

k∑

l=1

(
1

rl
∂rl +

1

r2l
∂φl

)

vR(ξ)−Q(ξ)vR(ξ)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
A

k∑

l=1

(
1

rl
∂rl +

1

r2l
∂φl

)

vR(ξ) + Q(ξ)vR(ξ)

∣
∣
∣
∣
∣

6 |A|2
k∑

j=1

( |iω|
rl

+
|inl|2
r2l

)

+ |Q(ξ)|

6 |A|2
k∑

j=1

(
|ω|+ |nl|2

) 1

rl
+ ηR

6

(

|A|2
k∑

j=1

(
|ω|+ |nl|2

) 1

rl
+ ηR

) 1
p

, 1 < p <∞



150 7 Variable coefficient perturbations in Lp(Rd,CN)

if |x̃|, rl ∈ [R, 2R] for every l = 1, . . . , k.
7. From the choice of λ, step 3, 1

rl
6

1
R−1

6 1 (since R > 2), 1
r2l

6 1, |χR(y)| 6 1,

|χ′
R(y)| 6 ‖χR‖C2

b
and |v(ξ)| = 1 we obtain

|(λI − LQ,T2) vR(ξ)|

=

∣
∣
∣
∣
∣

(
λI − Lsim

Q,T2

)
vR(ξ)− A

k∑

l=1

(
1

rl
∂rl +

1

r2l
∂φl

)

vR(ξ)−Q(ξ)vR(ξ)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(
λI − Lsim

Q,T2

)
vR(ξ)− A

k∑

l=1

1

rl
χ′
R(rl)






k∏

j=1
j 6=l

χR(rj)




χR(|x̃|)v(ξ)

− A
k∑

l=1

1

rl
iω

(
k∏

j=1

χR(rj)

)

χR(|x̃|)v(ξ)− A
k∑

l=1

1

r2l
inl

(
k∏

j=1

χR(rj)

)

χR(|x̃|)v(ξ)

−Q(ξ)

(
k∏

j=1

χR(rj)

)

χR(|x̃|)v(ξ)
∣
∣
∣
∣
∣

6
∣
∣
(
λI − Lsim

Q,T2

)
vR(ξ)

∣
∣+ |A|2

k∑

l=1

1

rl
|χ′
R(rl)|

(
k∏

j=1
j 6=l

|χR(rj)|
)

|χR(|x̃|)| |v(ξ)|

+ |A|2
k∑

l=1

1

rl
|ω|
(

k∏

j=1

|χR(rj)|
)

|χR(|x̃|)| |v(ξ)|

+ |A|2
k∑

l=1

1

r2l
|nl|
(

k∏

j=1

|χR(rj)|
)

|χR(|x̃|)| |v(ξ)|

+ ‖Q‖L∞

(
k∏

j=1

|χR(rj)|
)

|χR(|x̃|)| |v(ξ)|

6C + |A|2

(

k ‖χR‖C2
b
+ k |ω|+

k∑

l=1

|nl|+ ‖Q‖L∞

)

= C,

for every |x̃|, rl ∈ [R− 1, R] ∪ [R, 2R] ∪ [2R, 2R+ 1] and 1 6 l 6 k.
8. Hence, we obtain from the transformation theorem and step 6

‖(λI − LQ) vR‖pLp(Rd,CN )

=

∫

Rd

|(λI − LQ) vR(x)|p dx =

∫

Rd

|(λI −LQ,T1) vR(x)|p dx

=

∫ ∞

0

∫ π

−π
· · ·
∫ ∞

0

∫ π

−π

∫

Rd−2k

(
k∏

l=1

rl

)

|(λI − LQ,T2) vR(ξ)|p dξ

=

∫ 2R+1

R−1

∫ π

−π
· · ·
∫ 2R+1

R−1

∫ π

−π

∫

R−16|x̃|62R+1

(
k∏

l=1

rl

)

|(λI − LQ,T2) vR(ξ)|p dξ

Using the abbreviation d̃ := d−2k we distinguish again between the following cases:
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Case 1: (d̃ = 0). From step 6, step 7 and (7.13) we deduce

=

∫ 2R

R

∫ π

−π
· · ·
∫ 2R

R

∫ π

−π

(
k∏

l=1

rl

)[
k∑

l=1

|A|2 (|ω|+ |nl|2)
rl

+ ηR

]

dφkdrk · · · dφ1dr1

+
∑

j1+j2+j3
j2 6=k

(
k

j1, j2, j3

)(∫ R

R−1

)j1 (∫ 2R

R

)j2 (∫ 2R+1

2R

)j3

Cp

(
k∏

l=1

rl

)

(2π)kdr1 · · · drk

6

∫ 2R

R

· · ·
∫ 2R

R

(2π)k






k∑

l=1

(
k∏

j=1
j 6=l

rj

)

|A|2
(
|ω|+ |nl|2

)






+ (2π)k

(
k∏

l=1

rl

)

ηRdrk · · · dr1 + CRd−1

=

k∑

l=1

|A|2
(
|ω|+ |nl|2

)
∫ 2R

R

· · ·
∫ 2R

R

k∏

j=1
j 6=l

rjdr1 · · · drk

+ (2π)kηR

∫ 2R

R

· · ·
∫ 2R

R

(
k∏

l=1

rl

)

dr1 · · · drk + CRd−1

=

k∑

l=1

(2π)k |A|2
(
|ω|+ |nl|2

)

(
k∏

j=1
j 6=l

∫ 2R

R

rjdrj

)
∫ 2R

R

drl

+ (2π)kηR

k∏

j=1

∫ 2R

R

rjdrj + CRd−1

=

(
k∑

l=1

(2π)k |A|2
(
|ω|+ |nl|2

)
(
3

2

)k−1

R2k−1

)

+ (2π)kηR

(
3

2

)k

R2k + CRd−1

6CRd−1 + CRdηR.

Here we refer to case 1 from step 5 for an estimate of the sum.
Case 2: (d̃ > 1). From the procedure used in case 2 from step 5 and in case 1 and
(7.12) we obtain

6

∫ 2R

R

∫ π

−π
· · ·
∫ 2R

R

∫ π

−π

∫

R6|x̃|62R

(
k∏

l=1

rl

)[
k∑

l=1

|A|2 (|ω|+ |nl|2)
rl

+ ηR

]

dξ

+ CRd−1

6
(
CR2k−1 + CR2kηR

)
∫

R6|x̃|62R

dx̃+ CRd−1

6CR2k−1+d̃ + CRd−1 + CR2k+d̃ηR = CRd−1 + CRdηR.

The constant CRd−1 in the first inequality comes from an estimate of three sums,
compare case 2 from step 5. For the second inequality compare case 1.
9. Define

wR :=
vR

‖vR‖Lp(Rd,CN )

∈ Lp(Rd,CN),
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which belongs to Lp(Rd,CN) by step 4, then we obtain from step 4 and step 8

‖(λI − LQ)wR‖pLp(Rd,CN )
=
‖(λI −LQ) vR‖pLp(Rd,CN )

‖vR‖pLp(Rd,CN )

6
CRd−1 + CRdηR

CRd
=
C

R
+ ηR → 0 as R → ∞.

10. Hence, we must have

λ ∈ σ(LQ) or (λI −LQ)−1 is unbounded on Lp(Rd,CN).

If λ = −λj(ω) − i
∑k

l=1 nlσl ∈ σ(LQ), i.e. λ is an eigenvalue of LQ, then varying
ω ∈ R shows that λ cannot be isolated, i.e. λ is not a normal point of LQ. Therefore,
all such numbers λ belongs to the essential spectrum of LQ, i.e. λ ∈ σess(LQ).

The next Corollary states that for every 1 < p < ∞ the semigroup (TQ(t))t>0

is not analytic on Lp(Rd,CN), 1 < p < ∞, whenever S 6= 0. We refer to [108]
and also to [71] and [83] for the scalar real-valued case. We refer to [34, II.4.5],
for a definition of an analytic semigroup, and to [34, II.4.1], for the definition of a
sectorial operator.

Corollary 7.10 (Analyticity of (TQ(t))t>0). Let the assumptions (A1)–(A5), (A8B)

with S 6= 0 and Q ∈ L∞(Rd,KN,N) with

ηR := ess sup
|x|>R

|Q(x)|2 → 0 as R → ∞

be satisfied for 1 < p < ∞ and K = C. Then the operator LQ is not sectorial
in Lp(Rd,CN) and, consequently, the corresponding semigroup (TQ(t))t>0 is not

analytic on Lp(Rd,CN).

Proof. We show that LQ is not sectorial: For this purpose, we verify that

∀ δ ∈]0, π
2
] ∃λ ∈ Σπ

2
+δ :=

{

λ ∈ C | |arg(λ)| < π

2
+ δ
}

\{0} : λ ∈ σess(LQ),

i.e. λ /∈ ρ(LQ). Let δ ∈]0, π
2
] and let λ ∈ C be chosen as in (7.9). Let us fix w.l.o.g.

j ∈ {1, . . . , N}, ω = 0 and n2, . . . , nk = 0. Then λ has the form λ = −µ− in1σ1 for
some µ ∈ σ(B). Choose n1 ∈ Z so large, that λ ∈ Σπ

2
+δ. Now, Theorem 7.9 implies

λ ∈ σess(LQ), hence λ /∈ ρ(LQ). Thus, LQ cannot be sectorial in Lp(Rd,CN) and,
consequently, the semigroup (TQ(t))t>0 cannot be analytic on Lp(Rd,CN) by [34,
Theorem II.4.6]. Note, that the proof needs that σl 6= 0 for at least one such l, that
is guaranteed by the assumption S 6= 0.

The case S = 0. A crucial part in the proof of Corollary 7.10 plays the fact
that S 6= 0. The assertion is in general not true for S = 0: Consider for example
the simplest case S = B = Q = 0 with A = IN , then it is well known that the
corresponding diffusion semigroup is analytic on Lp(Rd,CN) for every 1 < p < ∞.
This result remains valid for arbitrary diffusion matrices A ∈ CN satisfying the
assumptions (A1)–(A4) for 1 < p <∞.



8 Nonlinear problems and complex

Ornstein-Uhlenbeck operators

In this chapter we investigate the nonlinear problem

A△v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd, d > 2,(8.1)

for the complex Ornstein-Uhlenbeck operator

[L0v] (x) := A△v(x) + 〈Sx,∇v(x)〉 , x ∈ Rd,

in Lp(Rd,KN) with A ∈ KN,N , skew-symmetric matrix S ∈ Rd,d, nonlinearity
f : KN → KN and v : Rd → KN for K ∈ {R,C} and N ∈ N.

In Section 8.1 we consider the nonlinear problem (8.1) for K = R and prove
the main result from Theorem 1.8. Assuming (A4)–(A9) for 1 < p < ∞ and
K = R, we prove in Theorem 1.8 that v⋆ − v∞ and its derivatives up to order 1
decay exponentially in space at a certain rate, whenever v⋆ is a classical solution
of (8.1) such that v⋆ ∈ Lp(Rd,RN) and v⋆ − v∞ falls below a certain threshold in
the far-field. The proof is based on an application of Theorem 7.7, that requires
the identification of the generator Cp and its maximal domain from Theorem 5.19.
For a detailed treatment of this result we refer to Section 1.2. For an outline of the
proof see Section 1.3.

In Section 8.2 we consider the nonlinear problem (8.1) for K = C whose nonlin-
earities are of the form

f : CN → CN , f(u) = g
(
|u|2
)
u,

where g : R → CN,N is a sufficiently smooth function. Assuming (A4) and (A5) for
1 < p < ∞ and K = C and assuming some additional properties for the function
g, we prove in Corollary 8.1 an extension of Theorem 1.8 to complex systems. The
proof is based on an application of Theorem 1.8. For this purpose we transform the
N -dimensional complex-valued system (8.1) into a coupled 2N -dimensional real-
valued system.

8.1 Proof of main theorem

We are now able to prove our main result from Theorem 1.8:

Proof. Let 0 < ϑ < 1 be fixed, 1 < p < ∞ and θ ∈ C(Rd,R) be a radially
nondecreasing weight function of exponential growth rate η > 0 with
0 6 η2 6 ϑ2

3
a0b0
a2maxp

2 , where amax, a0 and b0 are from (1.18).
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1. Let v⋆ denote a classical solution of (1.20) satisfying v⋆ − v∞ ∈ Lp(Rd,RN) and
(1.19). From Taylor’s theorem, (A6) and (A7) we obtain

f(v⋆(x)) = f(v∞)
︸ ︷︷ ︸

=0

+Df(v∞)
︸ ︷︷ ︸

=:−B

(v⋆(x)− v∞)

+

∫ 1

0

(Df(v∞ + t(v⋆(x)− v∞))−Df(v∞)) dt

︸ ︷︷ ︸

=:Q(x)

(v⋆(x)− v∞)

=−B (v⋆(x)− v∞) +Q(x) (v⋆(x)− v∞) .

2. Defining w⋆ := v⋆ − v∞ then w⋆ ∈ C2(Rd,RN) ∩ Cb(R
d,RN) ∩ Lp(Rd,RN) since

v⋆ is a classical solution of (1.11) and v⋆ − v∞ ∈ Lp(Rd,RN), and we obtain

0 =A△v⋆(x) + 〈Sx,∇v⋆(x)〉+ f(v⋆(x))

=A△ (v⋆(x)− v∞) + 〈Sx,∇ (v⋆(x)− v∞)〉
− B (v⋆(x)− v∞) +Q(x) (v⋆(x)− v∞)

=A△w⋆(x) + 〈Sx,∇w⋆(x)〉 − Bw⋆(x) +Q(x)w⋆(x) = [LQw⋆] (x).

3. In order to apply Theorem 7.7 (with Cp = LQ and λ = 0) we have to verify,
that the assumptions are satisfied. Note that the application of Theorem 7.7 with
Cp = LQ requires additionally that the assumptions (A3) and (A4) are fulfilled,
which are necessary to solve the identification problem for Cp. Let us check the as-
sumptions: Assumption (A1) follows from (A8). The assumption (A4) and (A5) are
directly satisfied and assumption (A4) implies (A3) and (A2). Using the definition
of B, the assumptions (A8B) and (A9B) follow from (A8) and (A9), respectively.
It remains to verify Q ∈ L∞(Rd,CN,N), (7.5), w⋆ ∈ D(Ap) and LQw⋆ = 0 in
Lp(Rd,CN).
4. First we show that Q ∈ L∞(Rd,CN,N). From w⋆ ∈ Cb(R

d,RN) we obtain

|v∞ + tw⋆(x)| 6 |v∞|+ t |w⋆(x)| 6 |v∞|+ ‖w⋆‖∞ =: R1

for every x ∈ Rd and 0 6 t 6 1. Using (A6) this implies

|Q(x)|2 6
∫ 1

0

|Df(v∞ + tw⋆(x))|2 + |Df(v∞)|2 dt

6 sup
z∈BR1

(0)

|Df(z)|2 + |Df(v∞)|2

for every x ∈ Rd, which is of course finite by the continuity of Df on com-
pact sets. Taking the suprema over x ∈ Rd we obtain Q ∈ Cb(R

d,RN,N), thus
Q ∈ L∞(Rd,CN,N).
5. We next verify (7.5): Let us choose K1 = K1(A, f, v∞, d, p, θ, ϑ) > 0 such that

K1

(

sup
z∈BK1

(v∞)

∣
∣D2f(z)

∣
∣
2

)

6
b0
3
min

{
1

C7
,

1

M∞

}

(8.2)
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is satisfied, where C7 = C7(A, d, p, θ, ϑ) is from Lemma 4.8, M∞ = M∞(A, d) from
(6.10), b0 = b0(f, v∞) from (1.18) and

∣
∣D2f(z)

∣
∣
2
:=
∥
∥D2f(z)

∥
∥
L(RN ,RN,N )

:= sup
v∈RN

|v|=1

∣
∣D2f(z)v

∣
∣
2
.

The fundamental theorem of calculus, (A6), (1.20) and the choice of K1 yield

|Q(x)|2
=

∣
∣
∣
∣

∫ 1

0

Df(v∞ + tw⋆(x))−Df(v∞)dt

∣
∣
∣
∣
2

=

∣
∣
∣
∣

∫ 1

0

∫ 1

0

D2f(v∞ + s(v∞ + tw⋆(x)− v∞))ds(v∞ + tw⋆(x)− v∞)dt

∣
∣
∣
∣
2

=

∣
∣
∣
∣

∫ 1

0

∫ 1

0

D2f(v∞ + stw⋆(x))ds · tw⋆(x)dt
∣
∣
∣
∣
2

6

∫ 1

0

∫ 1

0

sup
|x|>R0

∣
∣D2f(v∞ + st(v⋆(x)− v∞))

∣
∣
2
ds · t |v⋆(x)− v∞| dt

6K1

(

sup
z∈BK1

(v∞)

∣
∣D2f(z)

∣
∣
2

)

6
b0
3
min

{
1

C7
,

1

M∞

}

for every |x| > R0. Taking the suprema over |x| > R0 yields

sup
|x|>R0

|Q(x)|2 6
b0
3
min

{
1

C7
,

1

M∞

}

.

6. Now we verify that w⋆ ∈ D(Ap): An application of Theorem 5.19 shows
that D(Ap) = Dp

loc(L0). Therefore, it suffices to show that w⋆ ∈ Lp(Rd,CN),
w⋆ ∈ W 2,p

loc (R
d,CN) and L0w⋆ ∈ Lp(Rd,CN). By assumption we know that

w⋆ = v⋆ − v∞ ∈ Lp(Rd,RN). Moreover, we deduce w⋆ ∈ W 2,p
loc (R

d,RN) from
w⋆ ∈ C2(Rd,RN). It remains to prove that L0w⋆ ∈ Lp(Rd,RN): Since
v⋆ ∈ Cb(R

d,RN) there exists a constant R1 > 0 such that |v⋆(x)− v∞| 6 R1

for every x ∈ Rd. From (A6) we deduce that f is locally Lipschitz continuous, i.e.
there exists L = L(R1) > 0 such that

|f(v⋆(x))− f(v∞)| 6 L |v⋆(x)− v∞|
for every x ∈ Rd. Now, we obtain from (A7) and (1.11)

‖L0w⋆‖pLp =

∫

Rd

|[L0w⋆] (x)|p dx =

∫

Rd

|[L0v⋆] (x)|p dx

=

∫

Rd

|f(v⋆(x))|p dx =

∫

Rd

|f(v⋆(x))− f(v∞)|p dx 6 Lp
∫

Rd

|v⋆(x)− v∞|p dx

=Lp ‖v⋆ − v∞‖pLp = Lp ‖w⋆‖pLp

This yields L0w⋆ ∈ Lp(Rd,CN) and thus w⋆ ∈ Dp
loc(L0).

7. Finally, we verify LQw⋆ = 0 in Lp(Rd,RN): From w⋆ ∈ Dp
loc(L0) and

Q ∈ L∞(Rd,RN,N) we deduce from Hölders inequality that LQw⋆ ∈ Lp(Rd,RN).
Further, since w⋆ ∈ C2(Rd,RN) satisfies [LQw⋆] (x) = 0 pointwise for every x ∈ Rd,
we deduce from LQw⋆ ∈ Lp(Rd,RN) that LQw⋆ = 0 in Lp(Rd,RN).
Now, we can apply Theorem 7.7 that yields w⋆ = v⋆ − v∞ ∈ W 1,p

θ (Rd,RN).
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8.2 Application to complex-valued systems

In this section we extend the result from Theorem 1.8 to complex systems (8.1).
The proof is based on an application of Theorem 1.8

Corollary 8.1. Let the assumptions (A4) and (A5) be satisfied for 1 < p <∞ and
K = C. Moreover, let g ∈ C2(R,CN,N) such that A and g(0) are simultaneously
diagonalizable (over C), σ(g(0)) ⊂ C− and define

f : CN → CN , f(u) = g
(
|u|2
)
u.(8.3)

Then for every 0 < ϑ < 1 and for every radially nondecreasing weight function
θ ∈ C(Rd,R) of exponential growth rate η > 0 with

0 6 η2 6 ϑ
2

3

a0b0
a2maxp

2

amax, a0 from (1.18), b0 = −s(g(0)), there is a constant K1 = K1(A, g, d, p, θ, ϑ) > 0
with the following property:
Every classical solution v⋆ of

A△v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd,(8.4)

such that v⋆ ∈ Lp(Rd,CN) and

sup
|x|>R0

|v⋆(x)| 6 K1 for some R0 > 0(8.5)

satisfies

v⋆ ∈ W 1,p
θ (Rd,CN).

Proof. 1. We transform the N -dimensional complex-valued system (8.4) into the
coupled 2N -dimensional real-valued system

AR△vR(x) + 〈Sx,∇vR(x)〉 + fR(vR(x)) = 0, x ∈ Rd,(8.6)

For this purpose, we decompose A = A1 + iA2 with A1, A2 ∈ RN,N , v = v1 + iv2
with v1, v2 : Rd → RN , f1, f2 : R2N → RN with f1(u1, u2) = Re f(u1 + iu2),
f2(u1, u2) = Im f(u1 + iu2), g = g1 + ig2 with g1, g2 : R → RN,N and define

AR :=

(
A1 −A2

A2 A1

)

, vR :=

(
v1
v2

)

and

fR(vR) :=

(
f1(vR)
f2(vR)

)

=

(
g1(|vR|) −g2(|vR|)
g2(|vR|) g1(|vR|)

)

vR,

where AR ∈ R2N,2N , vR ∈ R2N and fR : R2N → R2N .
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2. In order to apply Theorem 1.8 to the 2N -dimensional problem (8.6), we have to
verify, that the assumptions (A4)–(A9) are satisfied for K = R. For this purpose,
we collect some relations of A and AR:

λ ∈ σ(A) ⇐⇒ λ, λ ∈ σ(AR),(8.7)

Y −1AY = ΛA ⇐⇒
(
iY Y
Y −iY

)

AR

(
iY Y
Y −iY

)−1

=

(
ΛA 0
0 ΛA

)

,(8.8)

Re 〈v, Av〉 = 〈vR, ARvR〉 , |v| = |vR| , |Av| = |ARvR| .(8.9)

Since A satisfies (A4) for some 1 < p <∞ and K = C, we deduce from (8.9), that
AR satisfies (A4) for the same 1 < p < ∞ and K = R. We casually note that if A
satisfies (A1), (A2), (A3) for some 1 < p < ∞ and K = C then AR satisfies (A1),
(A2), (A3) for the same 1 < p < ∞ and K = R, that follows from (8.8), (8.7),
(8.9), respectively. Assumption (A5) is directly satisfied. Since g ∈ C2(R,CN,N)
we deduce that fR ∈ C2(R2N ,R2N), meaning that assumption (A6) is satisfied for
K = R. Choosing v∞ = 0 ∈ R2N , then fR(v∞) = 0 and condition (A7) is satisfied.
Since A and g(0) are simultaneously diagonalizable (over C), we deduce from (8.8)
that AR and

DfR(0) =

(
g1(0) −g2(0)
g2(0) g1(0)

)

are simultaneously diagonalizable (over C), meaning that assumption (A8) is satis-
fied for K = R. Finally, since σ(g(0)) ⊂ C− we deduce from (8.7) that
σ(DfR(0)) ⊂ C−. Thus, assumption (A9) is also satisfied.
3. Let 0 < ϑ < 1 be fixed and θ ∈ C(Rd,R) be a radially nondecreasing weight
function of exponential growth rate η > 0 with 0 6 η2 6 ϑ2

3
a0b0
a2maxp

2 , where amax, a0
and b0 are from (1.18) with AR and DfR(0) instead of A and Df(v∞). Moreover,
let v⋆ be a classical solution of (8.4) satisfying v⋆ ∈ Lp(Rd,CN) and (8.5). Then
the function

vR,⋆ :=

(
Re v⋆
Im v⋆

)

is a classical solution of (8.6), which also satisfies vR,⋆ ∈ Lp(Rd,R2N ) and (8.5) since
|v⋆(x)| = |vR,⋆(x)|. Now, an application of Theorem 1.8 yields vR,⋆ ∈ W 1,p

θ (Rd,R2N)
and thus v⋆ ∈ W 1,p

θ (Rd,CN).

Exponential decay for holomorphic nonlinearities. For the exponential
decay in the complex-valued case, Corollary 8.1 requires that the nonlinearity
f : CN → CN has the special form (8.3). The form (8.3) often arises in applica-
tions, for example in complex Ginzburg-Landau equations but also in Schrödinger
equations and Gross-Pitaevskii equations. Note that under the more restrictive
assumption that f : CN → CN is holomorphic, we can directly adopt the proof of
Theorem 1.8. But in applications the nonlinearity is often not holomorphic. For
instance, the nonlinearity of the cubic-quintic complex Ginzburg-Landau equation
is not holomorphic at the origin.





9 Eigenvalue problems for the

linearized differential operator

In this chapter we analyze the eigenvalue problem

A△v(x) + 〈Sx,∇v(x)〉+Df(v⋆(x))v(x) = λv(x), x ∈ Rd, d > 2,(9.1)

for the linearized differential operator

[Lv] (x) := A△v(x) + 〈Sx,∇v(x)〉+Df(v⋆(x))v(x), x ∈ Rd(9.2)

where v : Rd → CN , A ∈ RN,N , S ∈ Rd,d skew-symmetric, f : RN → RN sufficiently
smooth, λ ∈ C and v⋆ : Rd → RN denotes a classical solution of the nonlinear
problem (1.11). Related to the co-rotating frame (1.16), the operator L describes
the linearization at the profile v⋆ of the rotating wave solution u⋆, cf. Definition
1.1. Investigations of the corresponding eigenvalue problem (9.1) are motivated by
the stability theory of rotating patterns, [15]. In order to investigate the eigenvalue
problem (9.1) in the complex case with K = C, we stress that N -dimensional
complex-valued systems must generally be transformed to 2N -dimensional real-
valued systems as performed in the proof of Corollary 8.1. In this chapter we
are mainly interested in finding classical solutions (λ, v) of the eigenvalue problem
(9.1). Such a solution consists of an eigenfunction v ∈ C2(Rd,CN) and an associated
eigenvalue λ ∈ C. Moreover, we are also interested in the exponential decay of these
eigenfunctions.

In Section 9.1 we introduce some basic definitions for classical solutions of (9.1)
and for the spectral stability of rotating waves, [38]. Decomposing the spectrum
σ(L) into the union of the essential spectrum σess(L) and the point spectrum
σpoint(L) gives rise to investigate both parts of σ(L) in the following sections.

In Section 9.2 we analyze the point spectrum σpoint(L) of L and the shape of the
correspondig eigenfunctions. Assuming v⋆ ∈ C3(Rd,RN) to be a classical solution
of (1.11), we show in Theorem 9.4 that every

λ ∈ σ(S) ∪ {λ1 + λ2 | λ1, λ2 ∈ σ(S), λ1 6= λ2}

belongs to the point spectrum σpoint(L) of L and that their corresponding eigen-
function v has the form

v(x) =
〈
Crotx+ Ctra,∇v⋆(x)

〉
, x ∈ Rd,

for explicitly given Ctra ∈ Cd and skew-symmetric Crot ∈ Cd,d. This part of
the point spectrum σpoint(L) contains d(d+1)

2
eigenvalues and is caused by the ro-

tational and translational symmetries from the SE(d)-action. Note that by the
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skew-symmetry of S, all these isolated eigenvalues are located on the imaginary
axis. In particular, we conclude that 0 ∈ σpoint(L) and that the rotational term
v(x) = 〈Sx,∇v⋆(x)〉 is an eigenfunction associated to the eigenvalue 0. The point
spectrum contains in general further isolated eigenvalues, but a complete charac-
terization of the point spectrum is often very delicate and will not be performed
here. The results for the point spectrum do not depend upon whether the rotating
pattern is localized or nonlocalized. This is in strict contrast to the essential spec-
trum, that depends strongly on the asymptotic behavior of the rotating wave at
infinity. We conclude with some examples for the two and three dimensional case.

In Section 9.3 we investigate the exponential decay of the eigenfunctions v, which
strongly depends on the asymptotic behavior of the pattern v⋆ and on the real part
of its corresponding eigenvalue λ. Assuming the assumptions of our main result
from Theorem 1.8, we prove in Theorem 9.8 that v and its first order deriva-
tives decay exponentially in space at the same rate as the pattern v⋆, whenever
v is a classical solution of (9.1) such that v ∈ Lp(Rd,CN) and λ ∈ C with

Reλ > s(Df(v∞))
3

. The proof is based on an application of Theorem 7.7, that
requires once more the identification of the maximal domain from Theorem 5.19.
We deduce that the rotational term v(x) = 〈Sx,∇v⋆(x)〉 belongs to W 1,p

θ (Rd,RN),
whenever v⋆ ∈ C3(Rd,RN).

In Section 9.4 we study the essential spectrum σess(L) of L for exponentially
localized patterns v⋆. Assuming the assumptions of our main result from Theorem
1.8, we prove in Theorem 9.10 that every λ ∈ C satisfying

det

(

λIN + ω2A−Df(v∞) + i

k∑

l=1

nlσlIN

)

= 0, for someω ∈ R, nl ∈ Z,

belongs to the essential spectrum σess(L) of L in Lp(Rd,CN) for 1 < p < ∞. The
result follows directly from an application of Theorem 7.9.

In Section 9.5 we analyze the essential spectrum σess(L) of L for Archimedean
spiral patterns v⋆, a special kind of a nonlocalized rotating wave with d = 2, and
formulate a dispersion relation for Archimedean spiral waves. Most of the results
from this section are not completely new and we refer to [92] and [38], but also to
[93].

9.1 Classical solutions and spectral stability

We are interested in solutions (λ, v) of (9.1) in the following sense:

Definition 9.1. A function v : Rd → CN is called a classical solution of (9.1)
for some λ ∈ C, if

v ∈ C2(Rd,CN)(9.3)

and v solves (9.1) pointwise.

We transfer the definition for spectral stability of traveling waves to rotating
waves, see [38, Section 3.1.2], and introduce the strong spectral stability.
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Definition 9.2. A rotating wave solution u⋆ : R
d× [0,∞[→ KN of (1.14) given by

u⋆(x, t) = v⋆(e
−tS(x− x⋆)

is called spectrally stable, if σ(L) ⊂ C− ∪ iR = {λ ∈ C | Reλ 6 0}. Moreover, a
rotating wave solution u⋆ : R

d×[0,∞[→ KN of (1.14) is called strongly spectrally
stable, if it is spectrally stable and every λ ∈ σ(L) with Re λ = 0 is caused by the
SE(d)-group action.

The eigenvalues caused by the SE(d)-group action are described in detail in
Theorem 9.4.

For rotating waves on unbounded domains it is well known that one usually derive
nonlinear stability from strong spectral stability. Note that nonlinear stability only
implies spectral stability, but in general not strong spectral stability. However,
both definitions motivate investigations of the spectrum σ(L) of the linearization
L. For this purpose, we decompose σ(L) into

σ(L) = σess(L)
·∪ σpoint(L),

where σess(L) and σpoint(L) denote the essential and the point spectrum of L, re-
spectively, cf. Definition 7.8. In the following sections we analyze these two sets in
more detail.

9.2 Point spectrum and the shape of eigenfunctions

In this section we analyze the isolated points in the spectrum of the operator L
which are caused by the group action on SE(d). It is convenient to work in the
Euclidean Sobolev space

W 2,p
Eucl(R

d,KN) :=
{
v ∈ W 2,p(Rd,KN) | 〈S·,∇v〉 ∈ Lp(Rd,KN) ∀S ∈ so(d)

}
,

‖v‖W 2,p
Eucl(R

d,KN ) := ‖v‖W 2,p(Rd,KN ) + sup
S∈so(d)

‖〈Sx,∇v〉‖Lp(Rd,KN ) , 1 < p <∞,

which is the intersection of the spaces Dp
max(L0) for every S ∈ so(d), see Example

10.6. To investigate the point spectrum of L we need the following Lemma.

Lemma 9.3 (Group action on SE(d)). Let v ∈ Lp(Rd,KN) for 1 < p < ∞ and
K ∈ {R,C}. Moreover, let the group action

a(·)v : SE(d) → Lp(Rd,KN), g := (R, τ) 7→ a(R, τ)v

be given by

[a(R, τ)v] (x) := v(R−1(x− τ))

for g = (R, τ) ∈ SO(d) ⋉ Rd = SE(d) =: G. Then, for v ∈ W 2,p
Eucl(R

d,KN) the
derivative of a(·)v with respect to g evaluated at g = 1 is the mapping

d [a(1)v] : T
1

SE(d) → Lp(Rd,KN ), µ 7→ d [a(1)v]µ

given by

d [a(1)v(x)] (S, λ) = −〈Sx+ Idλ,∇v(x)〉 ,
where T

1

SE(d) = se(d) and µ = (S, λ) ∈ so(d)× Rd = se(d).
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Proof. We prove the result pointwise and note that all derivatives converge in
Lp(Rd,KN). For v ∈ W 2,p

Eucl(R
d,KN ) the derivative of a(·)v with respect to g =

(R, τ) is given by the mapping

d [a(g)v] : TgSE(d) → Lp(Rd,KN), µ 7→ d [a(g)v]µ

where TgSE(d) denotes the tangential space of SE(d) at g. The right hand side
d [a(g)v] can be computed in a formal way as follows:

d [a(g)v(x)] :=
d

dg
[a(g)v(x)] =

d

d(R, τ)
[a(R, τ)v] (x)

=
d

d(R, τ)
v(R−1(x− τ)) =

[
∂

∂R
v(R−1(x− τ)),

∂

∂τ
v(R−1(x− τ))

]

=−
[(

Dv(R−1(x− τ)) ·
∫ 1

0

e(1−α)X(S)(Iij − Iji)e
αX(S)dα · (x− τ)

)

i=1,...,d−1
j=i+1,...,d

,

(

Dv(R−1(x− τ))R−1el

)

l=1,...,d

]

where S ∈ so(d) is chosen such that exp(S) = R for R given by the group element
and X is defined by X(S) := −∑d−1

l=1

∑d

k=l+1 Slk(Ilk − Ikl). To prove the last
equality, recall the informations about the special Euclidean group SE(d) from
Section 3. For the first term we use the definition of X(S) from above and apply
(3.1) to obtain

∂

∂Sij
v

(

exp

(

−
d−1∑

l=1

d∑

k=l+1

Slk(Ilk − Ikl)

)

(x− τ)

)

=Dv(R−1(x− τ)) · ∂

∂Sij

(

eX(S)(x− τ)

)

=Dv(R−1(x− τ)) ·
∫ 1

0

e(1−α)X(S)

[
∂

∂Sij
X(S)

]

eαX(S)dα · (x− τ)

=−Dv(R−1(x− τ)) ·
∫ 1

0

e(1−α)X(S)(Iij − Iji)e
αX(S)dα · (x− τ)

for every i = 1, . . . , d− 1 and j = i+ 1, . . . , d. This yields

∂

∂R
v(R−1(x− τ)) =

(

∂

∂Sij
v

(

exp

(

−
d−1∑

l=1

d∑

k=l+1

Slk(Ilk − Ikl)

)

(x− τ)

))

i=1,...,d−1
j=i+1,...,d

=

(

−Dv(R−1(x− τ)) ·
∫ 1

0

e(1−α)X(S)(Iij − Iji)e
αX(S)dα · (x− τ)

)

i=1,...,d−1
j=i+1,...,d

.
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The second term is even simpler: From

∂

∂τl
v(R−1(x− τ)) =Dv(R−1(x− τ)) · ∂

∂τl
R−1(x− τ)

=−Dv(R−1(x− τ)) ·R−1el

for l = 1, . . . , d we deduce

∂

∂τ
v(R−1(x− τ)) =





(

∂

∂τl
v(R−1(x− τ))

)

l=1,...,d





=





(

−Dv(R−1(x− τ))R−1el

)

l=1,...,d



 .

The derivative d[a(g)v] at g = 1 leads to the simple expression

d [a(1)v(x)] =−






(

Dv(x)(Iij − Iji)x

)

i=1,...,d−1
j=i+1,...,d

,

(

Dv(x)el

)

l=1,...,d






=−






(

(xjDi − xiDj)v(x)

)

i=1,...,d−1
j=i+1,...,d

,

(

Dlv(x)

)

l=1,...,d




 .

The unit element is 1 = (R, τ) = (Id, 0) ∈ SO(d)⋉ Rd. To guarantee the relation
exp(S) = R = Id for some S ∈ so(d) we choose S = 0. Therefore, we have
X(S) = X(0) = 0, thus e(1−α)X(S) = eαX(S) = Id and the integral equals (Iij − Iji).
In order to evaluate d [a(1)v] at µ = (S, λ) ∈ so(d)× Rd we use the basis of so(d)
from Section 3 once more and obtain for every (S, λ) ∈ se(d)

d [a(1)v(x)] (S, λ)

=−






(

(xjDi − xiDj)v(x)

)

i=1,...,d−1
j=i+1,...,d

,

(

Dlv(x)

)

l=1,...,d




 ·
(
(Sij)i=1,...,d−1

j=i+1,...,d

(λl)l=1,...,d

)

=−
d−1∑

i=1

d∑

j=i+1

Sij (xjDi − xiDj) v(x)−
d∑

l=1

λlDlv(x)

=−
d∑

i=1

d∑

j=1

SijxjDiv(x)−
d∑

l=1

λlDlv(x) = −
d∑

i=1

((Sx)i + λi)Div(x)

=−
d∑

i=1

(Sx+ Idλ)iDiv(x) = −〈Sx+ Idλ,∇v(x)〉 .

The following theorem gives informations about the point spectrum and the
shape of the eigenfunctions of L. As mentioned before we are not able to determine
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the whole point spectrum of L, but all eigenvalues on the imaginary axis that are
due to the SE(d)-action and their associated eigenfunctions. The procedure for the
proof is already well known in the literature, for instance for traveling waves and
spiral waves, and is based on the following algebraical observation: Considering
the nonlinear equation (1.19), one applies the group action a(g) to both sides and

takes the derivative with respect to g at g = 1. This leads to a number of d(d+1)
2

equations, which equals the dimension of SE(d).

Theorem 9.4 (Point spectrum of L on the imaginary axis). Let v⋆ ∈ C3(Rd,RN)
be a classical solution of (1.19). Moreover, let U ∈ Cd,d be the unitary matrix from
(3.2), then the function v : Rd → CN given by

v(x) =
d−1∑

i=1

d∑

j=i+1

Crot
ij (xjDi − xiDj)v⋆(x) +

d∑

l=1

Ctra
l Dlv⋆(x)

= −d [a(1)v⋆(x)]
(
Crot

Ctra

)

=
〈
Crotx+ IdC

tra,∇v⋆(x)
〉

is a classical solution of the eigenvalue problem Lv = λv for every Crot ∈ Cd,d and
Ctra ∈ Cd satisfying

(λ, (Crot, Ctra)) = (−λSl , (0, Uel)),

for some l = 1, . . . , d, or

(λ, (Crot, Ctra)) = (−(λSn + λSm), (U(Inm − Imn)U
T , 0)),

for some n = 1, . . . , d − 1 and m = n + 1, . . . , d. Thus, v ∈ C2(Rd,CN) is an
eigenfunction of L with eigenvalue λ ∈ iR.

Remark. Later on we will show that the eigenfunctions v decay exponentially,
see Theorem 9.8. Moreover, it is possible to deduce from Theorem 7.7 that the
eigenvalues λ are actually in the Lp-point spectrum of L, i.e. λ ∈ σpoint(L), meaning
that they are isolated and have finite multiplicity. This will be proved elsewhere
by using Fredholm theory.

Proof. 1. Let v⋆ ∈ C3(Rd,RN) be a classical solution of (1.19), i.e. v⋆ satisfies the
nonlinear problem

0 = A△v⋆(x) + 〈Sx,∇v⋆(x)〉+ f(v⋆(x)), x ∈ Rd.

Applying the group action a(g) from Lemma 9.3 on both hand sides yields

0 =a(g) (A△v⋆(x) + 〈Sx,∇v⋆(x)〉+ f(v⋆(x))) , x ∈ Rd.

Taking the derivative d
dg

at g = 1, we obtain by Lemma 9.3

0 =d [a(1) (A△v⋆(x) + 〈Sx,∇v⋆(x)〉 + f(v⋆(x)))]

=−
[(

(xjDi − xiDj) (A△v⋆(x) + 〈Sx,∇v⋆(x)〉 + f(v⋆(x)))

)

i=1,...,d−1
j=i+1,...,d

,
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(

Dl (A△v⋆(x) + 〈Sx,∇v⋆(x)〉+ f(v⋆(x)))

)

l=1,...,d

]

.

This leads to a total of d(d+1)
2

equations

0 =(xjDi − xiDj) (A△v⋆(x) + 〈Sx,∇v⋆(x)〉+ f(v⋆(x))) ,(9.4)

0 =Dl (A△v⋆(x) + 〈Sx,∇v⋆(x)〉 + f(v⋆(x))) .(9.5)

for i = 1, . . . , d− 1, j = i+ 1, . . . , d and l = 1, . . . , d, where d(d+1)
2

= dim SE(d).
2. We apply the differential expressions (xjDi − xiDj) and Dl to the nonlinear
equation and transfer them directly in front of v⋆(x). For this purpose we have
to investigate commutator relations between this two terms and the differential
expressions. In order to transform (9.5), we observe that

•Dl (A△v⋆(x)) = A△Dlv⋆(x),

•Dl (f(v⋆(x))) = Df(v⋆(x))Dlv⋆(x),

•Dl 〈Sx,∇v⋆(x)〉 = Dl

d∑

i=1

(Sx)iDiv⋆(x) =

d∑

i=1

[

(Sx)iDl + (Sel)i

]

Div⋆(x)

=
d∑

i=1

(Sx)iDiDlv⋆(x) +
d∑

i=1

(Sel)iDiv⋆(x) = 〈Sx,∇Dlv⋆(x)〉+ 〈Sel,∇v⋆(x)〉 ,

for every l = 1, . . . , d, where Sel = S·l. Similarly, for equation (9.4) we obtain

•A△ ((xjDi − xiDj)v⋆(x)) = A
d∑

k=1

D2
k ((xjDi − xiDj)v⋆(x))

= A

d∑

k=1

(
2δkjDiDk + xjDiD

2
k − 2δkiDjDk − xiDjD

2
k

)
v⋆(x)

= A(xjDi − xiDj)△v⋆(x) + 2DiDjv⋆(x)− 2DjDiv⋆(x)

= (xjDi − xiDj)A△v⋆(x),
•(xjDi − xiDj)f(v⋆(x)) = Df(v⋆(x))(xjDi − xiDj)v⋆(x),

for every i = 1, . . . , d− 1 and j = i+1, . . . , d. The transformation of the rotational
term 〈Sx,∇v⋆(x)〉 is much more involved: Using

xkDmDlv⋆(x) = Dm(xkDlv⋆(x))− δmkDlv⋆(x)

and

xk 〈Sx,∇Dlv⋆(x)〉 =
d∑

m=1

(Sx)m xkDmDlv⋆(x)

=
d∑

m=1

(Sx)mDm(xkDlv⋆(x))−
d∑

m=1

(Sx)kδmkDlv⋆(x)

= 〈Sx,∇(xkDlv⋆(x))〉 − (Sx)kDlv⋆(x),
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we deduce

(xjDi − xiDj) 〈Sx,∇v⋆(x)〉
=xj (〈Sx,∇Div⋆(x)〉+ 〈Sei,∇v⋆(x)〉)− xi (〈Sx,∇Djv⋆(x)〉+ 〈Sej,∇v⋆(x)〉)
= 〈Sx,∇((xjDi − xiDj)v⋆(x))〉+ xj 〈Sei,∇v⋆(x)〉 − xi 〈Sej ,∇v⋆(x)〉
− (Sx)jDiv⋆(x) + (Sx)iDjv⋆(x).

We now simplify the remaining four terms in the last equation. Using

xj 〈Sei,∇v⋆(x)〉+ (Sx)iDjv⋆(x) = xj

d∑

n=1

SniDnv⋆(x) +

d∑

n=1

SinxnDjv⋆(x)

=−
d∑

n=1
n 6=j

SinxjDnv⋆(x) +

d∑

n=1
n 6=j

SinxnDjv⋆(x)− SijxjDjv⋆(x) + SijxjDjv⋆(x)

=
d∑

n=1
n 6=j

Sin (xnDj − xjDn) v⋆(x),

and analogously

−
[

xi 〈Sej ,∇v⋆(x)〉+ (Sx)jDiv⋆(x)

]

=

d∑

n=1
n 6=i

Sjn (xnDi − xiDn) v⋆(x)

as well as

〈Sel,∇v⋆(x)〉 =
d∑

n=1

SnlDnv⋆(x) = −
d∑

n=1

SlnDnv⋆(x)

and taking all into account, (9.4) and (9.5) can be rewritten as

0 =L ((xjDi − xiDj)v⋆(x)) +

d∑

n=1
n 6=j

Sin(xnDj − xjDn)v⋆(x)(9.6)

−
d∑

n=1
n 6=i

Sjn(xnDi − xiDn)v⋆(x),

0 =L (Dlv⋆(x))−
d∑

n=1

SlnDnv⋆(x).(9.7)

for i = 1, . . . , d− 1, j = i+ 1, . . . , d and l = 1, . . . , d.
3. We now reduce Lv = λv to a finite dimensional eigenvalue problem. For this
purpose, we put the ansatz

v(x) :=

d−1∑

i=1

d∑

j=i+1

Crot
ij (xjDi − xiDj)v⋆(x) +

d∑

l=1

Ctra
l Dlv⋆(x), C

rot
ij , C

tra
l ∈ C
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into the original eigenvalue problem Lv = λv and transform the equation in such a
way, that we are able to require equality for every summand.

d−1∑

i=1

d∑

j=i+1

λCrot
ij (xjDi − xiDj)v⋆(x) +

d∑

l=1

λCtra
l Dlv⋆(x) = λv(x) = Lv(x)

=
d−1∑

i=1

d∑

j=i+1

Crot
ij L ((xjDi − xiDj)v⋆(x)) +

d∑

l=1

Ctra
l L (Dlv⋆(x))

=−
d−1∑

i=1

d∑

j=i+1

d∑

n=1
n 6=j

Crot
ij Sin(xnDj − xjDn)v⋆(x)

+

d−1∑

i=1

d∑

j=i+1

d∑

n=1
n 6=i

Crot
ij Sjn(xnDi − xiDn)v⋆(x) +

d∑

l=1

d∑

n=1

Ctra
l SlnDnv⋆(x)

We next modify each of these three terms. For this purpose we use the skew-
symmetry of S ∈ Rd,d and the abbreviation Dx

(i,j) := xjDi − xiDj . The first term
can be simplified by

−
d−1∑

i=1

d∑

j=i+1

d∑

n=1
n 6=j

Crot
ij Sin(xnDj − xjDn)v⋆(x)

=−
d−1∑

n=1

d∑

i=n+1

d∑

j=1
j 6=i

Crot
ni SnjD

x
(i,j)v⋆(x) = −

d∑

i=2

d∑

j=1
j 6=i

i−1∑

n=1

Crot
ni SnjD

x
(i,j)v⋆(x)

=−
d∑

i=2

d∑

j=i+1

i−1∑

n=1

Crot
ni SnjD

x
(i,j)v⋆(x)−

d∑

i=2

i−1∑

j=1

i−1∑

n=1

Crot
ni SnjD

x
(i,j)v⋆(x)

=−
d−1∑

i=1

d∑

j=i+1

i−1∑

n=1

Crot
ni SnjD

x
(i,j)v⋆(x)−

d−1∑

j=1

d∑

i=j+1

i−1∑

n=1

Crot
ni SnjD

x
(i,j)v⋆(x)

=−
d−1∑

i=1

d∑

j=i+1

i−1∑

n=1

Crot
ni SnjD

x
(i,j)v⋆(x) +

d−1∑

i=1

d∑

j=i+1

j−1
∑

n=1

Crot
nj SniD

x
(i,j)v⋆(x)

=
d−1∑

i=1

d∑

j=i+1

[

−
j−1
∑

n=1

SinC
rot
nj +

i−1∑

n=1

SjnC
rot
ni

]

(xjDi − xiDj)v⋆(x),

the second term by

d−1∑

i=1

d∑

j=i+1

d∑

n=1
n 6=i

Crot
ij Sjn(xnDi − xiDn)v⋆(x)

=

d−1∑

i=1

d∑

n=i+1

d∑

j=1
j 6=i

Crot
in SnjD

x
(i,j)v⋆(x) =

d−1∑

i=1

d∑

j=1
j 6=i

d∑

n=i+1

Crot
in SnjD

x
(i,j)v⋆(x)
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=
d−1∑

i=1

d∑

j=i+1

d∑

n=i+1

Crot
in SnjD

x
(i,j)v⋆(x) +

d−1∑

i=1

i−1∑

j=1

d∑

n=i+1

Crot
in SnjD

x
(i,j)v⋆(x)

=
d−1∑

i=1

d∑

j=i+1

d∑

n=i+1

Crot
in SnjD

x
(i,j)v⋆(x) +

d−2∑

j=1

d−1∑

i=j+1

d∑

n=i+1

Crot
in SnjD

x
(i,j)v⋆(x)

=
d−1∑

i=1

d∑

j=i+1

d∑

n=i+1

Crot
in SnjD

x
(i,j)v⋆(x) +

d−1∑

j=1

d∑

i=j+1

d∑

n=i+1

Crot
in SnjD

x
(i,j)v⋆(x)

=
d−1∑

i=1

d∑

j=i+1

d∑

n=i+1

Crot
in SnjD

x
(i,j)v⋆(x)−

d−1∑

i=1

d∑

j=i+1

d∑

n=j+1

Crot
jn SniD

x
(i,j)v⋆(x)

=
d−1∑

i=1

d∑

j=i+1

[

−
d∑

n=i+1

SjnC
rot
in +

d∑

n=j+1

SinC
rot
jn

]

(xjDi − xiDj)v⋆(x)

and the third term by

d∑

l=1

d∑

n=1

Ctra
l SlnDnv⋆(x) =

d∑

n=1

d∑

l=1

Ctra
n SnlDlv⋆(x) =

d∑

l=1

[

−
d∑

n=1

SlnC
tra
n

]

Dlv⋆(x).

Thus, we conclude

d−1∑

i=1

d∑

j=i+1

λCrot
ij (xjDi − xiDj)v⋆(x) +

d∑

l=1

λCtra
l Dlv⋆(x)

=
d−1∑

i=1

d∑

j=i+1

[

−
j−1
∑

n=1

SinC
rot
nj +

d∑

n=j+1

SinC
rot
jn +

i−1∑

n=1

SjnC
rot
ni −

d∑

n=i+1

SjnC
rot
in

]

· (xjDi − xiDj)v⋆(x) +
d∑

l=1

[

−
d∑

n=1

SlnC
tra
n

]

Dlv⋆(x).

Requiring equality of summands yields for i = 1, . . . , d − 1, j = i + 1, . . . , d and
l = 1, . . . d

λCrot
ij =

j−1
∑

n=1

Crot
nj Sni −

d∑

n=j+1

Crot
jn Sni −

i−1∑

n=1

Crot
ni Snj +

d∑

n=i+1

Crot
in Snj,(9.8)

λCtra
l =−

d∑

n=1

Ctra
n Sln.(9.9)

In order to determine the solutions (λ, (Crot, Ctra)) of (9.8)–(9.9) we postulate
Crot
ij = −Crot

ji for every i, j = 1, . . . , d, i.e. in the following we consider Crot as
a (complex-valued) matrix Crot ∈ Cd,d that is assumed to be skew-symmetric. Note

that Crot
ii = 0 by equation (9.8). Thus, the equation (9.8)–(9.9) leads to a d(d+1)

2
-

dimensional eigenvalue problem
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λCrot = −SCrot +
(
SCrot

)T
,(9.10)

λCtra = −SCtra.(9.11)

Since (9.10)–(9.11) arise in block diagonal form, it is sufficient to solve the eigenvalue
problems separatly, i.e. (λ, Crot) solves (9.10) if and only if (λ, (Crot, 0)) solves (9.8)–
(9.9). Similarly, (λ, Ctra) solves (9.11) if and only if (λ, (0, Ctra)) solves (9.8)–(9.9).

Equation (9.10) is a matrix eigenvalue problem that admits exactly d(d−1)
2

solutions.
This number equals the dimension dimSO(d). The eigenvalue problem (9.11) has

exactly d solutions. Altogether, we have d(d+1)
2

solutions, which coincide with the
dimension of SE(d).
4. We start to solve (9.11): From (3.2) we deduce S = UΛSŪ

T with a unitary matrix
U ∈ Cd,d, ΛS = diag(λS1 , . . . , λ

S
d ) and λi ∈ σ(S) pairwise different. Multiplying

(9.11) from left by ŪT and defining w := ŪTCtra ∈ Cd we obtain

λw = λŪTCtra = −ŪTSCtra = −ŪTUΛSŪ
TCtra = −ΛSw.(9.12)

The solutions of (9.12) are given by (λ, w) = (−λSl , el) for l = 1, . . . , d. Thus, the
transformation Ctra = Uw yields the solutions (λ, Ctra) = (−λSl , Uel) of (9.11) for
l = 1, . . . , d. Consequently, (λ, (Crot, Ctra)) = (−λl, (0, Uel)) for l = 1, . . . , d are d
solutions of (9.8)–(9.9).
5. Finally, we solve (9.10): We use the decomposition S = UΛSŪ

T once more.
Multiplying (9.10) from left by ŪT , from right by Ū and defining W := ŪTCrotŪ ∈
Cd,d we obtain

λW = λŪTCrotŪ = −ŪTSCrotŪ + ŪT
(
SCrot

)T
Ū

= −ŪT ŪΛSŪ
TCrotŪ +

(
ŪTUΛSŪ

TCrotŪ
)T

= −ΛSW +W TΛS.
(9.13)

The solutions of (9.13) are given by (λ,W ) = (−(λSn + λSm), Inm − Imn) for n =
1, . . . , d− 1 and m = n + 1, . . . , d. Thus, the transformation Crot = UWUT yields
the solutions (λ, Crot) = (−(λSn+λ

S
m), U(Inm−Imn)UT ) of (9.10) for n = 1, . . . , d−1

and m = n + 1, . . . , d, where Crot = U(Inm − Imn)U
T ∈ Cd,d is of course skew-

symmetric. Consequently, (λ, (Crot, Ctra)) = (−(λSn+λ
S
m), (U(Inm−Imn)UT , 0)) for

n = 1, . . . , d− 1 and m = n + 1, . . . , d are d(d−1)
2

solutions of (9.8)–(9.9).

The previous Theorem 9.4 and the subsequent remark prove that the point spec-
trum of the linearization L contains the spectrum of S and the direct sum of its
different eigenvalues. We summarize this result in the following:

Corollary 9.5. Let the assumptions of Corollary 9.9 be satisfied, then the inclusion

σpart
point(L) := σ(S) ∪ {λ1 + λ2 | λ1, λ2 ∈ σ(S), λ1 6= λ2} ⊆ σpoint(L)

holds for the Lp-spectrum of L, in particular, 0 ∈ σpoint(L).
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Rotational term. If v⋆ ∈ C3(Rd,RN), then for space dimensions d > 2

v(x) = 〈Sx,∇v⋆(x)〉 ∈ C2(Rd,RN)

is a classical solution of Lv = 0, i.e. v is an eigenfunction of L with eigenvalue
λ = 0. This can be shown directly and follows also from Theorem 9.4 with λ = 0,
Ctra = 0 ∈ Rd, Crot = S ∈ Rd,d. This was also observed in [15] for d = 2.

Multiplicities of isolated eigenvalues. Theorem 9.4 gives also information
about the multiplicity of the isolated eigenvalues of L. More precisely, for any fixed
skew-symmetric S ∈ Rd,d, Theorem 9.4 yields an lower bound for the multiplicities.
But note that multiplicities depends on S ∈ Rd,d, i.e. varying S ∈ Rd,d leads to
different eigenvalues with multiplicities.

Im λ

Reλ

iσ11

01

−iσ11

(a) d = 2
dim SE(2) = 3

Im λ

Reλ

iσ12

02

−iσ12

(b) d = 3
dim SE(3) = 6

Imλ

Reλ

i(σ1 + σ2)1

iσ11

i(σ1 − σ2)1

iσ21

02

−iσ21

−i(σ1 − σ2)1

−iσ11

−i(σ1 + σ2)1

(c) d = 4
dim SE(4) = 10

Imλ

Reλ

i(σ1 + σ2)1

iσ12

i(σ1 − σ2)1

iσ22

03

−iσ22

−i(σ1 − σ2)1

−iσ12

−i(σ1 + σ2)1

(d) d = 5
dim SE(5) = 15

Figure 9.1: Point spectrum of the linearization L on the imaginary axis iR for space
dimension d = 2, 3, 4, 5 given by Theorem 9.4.

Figure 9.1 shows the eigenvalues λ ∈ σpoint(L) from Corollary 9.5 and their
corresponding multiplicities for the different space dimensions d = 2, 3, 4, 5. The
eigenvalues λ ∈ σ(S) are illustrated by the blue circles, the eigenvalues λ ∈
{λ1 + λ2 | λ1, λ2 ∈ σ(S), λ1 6= λ2} are illustrated by the green crosses. The imag-
inary values to the right of the symbols denote the precise values of eigenvalues
and the numbers to the left their corresponding multiplicities. We observe that for
space dimension d there are dimSE(d) = d(d+1)

2
eigenvalues on the imaginary axis.

Example 9.6 (Point spectrum of L for d = 2). In the two dimensional case the
skew-symmetric matrix S ∈ R2,2 has the form

S =

(
0 S12

−S12 0

)

,
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where σ1 = S12 and k = 1. The matrix S is unitary diagonalizable with diagonal
matrix ΛS ∈ C2,2 and unitary matrix U ∈ C2,2 given by

ΛS =

(
iσ1 0
0 −iσ1

)

, U =
1√
2

(
1 1
i −i

)

,

where λS1 = iσ1 and λS2 = −iσ1. Note that the j-th column of the matrix U contains
the normalized eigenvector vSj := Uej ∈ C2 for the j-th eigenvalue λSj . Using
U(I12 − I21)U

T = −i(I12 − I21), Theorem 9.4 yields the following eigenfunctions,
compare also [15, Lemma 2.3],

λ1 = iσ1, v1(x) = D1v⋆(x) + iD2v⋆(x),

λ2 = −iσ1, v2(x) = D1v⋆(x)− iD2v⋆(x),

λ3 = 0, v3(x) = (x2D1 − x1D2)v⋆(x).

Example 9.7 (Point spectrum of L for d = 3). In the three dimensional case the
skew symmetric matrix S ∈ R3,3 has the form

S =





0 S12 S13

−S12 0 S23

−S13 −S23 0



 ,

where σ1 =
√

S2
12 + S2

13 + S2
23 and k = 1. The matrix S is unitary diagonalizable

with diagonal matrix ΛS ∈ C3,3 and unitary matrix U ∈ C3,3 given by

ΛS =





iσ1 0 0
0 −iσ1 0
0 0 0



 , U =








σ1S13−iS12S23

σ1
√

2(S2
13+S

2
23)

σ1S13+iS12S23

σ1
√

2(S2
13+S

2
23)

S23

σ1

σ1S23+iS12S13

σ1
√

2(S2
13+S

2
23)

σ1S23−iS12S13

σ1
√

2(S2
13+S

2
23)

−S13

σ1

i(S2
13+S

2
23)

σ1
√

2(S2
13+S

2
23)

−i(S2
13+S

2
23)

σ1
√

2(S2
13+S

2
23)

S12

σ1







,

where λS1 = iσ1, λ
S
2 = −iσ1 and λS3 = 0. Note once more that the j-th column

of the matrix U contains the normalized eigenvector vSj := Uej ∈ C3 for the j-th
eigenvalue λSj . Using

U(I12 − I21)U
T =

i

σ1
S,

U(I13 − I31)U
T =









0 −
√

2(S2
13+S

2
23)

2σ1

S12S13+iσ1S23

σ1
√

2(S2
13+S

2
23)√

2(S2
13+S

2
23)

2σ1
0 −−S12S23+iσ1S13

σ1
√

2(S2
13+S

2
23)

− S12S13+iσ1S23

σ1
√

2(S2
13+S

2
23)

−S12S23+iσ1S13

σ1
√

2(S2
13+S

2
23)

0









,

U(I23 − I32)U
T =









0 −
√

2(S2
13+S

2
23)

2σ1
−−S12S13+iσ1S23

σ1
√

2(S2
13+S

2
23)√

2(S2
13+S

2
23)

2σ1
0 S12S23+iσ1S13

σ1
√

2(S2
13+S

2
23)

−S12S13+iσ1S23

σ1
√

2(S2
13+S

2
23)

− S12S23+iσ1S13

σ1
√

2(S2
13+S

2
23)

0









,
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Theorem 9.4 yields the following eigenfunctions

λ1 = iσ1, v1(x) = (σ1S13 − iS12S23)D1v⋆(x) + (σ1S23 + iS12S13)D2v⋆(x)

+ i(S2
13 + S2

23)D3v⋆(x),

λ2 = −iσ1, v2(x) = (σ1S13 + iS12S23)D1v⋆(x) + (σ1S23 − iS12S13)D2v⋆(x)

− i(S2
13 + S2

23)D3v⋆(x),

λ3 = 0, v3(x) = S23D1v⋆(x)− S13D2v⋆(x) + S12D3v⋆(x),

λ4 = 0, v4(x) = S12(x2D1 − x1D2)v⋆(x) + S13(x3D1 − x1D3)v⋆(x)

+ S23(x3D2 − x2D3)v⋆(x),

λ5 = −iσ1, v5(x) = −(S2
13 + S2

23)(x2D1 − x1D2)v⋆(x)

+ (S12S13 + iσ1S23)(x3D1 − x1D3)v⋆(x)

+ (S12S23 − iσ1S13)(x3D2 − x2D3)v⋆(x),

λ6 = iσ1, v6(x) = −(S2
13 + S2

23)(x2D1 − x1D2)v⋆(x)

+ (S12S13 − iσ1S23)(x3D1 − x1D3)v⋆(x)

+ (S12S23 + iσ1S13)(x3D2 − x2D3)v⋆(x).

9.3 Exponential decay of eigenfunctions and of the

rotational term

The following theorem proves that eigenfunctions of L decay exponentially in space,
whenever their associated (isolated) eigenvalues are sufficiently close to the imagi-
nary axis.

Theorem 9.8 (Exponential decay of eigenfunctions). Let the assumptions
(A4)–(A9) be satisfied for 1 < p < ∞ and K = R. Then for every 0 < ϑ < 1
and for every radially nondecreasing weight function θ ∈ C(Rd,R) of exponential
growth rate η > 0 with

0 6 η2 6 ϑ
2

3

a0b0
a2maxp

2

and amax, a0, b0 from (1.18), there exists a constantK1 = K1(A, f, v∞, d, p, θ, ϑ) > 0
with the following property:
Given a classical solution v⋆ of (1.19) such that v⋆ − v∞ ∈ Lp(Rd,RN) and (1.20)
hold. Then every classical solution v ∈ Lp(Rd,CN) of the eigenvalue problem

A△v(x) + 〈Sx,∇v(x)〉+Df(v⋆(x))v(x) = λv(x), x ∈ Rd,(9.14)

with λ ∈ C and Reλ > − b0
3

satisfies

v ∈ W 1,p
θ (Rd,CN).

Proof. Let 0 < ϑ < 1 be fixed, 1 < p < ∞ and θ ∈ C(Rd,R) be a radially
nondecreasing weight function of exponential growth rate η > 0 with
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0 6 η2 6 ϑ2
3

a0b0
a2maxp

2 , where amax, a0 and b0 are from (1.18).

1. Let v denote a classical solution of (9.1) satisfying v ∈ Lp(Rd,RN), then

0 = λv(x)− [Lv] (x) = λv(x)− (A△v(x) + 〈Sx,∇v(x)〉 −Bv(x) + Q(x)v(x))

= (λI −LQ) v(x),
where B := −Df(v∞) and Q(x) := Df(v⋆(x))−Df(v∞).
2. In order to apply Theorem 7.7 (with Cp = LQ) we have to verify, that the
assumptions are satisfied. Note that the application of Theorem 7.7 with Cp = LQ
requires additionally that the assumptions (A3) and (A4) are fulfilled, which are
necessary to solve the identification problem for Cp. Let us check the assumptions:
Assumption (A1) follows from (A8). The assumption (A4) and (A5) are directly
satisfied and assumption (A4) implies (A3) and (A2). Using the definition of B, the
assumptions (A8B) and (A9B) follow from (A8) and (A9), respectively. It remains
to verify Q ∈ L∞(Rd,CN,N), (7.5), v ∈ D(Ap) and LQv = λv in Lp(Rd,CN).
3. First we show that Q ∈ L∞(Rd,CN,N): Since v⋆ − v∞ ∈ Cb(R

d,RN) we obtain

|v⋆(x)− v∞| 6 ‖v⋆ − v∞‖∞ =: R1

for every x ∈ Rd. Using (A6) this implies

|Q(x)|2 = |Df(v⋆(x))−Df(v∞)|2 6 sup
z∈BR1

(0)

|Df(z)|2 + |Df(v∞)|2 ,

for every x ∈ Rd, which is of course finite by the continuity of Df on compact
sets. Taking the suprema over x ∈ Rd we obtain Q ∈ Cb(R

d,RN,N), thus Q ∈
L∞(Rd,CN,N).
4. We next verify (7.5): Let us choose K1 = K1(A, f, v∞, d, p, θ, ϑ) > 0 (as in
Theorem 1.8) such that

K1

(

sup
z∈BK1

(v∞)

∣
∣D2f(z)

∣
∣
2

)

6
b0
3
min

{
1

C7

,
1

M∞

}

is satisfied, where C7 = C7(A, d, p, θ, ϑ) is from Lemma 4.8, M∞ = M∞(A, d) from
(6.10), b0 = b0(f, v∞) from (1.18). The fundamental theorem of calculus, (A6),
(1.20) and the choice of K1 yield

|Q(x)|2 = |Df(v⋆(x))−Df(v∞)|2
6

∫ 1

0

∣
∣D2f(v∞ + s(v⋆(x)− v∞))

∣
∣
2
ds |v⋆(x)− v∞|

6

∫ 1

0

(

sup
|x|>R0

∣
∣D2f(v∞ + s(v⋆(x)− v∞))

∣
∣
2

)

ds

(

sup
|x|>R0

|v⋆(x)− v∞|
)

6K1

(

sup
z∈BK1

(v∞)

∣
∣D2f(z)

∣
∣
2

)

6
b0
3
min

{
1

C7
,

1

M∞

}

for every |x| > R0. Taking the suprema over |x| > R0 yields

sup
|x|>R0

|Q(x)|2 6
b0
3
min

{
1

C7
,

1

M∞

}

.
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5. Next we verify that v ∈ D(Ap): An application of Theorem 5.19 shows that
D(Ap) = Dp

loc(L0). Therefore, it suffices to show that v ∈ Lp(Rd,CN), v ∈
W 2,p

loc (R
d,CN) and L0v ∈ Lp(Rd,CN). By assumption we know that v ∈ Lp(Rd,CN).

Moreover, we deduce v ∈ W 2,p
loc (R

d,CN) from v ∈ C2(Rd,CN). It remains to prove
that L0v ∈ Lp(Rd,CN): From (A6) we deduce that Df is locally Lipschitz contin-
uous, i.e. there exists L = L(R1) > 0 such that

|Df(v⋆(x))−Df(v∞)| 6 L |v⋆(x)− v∞|

for every x ∈ Rd. Now, we obtain from (9.14) and Hölder’s inequality

‖L0v‖Lp 6 |λ| ‖v‖Lp + |Df(v∞)| ‖v‖Lp + ‖Df(v⋆(x))−Df(v∞)‖L∞ ‖v‖Lp

6 (|λ|+ |Df(v∞)|+ LR1) ‖v‖Lp .

This yields L0v ∈ Lp(Rd,CN), thus v ∈ Dp
loc(L0).

6. Finally, we verify that LQv = λv in Lp(Rd,CN): From v ∈ D(Ap) we deduce
that both LQv and λv − LQv belong to Lp(Rd,CN). Since [LQv] (x) = λv(x) for
every x ∈ Rd, we obtain LQv = λv in Lp(Rd,CN). Now, we can apply Theorem 7.7
that yields v ∈ W 1,p

θ (Rd,CN).

Exponential decay for Reλ > −b0. Usually one expects that every eigenfunction
associated to an eigenvalue λ ∈ σpoint(L) decays exponentially in space, i.e. for λ
satisfying satisfies Reλ > −b0. However, Theorem 9.8 provides that Reλ > − b0

3

must be satisfied. The lower bound − b0
3
, that is larger than −b0, is necessary

to obtain a uniform decay rate, i.e. a decay rate that does not depend on Reλ
any more. Note that one can also prove the exponential decay of eigenfunctions
associated to eigenvalues with Reλ > −b0, but one usually obtains different decay
rates. An eigenvalue that is located near −b0 implies a small decay rate for the
eigenfunction.

A direct consequence of Theorem 9.8 is the following:

Corollary 9.9 (Exponential decay of the rotational term). Let the assumptions
(A4)–(A9) be satisfied for 1 < p < ∞ and K = R. Then for every 0 < ϑ < 1
and for every radially nondecreasing weight function θ ∈ C(Rd,R) of exponential
growth rate η > 0 with

0 6 η2 6 ϑ
2

3

a0b0
a2maxp

2

with amax, a0, b0 from (1.18), there exists a constant K1 = K1(A, f, v∞, d, p, θ, ϑ) >
0 with the following property:
Given a classical solution v⋆ ∈ C3(Rd,RN) of (1.19) such that v⋆−v∞ ∈ Lp(Rd,RN)
and (1.20) hold. Then the classical solution

v(x) = 〈Sx,∇v⋆(x)〉

of the eigenvalue problem (9.14) with λ = 0 satisfies

v ∈ W 1,p
θ (Rd,RN).
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Proof. In order to apply Theorem 9.8 for v(x) = 〈Sx,∇v⋆(x)〉, we have to check
that 〈Sx,∇v⋆(x)〉 ∈ Lp(Rd,RN). Our main result from Theorem 1.8 states that
v⋆ ∈ W 1,p

θ (Rd,RN). This directly implies that 〈Sx,∇v⋆(x)〉 ∈ Lp(Rd,RN) and
the application of Theorem 9.8 completes the proof. A further possibility to verify
〈Sx,∇v⋆(x)〉 ∈ Lp(Rd,RN) works as follows: In the proof of Theorem 1.8 we showed
that v⋆ ∈ Dp

loc(L0). By Theorem 5.25 we have Dp
loc(L0) = Dp

max(L0), thus we deduce
〈Sx,∇v⋆(x)〉 ∈ Lp(Rd,RN) by the definition of Dp

max(L0).

Exponential decay of A△v⋆. A crucial implication of Corollary 9.9 is that
A△(v⋆−v∞) ∈ Lpθ(R

d,RN): For this purpose, we consider the steady state equation

A△v⋆(x) + 〈Sx,∇v⋆(x)〉+ f(v⋆(x)) = 0, x ∈ Rd.

Following the proof of Theorem 1.8, we decompose the last term into

f(v⋆(x)) = −B(v⋆(x)− v∞) +Q(x) (v⋆(x)− v∞) .

Defining w⋆ := v⋆ − v∞ we obtain

0 = A△w⋆(x) + 〈Sx,∇w⋆(x)〉 − Bw⋆(x) +Q(x)w⋆(x), x ∈ Rd,

with Q ∈ L∞(Rd,RN,N). Theorem 1.8 shows that w⋆ ∈ W 1,p
θ (Rd,RN) and thus,

the last two terms belong to Lpθ(R
d,RN). Assuming additional smoothness on v⋆,

i.e. v⋆ ∈ C3(Rd,RN), we deduce from Corollary 9.9 that 〈S·,∇v⋆〉 and therefore
also 〈S·,∇w⋆〉 belong to W 1,p

θ (Rd,RN). This implies that A△w⋆ ∈ Lpθ(R
d,RN)

for 1 < p < ∞. Note that for Q ∈ W 1,∞(Rd,RN,N) this procedure even implies
A△w⋆ ∈ W 1,p

θ (Rd,RN).

9.4 Essential spectrum and dispersion relation of

localized rotating waves

In this section we investigate the essential spectrum of the linearization about a
localized rotating wave. The following Theorem is an application of Theorem 7.9
with

−B = Df(v∞), Q(x) = Df(v⋆(x))−Df(v∞), x ∈ Rd.

Note that Theorem 1.8 implies that Q ∈ L∞(Rd,RN,N) satisfies . For a detailed
treatment of the essential spectrum we refer to Section 7.4

Theorem 9.10 (Essential spectrum of L). Let the assumptions of Theorem 1.8
be satisfied. Moreover, let λj(ω) denote the eigenvalues of ω2A − Df(v∞) for
j = 1, . . . , N and let ±iσ1, . . . ,±iσk denote the nonzero eigenvalues of S. Then
every number λ ∈ C with

λ = −λj(ω)− i
k∑

l=1

nlσl, nl ∈ Z, ω ∈ R, j = 1, . . . , N,

belongs to the essential spectrum of L in Lp(Rd,CN), i.e. λ ∈ σess(L).
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Dispersion relation for L at localized rotating waves. The dispersion relation
for the linearization L at a localized rotating wave in Lp(Rd,CN) with 1 < p <∞
states that every λ ∈ C satisfying

det

(

λIN + ω2A−Df(v∞) + i
k∑

l=1

nlσlIN

)

= 0, for someω ∈ R, nl ∈ Z,(9.15)

belongs to the essential spectrum of L, i.e. λ ∈ σess(L). The dispersion relation for
d = 2 can be found in [15].

Location and density of the essential spectrum. Let us define the set

σpart
ess (L) := {λ ∈ C | λ satisfies (9.15)} .

Theorem 9.10 shows that σpart
ess (L) ⊆ σess(L). Moreover, (9.15) for ω = 0 yields the

inclusion σpart
ess (L) ⊆ {λ ∈ C | Reλ 6 s(Df(v∞))}. If there exists σn, σm such that

σnσ
−1
m /∈ Q then σpart

ess (L) is dense in the half-plane {λ ∈ C | Reλ 6 s(Df(v∞))},
i.e. σpart

ess (L) = {λ ∈ C | Reλ 6 s(Df(v∞))}. Otherwise σpart
ess (L) is a discrete sub-

group of {λ ∈ C | Reλ 6 s(Df(v∞))} (independently of p). The density observa-
tions come originally from [71, Theorem 2.6] and they are illustrated in Figure 7.1.
Note that the spectral condition (A9), stating that the matrix Df(v∞) is stable,
implies that s(Df(v∞)) < 0, hence σpart

ess (L) ⊆ C−, which is necessary to guarantee
spectral stability, cf. Definition 9.2.

9.5 Essential spectrum and dispersion relation of

nonlocalized rotating waves

In this section we investigate the essential spectrum of the linearization about a
rigidly rotating spiral wave. This serves as an backward material for the numerical
examples in Section 10.4. A rotating spiral wave is a special type of nonlocalized
rotating waves for d = 2. Most of the results come from [92] and [38], but we also
refer to [93].

Recall the reaction diffusion equation (1.14)

ut(x, t) =A△u(x, t) + f(u(x, t)), t > 0, x ∈ Rd, d > 1,

u(x, 0) =u0(x) , t = 0, x ∈ Rd.

Definition 9.11. A function u∞ : R × [0,∞[→ KN is called a traveling wave
solution of (1.14) if it has the form

u∞(x, t) = v∞(x− c∞t)

with profile (or pattern) v∞ : R → KN and translational velocity c∞ ∈ R

with c∞ 6= 0. A traveling wave u∞ of (1.14) is called an one-dimensional
periodic wavetrain with period T > 0 if v∞ is a T -periodic function, i.e.
v∞(ξ + T ) = v∞(ξ) for every x ∈ R.
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Note that v∞ is T -periodic if and only if u∞ is T -periodic w.r.t. x. In particular,
v∞ satisfies the one-dimensional traveling wave equation

Av′′(ξ) + cv′(ξ) + f(v(ξ)) = 0.

Assumption 9.12. Let v∞ : R → KN be the profile of an one-dimensional
T -periodic wavetrain u∞ of (1.14) for d = 1 that travels at speed c∞, i.e. v∞
satisfies the compatibility conditions

v∞ is T -periodic,(A10)

Av′′∞(ξ) + c∞v
′
∞(ξ) + f(v∞(ξ)) = 0, ξ ∈ R.(A11)

We assume a rotating Archimedean spiral wave solution u⋆ of (1.14) in the fol-
lowing sense:

Definition 9.13. A rotating wave solution u⋆ : R
2 × [0,∞[→ KN of (1.14) in the

sense of Definition 1.1 (with d = 2) is called a (rigidly) rotating Archimedean
spiral wave if the complex version vpol⋆ (r, φ) := v⋆(T1(T2(r, φ))) of the pattern
v⋆(x) satisfies vpol⋆ ∈ Cb(]0,∞[×R,KN) and

lim
r→∞

∣
∣
∣
∣
vpol⋆ (r, φ)− v∞

(

r − φ

k∞

)∣
∣
∣
∣
= 0 uniformly for φ ∈ R(9.16)

for some k∞ ∈ R with k∞ 6= 0 and for some function v∞ : R → KN satisfying (A10)
and (A11) with T = 2π

k∞
and c∞ = σ

k∞
, where σ = S12 denotes the angular velocity

of the Archimedean spiral wave.

The condition (9.16) states that the pattern vpol⋆ is Archimedean far away
from the center of rotation and describes in a certain sense a counterpart or
an extension of (1.20). v∞ is called the asymptotic wavetrain (of the spiral
wave solution) or the asymptotic profile (of the spiral wave) and k∞ is
called the wavenumber (of the periodic wavetrain). In particular, we advise
the following important relation

c∞ =
σ

k∞
.

This relation states that the translational speed c∞ of the periodic wavetrain coin-
cide with the quotient of the rotational speed σ of the spiral wave and the wavenum-
ber k∞ of the periodic wavetrain.

We now start to investigate the essential spectrum of the linearization at the spiral
wave. For this purpose we assume K = R. In case K = C we must transform the
N -dimensional complex-valued equation into a 2N -dimensional real-valued system,
c.f. proof of Corollary 8.1. For the moment let d > 2 and consider

[L0v] (x) + f(v(x)) := A△v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd,

where A ∈ RN,N with σ(A) ⊂ C+, S ∈ Rd,d with −S = ST and f ∈ C1(RN ,RN).
The linearization at the profile v⋆ of the rotating wave u⋆ is given by

[Lv] (x) = A△v(x) + 〈Sx,∇v(x)〉+Df(v⋆(x))v(x).
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In the following we look for solutions of the initial value problem

vt(x, t) = [Lv] (x, t), x ∈ Rd, t > 0,

v(x, 0) = v0(x), x ∈ Rd, t = 0.

Similarly to Section 7.4, we now derive a dispersion relation for the linearization at
the profile of an Archimedean spiral wave:

1. Orthogonal transformation. The transformation T1(y) = Py and
ṽ(y, t) = v(T1(y), t) yield

ṽt(y, t) = [LT1 ṽ] (y, t) = A△ṽ(y, t) +
〈
ΛSblocky,∇ṽ(y, t)

〉
+Df(v⋆(T1(y)))ṽ(y, t)

with

〈
ΛSblocky,∇ṽ(y, t)

〉
=

k∑

l=1

σl (y2lD2l−1 − y2l−1D2l) ṽ(y, t).

2. Several planar polar coordinates. Choosing T2(ξ) as in Section 7.4 for
ξ = (r1, φ1, . . . , rk, φk, y2k+1, . . . , yd), then v̂(ξ, t) = ṽ(T2(ξ), t) yields

v̂t(ξ, t) = [LT2 v̂] (ξ, t) =A
[

k∑

l=1

(

∂2rl +
1

rl
∂rl +

1

r2l
∂2φl

)

+
d∑

l=2k+1

∂2yl

]

v̂(ξ, t)

−
k∑

l=1

σl∂φl v̂(ξ, t) +Df(v⋆(T1(T2(ξ))))v̂(ξ, t),

where we define vpol⋆ (ξ) = v⋆(T1(T2(ξ))).

3. Rigidly rotating spiral waves for d = 2. From now on we consider rigidly
rotating spiral wave solutions u⋆. For this purpose let d = 2, thus ξ = (r, φ) with
r := r1, φ := φ1 and σ := σ1. Adding and subtracting the 2π

k∞
-periodic function

Df(v∞(r − φ

k∞
))v̂(r, φ, t) we obtain

v̂t(r, φ, t) = [LT2 v̂] (r, φ, t) =A
(

∂2r +
1

r
∂r +

1

r2
∂2φ

)

v̂(r, φ, t)− σ∂φv̂(r, φ, t)

+

(

Df(vpol⋆ (r, φ))−Df(v∞(r − φ

k∞
))

)

v̂(r, φ, t)

+Df(v∞(r − φ

k∞
))v̂(r, φ, t).

Note that Df(vpol⋆ (r, φ))− Df(v∞(r − φ

k∞
)) → 0 for r → ∞ uniformly for φ ∈ R.

Moreover, v̂ is a 2π-periodic function w.r.t. φ.

4. Simplified operator (limit operator, far-field operator). Neglecting the
terms of order O

(
1
r

)
we obtain the far-field linearization

v̂t(r, φ, t) = A∂2r v̂(r, φ, t)− σ∂φv̂(r, φ, t) +Df(v∞(r − φ

k∞
))v̂(r, φ, t).
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5. Angular transformation. v̂(r, φ, t) = v̄(r, r − φ

k∞
, t) and ξ = r − φ

k∞
yield

v̄t(r, ξ, t) = A
(
∂2r + 2∂rξ + ∂2ξ

)
v̄(r, ξ, t) +

σ

k∞
∂ξv̄(r, ξ, t) +Df(v∞(ξ))v̄(r, ξ, t)

where Df(v∞(ξ)) and v̄(r, ξ, t) are 2π
k∞

-periodic functions w.r.t. ξ.

6. Temporal Fourier transform. v̄(r, ξ, t) = eλtv̌(r, ξ), λ ∈ C, and multiply
from left by e−λt yields

λv̌(r, ξ) = A
(
∂2r + 2∂rξ + ∂2ξ

)

︸ ︷︷ ︸

=(∂r+∂ξ)
2

v̌(r, ξ) +
σ

k∞
∂ξv̌(r, ξ) +Df(v∞(ξ))v̌(r, ξ),

where v̌(r, ξ) is 2π
k∞

-periodic w.r.t. ξ.

7. Radial Fourier transform. v̌(r, ξ) = eνrv(ξ), ν ∈ C, and multiply from left
by e−νr yields

λv(ξ) = A
(
ν2 + 2ν∂ξ + ∂2ξ

)

︸ ︷︷ ︸

=(ν+∂ξ)
2

v(ξ) +
σ

k∞
∂ξv(ξ) +Df(v∞(ξ))v(ξ),

where v(ξ) is 2π
k∞

-periodic.

8. Bloch wave transformation w.r.t. ξ. v(ξ) = e−νξv(ξ), ν ∈ C from step 7,
and multiply from left by eνξ yield

λv(ξ) = A∂2ξ v(ξ)−
σν

k∞
v(ξ) +

σ

k∞
∂ξv(ξ) +Df(v∞(ξ))v(ξ),

with 2π
k∞

-periodic function Df(v∞(ξ)). Add σν
k∞
v(ξ) and define λ̃ := λ + σν

k∞
we

obtain

λ̃v(ξ) = A∂2ξ v(ξ) +
σ

k∞
∂ξv(ξ) +Df(v∞(ξ))v(ξ).

The 2π
k∞

-periodicity of v(ξ) and the Bloch wave transformation v(ξ) = e−νξv(ξ)
leads to the Floquet boundary condition

eν
2π
k∞ v(ξ) = v(ξ +

2π

k∞
), eν

2π
k∞ vξ(ξ) = vξ(ξ +

2π

k∞
)

Note that for a 2nd order problem we have to impose boundary conditions for v and
vξ to make the problem well-posed. This is expressed by the periodicity conditions
for v and vξ. Indeed, if v is sufficiently smooth, the second equality can directly be
deduced by differentiating the first one. Altogether, we obtain a Floquet boundary
value problem

λ̃v(ξ) = A∂2ξv(ξ) + c∞∂ξv(ξ) +Df(v∞(ξ))v(ξ), ξ ∈ [0, T ],(9.17)

eνTv(0) = v(T ), eνT vξ(0) = vξ(T ).(9.18)
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where Df(v∞(ξ)) ∈ RN,N is a continuous, 2π
k∞

-periodic function, c∞ := σ
k∞

∈ R and

period T := 2π
k∞

. We now look for solutions (λ, ν, v) satisfying (9.17)–(9.18).

9. Application of Floquet theory. Using u := vξ, we transform the N -
dimensional 2nd order boundary value problem (9.17)–(9.18) into a 2N -dimensional
1st order boundary value problem

(
v
u

)

ξ

(ξ) =

(
0 IN

A−1(λ̃IN −Df(v∞(ξ))) −c∞A−1

)(
v
u

)

(ξ), ξ ∈ [0, T ],

eνT
(
v
u

)

(0) =

(
v
u

)

(T ).

Note that A−1 exists due to the fact that Re σ(A) > 0. Abbreviating w :=

(
v
u

)

with w : R → R2N we obtain

wξ(ξ) = Ã(ξ)w(ξ), ξ ∈ [0, T ],(9.19)

eνTw(0) = w(T )(9.20)

with continuous, T -periodic matrix-valued function Ã : R → R2N,2N given by

Ã(ξ) :=

(
0 IN

A−1(λ̃IN −Df(v∞(ξ))) −c∞A−1

)

It is well known that in general one cannot derive an explicit solution representation
for (9.19)–(9.20), but one can apply Floquet theory, see [51] and [24]: For this
purpose, letW (ξ) withW : R → R2N,2N be a fundamental matrix solution of (9.19),
where we assume without loss of generality that W (0) = I2N . An application of
Floquet’s theorem, see [51, Theorem 7.1] or [24, Theorem 2.83], yields that W has
the form

W (ξ) = P (ξ)eBξ (Floquet normal form)

with T -periodic function P : R → C2N,2N and constant matrix B ∈ C2N,2N . The
proof of Floquet’s theorem shows that the matrix P (ξ) is invertible for all ξ ∈ R.
Moreover, P satisfies P (0) = I2N , since W (0) = I2N , and W satisfies

W (T ) = P (T )eBT = P (0)eBT =W (0)eBT = eBT

by the T -periodicity of P . The invertible matrix eBT is called the monodromy
matrix of (9.19). Its eigenvalues ρ ∈ σ(eTB) are called the characteristic mul-
tipliers (or Floquet multipliers) of (9.19). Furthermore, an element µ ∈ C

satisfying ρ = eµT for some ρ ∈ σ(eTB) is called a characteristic exponent (or
Floquet exponent) of (9.19). The Floquet multipliers ρ of (9.19) are unique.
The Floquet exponents µ of (9.19) are not unique but their real parts Reµ. This
can be accepted by the fact that if µ is a Floquet exponent of (9.19) then also
µ+2πi k

T
is a Floquet exponent of (9.19) for every k ∈ Z. For a detailed treatment

of Floquet theory for homogeneous linear periodic systems we refer to [51] and [24].

10. Evolution operator. Defining

Φλ̃(ξ, ψ) := W (ξ)W (ψ)−1 = P (ξ)eB(ξ−ψ)P (ψ)−1 ∈ C2N,2N
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the evolution operator of (9.19) is by the periodic map

Φλ̃(T, 0) := W (T )W (0)−1 = P (T )eB(T−0)P (0)−1 = eBT ∈ C2N,2N ,

where we used P (T ) = P (0) = I2N , since W (0) = I2N . Since W (T ) = W (0)eBT

and W (0) = I2N we deduce

Φλ̃(T, 0) =W (T )W (0)−1 =W (0)eBTW (0)−1 = etB.

We now look for solutions w of (9.19)–(9.20), that have the special form

w(ξ) =W (ξ)wν, for ξ ∈ R and for some wν ∈ R2N .

Due to the Floquet boundary conditions (9.20) we have

eνTw(0) = w(T ) = W (T )wν = eBTwν = Φλ̃(T, 0)w(0).

Subtracting eνTw(0) we obtain

(
Φλ̃(T, 0)− eνT I2N

)
w(0) = 0.

11. Dispersion relation for Archimedean spiral waves. Using λ̃ = λ + σν
k∞

we define

d(λ, ν) := det
(

Φλ+ σν
k∞

(T, 0)− eνT I2N

)

.

Since we are interested only in bounded solutions, we choose ν = ik, k ∈ R, where
k is called the Bloch wavenumber. This and T = 2π

k∞
yield

d(λ, ik) = det

(

Φλ+iσ k
k∞

(
2π

k∞
, 0)− e2πi

k
k∞ I2N

)

= 0.

The dispersion relation for Archimedean spiral waves states: If d(λ, ik) = 0 for
some k ∈ R, then λ ∈ σess(L), i.e.

d(λ, ik) = 0 for some k ∈ R ⇒ λ ∈ σess(L).

Therefore, we have the inclusion

{λ ∈ C | d(λ, ik) = 0 for some k ∈ R} ⊆ σess(L).

We suggest that the eigenvalue λ and the Bloch wave number k are related by the
dispersion relation. In particular, we cannot derive an explicit expression for the
dispersion relation due to the fact that equation (9.19)–(9.20) cannot be solved
explicitly. But, we are able to give a better characterization of the structure of the
essential spectrum. For this purpose, we first note that if (λ, ik) solves d(λ, ik) = 0
then also (λ̃, k̃) := (λ− iσn, i(k + nk∞)) solves d(λ̃, k̃) = 0 for every n ∈ Z, i.e.

d(λ, ik) = 0 for some k ∈ R ⇒ d(λ− iσn, i(k + nk∞)) = 0 for every n ∈ Z.
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Using e2πin = 1 for every n ∈ Z this follows easily from

d(λ− iσn, i(k + nk∞)) = det

(

Φλ−iσn+iσ k+nk∞
k∞

(
2π

k∞
, 0)− e2πi

k+nk∞
k∞ I2N

)

=det

(

Φλ+iσ k
k∞

(
2π

k∞
, 0)− e2πi

k
k∞ I2N

)

= d(λ, ik) = 0.

Therefore, we can consider w.l.o.g. k ∈ [0, k∞[. Moreover, if (λ, ik) solves
d(λ, ik) = 0 then also (λ̄,−ik) solves d(λ̄,−ik) = 0, i.e.

d(λ, ik) = 0 for some k ∈ R ⇒ d(λ̄,−ik) = 0.

Thus, for k ∈ [0, k∞[ there are 2N solutions of d(λ, ik) = 0, that we denote by
λl(ν) = λl(ik), l = 1, . . . , 2N . We deduce the inclusion

{
λl(ik) + iσZ | k ∈ R, l = 1, . . . , 2N

}
⊆ σess(L).(9.21)

12. Shape of the spectral curves. We finally discuss the shape of the spectral
curves Γl :=

{
λl(ik) | k ∈ R

}
for fixed l = 1, . . . , 2N : In order to apply the implicit

function theorem we consider the continuously differentiable function

d̃ : R2 × R → R2, (λ, k) 7→ d̃

((
λ1
λ2

)

, k

)

:= d(λ1 + iλ2, ik) = d(λ, ik).

Then the mapping d̃ satisfies

d̃

((
0
0

)

, 0

)

=

(
0
0

)

and d̃λ

((
0
0

)

, 0

)

∈ R2,2 is invertible.

at the point (λ, k) = ((0, 0)T , 0). An application of the implicit function theorem
yields open sets U = U((0, 0)T ) ⊂ R2 and V = V (0) ⊂ R as well as a continuously
differentiable function g : V → U with g(0) = (0, 0)T such that d̃(g(k), k) = 0 for
every k ∈ V . Considering λ as a function of k, i.e. λ(k) := g(k), this means that

d(λ(ik), ik) = d̃(λ(k), k) = 0 for every k ∈ V.

Further, the function d̃ satisfies

d̃k(λ(0), 0) =

(
0
0

)

.

We deduce, that the function λ(k) and therefore also the spectral curves Γl have
locally the shape of a parabola near k = 0. Thus, we can think about {λl(ik)+iσZ |
k ∈ R} from (9.21) as infinitely many copies of parabolas along the imaginary
axis for every l = 1, . . . , 2N . The parabolas in the complex plane are opened to
the left and touch the imaginary axis at iσZ. In particular, the distance on the
imaginary axis of two neighboring parabolas equals the rotational velocity σ of the
Archimedean spiral wave.
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We conclude with extensions and corresponding open problems:

Essential spectrum of scroll waves and scroll rings. We believe that this
approach extends to scroll wave and scroll ring solutions for d = 3. In this case,
there exists a further period in z-direction, that has to take into account in the
computation of the essential spectrum. This question seems to be still an open
problem.

Hyperbolic-parabolic systems. Furthermore, we believe that the approach also
extends to matrices A that do have a zero eigenvalue. This is motivated by the
existence of rigidly rotating spiral waves in Barkley’s model for D = 0 and seems
also to be an open problem.





10 Freezing approach and numerical

results

In this chapter we recall some basic ideas and results from the field of equivariant
evolution equations. We then introduce the freezing method, that is an approach
for the approximation of relative equilibria. An application to reaction-diffusion
equations shows that rotating waves are a special kind of relative equilibria. Solv-
ing numerically the resulting freezing system for the Examples from Section 2.1
yields approximations for the profiles of rotating waves and their group velocities.
Moreover, we investigate numerically the spectrum of the linearization at localized
and nonlocalized rotating waves. Afterwards, we introduce the decompose and
freeze method for equivariant evolution equations. We apply the general theory
for reaction-diffusion systems and extend this approach to higher space dimensions
in order to investigate interactions of multi-solitons. At the end of the chapter
we numerically investigate the interaction of several spinning solitons in the two-
dimensional Ginzburg-Landau equation.

In Section 10.1 we consider abstract evolution equations

ut(t) = F (u(t)), 0 < t < T with u(0) = u0, t = 0,(10.1)

for some densely defined function F : X ⊃ Y → X on a K-valued Banach
space (X, ‖·‖). Assuming (10.1) to be equivariant with respect to a group action
a(·)u : G→ X of a finite-dimensional (not necessarily compact) Lie group G on X,

F (a(γ)u) = a(γ)F (u), γ ∈ G, u ∈ Y,

we investigate so called relative equilibria of (10.1)

u⋆(t) = a(γ⋆(t))v⋆, γ⋆(t) ∈ G, v⋆ ∈ Y.(10.2)

For some general theory of equivariant evolution equations we refer to [25], [39] and
[43]. At the end of this section, in Example 10.6, we apply the theory for

G = SE(d), F (u) = A△u+ f(u), X = Lp(Rd,KN ), 1 < p <∞,(10.3)

This leads us to general reaction-diffusion systems on Rd. Their solutions, which
are of the from (10.2), are called rotating waves.

In Section 10.2 we introduce the freezing method in an abstract setting, [18].
The freezing method is an approach for approximating relative equilibria such as
traveling and rotating waves. The idea of the freezing method is to decompose the
solution of (10.1) into a group motion and a profile, not only at or near relative
equilibria as in (10.2), but also for the general Cauchy Problem (10.1). Introducing
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new unknowns γ(t) ∈ G and v(t) ∈ Y such that the solution u of (10.1) is of the
form

u(t) = a(γ(t))v(t), 0 6 t < T,

we transform (10.1) into a differential algebraic evolution equation

vt(t) =F (v(t))− d [a(1)v(t)]µ(t), v(0) = u0,(10.4a)

0 =Ψ(v(t), µ(t)),(10.4b)

γt(t) =dLγ(t)(1)µ(t), γ(0) = 1,(10.4c)

where d [a(1)v(t)]µ(t) denotes the derivative of the group action a(·)u and
Ψ : Y × g → g

∗ denotes a so-called phase condition. Well-known phase condi-
tions are the fixed and the orthogonal phase condition, that we briefly discuss. The
equation (10.4c) is known as the reconstruction equation. In Example 10.7 we apply
the presented theory to reaction-diffusion systems, compare (10.3). This leads to
a partial differential algebraic evolution equation (10.5), which we analyze numeri-
cally in the next section. In Example 10.8 we analytically solve the reconstruction
equation for reaction-diffusion systems with G = SE(d). The freezing method was
independently proposed in [18] and [89]. For a more detailed treatment about
the freezing method of single structures we also refer to [103], [19], [105], [20] and
[16]. The freezing approach for hyperbolic-parabolic systems is analyzed in [85],
[86], [87], [88] and partially in [16]. Results for the freezing method of stochastic
traveling waves can be found for instance in [65].

In Section 10.3 we analyze the freezing system

vt(x, t) =A△v(x, t) + f(v(x, t)) + 〈S(t)x+ Idλ(t),∇v(x, t)〉 ,
v(x, 0) =u0(x),

(10.5a)

0 =Ψ(v(·, t), µ(t)),(10.5b)
(
Rt(t)
τt(t)

)

=

(
R(t)S(t)
R(t)λ(t)

)

,

(
R(0)
τ(0)

)

=

(
Id
0

)

.(10.5c)

for the Examples from Section 2.1. To solve (10.5) numerically, we truncate (10.5)
to a bounded domain and postulate homogeneous Neumann boundary conditions.
Solving this resulting system until a certain end time T yields a profile v⋆(x) :=
v(x, T ) and velocities (S⋆, λ⋆) := (S(T ), λ(T )). The definition is justified by the fact
that we expect v(t) → v⋆ and (S(t), λ(t)) → (S⋆, λ⋆) as t→ ∞. Hence, the solution
of (10.5) provides an approximation of the rotating wave u⋆, compare (1.15) and
Example 10.8.

In Section 10.4 we investigate the spectral properties of the linearizations about
rotating waves for the Examples from Section 2.1 and Section 10.3. For this purpose
we consider the eigenvalue problem

[λI −L] v(x) = 0, x ∈ Rd, d > 2,(10.6)

where L denotes the linearization about a rotating wave profile v⋆

[Lv] (x) := A△v(x) + 〈Sx,∇v(x)〉+Df(v⋆(x))v(x), x ∈ Rd.
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To solve (10.6) numerically, we restrict the equation (10.6) to a bounded domain and
impose homogeneous Neumann boundary conditions. Solving the resulting system
yields a prescribed number of eigenvalues and their associated eigenfunctions.

In Section 10.5 we introduce the decompose and freeze method in an abstract
setting, [17]. Introducing new unknowns γj(t) ∈ G and vj(t) ∈ Y for i = 1, . . . , m
such that the solution u of (10.1) is of the form

u(t) =

m∑

j=1

a(γj(t))vj(t), 0 6 t < T,

we transform (10.1) into a nonlinearly coupled system of differential algebraic evo-
lution equations

vj,t(t) =F (vj(t))− d [a(1)vj(t)]µj(t) +
ϕ

∑m

k=1 b(γ
k
j (t))ϕ

, vj(0) = v0j ,(10.7a)

•
[

F

(
m∑

k=1

a(γkj (t))vk(t)

)

−
m∑

k=1

F
(
a(γkj (t))vk(t)

)

]

0 =Ψ(vj(t), µj(t)),(10.7b)

γj,t(t) =dLγj(t)(1)µj(t), γj(0) = γ0j ,(10.7c)

with abbreviation γkj (t) := γ−1
j (t) ◦ γk(t). Finally, in Example 10.15 we apply the

presented theory to reaction-diffusion systems. This leads to a nonlinearly coupled
system of partial differential algebraic evolution equations, which we analyze nu-
merically in the next section. The decompose and freeze method comes originally
from [17]. Since the approach is quite new, there doesn’t exist many results con-
cerning the nonlinear stability theory of multi-structures. So far, there is only a
nonlinear stability result for multifronts and multipulses in one space dimension,
[99]. An extension of this method to multi-solitons in higher space dimensions can
be found in [16].

In Section 10.6 we are mainly interested into the interaction of multi-solitons.
For this purpose we numerically solve the decompose and freeze system

vj,t(x, t) =A△vj(x, t) + f(vj(x, t)) + 〈Sj(t)x+ Idλj(t),∇vj(x, t)〉

+
ϕ(x)

∑m

k=1 b(γ
k
j (t))ϕ(x)

[

f

(
m∑

k=1

a(γkj (t))vk(x, t)

)

−
m∑

k=1

f
(
a(γkj (t))vk(x, t)

)

]

, vj(x, 0) = v0j (x)

(10.8a)

0 =Ψ(vj(·, t), µj(t)),(10.8b)
(
Rj,t(t)
τj,t(t)

)

=

(
Rj(t)Sj(t)
Rj(t)λj(t)

)

,

(
Rj(0)
τj(0)

)

=

(
R0
j

τ 0j

)

,(10.8c)

for the cubic-quintic complex Ginzburg-Landau equation from Example 2.1. We
observe different situations, in which the solitons repel from each other (weak in-
teraction), collide with each other into a single soliton (strong interaction) or per-
manent collide with each other (phase shift interaction). Using the decompose and
freeze method, we analyze the temporal change of the profiles, their velocities and
their positions for these interaction processes.
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10.1 Equivariant evolution equations

In this section we briefly introduce some basic theory of equivariant evolution equa-
tions, [25], [39], [43].

Consider a general abstract evolution equation

ut(t) =F (u(t)), 0 < t < T,

u(0) =u0 , t = 0,
(10.9)

on a K-valued Banach space (X, ‖·‖) with K ∈ {R,C}. We assume that the operator
F , given by

F : X ⊃ Y = D(F ) → X, u 7→ F (u), Y = X.

is defined on a dense subspace Y of X. The whole approach can also be generalized
to Banach manifolds rather than Banach spaces, [19], [105], [85].

Definition 10.1. A function u ∈ C1(]0, T [, X) ∩ C([0, T [, Y ) is called a solution
of (10.9) on [0, T [ if u solves (10.9) pointwise.

Let (G, ◦) denote a finite-dimensional (not necessarily compact) Lie group with
group operation

◦ : G×G→ G, (γ1, γ2) 7→ γ1 ◦ γ2,

unit element 1 and dimension dimG = q <∞. By γ−1 ∈ G we denote the inverse
of γ ∈ G, i.e. γ−1 ◦ γ = γ ◦ γ−1 = 1. Moreover, let g = T

1

G denote the Lie algebra
associated with G, that is the tangent space of G at 1 and has the same dimension
as G, i.e. dim g = q <∞.

The left multiplication by γ ∈ G on G is now defined via

Lγ : G→ G, g 7→ Lγ(g) := γ ◦ g

with derivative denoted by

dLγ(g) : TgG→ Tγ◦gG, µ 7→ dLγ(g)µ.

Here, TgG denotes the tangent space of G at g ∈ G. Thus, for g = 1 we have

dLγ(1) : g = T
1

G→ TγG, µ 7→ dLγ(1)µ.

Furthermore, let

a : G→ GL(X), γ 7→ a(γ)

denote the action of the Lie group G on X via a representation in GL(X), meaning
that a is a homomorphism satisfying the following properties

a(1) = I, a(γ1 ◦ γ2) = a(γ1)a(γ2),
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where I denotes the unit element ofGL(X). Moreover, we assume that the mapping

a(·)u : G→ X, γ 7→ a(γ)u

is continuous for every fixed u ∈ X and continuously differentiable for every fixed
u ∈ Y , where the derivative is given by

d [a(γ)u] : TγG→ X, µ 7→ d [a(γ)u]µ.

In the special case γ = 1 we have

d [a(1)u] : g = T
1

G→ X, µ 7→ d [a(1)u]µ

for every fixed u ∈ Y . Furthermore, we assume that

a(γ)Y = Y ∀ γ ∈ G.

Indeed, it is sufficient to require only a(γ)Y ⊆ Y , because of

Y = a(γ)a(γ−1)Y ⊆ a(γ)Y.

In the literature there exists a general principle for the construction of the func-
tion space Y such that all our assumptions are satisfied. But note that this result
does not provide an explicit representation for Y . The following proposition can
be found in [18, Proposition 2.4], that is an extension of [94, Theorem 4.5].

Proposition 10.2. Let (X0, ‖·‖0) be a Banach space and let a : G→ GL(X0) be a
homomorphism. Then

X1 :=

{

u ∈ X0 | ‖u‖1 := sup
γ∈G

‖a(γ)u‖0 <∞
}

is a Banach space with respect to the norm ‖·‖1 and the operators a(γ)|X1
are

isometries in GL(X1). Further, the space

X2 := {u ∈ X1 | a(·)u is continuous in G}

is a closed subspace of (X1, ‖·‖1) such that a(γ)|X2
∈ GL(X2) acts continuously.

Finally,

X3 := {u ∈ X2 | a(·)u is continuously differentiable in G}

is a dense subspace of X2 and can be written as

X3 =
⋂

µ∈g
D(µ),

where D(µ) is the domain of the infinitesimal generator of the C0-semigroup
(a(exp(µt)))t>0.
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Note that all assumptions above are satisfied for the choice

X := X2 and Y := X3.

Finally, we require that the evolution equation (10.9) is equivariant in the fol-
lowing sense:

Definition 10.3. The evolution equation (10.9) is called equivariant under the
group action a of G on X if

F (a(γ)u) = a(γ)F (u) ∀ u ∈ Y ∀ γ ∈ G.

We are interested in a special kind of solution of the equivariant evolution equa-
tion (10.9), so called relative equilibria, [19, Definition 4.1].

Definition 10.4. (1) A solution u⋆ of (10.9) on [0,∞[ is called a relative equi-
librium (with respect to the action a of G on X) if it has the form

u⋆(t) = a(γ⋆(t))v⋆, t > 0

for some v⋆ ∈ Y and γ⋆ ∈ C1(]0,∞[, G) ∩ C([0,∞[, G).
(2) A solution u⋆ of (10.9) on [0,∞[ is called a relative periodic orbit (with
respect to the action a of G on X) if it has the form

u⋆(t) = a(γ⋆(t))v⋆(t), t > 0

for some periodic v⋆ ∈ C1(]0,∞[, Y ) ∩ C([0,∞[, Y ) with nontrivial period T > 0
and γ⋆ ∈ C1(]0,∞[, G) ∩ C([0,∞[, G).

Consider the group orbit of an element v ∈ Y

OG(v) := {a(γ)v | γ ∈ G} .

We point out that a relative equilibrium u⋆(t) = a(γ⋆(t))v⋆ lies for all times in a
single group orbit, i.e. u⋆(t) ∈ OG(v⋆) for every t > 0. An essential feature of
relative equilibria is that they never come alone: If u⋆(t) = a(γ⋆(t))v⋆ is a relative
equilibrium of (10.9) then also a(γ ◦ γ⋆(t))v⋆ is a relative equilibrium of (10.9) for
every γ ∈ G:

d

dt
(a(γ ◦ γ⋆(t))v⋆) =

d

dt
(a(γ)a(γ⋆(t))v⋆) =

d

dt
a(γ)u⋆(t) = a(γ)

d

dt
u⋆(t)

=a(γ)F (u⋆(t)) = a(γ)F (a(γ⋆(t))v⋆) = F (a(γ)a(γ⋆(t))v⋆) = F (a(γ ◦ γ⋆(t))v⋆).

This means that relative equilibria always come in families.

Nonlinear Stability of relative equilibria: One main issue for the investigation
of relative equilibria is nonlinear stability of relative equilibria (also called stabil-
ity of relative equilibria with asymptotic phase). Since relative equilibria always
appears in families, we have to modify the classical Lyapunov stability in order to
investigate the stability of relative equilibria, [16, Definition 2], [105].
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Definition 10.5. A relative equilibrium u⋆ of (10.9) with u⋆(t) = a(γ⋆(t))v⋆ for
t ∈ [0,∞[ is called orbitally stable (with respect to given norms ‖·‖1, ‖·‖2 on Y )
if for any ε > 0 there exists a δ > 0 such that for any initial value u0 ∈ Y with
‖u0 − v⋆‖1 6 δ the following property hold:
The Cauchy problem (10.9) has a unique solution u ∈ C1(]0,∞[, X)∩C([0,∞[, Y )
and the solution u satisfies

inf
γ∈G

‖u(t)− a(γ)v⋆‖2 6 ε ∀ t > 0.

Moreover, u⋆ is called stable with asymptotic phase if in addition there exists
a δ0 > 0 such that for any initial value u0 ∈ Y with ‖u0 − v⋆‖1 6 δ there exists
some γ∞ ∈ G (depending on u0) such that

‖u(t)− a(γ∞ ◦ γ⋆(t))v⋆‖2 → 0 as t→ ∞.

The value γ∞ is called the asymptotic phase and depends in general on the initial
data u0.

In the remaining part of this section we classify general reaction-diffusion systems
into the general framework of abstract equivariant evolution equations. As we will
see below, rotating waves are a special kind of relative equilibria in reaction-diffusion
systems.

Example 10.6 (Reaction diffusion systems, Part 1). Let us consider a system of
reaction diffusion equations

ut(x, t) =A△u(x, t) + f(u(x, t)), t > 0, x ∈ Rd, d > 2,

u(x, 0) =u0(x) , t = 0, x ∈ Rd,
(10.10)

on the Banach space (X, ‖·‖) given by
(
Lp(Rd,KN), ‖·‖Lp

)
with K ∈ {R,C},

1 < p < ∞, diffusion matrix A ∈ KN,N and nonlinearity f : KN → KN . The
operator

F : X ⊃ Y = D(F ) → X, u 7→ F (u) := A△u+ f(u)

is defined on the dense subspaces Y , that will be characterized below.
Let d ∈ N with d > 2 and let

G = SE(d) = SO(d)⋉ Rd

denote the special Euclidean group of dimension q = dimSE(d) = d(d+1)
2

, that is
the semidirect product of the special orthogonal group

SO(d) = {R ∈ Rd,d | RT = R−1 and det(R) = 1}

of dimension dimSO(d) = d(d−1)
2

with the Abelian translation group Rd of dimen-
sion d. SE(d) consists of all pairs

γ = (R, τ) ∈ SE(d), R ∈ SO(d), τ ∈ Rd,
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is equipped with the group operation ◦ : SE(d)× SE(d) → SE(d) defined by

γ1 ◦ γ2 = (R1, τ1) ◦ (R2, τ2) = (R1R2, τ1 +R1τ2),

and has the unit element 1 = (Id, 0). The inverse of γ = (R, τ) ∈ SE(d) is

γ−1 = (R, τ)−1 = (R−1,−R−1τ).

Moreover, the Lie algebra of SE(d) is given by

g = T
1

SE(d) = se(d) = so(d)× Rd,

that is the direct product of the space of skew-symmetric matrices

so(d) = {S ∈ Rd,d | ST = −S},

of dimension dim so(d) = d(d−1)
2

with the Abelian translation group Rd of dimension

d. The Lie algebra se(d) has also the dimension q = dim se(d) = d(d+1)
2

.
The left multiplication by some γ = (R, τ) ∈ SE(d) on SE(d) is defined by

Lγ : SE(d) → SE(d), g = (R̃, τ̃) 7→ Lγ(g) := γ ◦ g = (RR̃, τ +Rτ̃ )

with derivative at g = 1

dLγ(1) : g = se(d) → TγSE(d), µ 7→ dLγ(1)µ := (RS,Rλ),

where γ = (R, τ) ∈ SE(d) and µ = (S, λ) ∈ se(d).
Let (X, ‖·‖) still be chosen as above, then we define the SE(d)-action on X via

a(·)u : SE(d) → X, γ = (R, τ) 7→ [a(γ)u] (·) := u(R−1(· − τ)).

A short computation shows that the action a : SE(d) → GL(X) is indeed a homo-
morphism, since we have

[a(1)u] (x) = [a(Id, 0)u] (x) = u(I−1
d (x− 0)) = u(x), x ∈ Rd,

and

[a(γ1 ◦ γ2)u] (x) = [a(R1R2, τ1 +R1τ2)u] (x)

=u
(
(R1R2)

−1 (x− (τ1 +R1τ2))
)
= u

(
R−1

2

(
R−1

1 (x− τ1)− τ2
))

=
[
a(γ1)u(R

−1
2 (· − τ2))

]
(x) = [a(γ1)a(γ2)u] (x), x ∈ Rd.

For u ∈ Y the derivative of a(γ)u with respect to γ ∈ G at γ = 1

d [a(1)u] : g = se(d) → X, µ 7→ d [a(1)u]µ

is given by, cf. Lemma 9.3,

d [a(1)u(x)]µ =−
d∑

i=1

(Sx+ Idλ)iDiu(x) = −〈Sx+ Idλ,∇u(x)〉(10.11)
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=−
d−1∑

i=1

d∑

j=i+1

Sij (xjDi − xiDj)u(x)−
d∑

l=1

λlDlu(x),

where µ = (S, λ) ∈ so(d)× Rd = se(d).
Let us now discuss the choice of the function space Y , that is obtained from

Proposition 10.2: For (X0, ‖·‖0) =
(
Lp(Rd,KN), ‖·‖Lp

)
with 1 < p <∞ we have

X := X2 = X1 = X0 := Lp(Rd,KN ), ‖·‖1 = ‖·‖0 := ‖·‖Lp .

A difficult task in general is to derive a full characterization of X3. But thanks to
our extensive investigations in Chapter 5 we are now able to present a connection
between the abstract semigroup theory for the Ornstein-Uhlenbeck operator from
Chapter 5 and the maximal domain of F : Let A ∈ KN,N satisfy the assumptions
(A1) and (A4), then an application of Proposition 10.2 and Theorem 5.25 yield the
following characterization for the domain Y = D(F ) of F

Y := X3 = {u ∈ Lp | a(·)u is continuously differentiable in SE(d)}
=

⋂

(S,λ)∈se(d)
Dp

max(L0)

=
⋂

(S,λ)∈se(d)

{
v ∈ W 2,p | 〈S ·+Idλ,∇v〉 ∈ Lp

}

=
{
v ∈ W 2,p | 〈(Iij − Iji)·,∇v〉 ∈ Lp, 〈el,∇v〉 ∈ Lp

}

=
{
v ∈ W 2,p | 〈(Iij − Iji)·,∇v〉 ∈ Lp

}

for every i = 1, . . . , d − 1, j = i, . . . , d and l = 1, . . . , d. Therefore, we define the
Euclidean Sobolev space (of order 2 with exponent p)

W 2,p
Eucl(R

d,KN ) :=
{
v ∈ W 2,p(Rd,KN ) | 〈S·,∇v〉 ∈ Lp(Rd,KN ) ∀S ∈ so(d)

}

for every 1 < p <∞, which is equipped with the norm, compare Corollary 5.26,

‖v‖W 2,p
Eucl(R

d,KN ) := ‖v‖W 2,p(Rd,KN ) + sup
S∈so(d)

‖〈Sx,∇v〉‖Lp(Rd,KN ) .

Note that a first step in order to obtain an explicit representation for Y was done
in Theorem 5.19 together with our a-priori estimates from Theorem 5.8, that yields
a local version for the domain

Y =
{
v ∈ W 2,p

loc (R
d,KN) ∩W 1,p(Rd,KN ) | A△v + 〈S ·+λId,∇v〉 ∈ Lp(Rd,KN )

∀ (S, λ) ∈ se(d)},

which is only equipped with the graph norm of L0. The domain W 2,p
Eucl(R

d,KN)
is used in [15] for p = d = 2 and K = R with H2

Eucl(R
2,RN) := W 2,2

Eucl(R
2,RN).

We notice that for the space of bounded uniformly continuous functions a full
characterization for the domain Y is still an open problem. Only in the scalar real-
valued case with K = R and N = 1, an application of [29, Proposition 3.5] yields
a local version for the domain Y . The abstract representation for the domain Y in
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Cub(R
d,KN) was used in [113, Section 2.3.1] for the first time with d = 2, K = R

and N = 1.
A straightforward computation shows that the reaction diffusion system (10.10)

is equivariant under the SE(d)-action on W 2,p
Eucl(R

d,KN ): On the one hand it is
trivial to see that

a(γ)F (u(x)) =a(R, τ) (A△u(x) + f(u(x)))

=A[△u](R−1(x− τ)) + f(u(R−1(x− τ)))

and on the other hand a short computation shows that

F (a(γ)u(x)) = A△
[
u(R−1(x− τ))

]
+ f(u(R−1(x− τ)))

=A

d∑

i=1

∂2

∂x2i

[
u(R−1(x− τ))

]
+ f(u(R−1(x− τ)))

=A

d∑

i=1

∂

∂xi

d∑

k=1

(
∂

∂ξk
u(R−1(x− τ))

)(
∂

∂xi

(
R−1(x− τ)

)

k

)

+ f(u(R−1(x− τ)))

=A

d∑

i=1

d∑

k=1

d∑

l=1

(
∂

∂ξl

∂

∂ξk
u(R−1(x− τ))

)(
∂

∂xi

(
R−1(x− τ)

)

l

)(
∂

∂xi

(
R−1(x− τ)

)

k

)

+ A
d∑

i=1

d∑

k=1

(
∂

∂ξk
u(R−1(x− τ))

)(
∂2

∂x2i

(
R−1(x− τ)

)

k

)

+ f(u(R−1(x− τ)))

=A

d∑

k=1

d∑

l=1

(
∂

∂ξl

∂

∂ξk
u(R−1(x− τ))

)

δlk + f(u(R−1(x− τ)))

=A

d∑

k=1

[
∂2

∂ξ2k
u

]

(R−1(x− τ)) + f(u(R−1(x− τ)))

=A [△u] (R−1(x− τ)) + f(u(R−1(x− τ))).

Here we used that the equalities

d∑

i=1

∂2

∂x2i

(
R−1(x− τ)

)

k
= 0,

d∑

i=1

(
∂

∂xi

(
R−1(x− τ)

)

l

)(
∂

∂xi

(
R−1(x− τ)

)

k

)

= δlk

are satisfied for every k, l ∈ {1, . . . , d} and (R, τ) ∈ SE(d). Moreover, one shows
that a(γ)W 2,p

Eucl(R
d,KN ) = W 2,p

Eucl(R
d,KN) for every γ ∈ SE(d), but we omit the

details.
Relative equilibria of (10.10) on [0,∞[ are now of the form

u⋆(x, t) = v⋆
(
R−1
⋆ (t) · (x− τ⋆(t))

)
, v⋆ ∈ W 2,p

Eucl(R
d,KN ), γ⋆ = (R⋆, τ⋆) ∈ SE(d).

Examples for relative equilibria of the reaction-diffusion systems (10.10) are rotat-
ing waves with (R⋆(t), τ⋆(t)) = (exp(tS⋆), x⋆) for some (S⋆, x⋆) ∈ se(d), but also
traveling waves with (R⋆(t), τ⋆(t)) = (Id, λ⋆t). We are mainly interested in ro-
tating waves. As we know from the abstract theory above, they always come in
families: If u⋆(x, t) = v⋆(e

−tS⋆(x − x⋆)) is a rotating wave of (10.10), then also
v⋆(e

−tS⋆R−1(x− (τ +Rx⋆))) is a rotating wave of (10.10) for every (R, τ) ∈ SE(d).
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Nonlinear Stability of rotating waves: An important issue is to investigate
nonlinear stability of rotating waves, also known as stability with asymptotic phase.
Let u⋆(x, t) = v⋆(e

−tS⋆(x−x⋆)) be a rotating wave of (10.10) with γ⋆(t) = (etS⋆ , x⋆)
and let two possibly different norms ‖·‖1 and ‖·‖2 on W 2,p

Eucl(R
d,KN ) be given. Then

we are interested in nonlinear stability of rotating waves, cp. Definition 10.5:

Problem 1. For any ε > 0 there exists a δ > 0 such that for any initial value
u0 ∈ W 2,p

Eucl(R
d,KN) with ‖u0 − v⋆‖1 6 δ the following property hold: The reac-

tion diffusion system (10.10) has a unique solution u ∈ C1(]0,∞[, Lp(Rd,KN )) ∩
C([0,∞[,W 2,p

Eucl(R
d,KN )) and the solution u satisfies

inf
γ∈SE(d)

‖u(t)− a(γ)v⋆‖2 6 ε ∀ t > 0.

Moreover, there exists a δ0 > 0 such that for any initial value u0 ∈ W 2,p
Eucl(R

d,KN)
with ‖u0 − v⋆‖1 6 δ there exists some asymptotic phase γ∞ ∈ SE(d) such that the
solution u satisfies

‖u(t)− a(γ∞ ◦ γ⋆(t))v⋆‖2 → 0 as t→ ∞.

A nonlinear stability result of 2-dimensional localized rotating waves in parabolic
reaction diffusion systems was proved in [15, Theorem 1.1] for d = p = 2, K = R

and ‖·‖1 = ‖·‖2 = ‖·‖H2 . But so far, there are no further nonlinear stability results
for higher dimensional rotating waves. Nonlinear stability results for traveling
waves in parabolic reaction diffusion equations are well known in the literature and
can be found in the monographs [52], [110] and in the survey article [91]. For a
nonlinear stability result of traveling waves in hyperbolic and mixed hyperbolic-
parabolic equations we refer to [85], [86], [87] and [88]. A nonlinear stability result
for multi-fronts and and multi-pulses in parabolic reaction diffusion equations, that
we discuss below in Section 10.5, can be found in [99].

An essential feature of all stability results is to derive nonlinear stability from
linear stability (also called strong spectral stability). The proof for the nonlinear
stability of 2-dimensional localized rotating waves from [15, Theorem 1.1] requires
three essential assumptions: The profile v⋆ of the rotating wave and their partial
derivatives up to order 2 are localized in the sense of Definition 1.1. The matrix
Df(v∞) is stable, i.e. Re Df(v∞) < 0 meaning that all eigenvalues have a negative
real part. And finally, the eigenvalues of the linearized operator

[Lv] (x) = A△v(x) + 〈Sx,∇v(x)〉+Df(v⋆(x))v(x).

satisfy suitable eigenvalue conditions. In order to extend the nonlinear stability
result from [15, Theorem 1.1] to rotating waves in several space dimensions, it is
useful to analyze the decay of rotating waves and the spectrum of the linearization.
In particular, Problem 1 shows that the characterization of the maximal domain
Y = D(F ) plays also a fundamental role. The exponential decay of rotating waves
we have investigated in our main result from Theorem 1.8. Moreover, we have
analyzed the eigenvalue problem for the linearized differential operator both ana-
lytically in Chapter 9 and numerically in Section 10.4 below. As we have seen above,
the characterization for the domain W 2,p

Eucl(R
d,KN) is based on the characterization

of Dp
max(L0) as described in Theorem 5.25.
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10.2 Freezing method for single-structures

In the following we briefly recall the main concept of the freezing method for
single-structures. The main idea of this approach is to approximate relative equi-
libria of equivariant evolution equations, which is based on a decomposition of the
solution u of (10.9) into a group motion and a profile. For a more general and
detailed treatment we refer to [18] and [89], but also to [103], [19], [105], [20], [16].

Consider a general equivariant evolution equation (10.9). We introduce new
functions γ(t) ∈ G and v(t) ∈ Y such that the solution u of (10.9) is of the form

u(t) = a(γ(t))v(t), 0 6 t < T.(10.12)

Inserting the ansatz (10.12) into (10.9)

a(γ(t))vt(t) + d [a(γ(t))v(t)] γt(t) =
d

dt
[a(γ(t))v(t)] = ut(t)

=F (u(t)) = F (a(γ(t))v(t)) = a(γ(t))F (v(t))

and applying a(γ−1(t)) to both sides we obtain

vt(t) =F (v(t))− a(γ−1(t))d [a(γ(t))v(t)] γt(t), 0 < t < T.(10.13)

At this point, it is convenient to introduce µ(t) ∈ g = T
1

G via

γt(t) = dLγ(t)(1)µ(t), 0 < t < T.(10.14)

Then, differentiating a(γ(t))a(g)v(t) = a(γ(t)◦g)v(t) = a(Lγ(t)(g))v(t) with respect
to g at g = 1 yields

a(γ(t))d [a(1)v(t)]µ(t) = d [a(γ(t))v(t)] dLγ(t)(1)µ(t), 0 < t < T.(10.15)

Thus, requiring (10.14), equation (10.13) can be written as

vt(t) = F (v(t))− d [a(1)v(t)]µ(t), 0 < t < T.(10.16)

To compensate the extra variable µ(t), we finally impose q = dim g phase conditions
Ψ(v(t), µ(t)) = 0, that are defined by a functional

Ψ : Y × g → g
∗, (v, µ) 7→ Ψ(v, µ),(10.17)

where g
∗ denotes the dual space of the Lie algebra g, which is isomorphic to Rq,

i.e. g
∗ ∼= Rq. To take the initial data from equation (10.9) into account, we equip

the γ-equation (10.14) with the initial condition γ(0) = 1. Thus, using (10.12) at
t = 0 the initial condition for the v-equation (10.16) is given by v(0) = u0.
This leads to the abstract formulation of the freezing method as differential al-
gebraic evolution equation (DAE)

vt(t) =F (v(t))− d [a(1)v(t)]µ(t), v(0) = u0,(10.18a)

0 =Ψ(v(t), µ(t)),(10.18b)

γt(t) =dLγ(t)(1)µ(t), γ(0) = 1.(10.18c)
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The equations (10.18a) and (10.18c) must be satisfied for t > 0 and the equation
(10.18b) for t > 0. In applications (10.18a) is a PDE, (10.18b) an algebraic con-
straint and (10.18c) an ODE. The ODE from (10.18c) is called the reconstruction
equation in [89], is decoupled from the first two equations (10.18a) and (10.18b)
and can be solved in a post-processing step.

We now explain a well-studied possibility for the choice of the algebraic constraint
(10.18b), that is called the phase condition. In the sequel, we will distinguish
between the fixed phase condition and the orthogonal phase condition. For this
purpose, let us assume that

〈·, ·〉 : X ×X → K, (u, v) 7→ 〈u, v〉
is a continuous inner product on the K-valued Banachspace (X, ‖·‖) with
K ∈ {R,C}, i.e. |u| :=

√

〈u, u〉 6 C ‖u‖. If (X, ‖·‖ , (·, ·)) is a Hilbert space,
we can choose e.g. 〈·, ·〉 := (·, ·) and hence |·| = ‖·‖. But in general we do not
assume this.

Type 1: (fixed phase condition). Choose a template function v̂ ∈ Y . The fixed
phase condition is a minimization condition that requires v̂ to be the closest
point to v(t) on the group orbit of v̂ given by O(v̂) := {a(γ)v̂ | γ ∈ G}, i.e.

min
γ∈G

|v(t)− a(γ)v̂| = |v(t)− v̂| .

The necessary condition is

0 =

[
d

dγ
|v(t)− a(γ)v̂|2

]

γ=1

=

[
d

dγ
〈v(t)− a(γ)v̂, v(t)− a(γ)v̂〉

]

γ=1

= [〈−d [a(γ)v̂] , v(t)− a(γ)v̂〉+ 〈v(t)− a(γ)v̂,−d [a(γ)v̂]〉]γ=1
= 〈−d [a(1)v̂] , v(t)− a(1)v̂〉+ 〈v(t)− a(1)v̂,−d [a(1)v̂]〉
=− 〈d [a(1)v̂] , v(t)− v̂〉 − 〈v(t)− v̂, d [a(1)v̂]〉
=− 2Re 〈v(t)− v̂, d [a(1)v̂]〉 ,

that is a mapping from T
1

G into Rq ∼= g
∗. In the numerical computations we

will replace the phase condition (10.18b) by

0 = −2Re 〈v(t)− v̂, d [a(1)v̂]ω〉 ∀ω ∈ g,(10.19)

that leads to a DAE of index 2. To reduce the index we choose a basis
e1, . . . , eq of g = T

1

G, evaluate (10.19) at ω = ej for every j = 1, . . . , q,
multiply by −1

2
, differentiate with respect to t and insert the differential

equation (10.18a) to obtain

0 =
d

dt
Re
〈
v(t)− v̂, d [a(1)v̂] ej

〉
= Re

〈
vt(t), d [a(1)v̂] e

j
〉

= Re
〈
F (v(t)), d [a(1)v̂] ej

〉
− Re

〈
d [a(1)v(t)]µ(t), d [a(1)v̂] ej

〉

=: Ψ
(j)
fix (v(t), µ(t)),

(10.20)

that is the j-th component of the phase operator Ψfix. This leads to the
fixed phase condition Ψfix(v(t), µ(t)) = 0 ∈ Rq ∼= g

∗. If we replace (10.18b)
by (10.20) we end up with a DAE of index 1, provided that v(t) and v̂ are
sufficiently close for every t > 0.
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Type 2: (orthogonal phase condition). The orthogonal phase condition is also
a minimization condition and requires that the temporal change |vt| is minimal
at each time instance, i.e.

min
µ∈g

|vt(t)| = min
µ∈g

|F (v(t))− d [a(1)v(t)]µ| = |F (v(t))− d [a(1)v(t)]µ(t)| .

The necessary condition is

0 =

[
d

dµ
|vt(t)|2

]

µ=µ(t)

=

[
d

dµ
|F (v(t))− d [a(1)v(t)]µ|2

]

µ=µ(t)

=

[
d

dµ
〈F (v(t))− d [a(1)v(t)]µ, F (v(t))− d [a(1)v(t)]µ〉

]

µ=µ(t)

= [〈−d [a(1)v(t)] , F (v(t))− d [a(1)v(t)]µ〉
+ 〈F (v(t))− d [a(1)v(t)]µ,−d [a(1)v(t)]〉]µ=µ(t)

=− 〈d [a(1)v(t)] , F (v(t))− d [a(1)v(t)]µ(t)〉
− 〈F (v(t))− d [a(1)v(t)]µ(t), d [a(1)v(t)]〉

=− 2Re 〈F (v(t))− d [a(1)v(t)]µ(t), d [a(1)v(t)]〉
=− 2Re 〈vt(t), d [a(1)v(t)]〉 ,

that is a mapping from g = T
1

G into Rq ∼= g
∗, i.e. the condition reads as

0 = −2Re 〈vt(t), d [a(1)v(t)]ω〉 ∀ω ∈ g.(10.21)

For the numerical computations one usually uses condition (10.21) instead
of (10.18b). Next, we choose a basis e1, . . . , eq of T

1

G, evaluate (10.21) at
ej for every j = 1, . . . , q, multiply by −1

2
and insert the differential equation

(10.18a) to obtain

0 = Re
〈
vt(t), d [a(1)v(t)] e

j
〉

= Re
〈
F (v(t))− d [a(1)v(t)]µ(t), d [a(1)v(t)] ej

〉

= Re
〈
F (v(t)), d [a(1)v(t)] ej

〉
− Re

〈
d [a(1)v(t)]µ(t), d [a(1)v(t)] ej

〉

=: Ψ
(j)
orth(v(t), µ(t)),

(10.22)

that is the j-th component of the phase operator Ψorth. This leads to the
orthogonal phase condition Ψorth(v(t), µ(t)) = 0 ∈ Rq ∼= g

∗. If we replace
(10.18b) by (10.22) we end up with a DAE of index 1, provided that the
isotropy group of v(t), that is given by Hv(t) := {γ ∈ G | a(γ)v(t) = v(t)}, is
trivial for every t > 0.

Example 10.7 (Reaction diffusion systems, Part 2). We continue with Example
10.6 and assume that the solution u of (10.10) can be written as

u(x, t) = a(γ(t))v(x, t) = v(R(t)−1(x− τ(t)), t), t > 0, x ∈ Rd, d > 2,(10.23)
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where γ(t) = (R(t), τ(t)) ∈ SE(d) and v(·, t) ∈ Y . Inserting the freezing ansatz
(10.23) into (10.10) and applying a(γ−1(t)) to both sides yields

vt(x, t) = A△v(x, t) + f(v(x, t))− a(γ−1(t))d [a(γ(t))v(x, t)] γt(t),(10.24)

for t > 0 and x ∈ Rd. Introducing µ(t) ∈ se(d) = T
1

SE(d) via (10.14), the
v-equation (10.24) can be transformed into (10.16), where d[a(1)v(x, t)]µ(t) is
given by (10.11). To compensate the extra variable µ(t) we additionally require

dim se(d) = d(d+1)
2

phase conditions, given by the functional

Ψ : Y × se(d) → (se(d))∗ , (v, µ) 7→ Ψ(v, µ),(10.25)

where the dual space (se(d))∗ of the Lie algebra se(d) is isomorphic to Rdim se(d), i.e.

(se(d))∗ ∼= R
d(d−1)

2 . The reconstruction equation is given by

(
Rt(t)
τt(t)

)

= γt(t) = dLγ(t)(1)µ(t) =

(
R(t)S(t)
R(t)λ(t)

)

,

(
R(0)
τ(0)

)

=

(
Id
0

)

,

where γ(t) = (R(t), τ(t)) ∈ SE(d) and µ(t) = (S(t), λ(t)) ∈ se(d). Thus, the
freezing method yields a partial differential algebraic evolution equation
(PDAE)

vt(x, t) =A△v(x, t) + f(v(x, t)) + 〈S(t)x+ Idλ(t),∇v(x, t)〉 ,
v(x, 0) =u0(x),

(10.26a)

0 =Ψ(v(·, t), µ(t)),(10.26b)
(
Rt(t)
τt(t)

)

=

(
R(t)S(t)
R(t)λ(t)

)

,

(
R(0)
τ(0)

)

=

(
Id
0

)

.(10.26c)

Let us discuss the two mentioned possibilities for the choice of the phase condition
(10.26b). For this purpose let us consider the Hilbert space X = L2(Rd,KN)
equipped with the inner product

(·, ·)L2 : L
2(Rd,KN )× L2(Rd,KN) → K, (u, v) 7→ (u, v)L2 :=

∫

Rd

u(x)
T
v(x)dx

and 〈·, ·〉 := (·, ·)L2 . Moreover, let v̂ ∈ W 2,2
Eucl(R

d,KN ) denote a template function.
The necessary condition for the fixed phase condition from (10.19) yields

0 = Re
(

v(t)− v̂,
〈

S̃x+ Idλ̃,∇v̂
〉)

L2
∀ (S̃, λ̃) ∈ se(d).

Plugging (Iij − Iji, 0) and (0, el), that is indeed a basis of se(d), into this equation
we obtain

0 =Re (v(t)− v̂, (xjDi − xiDj)v̂)L2 , i = 1, . . . , d− 1, j = i+ 1, . . . , d,

0 =Re (v(t)− v̂, Dlv̂)L2 , l = 1, . . . , d.

To guarantee that the index of the PDAE equals 1 we have to require that

Re ((xjDi − xiDj)v(t), (xlDk − xkDl)v̂)L2 6= 0,
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Re ((xjDi − xiDj)v(t), Dmv̂)L2 6= 0,

Re (Dnv(t), (xlDk − xkDl)v̂)L2 6= 0,

Re (Dnv(t), Dmv̂)L2 6= 0.

is satisfied for every i, k = 1, . . . , d − 1, j = i + 1, . . . , d, l = k + 1, . . . , d and
n,m = 1, . . . , d.

The necessary condition for the orthogonal phase condition from (10.21) yields

0 = −2Re
(

vt(t),
〈

S̃x+ Idλ̃,∇v(t)
〉)

L2
∀ (S̃, λ̃) ∈ se(d).

Plugging (Iij − Iji, 0) and (0, el) once more, we obtain

0 =Re (vt(t), (xjDi − xiDj)v(t))L2 , i = 1, . . . , d− 1, j = i+ 1, . . . , d

0 =Re (vt(t), Dlv(t))L2 , l = 1, . . . , d.

To guarantee that the index of the PDAE equals 1 we require that

Re ((xjDi − xiDj)v(t), (xlDk − xkDl)v(t))L2 6= 0,

Re ((xjDi − xiDj)v(t), Dmv(t))L2 6= 0,

Re (Dnv(t), Dmv(t))L2 6= 0.

Approximation of localized rotating waves on bounded domains: An im-
portant issue is to investigate approximations of rotating waves to bounded do-
mains. We formulate such a result for the choice p = 2.

Let (v⋆, (S⋆, λ⋆)) ∈ W 2,2
Eucl(R

d,KN )× se(d) be a solution of

0 =A△v⋆(x) + 〈S⋆x+ λ⋆,∇v⋆(x)〉+ f(v⋆(x)) , x ∈ Rd,

0 =Re 〈v⋆ − v̂, (xjDi − xiDj)v̂〉L2(Rd,KN ) , i = 1, . . . , d− 1, j = i+ 1, . . . , d

0 =Re 〈v⋆ − v̂, Dlv̂〉L2(Rd,KN ) , l = 1, . . . , d

where v̂ ∈ W 2,2
Eucl(R

d,KN ) denotes an appropriate reference function. Then we are
interested in solving the following problem:

Problem 2. There exist some ρ > 0 and R0 > 0 such that for every radius R > R0

the boundary value problem

0 =A△vR(x) + 〈SRx+ λR,∇vR(x)〉+ f(vR(x)) , x ∈ BR(0),

0 =vR(x) , x ∈ ∂BR(0),

0 =Re 〈vR − v̂, (xjDi − xiDj)v̂〉L2(BR(0),KN ) , i = 1, . . . , d− 1, j = i+ 1, . . . , d,

0 =Re 〈vR − v̂, Dlv̂〉L2(BR(0),KN ) , l = 1, . . . , d,

has a unique solution (vR, (SR, λR)) in a neighborhood of

Bρ(v⋆|BR(0), (S⋆, λ⋆)) =
{

(v, (S, λ)) ∈ W 2,2
Eucl(R

d,KN)× se(d) |
∥
∥v⋆|BR(0) − v

∥
∥
W

2,2
Eucl(BR(0),KN )

+ d((S⋆, λ⋆), (S, λ)) 6 ρ
}

.

Moreover, there exist some C > 0 and η > 0 such that

‖vR − v⋆‖W 2,2
Eucl(R

d,KN ) + d((SR, λR), (S⋆, λ⋆)) 6 Ce−ηR.
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An approximation theorem for relative equilibria on bounded intervals in one
space dimension can be found in [98] and [104]. But so far, there seems to be no
approximation results for localized rotating waves. This is still an open problem.

In order to extend the result from [98] to an approximation theorem for localized
rotating waves, as formulated in Problem 2, we must analyze solvability and unique-
ness of the inhomogeneous Cauchy problem for the Ornstein-Uhlenbeck operator on
bounded domains, compare Section 1.6. Moreover, we must study the truncation
error. Therefore, we plug the solution of the v⋆-equation into the vR-equation. If
every term is exponentially small, then we can conclude that the truncation error
is exponentially small. Of course, v⋆ satisfies the PDE from the vR-equation on the
whole BR(0). But both the boundary condition and the phase conditions possess
a defect. To show that these defects are exponentially small, we need pointwise
exponential decay of the rotational term and of the derivatives of v⋆ up to order
2. Our main Theorem 1.8 implies exponential decay of v⋆ in Lp-spaces, but does
not yet provide us with pointwise estimates. For this purpose, we must extend
Theorem 1.8 to spaces of bounded uniformly continuous functions or to spaces of
Hölder continuous functions, compare Section 1.6.

Example 10.8 (Reaction diffusion systems, Part 3). We continue with Example
10.7 and compute the motion γ(t) = (R(t), τ(t)) ∈ SE(d) in the special Euclidean
group when the solution v(t) has reached its relative equilibrium v⋆, i.e. we compute
γ(t) for a given µ⋆ = (S⋆, λ⋆) ∈ se(d) from the reconstruction equation

(
Rt(t)
τt(t)

)

= γt(t) = dLγ(t)(1)µ⋆ =

(
R(t)S⋆
R(t)λ⋆

)

,

(
R(0)
τ(0)

)

=

(
Id
0

)

,(10.27)

The R-equation is decoupled from the τ -equation and admits the solution

R(t) = exp(tS⋆).(10.28)

Inserting the solution for R from (10.28) into the τ -equation yields

τt(t) = exp(tS⋆)λ⋆, τ(0) = 0

with solution

τ(t) = E(tS⋆)tλ⋆, E(X) :=
∞∑

n=0

Xn

(n+ 1)!
, X ∈ Rd,d.(10.29)

Note that

τt(t) =
d

dt
[E(tS⋆)tλ⋆] =

d

dt

∞∑

n=0

tn+1Sn⋆
(n+ 1)!

λ⋆ =
∞∑

n=0

(tS⋆)
n

n!
λ⋆ = exp(tS⋆)λ⋆,

τ(0) = E(0 · S⋆) · 0 · λ⋆ = Id · 0 · λ⋆ = 0.

If X ∈ Rd,d is invertible, we can represent E(X) by

E(X) = X−1
∞∑

n=0

Xn+1

(n + 1)!
= X−1 (exp(X)− Id) = (exp(X)− Id)X

−1.
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Thus, we deduce from (10.28) and (10.29) that the solution for the reconstruction
equation (10.27) is given by

(
R⋆(t)
τ⋆(t)

)

:=

(
R(t)
τ(t)

)

=

(
exp(tS⋆)
E(tS⋆)tλ⋆

)

, 0 6 t 6 T.(10.30)

Consider the relative equilibrium

u⋆(x, t) = a(R⋆(t), τ⋆(t))v⋆(x) = v⋆
(
R⋆(t)

−1(x− τ⋆(t))
)
.

If a special point x⋆ ∈ Rd of the profile v⋆ is of interest, e.g. the tip of a spiral as
in [21], then this point will be visible at position x(t) with

x⋆ = R⋆(t)
−1(x(t)− τ⋆(t)).

The solution (10.30) of the reconstruction equation (10.27) yields

x(t) =R⋆(t)x⋆ + τ⋆(t) = exp(tS⋆)x⋆ + E(tS⋆)tλ⋆

=

∞∑

n=0

(tS⋆)
n

n!
x⋆ +

∞∑

n=0

(tS⋆)
n

(n+ 1)!
tλ⋆ = Idx⋆ +

∞∑

n=1

(tS⋆)
n

n!
x⋆ +

∞∑

n=0

(tS⋆)
n

(n+ 1)!
tλ⋆

=x⋆ +

∞∑

n=0

tn+1Sn⋆ (S⋆x⋆ + λ⋆)

(n+ 1)!
.

For x(t) ∈ Rd, that remain fixed with respect to the time evolution, the point
x⋆ ∈ Rd must satisfy the equation

S⋆x⋆ + λ⋆ = 0(10.31)

for a given µ⋆ = (S⋆, λ⋆) ∈ se(d). In the following we discuss about the solutions of
(10.31). For this purpose, we define the kernel (or null space) and the range of
S⋆ by

N (S⋆) :=
{
x⋆ ∈ Rd | S⋆x⋆ = 0

}
,

R(S⋆) :=
{
y⋆ ∈ Rd | ∃ x⋆ ∈ Rd : S⋆x⋆ = y⋆

}
.

Case 1: (rank(S⋆) = d). In this case the matrix S⋆ has full rank, i.e. N (S⋆) = {0}
is trivial and R(S⋆) = Rd, hence S⋆ is invertible and the only point that
remains fixed in time is given by

crot := −S−1
⋆ λ⋆ ∈ Rd.

The point crot ∈ Rd is called the center of rotation in Rd, since the relative
equilibrium satisfies

u⋆(x, t) =v⋆
(
R−1
⋆ (t) (x− τ⋆(t))

)
= v⋆ (exp(−tS⋆)(x− E(tS⋆)tλ⋆))

=v⋆
(
exp(−tS⋆)(x− (exp(tS⋆)− Id)(tS⋆)

−1tλ⋆)
)

=v⋆
(
exp(−tS⋆)x− S−1

⋆ λ⋆ + exp(−tS⋆)S−1
⋆ λ⋆

)

=v⋆
(
exp(−tS⋆)(x+ S−1

⋆ λ⋆)− S−1
⋆ λ⋆

)

=v⋆ (exp(−tS⋆)(x− crot) + crot) .

Defining the shifted profile vcrot⋆ (x) := v⋆(x+crot) we obtain the rotating wave

u⋆(x, t) = vcrot⋆ (exp(−tS⋆)(x− crot)) .
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Case 2: (rank(S⋆) < d). In order to solve the equation (10.31), let us first consider
the corresponding homogeneous equation S⋆x⋆ = 0. Using the orthogonal
transformation S⋆ = PΛS⋆

blockP
T from Section 3 with block diagonal matrix

ΛS⋆

block yields

S⋆x⋆ = 0 ⇐⇒ x⋆ ∈ N (S⋆) = span {Pek+1, . . . , P ed} ∪ {0}.
Let us next consider the inhomogeneous equation (10.31). To guarantee that
equation (10.31) admits at least one solution x⋆ we must require −λ⋆ ∈ R(S⋆),
otherwise there exists no solution. If −λ⋆ ∈ R(S⋆), then we deduce

S⋆x⋆ = −λ⋆ ⇐⇒ x⋆ ∈ {xsv + xdv | xdv ∈ N (S⋆)} ,(10.32)

where xsv is any solution of (10.31). Here, xsv and xdv are called the support
vector and the direction vector in Rd, respectively. Using that xsv is a
solution of (10.31), a formal computation

−R−1
⋆ (t)τ⋆(t) = − exp(−tS⋆)E(tS⋆)tλ⋆

=−
( ∞∑

n=0

(−tS⋆)n
n!

)( ∞∑

n=0

(tS⋆)
n

(n + 1)!

)

tλ⋆ = −
( ∞∑

n=0

n∑

k=0

(−tS⋆)k(tS⋆)n−k
k!(n− k + 1)!

)

tλ⋆

=−
( ∞∑

n=0

(tS⋆)
n

n∑

k=0

(−1)k

k!(n− k + 1)!

)

tλ⋆ = −
( ∞∑

n=0

(−tS⋆)n
(n + 1)!

)

tλ⋆

=

( ∞∑

n=0

(−tS⋆)n
(n + 1)!

)

tS⋆xsv = −
( ∞∑

n=0

(−tS⋆)n+1

(n + 1)!

)

xsv = −
( ∞∑

n=1

(−tS⋆)n
n!

)

xsv

=

(

Id −
∞∑

n=0

(−tS⋆)n
n!

)

xsv = (Id − exp(−tS⋆)) xsv =
(
Id − R−1

⋆ (t)
)
xsv

shows that the relative equilibrium satisfies

u⋆(x, t) =v⋆
(
R−1
⋆ (t) (x− τ⋆(t))

)
= v⋆

(
R−1
⋆ (t) (x− xsv) + xsv

)

=v⋆ (exp (−tS⋆) (x− xsv) + xsv) .

Defining the shifted profile vxsv⋆ (x) := v⋆(x+xsv) we obtain the rotating wave

u⋆(x, t) = vxsv⋆ (exp(−tS⋆)(x− xsv)) .

Obviously, the choice of the support vector xsv is still arbitrary. To make the
choice unique, we solve a rank-deficient least squares problem, [42, Section
5.5]: Let (S⋆, λ⋆) ∈ se(d) with rank(S⋆) = 2k < d and let the singular value
decomposition S⋆ = UΣV T of S⋆ from (3.3) be given. An application of [42,
Theorem 5.5.1] shows that

xsv = −
2k∑

i=1

UT
·,iλ⋆

Σi,i
V·,i(10.33)

minimizes ‖S⋆x+ λ⋆‖2 with respect to the Euclidean norm ‖·‖2 and has the
smallest 2-norm of all minimizers x belonging to the set of minimizers
χ =

{
x ∈ Rd | ‖S⋆x+ λ⋆‖2 = min

}
. Here, U·,i and V·,i denote the i-th column

of U and V , respectively.
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Note that the solution set from (10.32) one obtains from the freezing method for
free. This set yields a center of rotation for d = 2, an axis of rotation for d = 3,
a center or a plane of rotation for d = 4 and several axis of rotation as well as
hyperplanes of rotation for d > 5.

Moreover, note that the calculations above extends also to
(
Rt(t)
τt(t)

)

= γt(t) = dLγ(t)(1)µ⋆ =

(
R(t)S⋆
R(t)λ⋆

)

,

(
R(0)
τ(0)

)

=

(
R0

τ0

)

,

for some initial value (R0, τ0) ∈ SE(d). This equation admits the solution
(
R⋆(t)
τ⋆(t)

)

:=

(
R(t)
τ(t)

)

=

(
R0 exp(tS⋆)

R0E(tS⋆)tλ⋆ + τ0

)

, 0 6 t 6 T.

But in the numerical examples below we only consider the case (R0, τ0) = (Id, 0).
We next consider the special cases d = 2 and d = 3 in more detail.

Special Case 1: (d = 2). From the assumption 0 6= S⋆ ∈ so(2) we can deduce that
the matrix S⋆ is invertible, i.e. N (S⋆) = {0} and R(S⋆) = R2. This yields
the center of rotation in R2

c2Drot :=− S−1
⋆ λ⋆ = −

(
0 S12

−S12 0

)−1(
λ(1)

λ(2)

)

=− 1

S12

(
0 −1
1 0

)(
λ(1)

λ(2)

)

=
1

S12

(
λ(2)

−λ(1)
)

∈ R2.

(10.34)

and the relative equilibrium satsifies

u⋆(x, t) = v⋆
(
exp(−tS⋆)(x− c2Drot) + c2Drot

)
= v

c
rot2D
⋆

(
exp(−tS⋆)(x− c2Drot)

)
.

In particular, the time, that the pattern needs for exact one rotation about
c2Drot , is given by the temporal period of rotation for d = 2

T 2D =
2π

|σ1|
=

2π

|S12|
,

that can be determined by T := min {t > 0 | exp(−tS⋆) = Id} for arbitrary
space dimensions d > 2.

Special Case 2: (d = 3). For space dimension d = 3 the matrix 0 6= S⋆ ∈ so(3)
is indeed not invertible. More precisely, the null space of S⋆ contains the
direction vector of the axis of rotation, i.e.

N (S⋆) =






r





S23

−S13

S12



 | r ∈ R






.

Thus, the axis of rotation has the form

x⋆ = x3Dsv + r





S23

−S13

S12



 , r ∈ R.
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Using the singular value decomposition S = UΣV T from (3.3) with

S =





0 a b
−a 0 c
−b −c 0



 , ΛS⋆

block =





0 σ1 0
−σ1 0 0
0 0 0



 ,

P =
1

σ1






bσ1√
b2+c2

− ac√
b2+c2

c
cσ1√
b2+c2

ab√
b2+c2

−b
0

√
b2 + c2 a




 , Σ =





σ1 0 0
0 σ1 0
0 0 0



 ,

U =
1

σ1






− ac√
b2+c2

bσ1√
b2+c2

c
ab√
b2+c2

cσ1√
b2+c2

−b√
b2 + c2 0 a




 , V =

1

σ1






− bσ1√
b2+c2

− ac√
b2+c2

c

− cσ1√
b2+c2

− ab√
b2+c2

−b
0

√
b2 + c2 a




 ,

σ1 :=
√
a2 + b2 + c2 > 0 and a := S12, b := S13, c := S23 and solving the

rank-deficient least squares problem leads to the support vector

x3Dsv =
1

S2
12 + S2

13 + S2
23





S12λ2 + S13λ3
−S12λ1 + S23λ3
−S13λ1 − S23λ2



 ,

cf. (10.33). This yields a very simple formula for the axis of rotation

a3Drot(r) :=
1

S2
12 + S2

13 + S2
23





S12λ2 + S13λ3
−S12λ1 + S23λ3
−S13λ1 − S23λ2



+ r





S23

−S13

S12



 , r ∈ R.

(10.35)

In this case, the relative equilibrium satisfies

u⋆(x, t) = v⋆
(
exp(−tS⋆)(x− x3Dsv ) + x3Dsv

)
= vx

3D
sv
⋆

(
exp(−tS⋆)(x− x3Dsv )

)

In particular, the time, that the pattern needs for exact one rotation about
arot(r), is given by the temporal period of rotation for d = 3

T 3D =
2π

|σ1|
=

2π

|
√

S2
12 + S2

13 + S2
23|
.

10.3 Numerical examples of single-structures

In this section we investigate numerically the freezing system

vt(x, t) =A△v(x, t) + f(v(x, t)) + 〈S(t)x+ Idλ(t),∇v(x, t)〉 ,
v(x, 0) =u0(x),

(10.36a)

0 =Ψ(v(·, t), µ(t)),(10.36b)
(
Rt(t)
τt(t)

)

=

(
R(t)S(t)
R(t)λ(t)

)

,

(
R(0)
τ(0)

)

=

(
Id
0

)

.(10.36c)
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from Example 10.7, cf. (10.26). Our aim is to compute an approximation of the
rotating wave u⋆, in the sense that we approximate the profile v⋆ and the velocities
(S⋆, λ⋆), separately.

To solve the partial differential algebraic system (10.36) numerically, we first
truncate (10.36) from the original domain Rd to a bounded domain Ω ⊆ Rd. Since
the truncation requires additional boundary conditions and since we don’t want to
affect the asymptotic behavior of the wave near the boundary, we purpose homoge-
neous Neumann boundary conditions, also known as no-flux boundary conditions.
This leads to truncated versions of (10.36) and their solutions can be considered as
approximations of the original rotating wave.

In the examples below, we numerically solve the truncated version of the PDAE
from (10.36) including the additional boundary conditions. The finite domain
Ω ⊆ Rd will be a circular disk if d = 2 or a cube if d = 3. We use continuous
piecewise linear finite elements in space and the BDF method of order 2 in time.
The computations require suitable initial data v0 and reference functions v̂ that
both come actually from a simulation and are chosen as the solution u at the end
time from Example 2.1, 2.2 and 2.3, respectively. For the numerical computations
we use Comsol MultiphysicsTM, [1].

Example 10.9 (Ginzburg-Landau equation). Consider the freezing system for the
cubic-quintic complex Ginzburg-Landau equation (QCGL) from Example 2.1

vt = α△v + v
(
µ+ β |v|2 + γ |v|4

)
(10.37a)

+
d−1∑

i=1

d∑

j=i+1

Sij(xjDi − xiDj)v +
d∑

l=1

λlDlv, v(·, t0) = v0

0 = Re (v − v̂, (xjDi − xiDj)v̂)L2 , i = 1, . . . , d− 1, j = i+ 1, . . . , d(10.37b)

0 = Re (v − v̂, Dlv̂)L2 , l = 1, . . . , d(10.37c)
(
Rt

τt

)

=

(
RS
Rλ

)

,

(
R(t0)
τ(t0)

)

=

(
Id
0

)

,(10.37d)

with v : Rd × [0,∞[→ C, d ∈ {2, 3}, α, β, γ, µ ∈ C and Reα > 0.

(1): For the parameter values (2.4) we know from Example 2.1 that the QCGL
exhibits spinning soliton solutions u(x, t) for space dimensions d = 2 and d = 3, cf.
Figure 2.1. In the examples below we approximate the patterns v⋆ as well as the
rotational and translational velocities, that are contained in S and λ, respectively.
Further, using the reconstruction equation (10.37d) we determine the centers of
rotation c2Drot ∈ R2 for d = 2 and the axis of rotation a3Drot ∈ C(R,R3) for d = 3.

Figure 10.1(b)–10.1(d) shows the real part (b), imaginary part (c) and the ab-
solute value (d) for the approximation of the profile v⋆ of the spinning soliton in
R2 as the solution of (10.37) on a circular disk of radius R = 20 centered in the
origin at time t = 400. Figure 10.1(e) shows the translational and rotational ve-
locities. µ(1) = λ(1) and µ(2) = λ(2) denotes the translational velocity in x1- and
x2-direction, respectively, and µ(3) = S12 denotes the rotational velocity in the
(x1, x2)-plane. Their values at time t = 400 are

µ(1) = 0.002926, µ(2) = −0.01691, µ(3) = 1.0270.(10.38)
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Recall that we have a clockwise rotation, if S12 > 0, and a counter clockwise rota-
tion, if S12 < 0. Thus, the spinning soliton rotates clockwise. The reconstruction
equation and the velocities yield the center of rotation, cf. (10.34),

c2Drot =
1

µ(3)

(
µ(2)

−µ(1)

)

=

(
−0.01691

1.0270

−0.002926
1.0270

)

=

(
−0.016465
−0.002849

)

.

The temporal period, that the spinning soliton in R2 needs for exact one rotation,
is given by

T 2D =
2π

|µ(3)| = 6.118.
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Figure 10.1: Frozen solitons of QCGL for d = 2

Figure 10.1(f) shows that neither the approximation v of the profile v⋆ nor the
velocities µ(1), µ(2) and µ(3) vary in time any more, i.e. both v and µ(1), µ(2), µ(3)

are stationary at time t = 400. For the computation of (10.37) with d = 2 we
used continuous piecewise linear finite elements with maximal stepsize △x = 0.25,
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the BDF method of order 2 with absolute tolerance atol = 10−7, relative tolerance
rtol = 10−2 and maximal stepsize △t = 0.2, homogeneous Neumann boundary
conditions and fixed phase conditions. The initial data and the reference function
come from a simulation: First we solved the nonfrozen system (2.1) until time
t = 150, as explained in Example 2.1, then we solved the freezing system (10.37)
from t0 = 150 to T = 400, where the initial data and the reference function is
chosen as the solution of the nonfrozen equation (2.1) at time t = 150, cf. Figure
2.1(a)–2.1(c). This general procedure is also displayed in Figure 10.1(a), that shows
a space-time diagram on the line x1 ∈ [−20, 20] for x2 = 0 and 0 6 t 6 400.
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Figure 10.2: Frozen solitons of QCGL for d = 3

Figure 10.2(b)–10.2(d) shows the real part (b), imaginary part (c) and the abso-
lute value (d) for the approximation of the profile v⋆ of the spinning soliton in R3

as the solution of (10.37) on a cube with edge length L = 20 centered in the origin
at time t = 500. Figure 10.2(e) shows the translational and rotational velocities.
µ(1) = λ(1), µ(2) = λ(2) and µ(3) = λ(3) denotes the translational velocity in x1-, x2-
and x3-direction, respectively, and µ(4) = S12, µ

(5) = S13 and µ(6) = S23 denote the
rotational velocities in the (x1, x2)-, (x1, x3)- and (x2, x3)-plane. Their values at
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time t = 500 are

µ(1) = −0.1315, µ(2) = 0.1231, µ(3) = −0.001496,

µ(4) = 0.6855, µ(5) = −0.01558, µ(6) = 0.01086.
(10.39)

The reconstruction equation, the rank-deficient least squares problem and the ve-
locities yield the axis of rotation, cf. (10.35),

a3Drot(r) =





0.179489
0.191649
−0.007199



+ r





0.01086
0.01558
0.6855



 , r ∈ R.

The temporal period, that the spinning soliton in R3 needs for exact one rotation,
is given by

T 3D =
2π

∣
∣
∣

√

(µ(4))2 + (µ(5))2 + (µ(6))2
∣
∣
∣

= 9.162327.

Figure 10.2(f) shows once more that neither the approximation v of the profile
v⋆ nor the velocities µ(1), . . . , µ(6) vary in time any more. For the computation of
(10.37) with d = 3 we used continuous piecewise linear finite elements with maximal
stepsize △x = 0.8, the BDF method of order 2 with absolute tolerance atol =
10−5, relative tolerance rtol = 10−2 and maximal stepsize △t = 2.0, homogeneous
Neumann boundary conditions on all faces and fixed phase conditions. The initial
data and the reference function come again from a simulation: First we solved the
nonfrozen system (2.1) until time t = 100, as explained in Example 2.1, then we
solved the freezing system (10.37) from t0 = 100 to T = 500, where the initial data
and the reference function is chosen as the solution of the nonfrozen equation (2.1)
at time t = 100, cf. Figure 2.1(d)–2.1(e). This general procedure is also displayed
in Figure 10.2(a), that shows a space-time diagram on the line x1 ∈ [−20, 20] for
x2 = x3 = 0 and 0 6 t 6 500.

(2): For the parameter values (2.5) we know from Example 2.1 that the QCGL
exhibits rigidly rotating spiral wave solutions u(x, t) for space dimension d = 2, cf.
Figure 2.2.

Figure 10.3(b)–10.3(d) shows the real part (b), imaginary part (c) and the ab-
solute value (d) for the approximation of the profile v⋆ of the spiral wave in R2 as
the solution of (10.37) on a circular disk of radius R = 20 centered in the origin
at time t = 500. Figure 10.3(e) shows the translational and rotational velocities.
µ(1) = λ(1) and µ(2) = λ(2) denotes again the translational velocity in x1- and x2-
direction, respectively, and µ(3) = S12 denotes the rotational velocity. Their values
at time t = 500 are

µ(1) = 0.02616, µ(2) = −0.01027, µ(3) = 1.323.(10.40)

Since S12 > 0, the spiral wave rotates clockwise. In particular, the spiral wave
rotates faster than the 2D-spinning solitons. The reconstruction equation and the
velocities yield the center of rotation, cf. (10.34),

c2Drot =
1

µ(3)

(
µ(2)

−µ(1)

)

=

(
−0.01027

1.323

−0.02616
1.323

)

=

(
−0.007763
−0.019773

)

.



210 10 Freezing approach and numerical results

The temporal period, that the spiral wave needs for exact one rotation, is given by

T 2D =
2π

|µ(3)| = 4.7492.
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Figure 10.3: Frozen spiral of QCGL for d = 2

Figure 10.3(f) shows that neither the approximation v of the profile v⋆ nor the
velocities µ1, µ2 and µ3 vary in time any more. For the computation of (10.37) with
d = 2 we used continuous piecewise linear finite elements with maximal stepsize
△x = 0.25, the BDF method of order 2 with absolute tolerance atol = 10−6, relative
tolerance rtol = 10−2 and maximal stepsize △t = 1.0, homogeneous Neumann
boundary conditions and fixed phase conditions. The initial data and the reference
function come from a simulation: First we solved the nonfrozen system (2.1) until
time t = 150, as explained in Example 2.1, then we solved the freezing system
(10.37) from t0 = 150 to T = 500, where the initial data and the reference function
is chosen as the solution of the nonfrozen equation (2.1) at time t = 150, cf. Figure
2.2(a)–2.2(c). This general procedure is also displayed in Figure 10.3(a), that shows
a space-time diagram on the line x1 ∈ [−20, 20] for x2 = 0 and 0 6 t 6 500.



10.3 Numerical examples of single-structures 211

(3): For the parameter values (2.6) we know from Example 2.1 that the QCGL
exhibits twisted and untwisted scroll waves and scroll ring solutions u(x, t) for
space dimension d = 3, cf. Figure 2.3 for a scroll ring solution.
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Figure 10.4: Frozen scroll ring of QCGL and λ-ω system for d = 3

Figure 10.4(b)–10.4(d) shows the real part (b), imaginary part (c) and the abso-
lute value (d) for the approximation of the profile v⋆ of the untwisted scroll wave
in R3 as the solution of (10.37) on a cube with edge length L = 40 centered in
the origin at time t = 850. Figure 10.4(e) shows the translational and rotational
velocities. µ(1) = λ(1), µ(2) = λ(2) and µ(3) = λ(3) denotes the translational velocity
in x1-, x2- and x3-direction, respectively, and µ(4) = S12, µ

(5) = S13 and µ(6) = S23

denote the rotational velocities in the (x1, x2)-, (x1, x3)- and (x2, x3)-plane. Their
values at time t = 850 are

µ(1) = −0.00123, µ(2) = 0.004219, µ(3) = 5.697,

µ(4) = 0.0004585, µ(5) = 0.0004447, µ(6) = −0.0003909.
(10.41)

Figure 10.4(f) shows once more that neither the approximation v of the profile v⋆
nor the velocities µ(1), . . . , µ(6) vary in time any more.
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We find out that the freezing method yields a traveling wave instead of a rotating
wave, since the rotational velocities are approximately zero and only µ(3), that
describes the velocity in x3-direction, is unequal 0. This phenomena is caused by the
periodic boundary conditions on the (x1, x2)-faces. Due to the boundary condition
the scroll ring can be considered either as a traveling wave, that drifts along the
x3-axis, or as a rotating wave, that rotates about the x3-axis. This states that the
isotropy group is nontrivial for G = SE(3), but it is indeed trivial in G = SO(3).
This fact was already discussed in [46]. Thus, we perform a second computation
using the freezing method with G = SO(3). Therefore, we modify (10.37) as follows:
We set λl = 0 in (10.37a) and omit the phase conditions (10.37c). Consequently,
the τ -equation in (10.37d) has the solution τ(t) = 0. Using the same computational
settings as before in the case G = SE(3), the freezing method in G = SO(3) yields
at time t = 850 the velocities

µ(1) = 0, µ(2) = 0, µ(3) = 0,

µ(4) = −0.8934, µ(5) = 0.002114, µ(6) = −0.001088.
(10.42)

The reconstruction equation, the rank-deficient least squares problem and the ve-
locities yield the axis of rotation, cf. (10.35),

a3Drot(r) =





0
0
0



+ r





−0.001088
−0.002114
−0.8934



 , r ∈ R.

The temporal period, that the scroll ring in R3 needs for exact one rotation, is given
by

T 3D =
2π

∣
∣
∣

√

(µ(4))2 + (µ(5))2 + (µ(6))2
∣
∣
∣

= 7.0329.

Since the numerical results for G = SO(3) are very similar to those from Figure
10.4 for G = SE(3), we omit to present separate figures for this situation.

For both computations of (10.37) with d = 3 we used continuous piecewise linear
finite elements with maximal stepsize △x = 1.6, the BDF method of order 2 with
absolute tolerance atol = 10−5, relative tolerance rtol = 10−2 and maximal stepsize
△t = 1.0, homogeneous Neumann boundary conditions on all faces and fixed phase
conditions. The initial data and the reference function come again from a simula-
tion: First we solved the nonfrozen system (2.1) until time t = 150, as explained in
Example 2.1, then we solved the freezing system (10.37) from t0 = 150 to T = 850,
where the initial data and the reference function is chosen as the solution of the
nonfrozen equation (2.1) at time t = 150, cf. Figure 2.3(a)–2.3(c). This general
procedure is also displayed in Figure 10.4(a), that shows a space-time diagram on
the line x1 ∈ [−20, 20] for x2 = x3 = 0 and 0 6 t 6 850.
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Example 10.10 (λ-ω system). Consider the freezing system for λ-ω system from
Example 2.2

vt = α△v + v
(
λ
(
|v|2
)
+ iω

(
|v|2
))

(10.43a)

+

d−1∑

i=1

d∑

j=i+1

Sij(xjDi − xiDj)v +

d∑

l=1

λlDlv, v(·, t0) = v0

0 = Re (v − v̂, (xjDi − xiDj)v̂)L2 , i = 1, . . . , d− 1, j = i+ 1, . . . , d(10.43b)

0 = Re (v − v̂, Dlv̂)L2 , l = 1, . . . , d(10.43c)
(
Rt

τt

)

=

(
RS
Rλ

)

,

(
R(t0)
τ(t0)

)

=

(
Id
0

)

,(10.43d)

with v : Rd × [0,∞[→ C, d ∈ {2, 3}, α ∈ C, λ : [0,∞[→ R and ω : [0,∞[→ R.

(1): For the parameter values (2.8) we know from Example 2.2 that the λ-ω system
exhibits rigidly rotating spiral wave solutions u(x, t) for space dimension d = 2, cf.
Figure 2.4.

Figure 10.5(b)–10.5(d) shows the real part (b), imaginary part (c) and the ab-
solute value (d) for the approximation of the profile v⋆ of the spiral wave in R2 as
the solution of (10.43) on a circular disk of radius R = 50 centered in the origin
at time t = 550. Figure 10.5(e) shows the translational and rotational velocities.
µ(1) = λ(1) and µ(2) = λ(2) denotes the translational velocity in x1- and x2-direction,
respectively, and µ(3) = S12 denotes the rotational velocity. Their values at time
t = 550 are

µ(1) = 0.0005907, µ(2) = 0.001609, µ(3) = −0.9091.(10.44)

Since S12 < 0, the spiral wave rotates counter clockwise. The reconstruction equa-
tion and the velocities yield the center of rotation

c2Drot =
1

µ(3)

(
µ(2)

−µ(1)

)

=

(
−0.001609

0.9091
0.0005907
0.9091

)

=

(
−0.001770
0.000650

)

.

The temporal period, that the spiral wave needs for exact one rotation, is given by

T 2D =
2π

|µ(3)| = 6.9114.

Figure 10.5(f) shows that neither the approximation v of the profile v⋆ nor the
velocities µ(1), µ(2) and µ(3) vary in time any more. For the computation of (10.43)
with d = 2 we used continuous piecewise linear finite elements with maximal step-
size △x = 0.5, the BDF method of order 2 with absolute tolerance atol = 10−5,
relative tolerance rtol = 10−2 and maximal stepsize △t = 0.1, homogeneous Neu-
mann boundary conditions and fixed phase conditions. The initial data and the
reference function come again from a simulation: First we solved the nonfrozen
system (2.7) until time t = 150, as explained in Example 2.2, then we solved the
freezing system (10.43) from t0 = 150 to T = 550, where the initial data and the
reference function is chosen as the solution of the nonfrozen equation (2.7) at time
t = 150, cf. Figure 2.4(a)–2.4(c). This general procedure is also displayed in Figure
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10.5(a), that shows a space-time diagram on the line x1 ∈ [−50, 50] for x2 = 0 and
0 6 t 6 550.
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Figure 10.5: Frozen spiral of λ-ω system for d = 2

(2): For a discussion about the scroll ring in Figure 10.4(a)–10.4(f) we refer to
Example 10.9(3).

Example 10.11 (Barkley model). Consider the freezing system for the Barkley
model from Example 2.3

vt =

(
1 0
0 D

)

△v +
(

1
ε
v1 (1− v1)

(
v1 − v2+b

a

)

g(v1)− v2

)

(10.45a)

+
d−1∑

i=1

d∑

j=i+1

Sij(xjDi − xiDj)v +
d∑

l=1

λlDlv, v(·, t0) = v0

0 = (v − v̂, (xjDi − xiDj)v̂)L2 , i = 1, . . . , d− 1, j = i+ 1, . . . , d(10.45b)

0 = (v − v̂, Dlv̂)L2 , l = 1, . . . , d(10.45c)
(
Rt

τt

)

=

(
RS
Rλ

)

,

(
R(t0)
τ(t0)

)

=

(
Id
0

)

,(10.45d)
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with v = (v1, v2)
T , v : Rd × [0,∞[→ R2, d ∈ {2, 3}, 0 6 D << 1, 0 < ε << 1,

0 < a, b ∈ R, g : R → R.

(1): For the parameter values (2.10) we know from Example 2.3 that the Barkley
model exhibits rigidly rotating spiral wave solutions u(x, t) for space dimension
d = 2, cf. Figure 2.5.
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Figure 10.6: Frozen spiral of Barkley model for d = 2

Figure 10.6(b)–10.6(d) shows the first component (b), the second component (c)
and the absolute value (d) for the approximation of the profile v⋆ of the spiral wave
in R2 as the solution of (10.45) on a circular disk of radius R = 40 centered in
the origin at time t = 650. Figure 10.6(e) shows the translational and rotational
velocities. µ(1) = λ(1) and µ(2) = λ(2) denotes the translational velocity in x1- and
x2-direction, respectively, and µ(3) = S12 denotes the rotational velocity. Their
values at time t = 650 are

µ(1) = −1.370, µ(2) = −2.422, µ(3) = 2.067.(10.46)
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Since S12 > 0, the spiral wave rotates clockwise. The reconstruction equation and
the velocities yield the center of rotation

c2Drot =
1

µ(3)

(
µ(2)

−µ(1)

)

=

(
−2.422

2.067
1.370
2.067

)

=

(
−1.1717
0.6628

)

.

The temporal period, that the spiral wave needs for exact one rotation, is given by

T 2D =
2π

|µ(3)| = 3.0398.

Figure 10.6(f) shows that neither the approximation v of the profile v⋆ nor the
velocities µ(1), µ(2) and µ(3) vary in time any more. For the computation of (10.45)
with d = 2 we used continuous piecewise linear finite elements with maximal step-
size △x = 0.5, the BDF method of order 2 with absolute tolerance atol = 10−4,
relative tolerance rtol = 10−2 and maximal stepsize △t = 1.0, homogeneous Neu-
mann boundary conditions and fixed phase conditions. The initial data and the
reference function come again from a simulation: First we solved the nonfrozen
system (2.9) until time t = 150, as explained in Example 2.3, then we solved the
freezing system (10.45) from t0 = 150 to T = 650, where the initial data and the
reference function are chosen as the solution of the nonfrozen equation (2.9) at time
t = 150, cf. Figure 2.5(a)–2.5(c). This general procedure is also displayed in Figure
10.6(a), that shows a space-time diagram on the line x1 ∈ [−40, 40] for x2 = 0 and
0 6 t 6 650.

10.4 Numerical computations of the essential and

the point spectrum

In this section we investigate numerically the eigenvalue problem

[λI −L] v(x) = 0, x ∈ Rd, d > 2,(10.47)

where L denotes the linearization about a rotating wave v⋆

[Lv] (x) := A△v(x) + 〈Sx,∇v(x)〉+Df(v⋆(x))v(x), x ∈ Rd.

To solve the eigenvalue problem (10.47) numerically, we restrict equation (10.47) to
a bounded domain and require additional boundary conditions. More precisely, in
the examples below we compute the finite element approximation of the eigenvalue
problem (10.47) on circular disk for d = 2 and on cubes for d = 3. In both cases
we use homogeneous Neumann boundary conditions. The rotating wave v⋆, at
which we linearize, is chosen as the solution v at the end time from Example 10.9,
10.10 and 10.11, that is an approximation of v⋆, i.e. we first solve the freezing
system and use the solution as linearization point. The velocities of the rotating
waves v⋆, that are needed for the matrix S, can be found in the Examples 10.9,
10.10 and 10.11. To solve the eigenvalue problem by the finite element method
we use Comsol MultiphysicsTM, [1]. The code involves the ARnoldi PACKage,
short ARPACK, that was developed to solve large-scale eigenvalue problems. The
ARPACK requires a real shift σ ∈ R for computing a prescribed number neig of
eigenvalues that are closest to σ and satisfy a certain eigenvalue tolerance etol.
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Example 10.12 (Ginzburg-Landau equation). Consider the eigenvalue problem
for the real-valued version of the cubic-quintic complex Ginzburg-Landau equation
(QCGL) from Example 2.1 and Example 10.9

(
α1 −α2

α2 α1

)

△v(x) + 〈S⋆x+ λ⋆,∇v(x)〉+Df (v⋆(x)) v(x) = λv(x),(10.48)

with v : Rd → C2, d ∈ {2, 3} and f : R2 → R2 given by

f

(
u1
u2

)

=

(
(u1µ1 − u2µ2) + (u1β1 − u2β2) (u

2
1 + u22) + (u1γ1 − u2γ2) (u

2
1 + u22)

2

(u1µ2 + u2µ1) + (u1β2 + u2β1) (u
2
1 + u22) + (u1γ2 + u2γ1) (u

2
1 + u22)

2

)

,

where u = u1 + iu2, α = α1 + iα2, β = β1 + iβ2, γ = γ1 + iγ2 and ui, αi, βi, γi ∈ R

for i = 1, 2. The pattern v⋆ must be considered as a function v⋆ : R
d → R2 instead

of v⋆ : R
d → C.

(1): For the parameter values from (2.4) we have already seen in Example 2.1
and in Example 10.9 that the Ginzburg-Landau equation exhibits spinning soliton
solutions for space dimensions d = 2 and d = 3, that this parameter values satisfy
our assumptions (A1)–(A9) for every p ∈]4−2

√
2, 4+2

√
2[, i.e. p = 2, 3, 4, 5, 6, and

that the solitons are exponentially localized in the sense of Theorem 1.8 for the real
valued system and in the sense of Corollary 8.1 for the complex-valued equation
with maximal decay rate (2.3). In the examples below we approximate solutions
(λ, v) of the eigenvalue problem (10.48), where (λ, v) consists of an eigenvalue λ ∈ C

and its corresponding eigenfunction v : Rd → C2. In particular, we point out that

λ⋆ =

(
µ(1)

µ(2)

)

, S⋆ =

(
0 µ(3)

−µ(3) 0

)

, if d = 2(10.49)

and

λ⋆ =





µ(1)

µ(2)

µ(3)



 , S⋆ =





0 µ(4) µ(5)

−µ(4) 0 µ(6)

−µ(5) −µ(6) 0



 , if d = 3.(10.50)

Recall the following values that are relevant to discuss the results concerning the
linearization and its associated eigenvalue problem:

v∞ =

(
0
0

)

, µ = −1

2
, σ (Df(v∞)) = {µ, µ̄} =

{

−1

2

}

,

b0 = −s (Df(v∞)) = −Reµ =
1

2
.

(10.51)

Moreover, we know from Example 10.9 for d = 2, cf. (10.38) and (10.49),

σ(S⋆) = {±σ1i} , σ1 = µ(3) = 1.0270,(10.52)

and for d = 3, cf. (10.39) and (10.50),

σ(S⋆) = {0,±σ1i} , σ1 =

√

(µ(4))
2
+ (µ(5))

2
+ (µ(6))

2
= 0.68576.(10.53)
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For the computation of the eigenvalue problem (10.48) we use in both cases
d = 2 and d = 3 continuous piecewise linear finite elements with maximal stepsize
△x = 0.25 (if d = 2) and △x = 0.8 (if d = 3), homogeneous Neumann boundary
conditions and the following parameters for the eigenvalue solver

neig = 800, σ = −1, etol = 10−7.(10.54)

The profile v⋆ and the velocities (S⋆, λ⋆) come actually from a simulation: First we
solve the freezing system (10.37) until time 400 for d = 2 and until time 500 for
d = 3, as explained in Example 10.9, then we solve the eigenvalue problem (10.48),
where the profile v⋆ and the velocities (S⋆, λ⋆) are chosen as the solution of (10.37)
at the last time instance, cf. Figure 10.1(b)-(e) and Figure 10.2(b)-(e).

Figure 10.7 and 10.9 show an approximation σapprox(L) of the spectrum σ(L) of
L linearized about the spinning soliton v⋆ for d = 2, see Figure 10.7(b), and d = 3,
see Figure 10.9(b), as well as the exact informations about σ(L) that we know from
our theoretical results in Figure 10.7(a) for d = 2 and Figure 10.9(a) for d = 3. In
Figure 10.8 and 10.10 there are visualized the real parts of the first component of
certain eigenfunctions v associated to different eigenvalues belonging to the point
spectrum σpoint(L). Let us start to discuss the numerical results in detail:

By Theorem 9.10 we can expect that

{
λ = −ω2α1 + µ1 + i

(
−ω2α2 ± µ2 − nσ1

)
| ω ∈ R, n ∈ Z

}
⊆ σess(L)(10.55)

with σ1 from (10.52) for d = 2 and from (10.53) for d = 3. The case d = 2 was
also discussed in [15, Section 8]. In both cases the essential spectrum σess(L) forms
a zig-zag-structure, that is illustrated by the red lines in Figure 10.7(a) for d = 2
and in Figure 10.9(a) for d = 3. The distance between two neighboring tips of the
cones equals σ1, that can easily by seen in (10.55). The minimal distance between
the essential spectrum and the imaginary axis equals b0 =

1
2
, since, cf. (10.51),

Re σ(L) 6 −b0 = Reµ = −1

2
.

The dispersion relation from (9.15) states that λ ∈ C belongs to σess(L) if there
exist ω ∈ R and n ∈ Z such that

λ+
1

2

(
ω2 + 1

)
+ i

(
ω2

2
+ nσ1

)

= 0.

Figure 10.7(b) and Figure 10.9(b) show an approximation σapprox
ess (L) of the essential

spectrum, that is represented by the red dots. In both cases, σapprox
ess (L) gives a

good approximation for σess(L), given by the red lines in Figure 10.7(a) and Figure
10.9(a). An application of Theorem 9.4 yields the eigenvalues of L, that are due
to the SE(d)-action, and the shape of their eigenfunctions. In Example 9.6 and
9.7, they are explicitly computed for the case d = 2 and d = 3, respectively. In
both cases there are three eigenvalues λ1, λ2, λ3 ∈ σpoint(L), that are located on the
imaginary axis, compare Corollary 9.5 and see Figure 9.1. They are given by

λ1 = iσ1, λ2 = −iσ1, λ3 = 0.
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Figure 10.7: Essential and point spectrum of QCGL for a spinning soliton with d = 2

Figure 10.8: Eigenfunctions of QCGL for a spinning soliton with d = 2

Every eigenvalue has algebraic multiplicity 1 for d = 2 and algebraic multiplicity 2
for d = 3. They are visualized by the blue circles in Figure 10.7(a) for d = 2 and in
Figure 10.9(a) for d = 3. Their corresponding approximations are illustrated also
by the blue circles in Figure 10.7(b) and in Figure 10.9(b). Indeed, as indicated
in Corollary 9.5, Theorem 9.4 does not give a complete characterization of the
point spectrum σpoint(L), i.e. in Figure 10.7(a) and 10.9(a) there can in general
exist further isolated eigenvalues between the essential spectrum σess(L) and the
imaginary axis. This is also motivated by our numerical observations. In case
d = 2, the approximation of σ(L) contains in addition 8 complex-conjugated pairs
of isolated eigenvalues, represented by the blue crosses in Figure 10.7(b). Similarly,
in case d = 3, the approximation of σ(L) admits additionally 11 complex-conjugated
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Figure 10.9: Essential and point spectrum of QCGL for a spinning soliton with d = 3

Figure 10.10: Eigenfunctions of QCGL for a spinning soliton with d = 3

pairs of isolated eigenvalues, see Figure 10.9(b). Both, the eigenvalues visualized by
the blue circles and by the blue crosses form together an approximation σapprox

point (L)
of the point spectrum of L. In Figure 10.7(b) and Figure 10.9(b) there are some
isolated eigenvalues labeled by a green square. Their associated eigenfunctions
are visualized in Figure 10.8 and 10.10. To be more precisely, in the pictures
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there are illustrated the real parts of the first component of the corresponding
eigenfunction v : Rd → C2. The first three eigenfunctions in Figure 10.8 and the
first six eigenfunctions in Figure 10.10 are approximations of the eigenfunctions
from Theorem 9.4, see also Example 9.6 for d = 2 and Example 9.7 for d = 3. The
remaining eigenfunctions are associated to an eigenvalue from the point spectrum.
Note that the first eigenfunction in Figure 10.8 and the third eigenfunction in Figure
10.10 are approximations of the rotational term 〈S⋆x,∇v⋆(x)〉. An application of
Theorem 9.8 shows that every eigenfunction with associated eigenvalue λ ∈ C

satisfying

Reλ > −b0
3

= −1

6
≈ −0.1667

decays exponentially in space with the same rate as in (2.3). In case d = 2,
this property is satisfied only for the first three eigenfunctions associated to the
approximations of λ1, λ2 and λ3, see Figure 10.8. In case d = 3, this property
is satisfied for the first six eigenfunctions associated to the approximations λ1,
λ2, λ3 and additionally for the 7th and 8th eigenfunction. Nevertheless, every
eigenfunction with associated eigenvalue λ ∈ σapprox

point (L) seems to be exponentially
decaying in space. In particular, Corollary 9.9 states that also the rotational term
〈S⋆x,∇v⋆(x)〉 decays exponentially in space with the same rate as in (2.3).

(2): For the parameter values from (2.5) we have already seen in Example 2.1 and
in Example 10.9 that this equation exhibits rigidly rotating spiral wave solutions
for space dimensions d = 2 and that this parameter values satisfy our assumptions
(A1)–(A9) for every p ∈]4 − 2

√
2, 4 + 2

√
2[, i.e. p = 2, 3, 4, 5, 6. But the spiral

wave is not localized in the sense of Theorem 1.8, since condition (1.20) seems not
to be satisfied. But note that the spiral wave seems to be Archimedean far away
from the center of rotation, i.e. v⋆ satisfies (9.16). For the discussion about the
spectrum of L linearized at the spiral wave, we recall (10.51). Moreover, we know
from Example 10.9, cf. (10.40) and (10.49),

σ(S⋆) = {±σ1i} , σ1 = µ(3) = 1.323.(10.56)

For the computation of the eigenvalue problem (10.48) we use again continuous
piecewise linear finite elements with maximal stepsize △x = 0.5, homogeneous
Neumann boundary conditions and the same parameter values as in (10.54) for
the eigenvalue solver. The profile v⋆ and the velocities (S⋆, λ⋆) come again from a
simulation: First we solve the freezing system (10.37) until time 500, as explained
in Example 10.9, then we solve the eigenvalue problem (10.48), where the profile
v⋆ and the velocities (S⋆, λ⋆) are chosen as the solution of (10.37) at time t = 500,
cf. Figure 10.3(b)-(e).

Figure 10.11 shows an approximation of the spectrum σ(L) of L linearized about
the spiral wave v⋆. In Figure 10.12 there are visualized the real parts of the first
component of certain eigenfunctions associated to different eigenvalues belonging
to the point spectrum σpoint(L). We next discuss the numerical results in detail:

Since the spiral wave does not satisfied the condition (1.20), we cannot apply
Theorem 1.8, Corollary 8.1, Theorem 9.8, Corollary 9.9 and Theorem 9.10. Nev-
ertheless, the spiral wave is Archimedean far away from the center of rotation and
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therefore we can apply the theory from Section 9.5, that yields, cf. (9.21),
{
λl(ik) + iσ1Z | k ∈ R, l = 1, 2

}
⊆ σess(L).

In contrast to the essential spectrum of localized rotating patterns, where the es-
sential spectrum contains infinite many cones that form a zig-zag structure, the
essential spectrum for a spiral wave contains infinitely many parabolas λl(i·) that
are all opened to the left. The distance between two neighboring turning points of
the parabolas equals σ1, that can easily be seen in (9.21).
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Figure 10.11: Essential and point spectrum of QCGL for a spiral wave with d = 2

Figure 10.12: Eigenfunctions of QCGL for a spiral wave with d = 2

Figure 10.11 shows an approximation σapprox
ess (L) of the essential spectrum at a

spiral wave, represented by the red dots. On the left we have an approximation of
these infinitely many parabolas. In particular, the distance of their turning points
is approximatively σ1. In the middle we have against our theoretical knowledge
infinitely many horizontal lines and on the right we observe the Floquet exponents
in the comoving frame, see also [38, Figure 19(b)]. Note that neither a smaller
spatial stepsize nor a larger domain has any effect on the shape of the approximation
for the spectrum. This means that we can expect that also σess(L) contains some
horizontal lines and the Floquet exponents. An application of Theorem 9.4 yields
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informations about the part of the point spectrum σpoint(L) that is located on the
imaginary axis and is due to the SE(2)-action. These eigenvalues are given by

λ1 = iσ1, λ2 = −iσ1, λ3 = 0,

and have algebraic multiplicity 1. Their corresponding approximations are illus-
trated by the blue circles in Figure 10.11. Since Theorem 9.4 does not yield a
complete characterization of the point spectrum σpoint(L), there can in general ex-
ist further eigenvalues belonging to σpoint(L). The approximation of σ(L) contains
4 complex-conjugated pairs of isolated eigenvalues, represented by the blue crosses
in Figure 10.11. Note that one pair of these eigenvalues, λ ≈ −10−2 ± i, is very
close to the imaginary axis. The approximation of the point spectrum, denoted by
σapprox
point (L), is compound by the eigenvalues visualized by the blue circles and by the

blue crosses. In Figure 10.11 there are some isolated eigenvalues labeled by a green
square. Their associated eigenfunctions are visualized in Figure 10.12. As before,
there are illustrated the real parts of the first components of the corresponding
eigenfunction. The first three eigenfunctions in Figure 10.12 are approximations
of the eigenfunctions from Theorem 9.4, see also Example 9.6. The fourth eigen-
function belongs to the green boxed eigenvalue that is closest to the imaginary
axis. Note that the first eigenfunction is an approximation of the rotational term
〈S⋆x,∇v⋆(x)〉. In particular, all these eigenfunctions doesn’t decay in space.

(3): For the parameter values from (2.6) we have already seen in Example 2.1(3)
and in Example 10.9(3) that the Ginzburg-Landau equation exhibits twisted and
untwisted scroll wave as well as scroll ring solutions for space dimensions d = 3 and
that this parameter values satisfy our assumptions (A1)–(A8) for every 1 < p <∞
but not the spectral assumption (A9). But neither the scroll wave nor the scroll ring
is not localized in the sense of Theorem 1.8, since condition (1.20) seems neither to
be satisfied. In the x1-x2-plane both, the scroll wave and the scroll ring, seems in
a certain sense to be Archimedean far away from the center of rotation, compare
(9.16). This motivates that the approach for the computation of the essential
spectrum for the spiral wave extends similarly to scroll waves and scroll rings. For
the discussion about the spectrum of L linearized at a scroll ring we know from
Example 10.9(3), cf. (10.41) and (10.50)

σ(S⋆) = {0,±σ1i} , σ1 =

√

(µ(4))
2
+ (µ(5))

2
+ (µ(6))

2
= 0.0006387(10.57)

for G = SE(3) and, cf. (10.42) and (10.50)

σ(S⋆) = {0,±σ1i} , σ1 =

√

(µ(4))
2
+ (µ(5))

2
+ (µ(6))

2
= 0.8934032(10.58)

for G = SO(3). For the computation of the eigenvalue problem (10.48) we use
again continuous piecewise linear finite elements with maximal stepsize △x = 1.6,
homogeneous Neumann boundary conditions on the side surfaces, periodic bound-
ary conditions on the faces x3 = ∓20 and the same parameter values as in (10.54)
for the eigenvalue solver. The profile v⋆ and the velocities (S⋆, λ⋆) come again from
a simulation: First we solve the freezing system (10.37) until time 850, as explained
in Example 10.9(3), then we solve the eigenvalue problem (10.48), where the profile
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v⋆ and the velocities (S⋆, λ⋆) are chosen as the solution of (10.37) at time t = 850,
cf. Figure 10.4(b)-(e). This procedure we perform for both cases, G = SE(3) and
G = SO(3). The values for (S⋆, λ⋆) one also obtains from (10.41) and (10.42) in
combination with (10.50).

Figure 10.13 shows an approximation of σapprox(L) of the spectrum σ(L) of L
linearized at a scroll wave v⋆ for G = SE(3), see Figure 10.13(a), and G = SO(3),
see Figure 10.13(b). In Figure 10.12 and 10.12 there are visualized the real parts
of the first components of some eigenfunction v associated to different eigenvalues
belonging to the point spectrum σpoint(L) for G = SE(3), see Figure 10.12, and for
G = SO(3), see Figure 10.12. We now discuss the numerical results in more detail:

Since the parameters does not satisfy the assumption (A9) and the scroll wave
does not satisfy the condition (1.20), we cannot apply Theorem 1.8, Corollary
8.1, Theorem 9.8, Corollary 9.9 and Theorem 9.10. Therefore, we can neither
expect that the pattern v⋆ and the eigenfunctions v (belonging to some eigen-
value λ ∈ σpoint(L)) decay exponentially nor that the essential spectrum has a
zig-zag-structure. Nevertheless, since the scroll ring is at least in a certain sense
Archimedean far away from the center of rotation, we can expect from the theory
from Section 9.5, that also the essential spectrum for a scroll ring contains infinitely
many parabolas that are opened to the left, compare (9.21).

Figure 10.13 shows an approximation σapprox
ess (L) of the essential spectrum at

a scroll ring, represented by the red dots, for G = SE(3), see Figure 10.13(a),
and G = SO(3), see Figure 10.13(b). As already motivated in Example 10.9(3),
the scroll ring can either be considered as a rotating wave that rotates about the
x3-axis or as a traveling wave that travels along the x3-axis. In case of G =
SE(3) the freezing method yields a traveling wave, since the rotational velocities
are almost zero, compare (10.41), and therefore Figure 10.13 can be considered as
the spectrum at a traveling wave in three space dimensions. In case of G = SO(3)
the freezing method yields a rotating wave, since the translational velocities are set
to 0, compare (10.42). In case of a traveling wave with G = SE(3) the essential
spectrum seems to contain only horizontal lines, see Figure 10.13(a). Contrary, in
case of a rotating wave with G = SO(3) the essential spectrum contains infinitely
many (filled) parabolas that are located in Reλ 6 −0.1. In particular, the distance
of their turning points is approximatively σ1. An application of Theorem 9.4 yields
informations about the part of the point spectrum σpoint(L) on the imaginary axis,
that is due to the SE(3)-action. These eigenvalues are given by

λ1 = iσ1, λ2 = −iσ1, λ3 = 0,

and have algebraic multiplicity 2, compare Corollary 9.5 and Figure 9.1. Their
corresponding approximations are illustrated by the blue circles in Figure 10.13(a)
for G = SE(3) and in Figure 10.13(b) for G = SO(3). In case of G = SE(3) there
is only one zero eigenvalue on the imaginary axis, see Figure 10.13(a). In case of
G = SO(3), Figure 10.13(b) can be considered as the spectrum at a rotating wave
in three space dimensions and the blue circles corresponds the approximation of
±σ1i and 0. Since Theorem 9.4 does not yield a complete characterization of the
point spectrum σpoint(L), there can in general exist further eigenvalues belonging to
σpoint(L). In both cases, G = SE(3) and G = SO(3), the approximation σapprox(L)
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Figure 10.13: Essential and point spectrum of QCGL and λ-ω for an (untwisted) scroll
ring with d = 3 and with respect to the Lie group G = SE(3) (a) and
G = SO(3) (b)

Figure 10.14: Eigenfunctions of QCGL and λ-ω for an (untwisted) scroll ring with d = 3
and with respect to the Lie group G = SE(3)

Figure 10.15: Eigenfunctions of QCGL and λ-ω for an (untwisted) scroll ring with d = 3
and with respect to the Lie group G = SO(3)
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of σ(L) contains in addition 5 complex-conjugated pairs of isolated eigenvalues,
represented by the blue crosses in Figure 10.13. The approximation of the point
spectrum σpoint(L), denoted by σapprox

point (L), is compound by the eigenvalues visual-
ized by the blue circles and by the blue crosses. In Figure 10.13 there are some
isolated eigenvalues labled by a green square. Their associated eigenfunctions are
visualized in Figure 10.12 for G = SE(3) and in Figure 10.12 for G = SO(3). As be-
fore, there are illustrated the real parts of the first components of the corresponding
eigenfunction. In Figure 10.12, the first three eigenfunctions are approximations of
the eigenfunctions belonging to the eigenvalue 0. All these eigenfunctions doesn’t
decay in space. In Figure 10.12, the first three eigenfunctions are approximations
of the eigenfunctions from Theorem 9.4, see also Example 9.7. Since the alge-
braic multiplicity of the corresponding eigenvalues is equal 2, we expect three more
eigenfunctions. It seems that they do not appear in our numerical results, since
the spatial stepsize is indeed too large. Note that the first eigenfunction in Figure
10.12 is an approximation of the rotational term 〈S⋆x,∇v⋆(x)〉. In particular, also
these eigenfunctions doesn’t decay in space.

Example 10.13 (λ-ω system). Consider the eigenvalue problem for the real-valued
version of the λ-ω system from Example 2.2 and Example 10.10

(
α1 −α2

α2 α1

)

△v(x) + 〈S⋆x+ λ⋆,∇v(x)〉+Df (v⋆(x)) v(x) = λv(x),(10.59)

with v : Rd → C2, d ∈ {2, 3} and f : R2 → R2 given by

f

(
u1
u2

)

=

(
u1λ (u

2
1 + u22)− u2ω (u21 + u22)

u1ω (u21 + u22) + u2λ (u
2
1 + u22)

)

,

where λ, ω : [0,∞[→ R, u = u1 + iu2, α = α1 + iα2 and ui, αi ∈ R for i = 1, 2. The
pattern v⋆ must be considered as a function v⋆ : R

d → R2 instead of v⋆ : R
d → C.

(1): For the parameter values from (2.8) we have already seen in Example 2.2
and in Example 10.10 that the λ-ω system exhibits rigidly rotating spiral wave
solutions for space dimension d = 2 and that this parameter values satisfy the
assumptions (A1)–(A8) for every 1 < p < ∞ with v∞ = (0, 0)T , but neither
condition (1.20) nor assumption (A9), since Df(0, 0) contains the eigenvalue 1 with
algebraic multiplicity 2. Therefore, the spiral wave is not localized in the sense of
Theorem 1.8. But the spiral wave seems to be Archimedean far away from the
center of rotation, i.e. v⋆ satisfies (9.16). Recall the following values from Example
10.10 that are relevant to discuss the results concerning the linearization and its
associated eigenvalue problem, cf. (10.44) and (10.49),

σ(S⋆) = {±σ1i} , σ1 = µ(3) = −0.9091.(10.60)

In order to approximate solutions of the eigenvalue problem (10.59) we use continu-
ous piecewise linear finite elements with maximal stepsize △x = 0.5, homogeneous
Neumann boundary conditions and the same parameters as in (10.54) for the eigen-
value solver. The profile v⋆ and the velocities (S⋆, λ⋆) come again from a simulation:
First we solve the freezing system (10.43) until time 550, as explained in Example
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10.10, then we solve the eigenvalue problem (10.59), where the profile v⋆ and the
velocities (S⋆, λ⋆) are chosen as the solution of (10.43) at time t = 550, cf. Figure
10.5(b)-(e). The values for (S⋆, λ⋆) can also be received from (10.44) and (10.49).
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Figure 10.16: Essential and point spectrum of the λ-ω system for a spiral wave with d = 2

Figure 10.17: Eigenfunctions of the λ-ω system for a spiral wave with d = 2

Figure 10.13 show an approximation of the spectrum σ(L) of L linearized about
the spiral wave v⋆. In Figure 10.13 there are visualized the real parts of the first
component of some eigenfunctions associated to different eigenvalues belonging to
the point spectrum σpoint(L). Let us discuss the numerical results:

Since the spiral wave does not satisfy the condition (1.20), we cannot apply The-
orem 1.8, Corollary 8.1, Theorem 9.8, Corollary 9.9 and Theorem 9.10. However,
we can act on the assumption that the spiral wave is Archimedean far away from
the center of rotation and therefore we can apply the theory from Section 9.5. We
infer from (9.21) that

{
λl(ik) + iσ1Z | k ∈ R, l = 1, 2

}
⊆ σess(L).

This means that the essential spectrum for a spiral wave contains infinitely many
parabolas λl(i·) that are all opened to the left. The distance between two neigh-
boring turning points of the parabolas equals σ1, that can easily be seen in (9.21).

Figure 10.13 shows an approximation σapprox
ess (L) of the essential spectrum at

a spiral wave, represented by the red dots. On the left of the picture, there is
illustrated the approximation of these infinitely many parabolas. In particular, the
distance of two neighboring turning points is as expected approximatively σ1. In the
middle we have against our theoretical knowledge infinitely many horizontal lines.
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Using Theorem 9.4 we deduce informations about the part of the point spectrum
σpoint(L) that is located on the imaginary axis and is due to the SE(2)-action. All
these eigenvalues are given by

λ1 = iσ1, λ2 = −iσ1, λ3 = 0,

and have algebraic multiplicity 1. Their corresponding approximations are illus-
trated by the blue circles in Figure 10.13. As everyone knows, Theorem 9.4 does
not yield a complete characterization of the point spectrum σpoint(L). This means
that there maybe exist further eigenvalues belonging to σpoint(L). The approxima-
tion of σ(L) contains no further isolated eigenvalues. The approximation of the
point spectrum, denoted by σapprox

point (L), contains only the eigenvalues visualized by
the blue circles. The three eigenfunctions belonging to the eigenvalues labeled by
a green square in Figure 10.13, are visualized in Figure 10.13. These pictures show
the real parts of the first component of the eigenfunctions. These three eigenfunc-
tions are approximations of the eigenfunctions from Theorem 9.4, see also Example
9.6. In particular, the first eigenfunction is an approximation of the rotational term
〈S⋆x,∇v⋆(x)〉, that obviously does not decay in space.

(2): For a discussion about the spectrum at a scroll ring in Figure 10.13, 10.12 and
10.12 we refer to Example 10.12(3).

Example 10.14 (Barkley model). Consider the eigenvalue problem for the Barkley
model from Example 2.3 and Example 10.11

(
1 0
0 D

)

△v(x) + 〈S⋆x+ λ⋆,∇v(x)〉+Df (v⋆(x)) v(x) = λv(x),(10.61)

with v : Rd → C2, d ∈ {2, 3} and f : R2 → R2 given by

f

(
u1
u2

)

=

(
1
ε
u1 (1− u1)

(
u1 − u2+b

a

)

g(u1)− u2

)

,

where u = (u1, u2)
T ∈ R2, 0 6 D << 1, 0 < ε << 1, 0 < a, b ∈ R, g : R → R and

v⋆ : R
d → R2.

(1): For the parameter values from (2.10) we have already seen in Example 2.3 and
Example 10.11 that the Barkley model exhibit rigidly rotating wave solutions for
space dimension d = 2. In the following we consider also the case D = 0.1. Note
that the Barkley model (2.9) is a mixed hyperbolic-parabolic system for D = 0 and
a parabolic system for D = 0.1. The parameter values (2.10) with D = 0 satisfy
only our assumptions (A1) and (A5)–(A7). If we choose D = 0.1 in (2.10), then
the parameters even satisfy the assumptions (A1)–(A8) for every

1.2699 ≈ 22

2
√
10 + 11

< p <
22

−2
√
10 + 11

≈ 4.7054,

with v∞ = (0, 0)T , but neither condition condition (1.20) nor our assumption (A9),
since (A9) requires that b < 0. Therefore, in both cases, D = 0 and D = 0.1, the
spiral wave is not localized in the sense of Theorem 1.8. But in case of D = 0.1 the
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spiral wave seems to be Archimedean far away from the center of rotation, i.e. v⋆
satisfies (9.16). In order to discuss the results concerning the linearization and its
associated eigenvalue problem, we recall the translational and rotational velocities
of the spiral wave: For D = 0 we have already observed in Example 10.11 that the
velocities are given by (10.46). Repeating the computations from Example 2.3 and
Example 10.11 with exactly the same setting but with D = 0.1 instead of D = 0
yields the following velocities

µ(1) = −3.195, µ(2) = −1.570, µ(3) = 1.957.

Thus, compare (10.49),

σ(S⋆) = {±σ1i} , σ1 = µ(3) = 2.067, for D = 0,(10.62)

σ(S⋆) = {±σ1i} , σ1 = µ(3) = 1.957, for D = 0.1.(10.63)

For the computation of the eigenvalue problem (10.61) we use in both cases, i.e.
for D = 0 and D = 0.1, continuous piecewise linear finite elements with maximal
stepsize △x = 0.5, homogeneous Neumann boundary conditions and the same
parameter values as in (10.54) for the eigenvalue solver. The profile v⋆ and the
velocities (S⋆, λ⋆) come again from a simulation: First we solve the freezing system
(10.45) until time 500, as explained in Example 10.11, then we solve the eigenvalue
problem (10.61), where the profile v⋆ and the velocities (S⋆, λ⋆) are chosen as the
solution of (10.45) at time t = 500, cf. Figure 10.6(b)-(e) for the case D = 0.
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Figure 10.18: Essential and point spectrum of the Barkley model for a spiral wave with
d = 2 for the hyperbolic-parabolic case with D = 0 (a) and for the parabolic
case with D = 0.1 (b)

Figure 10.18 shows an approximation of the spectrum σ(L) of L linearized about
the spiral wave v⋆ for D = 0 (a) and D = 0.1 (b). In Figure 10.14 there are visu-
alized the real parts of the first component of certain eigenfunctions associated to
different eigenvalues belonging to the point spectrum σpoint(L) for D = 0. Anal-
ogously, Figure 10.14 contains the corresponding eigenfunctions for D = 0.1. We
next discuss the numerical results in detail:

For both, D = 0 and D = 0.1, the spiral wave does not satisfied the condition
(1.20). Therefore, Theorem 1.8, Corollary 8.1, Theorem 9.8, Corollary 9.9 and
Theorem 9.10 are not applicable. Nevertheless, in the parabolic case with D = 0.1
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Figure 10.19: Eigenfunctions of the Barkley model for a spiral wave with d = 2 (for D = 0)

Figure 10.20: Eigenfunctions of the Barkley model for a spiral wave with d = 2 (for
D = 0.1)

the spiral wave is Archimedean far away from the center of rotation and therefore
we can apply the theory from Section 9.5. This yields, cf. (9.21),

{
λl(ik) + iσ1Z | k ∈ R, l = 1, 2

}
⊆ σess(L).

meaning that the essential spectrum contains infinitely many parabolas λl(i·) that
are all opened to the left. The distance between two neighboring turning points
of the parabolas equals σ1, that can easily be seen in (9.21). In the hyperbolic-
parabolic case with D = 0, where the diffusion matrix is degenerated and doesn’t
have full rank, the situation much more involved. The parabolic part generates
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identically to the case above such a set of parabolas. But in case of D = 0 it is
well known, that the hyperbolic part generates additionally a vertical line which is
located in the left half-plane and belongs to the essential spectrum. Note that the
theory from Section 9.5 does not cover the case for degenerated diffusion matrices.

Figure 10.18(a)-(b) shows the approximations σapprox
ess (L) of the essential spectrum

at a spiral wave for D = 0 (a) and D = 0.1 (b), represented by the red dots. In
both pictures we observe on the left an approximation of these infinitely many
parabolas. In the left picture we additionally observe an approximation of the
vertical line belonging to the essential spectrum that is due to the hyperbolic part.
Both, forD = 0 andD = 0.1, the distance of their turning points is approximatively
σ1. Furthermore, an application of Theorem 9.4 provides a certain part of the point
spectrum σpoint(L) that is located on the imaginary axis and is due to the SE(2)-
action. These eigenvalues are given by

λ1 = iσ1, λ2 = −iσ1, λ3 = 0,

and have algebraic multiplicity 1. Their corresponding approximations are illus-
trated by the blue circles in Figure 10.18(a) for D = 0 and in Figure 10.18(b).
Note that Theorem 9.4 does not yield a complete characterization of the point
spectrum σpoint(L), meaning that there can exist further eigenvalues belonging to
σpoint(L). The approximations of σ(L) contain in both cases, D = 0 and D = 0.1,
one complex-conjugated pair of isolated eigenvalues, represented by the blue crosses
in Figure 10.18(a)-(b). The approximation of the point spectrum, denoted by
σapprox
point (L), is compound by the eigenvalues visualized by the blue circles and by

the blue crosses. The eigenfunctions of the isolated eigenvalues, that are labled
by a green square in Figure 10.18(a) and Figure 10.18(b), are visualized in Figure
10.14 and Figure 10.14, respectively. Similar as before, there are illustrated the
real parts of the first components of the corresponding eigenfunction. The first
three eigenfunctions in Figure 10.14 and Figure 10.14 are approximations of the
eigenfunctions from Theorem 9.4, see also Example 9.6. The fourth eigenfunction
belongs in both cases to the remaining eigenvalue, which is labeled by a green box.
We notice that in both cases the first eigenfunction is an approximation of the ro-
tational term 〈S⋆x,∇v⋆(x)〉. Finally, we observe that none of these eigenfunctions
decay in space.

10.5 Decompose and freeze method for

multi-structures

In this section we introduce the decompose and freeze method. This method
can be considered as an extension of the freezing approach to multi-structures, e.g.
multi-fronts and multi-pulses for d = 1 and multi-solitons for d = 2. For some
literature about the decompose and freeze method we refer to [17] and [99] for
one-dimensional multi-structures and to [16] for one- and two-dimensional multi-
structures.

Let E denote a module acting on the state space (X, ‖·‖) via left multiplication,

• : E ×X → X, (ϕ, u) 7→ ϕ • u.
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Moreover, let

b : G→ GL(E), γ 7→ b(γ)

denote the action of the Lie group G on E. Considering the mapping

b(·)ϕ : G→ E, γ 7→ b(γ)ϕ, ϕ ∈ E,

we require that the actions a and b satisfy the identities

a(γ) (ϕ • u) = (b(γ)ϕ) • (a(γ)u) , ∀ γ ∈ G ∀ϕ ∈ E ∀ u ∈ X,(10.64)

b(γ) (ϕψ) = (b(γ)ϕ) (b(γ)ψ) , ∀ γ ∈ G ∀ϕ, ψ ∈ E.(10.65)

In practice, given an explicit representation for the action a, one derives a repre-
sentation for the action b from (10.64), which then must satisfy the property from
(10.65). In particular, if we apply (10.65) with ψ = ϕ−1 we obtain the equality
1E = b(γ) (ϕϕ−1) = (b(γ)ϕ) (b(γ) (ϕ−1)), where 1E denotes the unit element of E.
This yields the inverse

(b(γ)ϕ)−1 = b(γ)
(
ϕ−1

)
.

In the following we briefly explain the main concept of the decompose and freeze
approach for multi-structures, [17], [99], [16]:

Consider a general equivariant evolution equation (10.9). We introduce new
functions γj(t) ∈ G and vj(t) ∈ Y for j = 1, . . . , m (m ∈ N and m > 2) such that
the solution u of (10.9) can be written as

u(t) =
m∑

j=1

a(γj(t))vj(t), 0 6 t < T.(10.66)

Here, γj(t) ∈ G denotes the time-dependent position of the pattern vj(t) ∈ Y .
We now perform a time-dependent partition of unity. For this purpose, we assume

ϕ ∈ E such that the inverse of
∑m

j=1 b(γj)ϕ ∈ E with respect to the multiplication

in E exists for every γ1, . . . , γm ∈ G and we denote this inverse
(
∑m

j=1 b(γj)ϕ
)−1

by 1
∑m

j=1 b(γj )ϕ
. Inserting the ansatz (10.66) into (10.9) and using the abbreviation

γkj (t) = γ−1
j (t) ◦ γk(t) we obtain

m∑

j=1

(

a(γj(t))vj,t(t) + d [a(γj(t))vj(t)] γj,t(t)

)

=

m∑

j=1

d

dt
[a(γj(t))vj(t)]

=
d

dt

[
m∑

j=1

a(γj(t))vj(t)

]

= ut(t) = F (u(t)) = F

(
m∑

j=1

a(γj(t))vj(t)

)

=
m∑

j=1

F (a(γj(t))vj(t)) +

[

F

(
m∑

k=1

a(γk(t))vk(t)

)

−
m∑

k=1

F (a(γk(t))vk(t))

]

=

m∑

j=1

a(γj(t))F (vj(t)) + a(γj(t))

(

ϕ
∑m

k=1 b(γ
k
j (t))ϕ
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•
[

F

(
N∑

k=1

a(γkj (t))vk(t)

)

−
N∑

k=1

F
(
a(γkj (t))vk(t)

)

])

,

where in the last equation we used the following relation

F

(
m∑

k=1

a(γk(t))vk(t)

)

−
m∑

k=1

F (a(γk(t))vk(t))

=

∑m
j=1 b(γj(t))ϕ

∑m
k=1 b(γk(t))ϕ

•
[

F

(
m∑

k=1

a(γk(t))vk(t)

)

−
m∑

k=1

F (a(γk(t))vk(t))

]

=
m∑

j=1

b(γj(t))ϕ
∑m

k=1 b(γk(t))ϕ
•
[

F

(
m∑

k=1

a(1)a(γk(t))vk(t)

)

−
m∑

k=1

F (a(1)a(γk(t))vk(t))

]

=

m∑

j=1

b(γj(t))ϕ
∑m

k=1 b(γk(t))ϕ
•
[

F

(

a(γj(t))

m∑

k=1

a(γ−1
j (t) ◦ γk(t))vk(t)

)

−
m∑

k=1

F
(
a(γj(t))a(γ

−1
j (t) ◦ γk(t))vk(t)

)

]

=

m∑

j=1

b(γj(t))ϕ
∑m

k=1 b(γk(t))ϕ
• a(γj(t))

[

F

(
m∑

k=1

a(γkj (t))vk(t)

)

−
m∑

k=1

F
(
a(γkj (t))vk(t)

)

]

=
m∑

j=1

1
∑m

k=1 b(γk(t))ϕ
• a(γj(t))

(

ϕ •
[

F

(
m∑

k=1

a(γkj (t))vk(t)

)

−
m∑

k=1

F
(
a(γkj (t))vk(t)

)

])

=

m∑

j=1

(
m∑

k=1

b(1)b(γk(t))ϕ

)−1

• a(γj(t))
(

ϕ •
[

F

(
m∑

k=1

a(γkj (t))vk(t)

)

−
m∑

k=1

F
(
a(γkj (t))vk(t)

)

])

=

m∑

j=1

(

b(γj(t))

m∑

k=1

b(γ−1
j (t) ◦ γk(t))ϕ

)−1

• a(γj(t))
(

ϕ

•
[

F

(
m∑

k=1

a(γkj (t))vk(t)

)

−
m∑

k=1

F
(
a(γkj (t))vk(t)

)

])

=

m∑

j=1



b(γj(t))

(
m∑

k=1

b(γkj (t))ϕ

)−1


 • a(γj(t))
(

ϕ

•
[

F

(
m∑

k=1

a(γkj (t))vk(t)

)

−
m∑

k=1

F
(
a(γkj (t))vk(t)

)

])
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=
m∑

j=1

a(γj(t))

(

ϕ
∑m

k=1 b(γ
k
j (t))ϕ

•
[

F

(
m∑

k=1

a(γkj (t))vk(t)

)

−
m∑

k=1

F
(
a(γkj (t))vk(t)

)

])

Requiring equality of the summands in
∑m

j=1 and applying a(γ−1
j (t)) on both sides

in the j-th equation we obtain

vj,t(t) =F (vj(t))− a(γ−1
j (t))d [a(γj(t))vj(t)] γj,t(t) +

ϕ
∑m

k=1 b(γ
k
j (t))ϕ

•
[

F

(
m∑

k=1

a(γkj (t))vk(t)

)

−
m∑

k=1

F
(
a(γkj (t))vk(t)

)

](10.67)

for j = 1, . . . , m. Next, we introduce µj(t) ∈ g = T
1

G via

γj,t(t) = dLγj(t)(1)µj(t), 0 < t < T(10.68)

for every j = 1, . . . , m. Using (10.15) once more, equation (10.67) can be written
as

vj,t(t) =F (vj(t))− d [a(1)vj(t)]µj(t) +
ϕ

∑m
k=1 b(γ

k
j (t))ϕ

•
[

F

(
m∑

k=1

a(γkj (t))vk(t)

)

−
m∑

k=1

F
(
a(γkj (t))vk(t)

)

]

.
(10.69)

To compensate the extra variables µj(t) for j = 1, . . . , m, we require as in the
derivation of the freeze method for single structures q = dim g phase conditions
Ψ(vj(t), µj(t)) = 0 for every j = 1, . . . , m, where Ψ is defined by (10.17). Finally,
we impose the initial conditions γj(0) = γ0j ∈ G for equation (10.68) and vj(0) = v0j
such that

u0(x) =

m∑

j=1

a(γ0j )v
0
j (x), x ∈ Rd.

This leads to the abstract formulation of the decompose and freeze method as a
coupled nonlinear system of differential algebraic evolution equations
(SDAE)

vj,t(t) =F (vj(t))− d [a(1)vj(t)]µj(t) +
ϕ

∑m

k=1 b(γ
k
j (t))ϕ

, vj(0) = v0j ,(10.70a)

•
[

F

(
m∑

k=1

a(γkj (t))vk(t)

)

−
m∑

k=1

F
(
a(γkj (t))vk(t)

)

]

0 =Ψ(vj(t), µj(t)),(10.70b)

γj,t(t) =dLγj(t)(1)µj(t), γj(0) = γ0j ,(10.70c)
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with abbreviation γkj (t) := γ−1
j (t)◦γk(t). The equations (10.70a) and (10.70c) must

be satisfied for t > 0 and (10.70b) for t > 0. In applications (10.70a) is now a cou-
pled PDE, (10.70b) are algebraic constraints and (10.70c) is an ODE. In contrast to
the freezing method for single-structures, the system (10.70a) and the reconstruc-
tion equation (10.70c) are coupled, i.e. they must be solved simultaneously. The
algebraic constraint can be substituted once more by one of the phase conditions,
that we have discussed in Section 10.2.

Example 10.15 (Reaction diffusion systems, Part 4). We continue with Exam-
ple 10.8. Let the Banach space (X, ‖·‖) be still given by

(
Lp(Rd,KN ), ‖·‖Lp

)
for

K ∈ {R,C} and 1 < p <∞. Let E = Cub(R
d,R), then the module Cub(R

d,R) acts
on X via multiplication

• : Cub(R
d,R)×X → X, (ϕ, u) 7→ ϕ • u := ϕu.

The representation for the SE(d)-action a on X and property (10.64) yields that
the SE(d)-action b on Cub(R

d,R) must also be given by

b(·)ϕ : SE(d) → Cub(R
d,R), γ = (R, τ) 7→ [b(γ)ϕ] (·) := ϕ(R−1(· − τ)),

i.e. a and b formally coincide. Now, it is straightforward to check that (10.65) is
satisfied. Further, let ϕ ∈ Cub(R

d,R) be a positive radial bump function such that
the main mass is located near zero and 0 < ϕ(x) 6 1 for x ∈ Rd, e.g.

ϕ(x) = sech (β |x|) , for some β > 0,

then the expression
∑m

j=1 b(γj)ϕ ∈ Cub(R
d,R) is invertible in Cub(R

d,R) for every
γ1, . . . , γm ∈ SE(d).

We introduce new functions γj(t) = (Rj(t), τj(t)) ∈ SE(d) and vj(·, t) ∈ Y for
every j = 1, . . . , m such that the solution u of (10.10) can be written as

u(x, t) =

m∑

j=1

a(γj(t))vj(x, t) =

m∑

j=1

v
(
R−1
j (t) (x− τj(t)) , t

)
,(10.71)

for t > 0 and x ∈ Rd with d > 2. Inserting the freezing ansatz (10.71) into
(10.10), using the partition of unity explained above and requiring equality for
every summand, yields analogously to (10.67)

vj,t(x, t) =A△vj(x, t) + f(vj(x, t))− a(γ−1
j (t))d [a(γj(t))vj(x, t)] γj,t(t)

+
ϕ(x)

∑m
k=1 b(γ

k
j (t))ϕ(x)

[

f

(
m∑

k=1

a(γkj (t))vk(x, t)

)

−
m∑

k=1

f
(
a(γkj (t))vk(x, t)

)

]

,

(10.72)

for t > 0, x ∈ Rd, j = 1, . . . , m and abbreviation γkj (t) := γ−1
j (t)◦γk(t). Introducing

µj(t) = (Sj(t), λj(t)) ∈ se(d) = T
1

SE(d) via (10.68), i.e.
(
Rj,t(t)
τj,t(t)

)

= γj,t(t) = dLγj(t)(1)µj(t) =

(
Rj(t)Sj(t)
Rj(t)λj(t)

)

,

(
Rj(0)
τj(0)

)

=

(
R0
j

τ 0j

)

,
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where γj(t) = (Rj(t), τj(t)) ∈ SE(d), the vj-equations (10.72) can be transformed
into (10.69) with d [a(1)vj(x, t)]µj(t) given by (10.11). To compensate the extra

variables µj(t) we require once more d(d+1)
2

= dim se(d) phase conditions
Ψ(vj(·, t), µj(t)) = 0 for every j = 1, . . . , m, where Ψ is a function as in (10.25).
Possibilities for the choice of phase condition were discussed in Example 10.7. Thus,
the decompose and freeze method yields the coupled nonlinear system of par-
tial differential algebraic evolution equations (SPDAE)

vj,t(x, t) =A△vj(x, t) + f(vj(x, t)) + 〈Sj(t)x+ Idλj(t),∇vj(x, t)〉

+
ϕ(x)

∑m
k=1 b(γ

k
j (t))ϕ(x)

[

f

(
m∑

k=1

a(γkj (t))vk(x, t)

)

−
m∑

k=1

f
(
a(γkj (t))vk(x, t)

)

]

, vj(x, 0) = v0j (x)

(10.73a)

0 =Ψ(vj(·, t), µj(t)),(10.73b)
(
Rj,t(t)
τj,t(t)

)

=

(
Rj(t)Sj(t)
Rj(t)λj(t)

)

,

(
Rj(0)
τj(0)

)

=

(
R0
j

τ 0j

)

,(10.73c)

where γj(t) = (Rj(t), τj(t)) ∈ SE(d), µj(t) = (Sj(t), λj(t)) ∈ se(d) and the argu-
ment γkj (t) is equal to

γkj (t) :=γ
−1
j (t) ◦ γk(t) = (Rj(t), τj(t))

−1 ◦ (Rk(t), τk(t))

=
(
R−1
j (t),−R−1

j (t)τj(t)
)
◦ (Rk(t), τk(t))

=
(
R−1
j (t)Rk(t), R

−1
j (t) (τk(t)− τj(t))

)
.

10.6 Numerical examples of multi-solitons

In this section we apply the decompose and freeze method to investigate numerically
the interaction of multi-solitons. To be more precise, we consider the cubic-quintic
complex Ginzburg-Landau equation (QCGL) in two space dimensions and study
interaction processes of several spinning solitons. For this purpose we analyze both
the nonfrozen equation and the decompose and freeze system. Interaction processes
of the QCGL in the nonfrozen case for d = 2 and d = 3 can be found in [78]. Let
us briefly discuss the numerical settings.

Generation of initial data. Consider the QCGL from Examples 2.1, 10.9 and
10.12

ut =α△u+ u
(
µ+ β |u|2 + γ |u|4

)

u(0) =u0
(10.74)

with u : Rd × [0,∞[→ C, u0 : R
d → C, d ∈ {2, 3}, α, β, γ, µ ∈ C and Reα > 0. For

the parameter values (2.4) we already know from Example 2.1(1) and 10.9(1) that
single spinning solitons exists, cf. Figure 2.1 for an illustration.

To investigate the interaction of several spinning solitons we need appropriate
initial data, that come originally from a simulation. To generate the initial data
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we solve (10.74) on a circular disk of radius R = 20 until time t = 150. For the
numerical computations we use the parameters from (2.4), continuous piecewise
linear finite elements with maximal stepsize △x = 0.5, the BDF method of order
2 with absolute tolerance atol = 10−4, relative tolerance rtol = 10−2 and maximal
stepsize △t = 0.1, homogeneous boundary conditions and initial data

u2D0 (x1, x2) =
1

5
(x1 + ix2) exp

(

−x
2
1 + x22
49

)

.

To avoid confusions in the sequal we denote the corresponding solution by uid(x, t).

Compuational settings for the nonfrozen system. Now we investigate the
interaction of several spinning solitons in the nonfrozen system (10.74). For this
purpose we start a second computation and solve (10.74) on a circular disk of radius
R = 20 until time t = 150. For the numerical computations we use again the
parameters from (2.4), continuous piecewise linear finite elements with maximal
stepsize △x = 0.5, the BDF method of order 2 with absolute tolerance atol =
10−6, relative tolerance rtol = 10−2 and maximal stepsize △t = 0.1 as well as
homogeneous boundary conditions. As initial data u0 for (10.74) we take the sum
of m > 2 such solitons, shifted a certain distance apart with a possibly shifted
phase, i.e. we consider initial data of the form

u0(x) =

m∑

j=1

u0j

(

R̃−1
j (x− τ̃j)

)

, x ∈ Rd,(10.75)

with u0j(x) := uid(x, 150) for |x| 6 R and u0j(x) = 0 for |x| > R, j = 1, . . . , m.
This means that u0j(x) is the single spinning soliton that we have computed before

and which is illustrated in Figure 2.1. The constants θ̃j and τ̃j , that are needed to
construct the initial data from (10.75) via

R̃j := R̃(θ̃j) :=

(
cos θ̃j − sin θ̃j
sin θ̃j cos θ̃j

)

∈ R2,2, θ̃j ∈ R, τ̃j ∈ R2,(10.76)

are chosen explicitly in the examples below for every j = 1, . . .m. Now, the solution
u(x, t) of (10.74) describes an interaction process of multi-solitons in the nonfrozen
case.

In the numerical computations occur three different situations: If the distance
of the centers of rotation τ̃j is large enough and the phases are shifted identically,
the solitons repel each other and a multi-structure consisting of m spinning solitons
stabilizes. This behavior we call a weak interaction. If the distance is small and
the phases are shifted identically, the solitons collide into a single spinning soliton.
This behavior we call a strong interaction. If the phases are shifted differently
and the distance of the centers of rotation is small enough, a permanent collision
process will occur. This behavior we call a phase shift interaction.

Computational settings for the decompose and freeze system. We are
now interested into that what happens with the shape of the profiles and their
corresponding velocities during the interaction process of the spinning solitons. To
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investigate this numerically, we consider the coupled nonlinear system of partial
differential equations for the QCGL

vj,t(x, t) = A△vj(x, t) + f(vj(x, t)) + 〈Sj(t)x+ Idλj(t),∇vj(x, t)〉

+
ϕ(x)

∑m

k=1 b(γ
k
j (t))ϕ(x)

[

f

(
m∑

k=1

a(γkj (t))vk(x, t)

)

−
m∑

k=1

f
(
a(γkj (t))vk(x, t)

)

]

, vj(x, 0) = v0j (x)

(10.77a)

0 = Re (vj − v̂j, (xkDi − xiDk) v̂j)L2 , i = 1, . . . , d− 1, k = i− 1, . . . , d

0 = Re (vj − v̂j, Dlv̂j)L2 , l = 1, . . . , d,
(10.77b)

(
Rj,t(t)
τj,t(t)

)

=

(
Rj(t)Sj(t)
Rj(t)λj(t)

)

,

(
Rj(0)
τj(0)

)

=

(
R0
j

τ 0j

)

,(10.77c)

for j = 1, . . . , m, with parameters α, β, γ, µ ∈ C, Reα > 0 and nonlinearity

f : C → C, f(v) = v
(
µ+ β|v|2 + γ|v|4

)
.

In the examples below we compute the solution of (10.77) on a circular disk of radius
R = 20 that is centered at the origin. For the numerical computations we used the
same settings as for the nonfrozen case above, i.e. we use the parameters from
(2.4), continuous piecewise linear finite elements with maximal stepsize △x = 0.5,
the BDF method of order 2 with absolute tolerance atol = 10−6, relative tolerance
rtol = 10−2 and maximal stepsize △t = 0.1 as well as homogeneous boundary
conditions. Moreover, we equip (10.77) with initial data

v0j (x) =u
0
j(x), R0

j = R̃(θ0j ), θ0j = θ̃j ∈ R, τ 0j = τ̃j ∈ R2(10.78)

for every j = 1, . . . , m. Finally, the bump function is given by

ϕ(x) =
2

eb|x| + e−b|x|
=

1

cosh b|x| = sechb|x|, b ∈ R,(10.79)

with b = 0.5 and the reference functions v̂j(x) = v0j (x) for j = 1, 2.
Let u(x, t) denote the solution of the nonfrozen system (10.74) and let v(x, t)

denote the solution of the decompose and freeze system (10.77), then we can expect
that the time evolution of the interaction process is approximatively

u(x, t) ≈
m∑

j=1

vj
(
R−1
j (t) (x− τj(t)) , t

)
,(10.80)

i.e. the right hand side, called the superposition, approximates the solution of
(10.74), where (vj , (Rj , τj)) denotes the solution of (10.77). This will be checked in
the examples below. For the numerical computations we use Comsol MultiphysicsTM,
[1].

Example 10.16 (Weak interaction of two spinning solitons in 2D). In this example
we investigate the weak interaction of two spinning solitions in two space dimen-
sions. To make ourself familiar with the behavior of weak interaction involving
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two spinning solitons we first discuss the results of the nonfrozen system (10.74).
Afterwards we discuss the results of the decompose and freeze system (10.77).

(a) (b) (c)

Figure 10.21: Initial data for weak interaction of 2 spinning solitons in 2D

(a) (b) (c)

Figure 10.22: Time evolution for weak interaction of 2 spinning solitons in 2D

Figure 10.22 shows the real part of the time evolution for the weak interaction
of two spinning solitons in R2 as the solution of (10.74) at time t = 12.6, 75.0 and
150.0 in (a)-(c). For the numerical computation we used (10.76) with m = 2 and

θ̃1 = θ̃2 = 0, τ̃1 =

(
−4
0

)

, τ̃2 =

(
4
0

)

,(10.81)

i.e. the initial data for (10.74) are the sum of two spinning solitons centered at
±(4, 0) and without phase shift. Figure 10.21 shows the real part (a), imaginary
part (b) and the absolute value (c) of the initial function u0 from (10.75). The
colorbars in Figure 10.21 and 10.22 are scaled from −1.65 (blue) to 1.65 (red). In
Figure 10.22 we observe that the solitons repel from each other and they change
their position clockwise. We next discuss the results obtained by the decompose
and freeze method, cf. (10.77).

Figure 10.23 illustrates the corresponding results for the decompose and freeze
method (10.77) in R2 for m = 2. For the numerical computation we used the initial
data (10.78) with parameters from (10.81). Figure 10.23(d)-(e) shows the real parts
of the single profiles v1 in (d) and v2 in (e) at time t = 150. We observe that each
of these profiles possess the shape of a spinning soliton. Figure 10.23(f) illustrates
the time evolution for the positions of these two profiles from t = 0 to t = 150. The
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(a) (b) (c)
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Figure 10.23: Weak interaction of 2 spinning solitons in 2D with decompose and freeze
method

blue and the red line describes the curve for the position of v1 and v2, respectively.
The positions at the end time t = 150 are represented by the blue and the red circle.
The pointers that are fixated at each circle represent the current phase position.
We observe that the positions travel clockwise on a circle. Since the positions at
time t = 150 are

p1(150) =

(
−4.155
2.916

)

, p2(150) =

(
4.265
−3.021

)

,

we deduce that |p1(150)− p2(150)| = 10.3026 and expect that the circle has ap-
proximatively the radius Rcirc = 5.1513. Therefore, the distance of the solitons has
grown up from 8 to 10.3026, meaning that the solitons repel. In particular, the
phases seem to coincide. Figure 10.23(g)-(i) shows the velocities: the translational
velocities in x1-direction (g) and in x2-direction (h) as well as the angular veloci-

ties in the x1-x2-plane (i). Note that µj =
(

µ
(1)
j , µ

(2)
j , µ

(3)
j

)T

are the velocities for
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the jth profile vj, j = 1, 2. We observe e.g. in Figure 10.23(g) that µ
(1)
1 (t) and

µ
(1)
2 (t) are periodic in time with period T 2D

x1
≈ 6.2 and that µ

(1)
1 (t) and µ

(1)
2 (t) are

shifted from each other by the value 3.1, which equals the half period length. A
similar behavior we observe in Figure 10.23(h) for µ

(2)
1 and µ

(2)
2 . In contrary to the

translational velocities, the angular velocities µ
(3)
1 and µ

(3)
2 are just also periodic

and their periods coincide but there seems to be no shift between their curves. Fig-
ure 10.23(a)-(c) shows the time evolution for the real part of the superposition, cf.
(10.80), at time t = 12.6, 75.0 and 150.0. Since the superposition can be considered
as an approximation for the solution of (10.74), we compare the results illustrated
in Figure 10.22(a)-(c) with those from Figure 10.23(a)-(c). Here, we observe that
the decompose and freeze method after long time yields a certain phase shift, but
the centers of rotation are good approximated. Altogether, the decompose and
freeze method can reproduce the weak interaction of two spinning solitons.

Example 10.17 (Strong interaction of two spinning solitons in 2D). In this ex-
ample we investigate the strong interaction of two spinning solitons in two space
dimensions. To establish a better understanding for the strong interaction of two
spinning solitons we first discuss the results for the nonfrozen system (10.74) and
then we discuss the results of the decompose and freeze system (10.77).

(a) (b) (c)

Figure 10.24: Initial data for strong interaction of 2 spinning solitons in 2D

Figure 10.25 shows the real parts of the time evolution for the strong interaction
of two spinning solitons in R2 as the solution of (10.74) at time t = 4.2, 10.8, 11.7
in (a)-(c) and at time t = 15.3, 18.0, 35.1 in (d)-(f). For the numerical computation
we used (10.76) with m = 2 and

θ̃1 = θ̃2 = 0, τ̃1 =

(
−3.75

0

)

, τ̃2 =

(
3.75
0

)

,(10.82)

i.e. the two spinning solitons are now centered at ±(3.75, 0) and without phase
shift. Figure 10.24 shows the real part (a), imaginary part (b) and the absolute
value (c) of the initial function u0 from (10.75). The colorbar is again scaled from
−1.65 (blue) to 1.65 (red). In Figure 10.25 we observe that the clockwise rotating
solitons collide and produce a single spinning soliton that rotates about the origin
with the same velocity as each of these two solitons before the collision. We next
discuss the results obtained by the decompose and freeze method, cf. (10.77).
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(a) (b) (c)

(d) (e) (f)

Figure 10.25: Time evolution for strong interaction of 2 spinning solitons in 2D

Figure 10.26 illustrates the correspondig results of the decompose and freeze
method (10.77) in R2 for m = 2. For the numerical computation we used the initial
data (10.78) with parameters from (10.82). Figure 10.26(d)-(e) shows the real parts
of the single profiles v1 in (d) and v2 in (e) at time t = 150. At first glance the
profiles v1 and v2 look very strange but on closer inspection we observe that their
sum equals the real part of a single spinning solition. This tells us that every profile
v1 and v2 contains a certain portion of the single spinning soliton. Figure 10.26(f)
illustrates the time evolution for the positions of these two profiles from t = 0 to
t = 150. The blue and the red line describes the curve for the position of v1 and
v2, respectively. The positions at the end time t = 150 are represented by the blue
and the red circle. The pointers that are fixated at each circle represent the current
phase position. We observe, in contrast to the weak interaction, that the positions
in case of strong interaction travel counter-clockwise on a circle. Since the positions
at time t = 150 are

p1(150) =

(
−0.1013
−1.0114

)

, p2(150) =

(
0.1250
0.9204

)

,

we deduce that their distance is given by |p1(150)− p2(150)| = 1.9450. Therefore,
we expect that the circle has approximatively the radius Rcirc = 0.9725. Note that
the knowledge about the distance of the positions doesn’t permit us to make any
conclusions about the distance of the solitons and vice versa. In particular, the
phases seem to coincide. Note that the lines forming the boundary of the circle are
a little bit wavy. This seems to be caused by the homogeneous Neumann boundary
conditions. In case of homogeneous Dirichlet boundary conditions these lines form
a smooth circular curve. Figure 10.26(g)-(i) show the velocities: the translational
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Figure 10.26: Strong interaction of 2 spinning solitons in 2D with decompose and freeze
method

velocities in x1-direction (g) and in x2-direction (h) as well as the angular velocities

in the x1-x2-plane (i). Recall that µj =
(

µ
(1)
j , µ

(2)
j , µ

(3)
j

)T

are the velocities for the

jth profile vj , j = 1, 2. Similar to the case of weak interaction, we observe e.g. in

Figure 10.26(g) that µ
(1)
1 (t) and µ

(1)
2 (t) are periodic in time with period T 2D

x1
≈ 6.0

and that µ
(1)
1 (t) and µ

(1)
2 (t) approximatively satisfy the property µ

(1)
1 (t) = −µ(1)

2 (t).

A similar behavior can be discovered in Figure 10.26(h) for µ
(2)
1 and µ

(2)
2 . Note that

the collision process that takes time from t = 0 to t ≈ 35 can also be observed
in the curves of the velocities. Figure 10.26(a)-(c) shows the time evolution for
the real part of the superposition, cf. (10.80), at time t = 10.8, 15.3 and 35.1. A
comparison of the results illustrated in Figure 10.26(a)-(c) with those from Figure
10.25(b),(d),(f) shows that the decompose and freeze method yields a very good
reproduction of the collision process.
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Example 10.18 (Phase shift interaction of two spinning solitons in 2D). In the
following example we analyze the phase shift interaction of two spinning solitons
in two space dimensions. Similar as in the examples above, we first discuss the
results for the nonfrozen system (10.74), then the results for the decompose and
freeze system (10.77).

(a) (b) (c)

Figure 10.27: Initial data for phase shift interaction of 2 spinning solitons in 2D

(a) (b) (c)

(d) (e) (f)

Figure 10.28: Time evolution for phase shift interaction of 2 spinning solitons in 2D

Figure 10.28 illustrates the real parts of the time evolution for the phase shift
interaction of two spinning solitons in R2 as the solution of (10.74) at time t = 23.7,
26.4, 27.9 in (a)-(c) and at time t = 72.6, 75.3, 77.1 in (d)-(f). For the numerical
computation we used (10.76) with m = 2 and

θ̃1 = 0, θ̃2 = π, τ̃1 =

(
−4
0

)

, τ̃2 =

(
4
0

)

,(10.83)
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i.e. the first soliton is centered at ±(−4, 0) without phase shift and the second
soliton is centered at (4, 0) and rotated by 180 degrees. Figure 10.27 shows the
real part (a), imaginary part (b) and the absolute value (c) of the initial function
u0 from (10.75). The colorbar reaches from −1.65 (blue) to 1.65 (red). In Figure
10.25 we observe that each soliton rotates clockwise about its respective center
of rotation. Moreover, the real part, imaginary part and absolute value of the
complete structure rotates additionally about the origin. This is in strong contrast
to the examples of weak and strong interaction above. In particular, the phase shift
seems to prevent the collision of the solitons. We next discuss the results obtained
by the decompose and freeze method, cf. (10.77).

(a) (b) (c)

(d) (e)

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

(f)

0 50 100 150
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

µ

t

 

 
µ

1
(1)

µ
2
(1)

(g)

0 50 100 150
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

µ

t

 

 
µ

1
(2)

µ
2
(2)

(h)

0 50 100 150
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

µ

t

 

 
µ

1
(3)

µ
2
(3)

(i)

Figure 10.29: Phase shift interaction of 2 spinning solitons in 2D with decompose and
freeze method

Figure 10.29 visualizes the numerical results of the decompose and freeze method
(10.77) in R2 for m = 2. For the numerical computation we used the initial data
(10.78) with parameters from (10.83). Figure 10.29(d)-(e) show the real part of the
single profiles v1 in (d) and v2 in (e) at time t = 150. Even though we have a phase-



246 10 Freezing approach and numerical results

shift interaction without interruption, we observe, similarly to the case of weakly
interacting solitons, that both profiles coincide with each other. Figure 10.29(f)
illustrates the time evolution for the positions of these two profiles from t = 0 to
t = 150. The blue and the red line describes once more the curve for the position
of v1 and v2, respectively. The positions at the end time t = 150 are represented by
the blue and the red circle. The pointers that are fixated at each circle represent
the current phase position. Similar to the case of strong interaction, the positions
travel counter-clockwise on a circle. The positions at time t = 150 are

p1(150) =

(
2.845
1.324

)

, p2(150) =

(
−2.854
−1.327

)

and hence their distance is given by |p1(150)− p2(150)| = 6.2854. Consequently, we
expect that the circle has approximatively the radius Rcirc = 3.1427. In particular,
as indicated by the pointers the time evolution preserves the initial shift. Figure
10.29(g)-(i) show the velocities: the translational velocities in x1-direction (g), in
x2-direction (h) and the angular velocities in the x1-x2-plane (i). Recall that µj =
(

µ
(1)
j , µ

(2)
j , µ

(3)
j

)T

are the velocities for the jth profile vj, j = 1, 2. The velocities

µ
(1)
1 (t) and µ

(1)
2 (t) are again periodic in time with period T 2D

x1
≈ 5.8, but in contrast

to the strong interaction, the translational velocities in x1-direction now satisfy
approximatively µ

(1)
1 (t) = µ

(1)
2 (t), i.e. with positive sign. Figure 10.29(a)-(c) show

the time evolution for the real part of the superposition, cf. (10.80), at time t =
26.4, 72.6 and 77.1. Note that the colorbar is now scaled from −1.7 (blue) to
1.7 (red). A comparison of the results from Figure 10.29(a)-(c) with those from
Figure 10.28(b),(d),(f) shows that the decompose and freeze method provides us a
good reproduction of the phase-shift collision process but admits a certain phase
difference, that develops over long time.

Example 10.19 (Weak interaction of three spinning solitons in 2D). We now
expand the investigations from Example 10.16 and analyze the weak interaction
of three spinning solitons in two space dimensions. As usual, we first discuss the
results for the nonfrozen system (10.74) and afterward we discuss the results of the
decompose and freeze system (10.77)

(a) (b) (c)

Figure 10.30: Initial data for weak interaction of 3 spinning solitons in 2D
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(a) (b) (c)

Figure 10.31: Time evolution for weak interaction of 3 spinning solitons in 2D

Figure 10.31 shows the real part of the time evolution for the weak interaction of
three spinning solitons in R2 as the solution of (10.74) at time t = 15.0, 75.0 and
150.0 in (a)-(c). For the numerical computation we used (10.76) with m = 3 and

τ̃1 =

(
r cos π

2

r sin π
2

)

, τ̃2 =

(
r cos 7π

6

r sin 7π
6

)

, τ̃3 =

(
r cos 11π

6

r sin 11π
6

)

,

θ̃1 = θ̃2 = θ̃3 = 0, r =
2 · 5√

3
,

(10.84)

i.e. as initial data for (10.74) we use the sum of three not phase shifted spinning
solitons that are put on the vertices of an equilateral triangle. The numerator of
r, that equals 10, describes the distance of two different τ̃j . The constant r =
2·5√
3
≈ 5.7735 itself denotes the radius of the circumcircle, which is known to be the

circumradius. In complex notation the centers τ̃j are located on the circle reiϕ with
ϕ = π

2
, 7π

6
, 11π

6
. Figure 10.30 shows the real part (a), imaginary part (b) and the

absolute value (c) of the initial function u0 from (10.75). The colorbars in Figure
10.30 and 10.31 are scaled from −1.65 (blue) to 1.65 (red). Similar to the case of
two weakly interacting solitons from Example 10.16, we observe that the solitons
repel of each other and that they change their positions clockwise. We next discuss
the results obtained by the decompose and freeze method, cf. (10.77).

Figure 10.32 illustrates the corresponding results for the decompose and freeze
method (10.77) in R2 for m = 3. For the numerical computation we used the initial
data (10.78) with parameters from (10.84). Figure 10.32(d)-(f) shows the real parts
of the single profiles v1 in (d), v2 in (e) and v3 in (f) at time t = 150. We observe
that each of these profiles possess the shape of a spinning soliton. Figure 10.32(j)
illustrates the time evolution for the positions of these three profiles from t = 0 to
t = 150. The blue, the red and the green line describes the curve for the position of
v1, v2 and v3, respectively. The positions at the end time t = 150 are represented by
the blue, red and green circle. The pointers that are fixated at each circle represent
the current phase position. We observe that the positions travel clockwise on a
circle and the phases are equal at the end time. Since the positions at time t = 150
are

p1(150) =

(
2.331
5.625

)

, p2(150) =

(
−6.050
−0.832

)

, p3(150) =

(
3.734
−4.862

)

,
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Figure 10.32: Weak interaction of 3 spinning solitons in 2D with decompose and freeze
method.

we deduce that |pi(150)− pj(150)| = 10.58 for every i, j ∈ {1, 2, 3} with i 6= j.
Therefore, the distance of two different centers has grown up from 10 to 10.58,
meaning that the solitons repel. In particular, we observe that the circumradius
increases from 5.7735 to Rcirc ≈

√
3
3
·10.58 = 6.10. Figure 10.32(g)-(i) shows the ve-

locities: the translational velocities in x1-direction (g) and in x2-direction (h) as well
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as the angular velocities in the x1-x2-plane (i). Note that µj =
(

µ
(1)
j , µ

(2)
j , µ

(3)
j

)T

are

the velocities for the jth profile vj , j = 1, 2, 3. We observe e.g. in Figure 10.32(g)

that µ
(1)
1 (t), µ

(1)
2 (t) and µ

(1)
3 (t) are periodic in time with period T 2D

x1
≈ 6.1, which is

approximatively 2π, and that µ
(1)
1 (t), µ

(1)
2 (t) and µ

(1)
3 (t) are shifted from each other

by the value 2.03, which is approximatively 2π
3

, i.e. one third of the period length.

The same behavior we observe in Figure 10.32(h) for µ
(2)
1 , µ

(2)
2 and µ

(2)
3 . The angu-

lar velocities µ
(3)
1 , µ

(3)
2 and µ

(3)
3 are periodic with period T 2D

(x1,x2)
≈ 3.0, that could be

π, approximatively. But in contrast to Example 10.16, their curves are also shifted
from each other by the value 1.0, which is approximatively π

3
, i.e. one third of the

period length. Figure 10.32(a)-(c) shows the time evolution for the real part of the
superposition, cf. (10.80), at time t = 15.0, 75.0 and 150.0. Since the superposition
can be considered as an approximation for the solution of (10.74), we compare the
results illustrated in Figure 10.22(a)-(c) with those from Figure 10.32(a)-(c). Here,
we observe that the decompose and freeze method after long time yields a certain
phase shift, but the centers of rotation are good approximated.

Example 10.20 (Strong interaction of three spinning solitons in 2D). In the last
example we expand the investigations from Example 10.17 and investigate the
strong interaction of three spinning solitons in two space dimensions. We again
first discuss the results for the nonfrozen system (10.74) and then we discuss the
results of the decompose and freeze system (10.77).

(a) (b) (c)

Figure 10.33: Initial data for strong interaction of 3 spinning solitons in 2D

Figure 10.34 shows the real part of the time evolution for the strong interaction
of three spinning solitons in R2 as the solution of (10.74) at time t = 2.1, 5.1, 8.4 in
(a)-(c) and at time t = 12.0, 19.8, 50.1 in (d)-(f). For the numerical computation
we used (10.76) with m = 3 and

τ̃1 =

(
r cos π

2

r sin π
2

)

, τ̃2 =

(
r cos 7π

6

r sin 7π
6

)

, τ̃3 =

(
r cos 11π

6

r sin 11π
6

)

,

θ̃1 = θ̃2 = θ̃3 = 0, r =
2 · 3.75√

3
,

(10.85)

i.e. as initial data for (10.74) we use the sum of three not phase shifted spinning
solitons that are put on the vertices of an equilateral triangle. The distance of two
different τ̃j is chosen to be 7.5 and thus the circumradius equals r = 2·3.75√

3
≈ 4.3301.
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(a) (b) (c)

(d) (e) (f)

Figure 10.34: Time evolution for strong interaction of 3 spinning solitons in 2D

Figure 10.33 shows the real part (a), imaginary part (b) and the absolute value (c)
of the initial function u0 from (10.75). The colorbars in Figure 10.33 and 10.34
are scaled from −1.65 (blue) to 1.65 (red). Similar to the case of two strongly
interacting solitons from Example 10.17, we observe that the solitons collide into a
single spinning soliton that rotates about the origin with the same velocity as each
of these three solitions before the collision. We next discuss the results obtained
by the decompose and freeze method, cf. (10.77).

Figure 10.35 illustrates the corresponding results for the decompose and freeze
method (10.77) in R2 for m = 3. For the numerical computation we used the initial
data (10.78) with parameters from (10.85). Figure 10.35(d)-(f) shows the real parts
of the single profiles v1 in (d), v2 in (e) and v3 in (f) at time t = 150. Similar as
in Example 10.17 the profiles look very strange. But their superposition (10.80)
that is depicted in Figure 10.35(c) shows the real part of a single spinning soliton.
This tells us one more that every profile v1, v2 and v3 contains a certain portion
of the single spinning soliton. Figure 10.35(j) illustrates the time evolution for the
positions of these three profiles from t = 0 to t = 150. The blue, the red and the
green line describes the curve for the position of v1, v2 and v3, respectively. The
positions at the end time t = 150 are represented by the blue, red and green circle.
The pointers that are fixated at each circle represent the current phase position.
We observe that the positions travel clockwise on a circle, which is in contrast to
the strong interaction of two spinning solitons from Example 10.17. Their phases
are equal at the end time. Since the positions at time t = 150 are

p1(150) =

(
−1.1520
−0.3108

)

, p2(150) =

(
0.8207
−0.8348

)

, p3(150) =

(
0.2992
1.1330

)

,
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Figure 10.35: Strong interaction of 3 spinning solitons in 2D with decompose and freeze
method

we deduce that |pi(150)− pj(150)| = 2.04 for every i, j ∈ {1, 2, 3} with i 6= j.
This shows that the distance of two different centers has plummeted from 7.5 to
2.04. In particular, we observe that the circumradius decreases from 4.3301 to
Rcirc ≈

√
3
3

· 2.04 = 1.1778. The boundary of the circle is wavy again, which is
similar to the case of two strongly interaction solitons from Example 10.17. Figure
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10.35(g)-(i) shows the velocities: the translational velocities in x1-direction (g) and
in x2-direction (h) as well as the angular velocities in the x1-x2-plane (i). Note that

µj =
(

µ
(1)
j , µ

(2)
j , µ

(3)
j

)T

are the velocities for the jth profile vj , j = 1, 2, 3. Similar to

the previous examples we observe in Figure 10.35(g) that µ
(1)
1 (t), µ

(1)
2 (t) and µ

(1)
3 (t)

are periodic in time with period T 2D
x1

≈ 6.0, which is approximatively 2π, and

that µ
(1)
1 (t), µ

(1)
2 (t) and µ

(1)
3 (t) are shifted from each other by the value 2.0, which

is approximatively 2π
3

, i.e. one third of the period length. The same behavior we

observe in Figure 10.35(h) for µ
(2)
1 , µ

(2)
2 and µ

(2)
3 . The angular velocities µ

(3)
1 , µ

(3)
2 and

µ
(3)
3 converge to 1.027. Moreover, we observe that their graphs are congruent with

each other and that they are not periodic in time. Note that the collision process
that takes time from t = 0 to t = 70 which can also be observed in the velocity
diagrams from Figure 10.35(g)-(i). Figure 10.35(a)-(c) shows the time evolution
for the real part of the superposition, cf. (10.80), at time t = 5.1, 12.0 and 50.1.
Finally, comparing the results illustrated in Figure 10.25(b),(d),(f) with those from
Figure 10.35(a)-(c), we realize that the decompose and freeze method gives a good
reproduction of the strong interaction process of three spinning solitons.
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