Blatt V

Abgabe bis spätestens 22.05

Aufgabe 17 (4 Punkte)

Man bestimme die Abbildungen von S^2 auf sich, die unter der stereographischen Projektion der Multiplikation mit e^{it} , $t \in \mathbb{R}$, der Inversenbildung und dem Übergang zum Konjungierten entsprechen.

Aufgabe 18 (4 Punkte)

Sei $Tz := (\alpha z + \beta)/(\gamma z + \delta)$. Man zeige, daß die folgenden Aussagen equivalent sind:

- 1) $T(\mathbb{R} \cup \{\infty\}) = \mathbb{R} \cup \{\infty\};$
- 2) $\exists a, b, c, d \in \mathbb{R}$: Tz = (az + b)/(cz + d).

Man zeige dann, daß alle gebrochen linearen Transformationen, die die Einheitskreislinie in sich überführen, in der Form $Sz := (az+b)/(\bar{b}z+\bar{a})$ mit $a,b \in \mathbb{C}$, $|a| \neq |b|$ geschrieben werden können.

Aufgabe 19 (4 Punkte) Es bewege sich z auf einem von 0 ausgehenden Halbstrahl arg z = const. ins Unendliche. Für welche Richtungen derselben existiert

- a) $\lim e^z$
- b) $\lim z + e^z$

Aufgabe 20 (4 Punkte) Zeige, daß für 0 < |z| < 1 ist stets $|z|/4 < |e^z - 1| < 7/4|z|$

Blatt V Seite 1