Mathematical Modelling and Simulation with Comsol Multiphysics II

Winter term 2015/2016

Exercise 1

Dr. Denny Otten

Bearbeitung: Montag, 26.10.2015, 12:30-14:00 Uhr (während der Übung).
Exercise 1 (Fisher's equation: Traveling Wave).
Consider the Fisher's equation

$$
u_{t}=u_{x x}+u(1-u), \quad x \in \mathbb{R}, t \geqslant 0
$$

where $u=u(x, t) \in \mathbb{R}$.
a) Solve the nonfrozen Fisher's equation

$$
\begin{align*}
u_{t} & =u_{x x}+u(1-u) & & , x \in \Omega, t \in\left(0, T_{1}\right], \\
u(0) & =u_{0} & & , x \in \bar{\Omega}, t=0, \tag{1}\\
u_{x} & =0 & & , x \in \partial \Omega, t \in\left[0, T_{1}\right],
\end{align*}
$$

on the spatial domain $\Omega=[-75,75]$ for end time $T_{1}=50$ and initial data $u_{0}(x)=\frac{\tanh (x)+1}{2}$. For the space discretization use linear Lagrange elements with maximal element size $\triangle x=$ 0.1. For the time discretization use the BDF method of maximum order 2 with intermediate time steps, time stepsize $\Delta t=0.1$, relative tolerance rtol $=10^{-2}$ and absolute tolerance atol $=10^{-3}$ with global method set to be unscaled. The nonlinear equations should be solved by the Newton method. i.e. automatic (Newton).
Follow the steps below to realize the implementation:

1. Model Wizard: Choose space dimension '1D', create a 'Coefficient Form PDE' with dependent variable 'u' and select a 'time-dependent' study.
2. Geometry: Build the spatial domain $\Omega=[-75,75]$.
3. Equation settings: Implement the PDE, the initial data and the boundary conditions. Choose the shape functions for spatial discretization.
4. Parameters and Variables: Define the (local) variables $u 0=\frac{\tanh (x)+1}{2}$ and $f u=u(1-u)$.
5. Mesh: Build a user-controlled mesh with maximal element size $\triangle x=0.1$.
6. Study 1: Create a time-dependent study ('Study 1, Step 1') for t from 0 to 50 with stepsize $\Delta t=0.1$ and relative tolerance rtol $=10^{-3}$. In the solver settings choose absolute tolerance atol $=10^{-4}$ with global method set to be unscaled, BDF method of maximum order 2 with intermediate time steps and the Newton method for the nonlinear solver. Create a solution store for the solution of (1).
b) Solve the frozen Fisher's equation
(2)

$$
\begin{aligned}
v_{t} & =v_{\xi \xi}+\mu v_{\xi}+v(1-v) & & , \xi \in \Omega, t \in\left(0, T_{2}\right], \\
v(0) & =v_{0} & & , \xi \in \bar{\Omega}, t=0, \\
v_{\xi} & =0 & & , \xi \in \partial \Omega, t \in\left[0, T_{2}\right], \\
0 & =\left(v-\hat{v}, \hat{v}_{x}\right)_{L^{2}(\Omega, \mathbb{R})} & & , t \in\left[0, T_{2}\right], \\
\gamma_{t} & =\mu & & , t \in\left(0, T_{2}\right], \\
\gamma(0) & =0 & & , t=0
\end{aligned}
$$

on the spatial domain $\Omega=[-75,75]$ for end time $T_{2}=120$, initial data $v_{0}(\xi)=u_{0}(\xi)$ and reference function $\hat{v}(\xi)=u_{0}(\xi)$. For the space discretization use linear Lagrange elements with maximal element size $\triangle x=0.1$. For the time discretization use the BDF method of maximum order 2 with intermediate time steps, time stepsize $\Delta t=0.1$, relative tolerance rtol $=10^{-3}$ and absolute tolerance atol $=10^{-4}$ with global method set to be unscaled. The nonlinear equations should be solved by the Newton method (automatic (Newton)).
To realize the implementation, extend your model from a) as follows:
7. Model Wizard: Add a 'Coefficient Form PDE' with dependent variable 'v' and two 'Weak Form Boundary PDE' with dependent variable 'mu' and 'g' for a 'time-dependent' study.
8. Equation settings: Implement the PDE, the initial data and the boundary conditions. Choose the shape functions for spatial discretization.
9. Equation settings: Implement the weak form boundary for 'mu' using the weak form 'test(mu1)*pc1'. This equation has to be stated only in the left boundary point. Choose the shape functions for spatial discretization.
10. Equation settings: Implement the weak form boundary for ' g ' using the weak form 'test (g1)*mu1'. This equation has to be stated only in the left boundary point. Choose the shape functions for spatial discretization.
11. Variables: Extend the (local) variables ('Variables 1') by defining 'fv=v*(1-v)', 'Fv $=\mathrm{mu} 1 \mathrm{cpl}^{*}{ }_{\mathrm{vx}}+\mathrm{fv}$ ', 'v0=u0', 'vh=u0' and 'pc1_fix=d(vh,x)*(v-vh)'.
12. Integration operators: Define an integration operator 'intop1', that integrates an expression over the domain with integration order 2 . Further, define an integration operator 'intop2', that integrates an expression over the left boundary point with integration order 1.
13. Expressions to integrate: Define (local) variables ('Variables 2') containing the expressions for domain integration, i.e. variable 'intcpl_source_pc1' with expression 'pc1_fix' and variable 'intcpl_source_sqr_vt' with expression 'vt^2'.
14. Expressions to integrate: Define (local) variables ('Variables 3') containing the expressions for boundary integration, i.e. variable 'intcpl_source_mu1cpl' with expression 'mul'.
15. Variables for results of integration: Define (global) variables ('Variables 4') containing the result of integration, i.e. variable 'pc1' with expression 'comp1.intop1(intcpl_source _pc1)', variable 'sqr_vt' with expression 'comp1.intop1(intcpl_source_sqr_vt)' and variable 'mu1cpl' with expression 'comp1.intop1(intcpl_source_mu1cpl)'.
16. Study 2: Create a time-dependent study ('Study 2, Step 1') for t from 0 to 120 with stepsize $\Delta t=0.1$ and relative tolerance rtol $=10^{-3}$. In the solver settings choose absolute tolerance atol $=10^{-4}$ with global method set to be unscaled, BDF method of maximum order 2 with intermediate time steps and the Newton method for the nonlinear solver. Create a solution store for the solution of (2).
c) Solve the eigenvalue problem for the linearization of the Fisher's equation

$$
\begin{array}{ll}
\lambda w=w_{\xi \xi}+\mu_{\star} w_{\xi}+f^{\prime}\left(v_{\star}\right) w & , \xi \in \Omega, \tag{3}\\
w_{\xi}=0 & , \xi \in \partial \Omega
\end{array}
$$

on the spatial domain $\Omega=[-75,75]$, where

$$
f(v)=v(1-v)(v-b), \quad f^{\prime}(v)=1-2 v .
$$

For v_{\star} and μ_{\star} use the solutions v and μ of (2) at the end time $T_{2}=120$. Determine neigs $=400$ eigenvalues λ and correspondig eigenfunctions w. The eigenvalues should be closest in absolute value around the shift -1 .
To realize the implementation, extend your model from b) as follows:
17. Study 2: Create 'Compile Equations', 'Dependent Variables' and 'Eigenvalue Solver' for 'Solution 3'. Build a further study step ('Study 1, Step 2') 'Eigenvalue' study. In the eigenvalue solver settings choose the number of eigenvalues neigs $=400$, the shift -1 and the eigenvalue search method. Define the linearization point and the values of variables not solved for to be the solution of (2) at the end time T_{2}. Create a solution store for the solution of (3).
d) Postprocessing and Visualization of results: Create the following plots to visualize the results of the computations:

- Traveling Front, View 1: Plot the solution u of (1) at the time instances $t=0,10,20,30$ and 40.
- Traveling Front, View 2: Create a time-space plot for the solution u of (1).
- Profile, View 1: Plot the solution v of (2) at the end time T_{2}.
- Profile, View 2: Create a time-space plot for the solution v of (2).
- Velocity: Plot the velocity $m u$ of (2) for time t from 0 to T_{2}.
- Position: Plot the position g of (2) for time t from 0 to T_{2}.
- Reference function: Plot the template $v h$.
- Convergence indicator: Plot $\left\|v_{t}(t)\right\|_{L^{2}(\Omega, \mathbb{R})}$ and $\left|\mu_{t}(t)\right|$ for time t from 0 to T_{2}.
- Eigenvalues and Spectrum: Plot the eigenvalues λ of (3).
- Eigenfunctions: Plot the eigenfunction w of (3) belonging to the zero eigenvalue.

