Freezing Method with Comsol Multiphysics

Nagumo Equation: Traveling 1-front

Denny Otten¹ Department of Mathematics Bielefeld University 33501 Bielefeld Germany

Date: 26. Oktober 2015

1. Freezing Traveling Front of Nagumo Equation Consider the Nagumo equation

$$u_t = u_{xx} + u(1-u)(u-b), \quad x \in \mathbb{R}, \ t \ge 0$$

for some $b \in (0, 1)$, where $u = u(x, t) \in \mathbb{R}$.

a) We first solve the nonfrozen Nagumo-equation

(1.1)
$$u_{t} = u_{xx} + u(1-u)(u-b) , x \in \Omega, t \in (0, T_{1}],$$
$$u(0) = u_{0} , x \in \overline{\Omega}, t = 0,$$
$$\partial u_{x} = 0 , x \in \partial \Omega, t \in [0, T_{1}],$$

on the spatial domain $\Omega = [-50, 50]$ for end time $T_1 = 150$, initial data $u_0(x) = \frac{\tanh(x)+1}{2}$ and parameter $b = \frac{1}{4}$. For the space discretization we use linear Lagrange elements with maximal element size $\Delta x = 0.1$. For the time discretization we use the BDF method of maximum order 2 with intermediate time steps, time stepsize $\Delta t = 0.1$, relative tolerance rtol = 10^{-3} and absolute tolerance atol = 10^{-4} with global method set to be unscaled. The nonlinear equations should be solved by the Newton method. i.e. automatic (Newton).

¹e-mail: dotten@math.uni-bielefeld.de, phone: +49 (0)521 106 4784,

fax: +49 (0)521 106 6498, homepage: http://www.math.uni-bielefeld.de/~dotten/.

b) We then solve the frozen Nagumo-equation

(1.2)

$$v_{t} = v_{\xi\xi} + \mu v_{\xi} + v(1-v)(v-b) , \xi \in \Omega, t \in (0, T_{2}], \\v(0) = v_{0} , \xi \in \overline{\Omega}, t = 0, \\v_{\xi} = 0 , \xi \in \partial\Omega, t \in [0, T_{2}], \\0 = (v - \hat{v}, \hat{v}_{x})_{L^{2}(\Omega, \mathbb{R})} , t \in [0, T_{2}], \\\gamma_{t} = \mu , t \in (0, T_{2}], \\\gamma(0) = 0 , t = 0$$

on the spatial domain $\Omega = [-50, 50]$ for end time $T_2 = 150$, initial data $v_0(\xi) = u_0(\xi)$, reference function $\hat{v}(\xi) = u_0(\xi)$ and parameter $b = \frac{1}{4}$. For the space discretization we use linear Lagrange elements with maximal element size $\Delta x = 0.1$. For the time discretization we use the BDF method of maximum order 2 with intermediate time steps, time stepsize $\Delta t = 0.1$, relative tolerance rtol = 10^{-3} and absolute tolerance atol = 10^{-4} with global method set to be unscaled. The nonlinear equations should be solved by the Newton method (automatic (Newton)).

c) Finally, we solve the **eigenvalue problem** for the linearization of the Nagumo equation

(1.3)
$$\begin{aligned} \lambda w &= w_{\xi\xi} + \mu_\star w_\xi + f'(v_\star) w \quad , \, \xi \in \Omega, \\ w_\xi &= 0 \qquad , \, \xi \in \partial\Omega \end{aligned}$$

on the spatial domain $\Omega = [-50, 50]$, where

$$f(v) = v(1-v)(v-b), \quad f'(v) = (1-v)(v-b) - v(v-b) + v(1-v).$$

For v_{\star} and μ_{\star} we use the solutions v and μ of (1.2) at the end time $T_2 = 150$. We determine neigs = 400 eigenvalues λ and the correspondig eigenfunctions w. The eigenvalues are choosen such that they are closest in absolute value around the shift -b.

2. Model Wizard

Start Comsol Multiphysics.

To start Comsol Multiphysics 5.1 open the **Terminal** and enter

• comsol

- If you are using the classroom licence enter
- comsol -ckl

Model Wizard.

Space dimension

- In the **New** window, click **Model Wizard**.
- In the Model Wizard window, click 1D in the Select Space Dimension menu.

Equation for the u-component

- In the Select Physics tree, select Mathematics>PDE Interfaces>Coefficient Form PDE (c).
- Click Add.
- Next, locate the **Dependent Variables** section.
- In the **Field name** text field, type **u**.
- In the **Dependent variables** text field, type also **u**.

Equation for the v-component

 $\mathbf{2}$

- In the Select Physics tree, select Mathematics>PDE Interfaces>Coefficient Form PDE (c).
- Click Add.
- Next, locate the **Dependent Variables** section.
- In the **Field name** text field, type **v**.
- In the **Dependent variables** text field, type also **v**.

Equation for the μ -component

- In the Select Physics tree, select Mathematics>PDE Interfaces>Lower Dimensions>Weak Form Boundary PDE (wb).
- Click Add.
- Next, locate the **Dependent Variables** section.
- In the **Field name** text field, type **mu**.
- In the **Dependent variables** text field, type also **mu1**.

Equation for the γ -component

- In the Select Physics tree, select Mathematics>PDE Interfaces>Lower Dimensions>Weak Form Boundary PDE (wb).
- Click Add.
- Next, locate the **Dependent Variables** section.
- In the **Field name** text field, type **g**.
- In the **Dependent variables** text field, type also **g1**.
- Click Study.

Study settings

- In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Time Dependent.
- Click Done.

Some Advanced Settings.

Hint: In the Model Builder window you should click on the Show icon and enable everything that is possible from the menu: Equation Sections (Equation View, Override and Contribution, Discretization, Stabilization, Advanced Physics Options, Advanced Study Options and Advanced Results Options). Done this, click Expand All icon.

3. Geometry

- In the **Model Builder** tree, expand the **Component 1 (comp1)** node, right-click **Geometry** and select **Interval**.
- In the **Settings** window for Interval, locate the **Interval** section.
- In the **Left endpoint** text field, type **-50**.
- In the **Right endpoint** text field, type **50**.
- In the **Model Builder** tree, right-click on the **Component 1** (comp1) \rightarrow Geometry 1 node and select **Build all**. (Alternatively, press the short cut F8.)

4. Partial differential equation for the *u*-component (Nonfrozen PDE)

General Settings.

- Click on Component 1 (comp1) \rightarrow Coefficient Form PDE (c).
- Locate the **Settings** window for Coefficient Form PDE.
- In the Label text field, type Nonfrozen Equation.
- In the **Name** text field, type **PDE1**.
- In the **Discretization** section choose
 - Shape function type: Lagrange,
 - Element order: Linear.

Partial differential equation. We define the PDE for the *u*-component:

• Switch to Component 1 (comp1) \rightarrow Nonfrozen Equation (PDE1) \rightarrow Coefficient Form PDE 1

$$e_a \frac{\partial^2 u}{\partial t^2} + d_a \frac{\partial u}{\partial t} + \nabla \cdot (-c\nabla u - \alpha u + \gamma) + \beta \cdot \nabla u + au = f$$

with $\nabla = \frac{\partial}{\partial x}$, and enter the following values

- Mass Coefficient e_a : 0,
- Damping or Mass Coefficient d_a : 1,
- Diffusion coefficient c: 1,
- Conservative Flux Convection Coefficient α : 0,
- Conservative Flux Source γ : 0,
- Convection Coefficient β : 0,
- Absorption Coefficient a: 0,
- Source Term f: fu.

The quantity **fu** will be defined later in Section 8.

Boundary Conditions. Since the PDE of the *u*-component requires homogeneous Neumann boundary conditions at both end points of the interval, we do not must change anything. Hint: By default, there is implemented a zero flux boundary condition on the whole boundary, that corresponds to a homogeneous Neumann boundary condition.

Initial Values. We define the initial value $u(\cdot, 0) = u_0$ for the partial differential equation:

- Click on Component 1 (comp1) \rightarrow Nonfrozen Equation (PDE1) \rightarrow Initial Values 1.
- In the **Initial Values** section enter
 - Initial value for u: u0,
 - Initial time derivative of u: 0.

The quantity $\mathbf{u0}$ will be defined later in Section 8. This completes the implementation of the initial boundary value problem for the *u*-component.

5. Partial differential equation for the *v*-component (Frozen PDE)

General Settings.

- Click on Component 1 (comp1) \rightarrow Coefficient Form PDE 2 (c2).
- Locate the **Settings** window for Coefficient Form PDE.

4

- In the Label text field, type Frozen Equation.
- In the **Name** text field, type **PDE2**.
- In the **Discretization** section choose
 - Shape function type: Lagrange,
 - Element order: Linear.

Partial differential equation. We define the PDE for the v-component:

• Switch to Component 1 (comp1) \rightarrow Frozen Equation (PDE2) \rightarrow Coefficient Form PDE 1

$$e_a \frac{\partial^2 v}{\partial t^2} + d_a \frac{\partial v}{\partial t} + \nabla \cdot (-c\nabla v - \alpha v + \gamma) + \beta \cdot \nabla v + av = f$$

with $\nabla = \frac{\partial}{\partial x}$, and enter the following values

- Mass Coefficient e_a : 0,
- Damping or Mass Coefficient d_a : 1,
- Diffusion coefficient c: 1,
- Conservative Flux Convection Coefficient α : 0,
- Conservative Flux Source γ : 0,
- Convection Coefficient β : 0,
- Absorption Coefficient a: 0,
- Source Term f: Fv.

The quantity \mathbf{Fv} will be defined later in Section 8.

Boundary Conditions. Since the PDE of the *v*-component requires homogeneous Neumann boundary conditions at both end points of the interval, we do not must change anything. Hint: By default, there is implemented a zero flux boundary condition on the whole boundary, that corresponds to a homogeneous Neumann boundary condition.

Initial Values. We define the initial value $u(\cdot, 0) = u_0$ for the partial differential equation:

- Click on Component 1 (comp1) \rightarrow Frozen Equation (PDE2) \rightarrow Initial Values 1.
- In the **Initial Values** section enter
 - Initial value for u: v0,
 - Initial time derivative of u: 0.

The quantity v0 will be defined later in Section 8. This completes the implementation of the initial boundary value problem for the *v*-component.

6. Algebraic constraint for the μ -component (Velocity)

In the following we define the phase condition for μ_1 :

- Click on Component 1 (comp1) \rightarrow Weak Form Boundary PDE (wb)
- Locate the **Settings** window for Weak Form Boundary PDE.
- In the Label text field, type Phase Condition.
- In the Name text field, type AC1 for algebraic constraint.
- In the **Boundary Selection** section choose
 - Selection: Manual.

Now, click on the boundary point ${\bf 2}$ and click on the minus sign - to remove the point from the selection list.

• In the **Discretization** section choose

- 6
- Shape function type: Lagrange,
- Element order: Linear.

Weak Form PDE. We define the phase condition:

- Click on Component 1 (comp1) \rightarrow Phase Condition (AC1) \rightarrow Weak Form PDE 1.
- In the Weak Expression section enter - weak: test(mu1) * pc1

The quantity **pc1** will be defined later in Section 8.

Initial Values. Finally, we define the initial value:

- Click on Component 1 (comp1) \rightarrow Phase Condition (AC1) \rightarrow Initial Values 1.
- In the **Initial Values** section enter
 - Initial value for mu1: 0,
 - Initial time derivative of mu1: 0.

This completes the implementation of the phase condition for μ .

7. Ordinary differential equation for the γ -component (Position)

In the following we implement the reconstruction equation for the position γ :

- Click on Component 1 (comp1) \rightarrow Weak Form Boundary PDE 2 (wb2)
- Locate the **Settings** window for Weak Form Boundary PDE.
- In the Label text field, type Reconstruction Equation.
- In the **Name** text field, type **ODE1**.
- In the **Boundary Selection** section choose
 - Selection: Manual.

Now, click on the boundary point ${\bf 2}$ and click on the minus sign - to remove the point from the selection list.

- In the **Discretization** section choose
 - Shape function type: Lagrange,
 - Element order: Linear.
- In the Model Builder tree, right-click Component 1 (comp1) \rightarrow Reconstruction Equation (*ODE1*) and select Weak Form PDE.

Weak Form PDE 1. We define the ordinary differential equation for γ in a weak form:

- Click on Component 1 (comp1) \rightarrow Reconstruction Equation (ODE1) \rightarrow Weak Form PDE 1.
- In the Weak Expression section enter - weak: test(g1) * mu1

Initial Values. Finally, we define the initial value:

- Click on Component 1 (comp1)→Reconstruction Equation (ODE1)→Initial Values 1.
- In the **Initial Values** section enter
 - Initial value for g1: 0,
 - Initial time derivative of g1: 0.

Weak Form PDE 2.

- Click on Component 1 (comp1) \rightarrow Reconstruction Equation (ODE1) \rightarrow Weak Form PDE 2.
- In the **Boundary Selection** section switch to **Selection All boundaries**, then back to **Selection Manual**, since otherwise there is no boundary point contained in the selection list.
- In the Weak Expression section enter - weak: -test(g1) * g1 time

This completes the implementation of the reconstruction equation for γ .

8. Parameters, Variables and Integration Coupling Variables

Parameters. We first define the parameters and constants arising in our model as 'global parameters':

- In the **Model Builder** tree, right-click on the **Global Definitions** node and select **Parameters**. (Alternatively: On the **Model** toolbar, click **Parameters**.)
- In the **Settings** window for Parameters, locate the **Parameters** section.
- In the table add the following entry:

Name	Expression	Value	Description
b	1/4	0.25	constant of Nagumo equation

Variables 1. We now define all functions which appear in our model as 'local variables'.

- In the **Model Builder** tree, right-click on the **Component 1** (comp1)→**Definitions** node and select **Variables**.
- In the **Settings** window for Variables, locate the **Variables** section.
- In the table add the following entries:

Name	Expression	Unit	Description
fu	$u^{*}(1-u)^{*}(u-b)$		
u0	$(\tanh(x)+1)/2$		
fv	$v^{*}(1-v)^{*}(v-b)$		
Fv	mu1cpl*vx+fv		
v0	uO		
vh	v0		
pc1_fix	$d(vh,x)^*(v-vh)$		

Integration Coupling Variables 1. We next define an integration operator, that integrates a function over the whole spatial domain.

- In the Model Builder tree, right-click on the Component 1 (comp1)→Definitions node and select Component Couplings>Integration.
- In the **Settings** window for Integration, locate the **Source Selection** section and choose **Geometric entity level**: **Domain**,
 - Selection: Manual.
- Next, locate the **Advanced** section and choose
 - Method: Integration,
 - Integration order: 2,
 - Frame: Spatial (x,y,z).

Integration Coupling Variables 2. We next define an integration operator, that integrates a function over the boundary of the spatial domain.

- In the **Model Builder** tree, right-click on the **Component 1** (comp1) \rightarrow **Definitions** node and select **Component Couplings**>Integration.
- In the **Settings** window for Integration, locate the **Source Selection** section and choose
 - Geometric entity level: Boundary,
 - Selection: Manual.

Now, click on the boundary point $\mathbf{2}$ and click on the minus sign - to remove the point from the selection list.

- $\bullet\,$ Next, locate the $\mathbf{Advanced}\,$ section and choose
 - Method: Integration,
 - Integration order: 1,
 - Frame: Spatial (x,y,z).

Variables 2. We next define the functions, that are integrated over the whole spatial domain:

- In the **Model Builder** tree, right-click on the **Component 1** (comp1)→**Definitions** node and select **Variables**.
- In the **Settings** window for Variables, locate the **Geometric Entity Selection** section and choose
 - Geometric entity level: Domain,
 - Selection: Manual.
- Next, locate the Variables section and add the following entries into the table:

Name	Expression	Unit	Description
intcpl_source_pc1	pc1_fix		
$intcpl_source_sqr_vt$	vt^2	$1/s^2$	

Variables 3. We next define the functions, that are integrated over the boundary of the spatial domain:

- In the **Model Builder** tree, right-click on the **Component 1** (comp1)→**Definitions** node and select **Variables**.
- In the **Settings** window for Variables, locate the **Geometric Entity Selection** section and choose
 - Geometric entity level: Boundary,
 - Selection: Manual.

Now, click on the boundary point 2 and click on the minus sign - to remove the point from the selection list.

• Next, locate the Variables section and add the following entries into the table:

Name	Expression	Unit	Description
intcpl_source_mu1cpl	mu1		

Variables 4. Finally, we define variables that contain the results of the integration

- In the Model Builder tree, right-click on the Global Definitions node and select Variables.
- In the **Settings** window for Variables, locate the **Variables** section.
- In the table add the following entries:

Name	Expression	Unit	Description
pc1 sqr_vt mu1cpl	<pre>comp1.intop1(intcpl_source_pc1) comp1.intop1(intcpl_source_sqr_vt) comp1.intop2(intcpl_source_mu1cpl)</pre>	m/s^2	

9. Mesh

- In the Model Builder tree, click on Component 1 (comp1) \rightarrow Mesh.
- In the **Settings** window for Mesh, locate the **Mesh Settings** section.
- Set the Sequence type on User-controlled mesh.
- In the Model Builder tree, switch to Component 1 $(comp1) \rightarrow Mesh \rightarrow Size$.
- In the **Settings** window for Size, locate the **Element Size Parameters** section.
- In the Maximum element size text field, type 0.1.
- In the Model Builder tree, right-click on Component 1 (comp1)→Mesh and select Build All.

10. Studies and Computation

Study 1. Study 1

- Click on **Study 1**.
- Locate the **Settings** window for Study.
- In the Label text field, type Study 1: Nonfrozen Equation.

Step 1

- Click on Study 1: Nonfrozen Equation -> Step 1: Time Dependent.
- Locate the **Settings** window for Time Dependent.
- In the **Study Settings** section enter
 - Time unit: s,
 - **Times**: range(0,0.1,150),
 - Relative tolerance: 0.001.

The last input requires to enable the corresponding checkbox.

• In the Physics and Variables Selection section disable the checkboxes for Frozen Equation (PDE2), Phase Condition (AC1) and Reconstruction Equation (ODE1).

Solver Configurations

- Right-click on Study 1: Nonfrozen Equation→Solver Configurations and select Show Default Solver.
- Click on Study 1: Nonfrozen Equation→Solver Configurations→Solution 1→Time-Dependent Solver 1.
- Locate the **Settings** window for Time Dependent Solver.
- In the Absolute Tolerance section enter
 - Global method: Unscaled,
 - Tolerance: 0.0001.
- In the **Time Stepping** section enter
 - Method: BDF,
 - Steps taken by solver: intermediate,
 - Maximum BDF order: 2.

- 10
- Click on Study 1: Nonfrozen Equation \rightarrow Solver Configurations \rightarrow Solution $1 \rightarrow$ Time-Dependent Solver $1 \rightarrow$ Fully Coupled 1.
- Locate the **Settings** window for Fully Coupled.
- In the **Method and Termination** section, choose - **Nonlinear Method: Automatic (Newton)**,

Solution Store

- Right-click on Study 1: Nonfrozen Equation \rightarrow Solver Configurations \rightarrow Solution 1 and select Other > Solution Store from the list.
- Click on Study 1: Nonfrozen Equation \rightarrow Solver Configurations \rightarrow Solution $1 \rightarrow$ Solution Store 1.
- Locate the **Settings** window for Solution Store.
- In the Label text field, type Nonfrozen Solution.

Study 2.

- Right-click on unknown.mph (root) and select Add Study.
- In the Add Study window, select Time Dependent and confirm by click on Add Study. Study 2

• Click on **Study 2**.

- Locate the **Settings** window for Study.
- In the Label text field, type Study 2: Frozen Equation.

Study 2 Step 1

- Click on Study 2: Frozen Equation -> Step 1: Time Dependent.
- Locate the **Settings** window for Time Dependent.
- In the **Study Settings** section enter
 - Time unit: s,
 - **Times**: range(0,0.1,150),
 - Relative tolerance: 0.001.
 - The last input requires to enable the corresponding checkbox.
- In the **Physics and Variables Selection** section disable the checkbox for **Nonfrozen Equa**tion (PDE1).

Solver Configurations

- Right-click on **Study 2: Frozen Equation**→**Solver Configurations** and select **Show Default Solver**.
- Click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution $3\rightarrow$ Time-Dependent Solver 1.
- Locate the **Settings** window for Time Dependent Solver.
- In the **Absolute Tolerance** section enter
 - Global method: Unscaled,
 - Tolerance: 0.0001.
- In the **Time Stepping** section enter
 - Method: BDF,
 - Steps taken by solver: intermediate,
 - Maximum BDF order: 2.

- Click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution $3\rightarrow$ Time-Dependent Solver $1\rightarrow$ Fully Coupled 1.
- Locate the **Settings** window for Fully Coupled.
- In the **Method and Termination** section, choose - **Nonlinear Method: Automatic (Newton)**,

Solution Store

- Right-click on Study 2: Frozen Equation
 Solver Configurations
 Solution 3 and select
 Other
 Solution Store from the list.
- Click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution $3 \rightarrow$ Solution Store 1.
- Locate the **Settings** window for Solution Store.
- In the Label text field, type Frozen Solution.

Study 2 Step 2 First, we generate the solver and study step.

- Right-click on Study 2: Frozen Equation→Solver Configurations→Solution 3 and select Compile Equations.
- Right-click on Study 2: Frozen Equation→Solver Configurations→Solution 3 and select Dependent Variables.
- Right-click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution 3 and select Solvers > Eigenvalue Solver.
- Right-click on Study 2: Frozen Equation and select Study Steps>Eigenfrequency>Eigenvalue.
- Click on Study 2: Frozen Equation
 Step 2: Eigenvalue.
- Locate the **Settings** window for Eigenvalue.
- In the **Study Settings** section enter
 - Eigenvalue search method: Manual,
 - Desired number of eigenvalues: 400,
 - Search for eigenvalues around: -b,
 - Eigenvalue search method around shift: Closest in absolute value.
- In the **Physics and Variables Selection** section enable only the checkbox for **Frozen Equa**tion (PDE2).
- In the Values of dependent Variables section enable the checkbox Values of variables not solved for and enter
 - Method: Solution,
 - Study: Study 2: Frozen equation, Time Dependent,
 - Solution: Solution 3,
 - Use: Frozen Solution,
 - Selection: Last.
- Solver Configurations
- Click on Study 2: Frozen Equation
 Solver Configurations
 Solution 3 and select Compile Equations.
- Locate the **Settings** window for Compile Equations.
- In the **Study and Step** section enter
 - Use study: Study 2: Frozen Equation,
 - Use study step: Step 2: Eigenvalue.

- 12
- Click on Study 2: Frozen Equation→Solver Configurations→Solution 3 and select Dependent Variables 2.
- Locate the **Settings** window for Dependent Variables.
- In the General section enter
 Defined by study step: Step 2: Eigenvalue.
- Click on Study 2: Frozen Equation
 Solver Configurations
 Solution 3 and select Eigenvalue Solver 1.
- Locate the **Settings** window for Dependent Variables.
- In the **General** section enter
 - Defined by study step: Step 2: Eigenvalue,
 - Relative Tolerance: 1E-7.
- In the Values of Linearization Point section enter
 - Prescribed by: Solution,
 - Solution: Solution 3,
 - Use: Frozen Solution,
 - Selection: Last.

Finally, activate the checkbox Store linearization point and deviation in output.

Solution Store

- Right-click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution 3 and select Other > Solution Store from the list.
- Click on Study 2: Frozen Equation→Solver Configurations→Solution 3→Solution Store 1.
- Locate the **Settings** window for Solution Store.
- In the Label text field, type Eigenvalues and Eigenfunctions.

10.1. Computation.

- Right-click on Study 1: Nonfrozen Equation and select compute from the list.
- Right-click on Study 2: Frozen Equation and select compute from the list.

11. Postprocessing and graphical output

In this section we generate 10 Plot groups for visualizing our results.

11.1. Results for nonfrozen equation.

Plot Group 1: Traveling Front, View 1

- Click on Results→1D Plot Group 1. Hint: If 1D Plot Group 1 does not exists, right-click on Results and select 1D Plot Group from the list.
- Locate the **Settings** window for 1D Plot Group.
- In the Label text field, type Traveling Front, View 1.
- In the Data section select Data set Study 1: Nonfrozen Equation/Nonfrozen Solution, Time selection Interpolated and Times (s) 0 40 80 120.
- In the **Title** section select **Title type None**.
- In the Plot Settings section select x-axis label x and y-axis label u(x,t).

- Click on **Results→Traveling Front**, **View 1→Line Graph 1**. Hint: If **Line Graph 1** does not exists, right-click on **Results→Traveling Front**, **View 1** and select **Line Graph** from the list.
- Locate the **Settings** window for Line Graph.
- In the **Data** section select **Data set From parent**.
- In the Selection select Selection All domains.
- In the **y-Axis Data** section select **Expression u**.
- In the x-Axis Data section select Parameters Expression and Expression x.
- In the Coloring and Style section select Line Solid, Color Cycle and Width 2 in the Line style subsection.
- In the Legends section enable the Show legends checkbox, select Legends Manual and enter the legends t=0, t=40, t=80 and t=120.
- Plot Group 2: Traveling Front, View 2
- Click on Results→1D Plot Group 2. Hint: If 1D Plot Group 2 does not exists, right-click on Results and select 1D Plot Group from the list.
- Locate the **Settings** window for 1D Plot Group.
- In the Label text field, type Traveling Front, View 2.
- In the Data section select Data set Study 1: Nonfrozen Equation/Nonfrozen Solution and Time selection All.
- In the **Title** section select **Title type None**.
- In the Plot Settings section select x-axis label x and y-axis label t.
- Click on **Results**→**Traveling Front**, **View 2**→**Line Graph 1**. Hint: If **Line Graph 1** does not exists, right-click on **Results**→**Traveling Front**, **View 2** and select **Line Graph** from the list.
- Locate the **Settings** window for Line Graph.
- In the **Data** section select **Data set From parent**.
- In the **Selection** section select **Selection All domains**.
- In the y-Axis Data section select Expression t.
- In the x-Axis Data section select Parameters Expression and Expression x.
- Right-click on **Results**→**Traveling Front**, **View 2**→**Line Graph 1** and select **Color Expression**.
- Click on Results \rightarrow Traveling Front, View 2 \rightarrow Line Graph 1 \rightarrow Color Expression 1.
- Locate the **Settings** window for Color Expression.
- In the **Expression** section select **Expression u**.

11.2. Results for frozen equation.

Plot Group 3: Profile, View 1

- Right-click on **Results** and select **1D Plot Group** from the list.
- Locate the **Settings** window for 1D Plot Group.
- In the **Label** text field, type **Profile**, **View 1**.
- In the **Data** section select **Data set Study 2: Frozen Equation/Frozen Solution** and **Time selection Last**.

- 14
- In the **Title** section select **Title type None**.
- In the Plot Settings section select x-axis label x and y-axis label v(x,150).
- Right-click on $\mathbf{Results} \rightarrow \mathbf{Profile}$, $\mathbf{View 1}$ and select $\mathbf{Line \ Graph}$ from the list.
- Locate the **Settings** window for Line Graph.
- In the **Data** section select **Data set From parent**.
- In the **Selection** section select **Selection All domains**.
- In the **y-Axis Data** section select **Expression v**.
- In the x-Axis Data section select Parameters Expression and Expression x.
- In the Coloring and Style section select Line Solid, Color Blue and Width 2 in the Line style subsection.

Plot Group 4: Profile, View 2

- Right-click on **Results** and select **1D Plot Group** from the list.
- Locate the **Settings** window for 1D Plot Group.
- In the Label text field, type **Profile**, View 2.
- In the **Data** section select **Data set Study 1: Frozen Equation/Frozen Solution** and **Time selection All**.
- In the **Title** section select **Title type None**.
- In the Plot Settings section select x-axis label x and y-axis label t.
- Right-click on **Results**→**Profile**, **View 2** and select **Line Graph** from the list.
- Locate the **Settings** window for Line Graph.
- In the **Data** section select **Data set From parent**.
- In the Selection section select Selection All domains.
- In the y-Axis Data section select Expression t.
- In the x-Axis Data section select Parameters Expression and Expression x.
- Right-click on Results-Profile, View 2-Line Graph 1 and select Color Expression.
- Click on Results \rightarrow Profile, View 2 \rightarrow Line Graph 1 \rightarrow Color Expression 1.
- Locate the **Settings** window for Color Expression.
- In the **Expression** section select **Expression v**.

Plot Group 5: Velocities

- Right-click on **Results** and select **1D Plot Group** from the list.
- Locate the **Settings** window for 1D Plot Group.
- In the Label text field, type Velocities.
- In the Data section select Data set Study 2: Frozen Equation/Frozen Solution and Time selection All.
- In the **Title** section select **Title type None**.
- In the Plot Settings section select x-axis label t and y-axis label mu(t).
- Right-click on **Results** → **Velocities** and select **Point Graph** from the list.
- Locate the **Settings** window for Point Graph.
- In the **Data** section select **Data set From parent**.

- In the **Selection** section select **Selection All boundaries**. Now, select boundary point **2** and click on the minus sign to remove the point from selection.
- In the y-Axis Data section select Expression mu1.
- In the x-Axis Data section select Parameters Expression and Expression t.
- In the Coloring and Style section select Line Solid, Color Blue and Width 2 in the Line style subsection.

Plot Group 6: Positions

- Right-click on **Results** and select **1D Plot Group** from the list.
- Locate the **Settings** window for 1D Plot Group.
- In the **Label** text field, type **Positions**.
- In the Data section select Data set Study 2: Frozen Equation/Frozen Solution and Time selection All.
- In the **Title** section select **Title type None**.
- In the Plot Settings section select x-axis label t and y-axis label gamma(t).
- \bullet Right-click on ${\bf Results} {\rightarrow} {\bf Positions}$ and select ${\bf Point}~{\bf Graph}$ from the list.
- Locate the **Settings** window for Point Graph.
- In the **Data** section select **Data set From parent**.
- In the **Selection** section select **Selection All boundaries**. Now, select boundary point **2** and click on the minus sign to remove the point from selection.
- In the **y-Axis Data** section select **Expression g1**.
- In the x-Axis Data section select Parameters Expression and Expression t.
- In the Coloring and Style section select Line Solid, Color Blue and Width 2 in the Line style subsection.

Plot Group 7: Reference function

- Right-click on **Results** and select **1D Plot Group** from the list.
- Locate the **Settings** window for 1D Plot Group.
- In the Label text field, type Reference Function.
- In the Data section select Data set Study 2: Frozen Equation/Frozen Solution and Time selection First.
- In the **Title** section select **Title type None**.
- In the Plot Settings section select x-axis label x and y-axis label vh(x).
- Right-click on $\mathbf{Results} \rightarrow \mathbf{Reference}$ Function and select Line Graph from the list.
- Locate the **Settings** window for Line Graph.
- In the **Data** section select **Data set From parent**.
- In the Selection section select Selection All domains.
- In the y-Axis Data section select Expression vh.
- In the **x-Axis Data** section select **Parameters Expression** and **Expression x**.
- In the Coloring and Style section select Line Solid, Color Blue and Width 2 in the Line style subsection.

Plot Group 8: $||v_t||_{L^2}$ and $\mu_{1,t}$

• Right-click on **Results** and select **1D Plot Group** from the list.

- 16
- Locate the **Settings** window for 1D Plot Group.
- In the Label text field, type L2-Norm of vt and abs of mult.
- In the Data section select Data set Study 2: Frozen Equation/Frozen Solution and Time selection All.
- In the **Title** section select **Title type None**.
- In the Plot Settings section select x-axis label t. The y-axis label remains disabled.
- In the Axis section enable the checkbox for y-axis log scale.
- Right-click on **Results**→**L2-Norm of vt and abs of mu1t** and select **Point Graph** from the list.
- Locate the **Settings** window for Point Graph.
- In the **Data** section select **Data set From parent**.
- In the **Selection** section select **Selection All boundaries**. Now, select boundary point **2** and click on the minus sign to remove the point from selection.
- In the y-Axis Data section select Expression sqrt(sqr_vt).
- In the x-Axis Data section select Parameters Expression and Expression t.
- In the Coloring and Style section select Line Solid, Color Blue and Width 2.
- In the Legends section enable the Show legends checkbox, select Legends Manual and enter the legend $||v_t|| L2$.
- Right-click on **Results**→**L2-Norm of vt and abs of mu1t** and select **Point Graph** from the list.
- Locate the **Settings** window for Point Graph.
- In the **Data** section select **Data set From parent**.
- In the **Selection** section select **Selection All boundaries**. Now, select boundary point **2** and click on the minus sign to remove the point from selection.
- In the y-Axis Data section select Expression abs(mult).
- In the x-Axis Data section select Parameters Expression and Expression t.
- In the Coloring and Style section select Line Dashed, Color Red and Width 2.
- In the **Legends** section enable the **Show legends** checkbox, select **Legends Manual** and enter the legend |mu1_t| in the **Line style** subsection.

11.3. Results for eigenvalue study.

Plot Group 9: Eigenvalues and Spectrum

- Right-click on **Results** and select **1D Plot Group** from the list.
- Locate the **Settings** window for 1D Plot Group.
- In the Label text field, type Eigenvalues and Spectrum.
- In the Data section select Data set Study 2: Frozen Equation/Eigenvalues and Eigenfunctions and Eigenvalue selection All.
- In the **Title** section select **Title type None**.
- In the Plot Settings section select x-axis label Re lambda and y-axis label Im lambda.
- In the Axis section enable the Manual axis limits checkbox and select x minimum -6, x maximum 2, y minimum -1 and y maximum 1.

- Right-click on **Results** \rightarrow **Eigenvalues and Spectrum** and select **Line Graph** from the list.
- Locate the **Settings** window for Line Graph.
- In the **Data** section select **Data set Study 2: Frozen Equation/Eigenvalues and Eigenfunctions**, **Eigenvalue selection From list** and select all eigenvalues except the zero eigenvalue.
- In the Selection select Selection All domains.
- In the y-Axis Data section select Expression imag(lambda).
- In the x-Axis Data section select Parameters Expression and Expression -real(lambda).
- In the Coloring and Style section select Line Solid, Color Red and Width 1 in the Line style subsection, and Marker Circle as well es Positioning in data points in the Line markers subsection.
- Right-click on **Results** \rightarrow **Eigenvalues and Spectrum** and select **Line Graph** from the list.
- Locate the **Settings** window for Line Graph.
- In the Data section select Data set Study 2: Frozen Equation/Eigenvalues and Eigenfunctions, Eigenvalue selection From list and select the zero eigenvalue.
- In the Selection section select Selection All domains.
- In the y-Axis Data section select Expression imag(lambda).
- In the x-Axis Data section select Parameters Expression and Expression -real(lambda).
- In the Coloring and Style section select Line None, Color Blue and Width 1 in the Line style subsection, and Marker Circle as well es Positioning in data points in the Line markers subsection.

Plot Group 10: Eigenfunctions

- Right-click on **Results** and select **1D Plot Group** from the list.
- Locate the **Settings** window for 1D Plot Group.
- In the **Label** text field, type **Eigenfunctions**.
- In the **Data** section select **Data set Study 2: Frozen Equation/Eigenvalues and Eigenfunctions**, **Eigenvalue selection From list** and select all eigenvalues except the zero eigenvalue.
- In the **Title** section select **Title type None**.
- In the Plot Settings section select x-axis label x and y-axis label v(x).
- Right-click on **Results**→**Eigenfunctions** and select **Line Graph** from the list.
- Locate the **Settings** window for Line Graph.
- In the **Data** section select **Data set From parent**.
- In the **Selection** section select **Selection All domains**.
- In the **y-Axis Data** section select **Expression v**.
- In the x-Axis Data section select Parameters Expression and Expression x.
- In the Coloring and Style section select Line Solid, Color Cycle and Width 2 in the Line style subsection.