Freezing Method with Comsol Multiphysics

Nagumo Equation: Traveling 1-front

Denny Otten ${ }^{1}$
Department of Mathematics
Bielefeld University
33501 Bielefeld
Germany

Date: 26. Oktober 2015

1. Freezing Traveling Front of Nagumo Equation

Consider the Nagumo equation

$$
u_{t}=u_{x x}+u(1-u)(u-b), \quad x \in \mathbb{R}, t \geqslant 0
$$

for some $b \in(0,1)$, where $u=u(x, t) \in \mathbb{R}$.
a) We first solve the nonfrozen Nagumo-equation

$$
\begin{align*}
u_{t} & =u_{x x}+u(1-u)(u-b) & & , x \in \Omega, t \in\left(0, T_{1}\right], \\
u(0) & =u_{0} & & , x \in \bar{\Omega}, t=0, \tag{1.1}\\
\partial u_{x} & =0 & & , x \in \partial \Omega, t \in\left[0, T_{1}\right],
\end{align*}
$$

on the spatial domain $\Omega=[-50,50]$ for end time $T_{1}=150$, initial data $u_{0}(x)=\frac{\tanh (x)+1}{2}$ and parameter $b=\frac{1}{4}$. For the space discretization we use linear Lagrange elements with maximal element size $\triangle x=0.1$. For the time discretization we use the BDF method of maximum order 2 with intermediate time steps, time stepsize $\Delta t=0.1$, relative tolerance rtol $=10^{-3}$ and absolute tolerance atol $=10^{-4}$ with global method set to be unscaled. The nonlinear equations should be solved by the Newton method. i.e. automatic (Newton).

[^0]b) We then solve the frozen Nagumo-equation
\[

$$
\begin{align*}
v_{t} & =v_{\xi \xi}+\mu v_{\xi}+v(1-v)(v-b) & & , \xi \in \Omega, t \in\left(0, T_{2}\right], \\
v(0) & =v_{0} & & , \xi \in \bar{\Omega}, t=0, \\
v_{\xi} & =0 & & , \xi \in \partial \Omega, t \in\left[0, T_{2}\right], \\
0 & =\left(v-\hat{v}, \hat{v}_{x}\right)_{L^{2}(\Omega, \mathbb{R})} & & , t \in\left[0, T_{2}\right], \tag{1.2}\\
\gamma_{t} & =\mu & & , t \in\left(0, T_{2}\right], \\
\gamma(0) & =0 & & t=0
\end{align*}
$$
\]

on the spatial domain $\Omega=[-50,50]$ for end time $T_{2}=150$, initial data $v_{0}(\xi)=u_{0}(\xi)$, reference function $\hat{v}(\xi)=u_{0}(\xi)$ and parameter $b=\frac{1}{4}$. For the space discretization we use linear Lagrange elements with maximal element size $\triangle x=0.1$. For the time discretization we use the BDF method of maximum order 2 with intermediate time steps, time stepsize $\Delta t=0.1$, relative tolerance rtol $=10^{-3}$ and absolute tolerance atol $=10^{-4}$ with global method set to be unscaled. The nonlinear equations should be solved by the Newton method (automatic (Newton)).
c) Finally, we solve the eigenvalue problem for the linearization of the Nagumo equation

$$
\begin{array}{ll}
\lambda w=w_{\xi \xi}+\mu_{\star} w_{\xi}+f^{\prime}\left(v_{\star}\right) w & , \xi \in \Omega, \\
w_{\xi}=0 & , \xi \in \partial \Omega \tag{1.3}
\end{array}
$$

on the spatial domain $\Omega=[-50,50]$, where

$$
f(v)=v(1-v)(v-b), \quad f^{\prime}(v)=(1-v)(v-b)-v(v-b)+v(1-v) .
$$

For v_{\star} and μ_{\star} we use the solutions v and μ of (1.2) at the end time $T_{2}=150$. We determine neigs $=400$ eigenvalues λ and the correspondig eigenfunctions w. The eigenvalues are choosen such that they are closest in absolute value around the shift $-b$.

2. Model Wizard

Start Comsol Multiphysics.

To start Comsol Multiphysics 5.1 open the Terminal and enter

- comsol

If you are using the classroom licence enter

- comsol -ckl

Model Wizard.

Space dimension

- In the New window, click Model Wizard.
- In the Model Wizard window, click 1D in the Select Space Dimension menu.

Equation for the u-component

- In the Select Physics tree, select Mathematics $>$ PDE Interfaces $>$ Coefficient Form PDE (c).
- Click Add.
- Next, locate the Dependent Variables section.
- In the Field name text field, type u.
- In the Dependent variables text field, type also u.

Equation for the v-component

- In the Select Physics tree, select Mathematics $>$ PDE Interfaces $>$ Coefficient Form PDE (c).
- Click Add.
- Next, locate the Dependent Variables section.
- In the Field name text field, type v.
- In the Dependent variables text field, type also \mathbf{v}.

Equation for the μ-component

- In the Select Physics tree, select Mathematics $>$ PDE Interfaces $>$ Lower Dimensions $>$ Weak Form Boundary PDE (wb).
- Click Add.
- Next, locate the Dependent Variables section.
- In the Field name text field, type mu.
- In the Dependent variables text field, type also mu1.

Equation for the γ-component

- In the Select Physics tree, select Mathematics $>$ PDE Interfaces $>$ Lower Dimensions $>$ Weak Form Boundary PDE (wb).
- Click Add.
- Next, locate the Dependent Variables section.
- In the Field name text field, type g.
- In the Dependent variables text field, type also g1.
- Click Study.

Study settings

- In the Select Study tree, select Preset Studies for Selected Physics Interfaces $>$ Time Dependent.
- Click Done.

Some Advanced Settings.

Hint: In the Model Builder window you should click on the Show icon and enable everything that is possible from the menu: Equation Sections (Equation View, Override and Contribution, Discretization, Stabilization, Advanced Physics Options, Advanced Study Options and Advanced Results Options). Done this, click Expand All icon.

3. Geometry

- In the Model Builder tree, expand the Component 1 (comp1) node, right-click Geometry and select Interval.
- In the Settings window for Interval, locate the Interval section.
- In the Left endpoint text field, type -50.
- In the Right endpoint text field, type $\mathbf{5 0}$.
- In the Model Builder tree, right-click on the Component 1 (comp1) \rightarrow Geometry 1 node and select Build all. (Alternatively, press the short cut F8.)

4. Partial differential equation for the u-component (Nonfrozen PDE)

General Settings.

- Click on Component 1 (comp1) \rightarrow Coefficient Form PDE (c).
- Locate the Settings window for Coefficient Form PDE.
- In the Label text field, type Nonfrozen Equation.
- In the Name text field, type PDE1.
- In the Discretization section choose
- Shape function type: Lagrange,
- Element order: Linear.

Partial differential equation. We define the PDE for the u-component:

- Switch to Component 1 (comp1) \rightarrow Nonfrozen Equation (PDE1) \rightarrow Coefficient Form PDE 1

$$
e_{a} \frac{\partial^{2} u}{\partial t^{2}}+d_{a} \frac{\partial u}{\partial t}+\nabla \cdot(-c \nabla u-\alpha u+\gamma)+\beta \cdot \nabla u+a u=f
$$

with $\nabla=\frac{\partial}{\partial x}$, and enter the following values

- Mass Coefficient e_{a} : 0,
- Damping or Mass Coefficient $d_{a}: 1$,
- Diffusion coefficient $c: 1$,
- Conservative Flux Convection Coefficient α : 0,
- Conservative Flux Source γ : 0,
- Convection Coefficient β : 0,
- Absorption Coefficient a: 0,
- Source Term f : fu.

The quantity fu will be defined later in Section 8.
Boundary Conditions. Since the PDE of the u-component requires homogeneous Neumann boundary conditions at both end points of the interval, we do not must change anything. Hint: By default, there is implemented a zero flux boundary condition on the whole boundary, that corresponds to a homogeneous Neumann boundary condition.

Initial Values. We define the initial value $u(\cdot, 0)=u_{0}$ for the partial differential equation:

- Click on Component 1 (comp1) \rightarrow Nonfrozen Equation (PDE1) \rightarrow Initial Values 1.
- In the Initial Values section enter
- Initial value for u: u0,
- Initial time derivative of $\mathbf{u}: \mathbf{0}$.

The quantity u0 will be defined later in Section 8. This completes the implementation of the initial boundary value problem for the u-component.

5. Partial differential equation for the v-component (Frozen PDE)

General Settings.

- Click on Component 1 (comp1) \rightarrow Coefficient Form PDE 2 (c2).
- Locate the Settings window for Coefficient Form PDE.
- In the Label text field, type Frozen Equation.
- In the Name text field, type PDE2.
- In the Discretization section choose
- Shape function type: Lagrange,
- Element order: Linear.

Partial differential equation. We define the PDE for the v-component:

- Switch to Component 1 (comp1) \rightarrow Frozen Equation (PDE2) \rightarrow Coefficient Form PDE 1

$$
e_{a} \frac{\partial^{2} v}{\partial t^{2}}+d_{a} \frac{\partial v}{\partial t}+\nabla \cdot(-c \nabla v-\alpha v+\gamma)+\beta \cdot \nabla v+a v=f
$$

with $\nabla=\frac{\partial}{\partial x}$, and enter the following values

- Mass Coefficient e_{a} : 0,
- Damping or Mass Coefficient $d_{a}: 1$,
- Diffusion coefficient $c:$ 1,
- Conservative Flux Convection Coefficient α : 0,
- Conservative Flux Source γ : 0,
- Convection Coefficient β : 0,
- Absorption Coefficient a: 0,
- Source Term f: Fv.

The quantity $\mathbf{F v}$ will be defined later in Section 8.
Boundary Conditions. Since the PDE of the v-component requires homogeneous Neumann boundary conditions at both end points of the interval, we do not must change anything. Hint: By default, there is implemented a zero flux boundary condition on the whole boundary, that corresponds to a homogeneous Neumann boundary condition.

Initial Values. We define the initial value $u(\cdot, 0)=u_{0}$ for the partial differential equation:

- Click on Component 1 (comp1) \rightarrow Frozen Equation (PDE2) \rightarrow Initial Values 1.
- In the Initial Values section enter
- Initial value for \mathbf{u} : $\mathbf{v 0}$,
- Initial time derivative of $\mathbf{u}: \mathbf{0}$.

The quantity v0 will be defined later in Section 8. This completes the implementation of the initial boundary value problem for the v-component.

6. Algebraic constraint for the μ-component (Velocity)

In the following we define the phase condition for μ_{1} :

- Click on Component 1 (comp1) \rightarrow Weak Form Boundary PDE (wb)
- Locate the Settings window for Weak Form Boundary PDE.
- In the Label text field, type Phase Condition.
- In the Name text field, type AC1 for algebraic constraint.
- In the Boundary Selection section choose
- Selection: Manual.

Now, click on the boundary point 2 and click on the minus sign - to remove the point from the selection list.

- In the Discretization section choose
- Shape function type: Lagrange,
- Element order: Linear.

Weak Form PDE. We define the phase condition:

- Click on Component 1 (comp1) \rightarrow Phase Condition (AC1) \rightarrow Weak Form PDE 1.
- In the Weak Expression section enter
- weak: test $(m u 1) * p c 1$

The quantity pc1 will be defined later in Section 8.
Initial Values. Finally, we define the initial value:

- Click on Component 1 (comp1) \rightarrow Phase Condition (AC1) \rightarrow Initial Values 1.
- In the Initial Values section enter
- Initial value for mu1: 0,
- Initial time derivative of mu1: 0.

This completes the implementation of the phase condition for μ.

7. Ordinary differential equation for the γ-component (Position)

In the following we implement the reconstruction equation for the position γ :

- Click on Component 1 (comp1) \rightarrow Weak Form Boundary PDE 2 (wb2)
- Locate the Settings window for Weak Form Boundary PDE.
- In the Label text field, type Reconstruction Equation.
- In the Name text field, type ODE1.
- In the Boundary Selection section choose
- Selection: Manual.

Now, click on the boundary point 2 and click on the minus sign - to remove the point from the selection list.

- In the Discretization section choose
- Shape function type: Lagrange,
- Element order: Linear.
- In the Model Builder tree, right-click Component 1 (comp1) \rightarrow Reconstruction Equation (ODE1) and select Weak Form PDE.

Weak Form PDE 1. We define the ordinary differential equation for γ in a weak form:

- Click on Component 1 (comp1) \rightarrow Reconstruction Equation (ODE1) \rightarrow Weak Form PDE 1.
- In the Weak Expression section enter
- weak: $\operatorname{test}(g 1) * m u 1$

Initial Values. Finally, we define the initial value:

- Click on Component 1 (comp1) \rightarrow Reconstruction Equation (ODE1) \rightarrow Initial Values 1.
- In the Initial Values section enter
- Initial value for g1: 0,
- Initial time derivative of g1: 0 .

Weak Form PDE 2.

- Click on Component 1 (comp1) \rightarrow Reconstruction Equation (ODE1) \rightarrow Weak Form PDE 2.
- In the Boundary Selection section switch to Selection All boundaries, then back to Selection Manual, since otherwise there is no boundary point contained in the selection list.
- In the Weak Expression section enter

$$
\text { - weak: -test }(g 1) * g 1 _ \text {time }
$$

This completes the implementation of the reconstruction equation for γ.

8. Parameters, Variables and Integration Coupling Variables

Parameters. We first define the parameters and constants arising in our model as 'global parameters':

- In the Model Builder tree, right-click on the Global Definitions node and select Parameters. (Alternatively: On the Model toolbar, click Parameters.)
- In the Settings window for Parameters, locate the Parameters section.
- In the table add the following entry:

Name	Expression	Value	Description
b	$1 / 4$	0.25	constant of Nagumo equation

Variables 1. We now define all functions which appear in our model as 'local variables'.

- In the Model Builder tree, right-click on the Component 1 (comp1) \rightarrow Definitions node and select Variables.
- In the Settings window for Variables, locate the Variables section.
- In the table add the following entries:

Name	Expression	Unit	Description
fu	$\mathrm{u}^{*}(1-\mathrm{u})^{*}(\mathrm{u}-\mathrm{b})$		
u 0	$(\tanh (\mathrm{x})+1) / 2$		
fv	$\mathrm{v}^{*}(1-\mathrm{v})^{*}(\mathrm{v}-\mathrm{b})$		
Fv	mu1cplver +fv		
v0	u 0		
vh	v 0		
pc1_fix	$\mathrm{d}(\mathrm{vh}, \mathrm{x})^{*}(\mathrm{v}-\mathrm{vh})$		

Integration Coupling Variables 1. We next define an integration operator, that integrates a function over the whole spatial domain.

- In the Model Builder tree, right-click on the Component 1 (comp1) \rightarrow Definitions node and select Component Couplings $>$ Integration.
- In the Settings window for Integration, locate the Source Selection section and choose
- Geometric entity level: Domain,
- Selection: Manual.
- Next, locate the Advanced section and choose
- Method: Integration,
- Integration order: 2,
- Frame: Spatial (x,y,z).

Integration Coupling Variables 2. We next define an integration operator, that integrates a function over the boundary of the spatial domain.

- In the Model Builder tree, right-click on the Component 1 (comp1) \rightarrow Definitions node and select Component Couplings $>$ Integration.
- In the Settings window for Integration, locate the Source Selection section and choose
- Geometric entity level: Boundary,
- Selection: Manual.

Now, click on the boundary point 2 and click on the minus sign - to remove the point from the selection list.

- Next, locate the Advanced section and choose
- Method: Integration,
- Integration order: 1,
- Frame: Spatial (x,y,z).

Variables 2. We next define the functions, that are integrated over the whole spatial domain:

- In the Model Builder tree, right-click on the Component 1 (comp1) \rightarrow Definitions node and select Variables.
- In the Settings window for Variables, locate the Geometric Entity Selection section and choose
- Geometric entity level: Domain,
- Selection: Manual.
- Next, locate the Variables section and add the following entries into the table:

Name	Expression	Unit	Description
intcpl_source_pc1	$\mathrm{pc1}$ fix		
intcpl_source_sqr_vt	$\mathrm{vt}^{2} 2$	$1 / \mathrm{s}^{2}$	

Variables 3. We next define the functions, that are integrated over the boundary of the spatial domain:

- In the Model Builder tree, right-click on the Component 1 (comp1) \rightarrow Definitions node and select Variables.
- In the Settings window for Variables, locate the Geometric Entity Selection section and choose
- Geometric entity level: Boundary,
- Selection: Manual.

Now, click on the boundary point 2 and click on the minus sign - to remove the point from the selection list.

- Next, locate the Variables section and add the following entries into the table:

Name	Expression	Unit	Description
intcpl_source_mu1cpl	mu1		

Variables 4. Finally, we define variables that contain the results of the integration

- In the Model Builder tree, right-click on the Global Definitions node and select Variables.
- In the Settings window for Variables, locate the Variables section.
- In the table add the following entries:

Name	Expression	Unit	Description
pc1	comp1.intop1(intcpl_source_pc1)		
sqr_vt mu1cpl	comp1.intop1(intcpl_source_sqr_vt) comp1.intop2(intcpl_source_mu1cpl)	$\mathrm{m} / \mathrm{s}^{2}$	

9. Mesh

- In the Model Builder tree, click on Component 1 (comp1) \rightarrow Mesh.
- In the Settings window for Mesh, locate the Mesh Settings section.
- Set the Sequence type on User-controlled mesh.
- In the Model Builder tree, switch to Component 1 (comp1) \rightarrow Mesh \rightarrow Size.
- In the Settings window for Size, locate the Element Size Parameters section.
- In the Maximum element size text field, type 0.1.
- In the Model Builder tree, right-click on Component 1 (comp1) \rightarrow Mesh and select Build All.

10. Studies and Computation

Study 1. Study 1

- Click on Study 1.
- Locate the Settings window for Study.
- In the Label text field, type Study 1: Nonfrozen Equation.

Step 1

- Click on Study 1: Nonfrozen Equation \rightarrow Step 1: Time Dependent.
- Locate the Settings window for Time Dependent.
- In the Study Settings section enter
- Time unit: s,
- Times: range(0,0.1,150),
- Relative tolerance: 0.001.

The last input requires to enable the corresponding checkbox.

- In the Physics and Variables Selection section disable the checkboxes for Frozen Equation (PDE2), Phase Condition (AC1) and Reconstruction Equation (ODE1).
Solver Configurations
- Right-click on Study 1: Nonfrozen Equation \rightarrow Solver Configurations and select Show Default Solver.
- Click on Study 1: Nonfrozen Equation \rightarrow Solver Configurations \rightarrow Solution $1 \rightarrow$ TimeDependent Solver 1.
- Locate the Settings window for Time Dependent Solver.
- In the Absolute Tolerance section enter
- Global method: Unscaled,
- Tolerance: 0.0001.
- In the Time Stepping section enter
- Method: BDF,
- Steps taken by solver: intermediate,
- Maximum BDF order: 2.
- Click on Study 1: Nonfrozen Equation \rightarrow Solver Configurations \rightarrow Solution $1 \rightarrow$ TimeDependent Solver $1 \rightarrow$ Fully Coupled 1.
- Locate the Settings window for Fully Coupled.
- In the Method and Termination section, choose
- Nonlinear Method: Automatic (Newton),

Solution Store

- Right-click on Study 1: Nonfrozen Equation \rightarrow Solver Configurations \rightarrow Solution 1 and select Other $>$ Solution Store from the list.
- Click on Study 1: Nonfrozen Equation \rightarrow Solver Configurations \rightarrow Solution $1 \rightarrow$ Solution Store 1.
- Locate the Settings window for Solution Store.
- In the Label text field, type Nonfrozen Solution.

Study 2.

- Right-click on unknown.mph (root) and select Add Study.
- In the Add Study window, select Time Dependent and confirm by click on Add Study.

Study 2

- Click on Study 2.
- Locate the Settings window for Study.
- In the Label text field, type Study 2: Frozen Equation.

Study 2 Step 1

- Click on Study 2: Frozen Equation \rightarrow Step 1: Time Dependent.
- Locate the Settings window for Time Dependent.
- In the Study Settings section enter
- Time unit: s,
- Times: range($0,0.1,150$),
- Relative tolerance: 0.001.

The last input requires to enable the corresponding checkbox.

- In the Physics and Variables Selection section disable the checkbox for Nonfrozen Equation (PDE1).
Solver Configurations
- Right-click on Study 2: Frozen Equation \rightarrow Solver Configurations and select Show Default Solver.
- Click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution 3 \rightarrow Time-Dependent Solver 1.
- Locate the Settings window for Time Dependent Solver.
- In the Absolute Tolerance section enter
- Global method: Unscaled,
- Tolerance: 0.0001.
- In the Time Stepping section enter
- Method: BDF,
- Steps taken by solver: intermediate,
- Maximum BDF order: 2.
- Click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution $3 \rightarrow$ Time-Dependent Solver $1 \rightarrow$ Fully Coupled 1 .
- Locate the Settings window for Fully Coupled.
- In the Method and Termination section, choose
- Nonlinear Method: Automatic (Newton),

Solution Store

- Right-click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution 3 and select Other $>$ Solution Store from the list.
- Click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution $3 \rightarrow$ Solution Store 1.
- Locate the Settings window for Solution Store.
- In the Label text field, type Frozen Solution.

Study 2 Step 2 First, we generate the solver and study step.

- Right-click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution 3 and select Compile Equations.
- Right-click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution 3 and select Dependent Variables.
- Right-click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution 3 and select Solvers $>$ Eigenvalue Solver.
- Right-click on Study 2: Frozen Equation and select Study Steps $>$ Eigenfrequency $>$ Eigenvalue.
- Click on Study 2: Frozen Equation \rightarrow Step 2: Eigenvalue.
- Locate the Settings window for Eigenvalue.
- In the Study Settings section enter
- Eigenvalue search method: Manual,
- Desired number of eigenvalues: 400,
- Search for eigenvalues around: -b,
- Eigenvalue search method around shift: Closest in absolute value.
- In the Physics and Variables Selection section enable only the checkbox for Frozen Equation (PDE2).
- In the Values of dependent Variables section enable the checkbox Values of variables not solved for and enter
- Method: Solution,
- Study: Study 2: Frozen equation, Time Dependent,
- Solution: Solution 3,
- Use: Frozen Solution,
- Selection: Last.

Solver Configurations

- Click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution 3 and select Compile Equations.
- Locate the Settings window for Compile Equations.
- In the Study and Step section enter
- Use study: Study 2: Frozen Equation,
- Use study step: Step 2: Eigenvalue.
- Click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution 3 and select Dependent Variables 2.
- Locate the Settings window for Dependent Variables.
- In the General section enter
- Defined by study step: Step 2: Eigenvalue.
- Click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution 3 and select Eigenvalue Solver 1.
- Locate the Settings window for Dependent Variables.
- In the General section enter
- Defined by study step: Step 2: Eigenvalue,
- Relative Tolerance: 1E-7.
- In the Values of Linearization Point section enter
- Prescribed by: Solution,
- Solution: Solution 3,
- Use: Frozen Solution,
- Selection: Last.

Finally, activate the checkbox Store linearization point and deviation in output.
Solution Store

- Right-click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution 3 and select Other $>$ Solution Store from the list.
- Click on Study 2: Frozen Equation \rightarrow Solver Configurations \rightarrow Solution $3 \rightarrow$ Solution Store 1.
- Locate the Settings window for Solution Store.
- In the Label text field, type Eigenvalues and Eigenfunctions.

10.1. Computation.

- Right-click on Study 1: Nonfrozen Equation and select compute from the list.
- Right-click on Study 2: Frozen Equation and select compute from the list.

11. Postprocessing and graphical output

In this section we generate 10 Plot groups for visualizing our results.

11.1. Results for nonfrozen equation.

Plot Group 1: Traveling Front, View 1

- Click on Results \rightarrow 1D Plot Group 1. Hint: If 1D Plot Group 1 does not exists, right-click on Results and select 1D Plot Group from the list.
- Locate the Settings window for 1D Plot Group.
- In the Label text field, type Traveling Front, View 1.
- In the Data section select Data set Study 1: Nonfrozen Equation/Nonfrozen Solution, Time selection Interpolated and Times (s) 04080120.
- In the Title section select Title type None.
- In the Plot Settings section select \mathbf{x}-axis label \mathbf{x} and \mathbf{y}-axis label $\mathbf{u}(\mathrm{x}, \mathrm{t})$.
- Click on Results \rightarrow Traveling Front, View $1 \rightarrow$ Line Graph 1. Hint: If Line Graph 1 does not exists, right-click on Results \rightarrow Traveling Front, View 1 and select Line Graph from the list.
- Locate the Settings window for Line Graph.
- In the Data section select Data set From parent.
- In the Selection section select Selection All domains.
- In the y-Axis Data section select Expression u.
- In the x-Axis Data section select Parameters Expression and Expression x.
- In the Coloring and Style section select Line Solid, Color Cycle and Width 2 in the Line style subsection.
- In the Legends section enable the Show legends checkbox, select Legends Manual and enter the legends $\mathbf{t}=\mathbf{0}, \mathbf{t}=\mathbf{4 0}, \mathbf{t}=\mathbf{8 0}$ and $\mathbf{t}=\mathbf{1 2 0}$.
Plot Group 2: Traveling Front, View 2
- Click on Results \rightarrow 1D Plot Group 2. Hint: If 1D Plot Group 2 does not exists, right-click on Results and select 1D Plot Group from the list.
- Locate the Settings window for 1D Plot Group.
- In the Label text field, type Traveling Front, View 2.
- In the Data section select Data set Study 1: Nonfrozen Equation/Nonfrozen Solution and Time selection All.
- In the Title section select Title type None.
- In the Plot Settings section select \mathbf{x}-axis label \mathbf{x} and \mathbf{y}-axis label \mathbf{t}.
- Click on Results \rightarrow Traveling Front, View $2 \rightarrow$ Line Graph 1. Hint: If Line Graph 1 does not exists, right-click on Results \rightarrow Traveling Front, View 2 and select Line Graph from the list.
- Locate the Settings window for Line Graph.
- In the Data section select Data set From parent.
- In the Selection section select Selection All domains.
- In the y-Axis Data section select Expression t.
- In the x-Axis Data section select Parameters Expression and Expression x.
- Right-click on Results \rightarrow Traveling Front, View $2 \rightarrow$ Line Graph 1 and select Color Expression.
- Click on Results \rightarrow Traveling Front, View $2 \rightarrow$ Line Graph $1 \rightarrow$ Color Expression 1.
- Locate the Settings window for Color Expression.
- In the Expression section select Expression u.
11.2. Results for frozen equation.

Plot Group 3: Profile, View 1

- Right-click on Results and select 1D Plot Group from the list.
- Locate the Settings window for 1D Plot Group.
- In the Label text field, type Profile, View 1.
- In the Data section select Data set Study 2: Frozen Equation/Frozen Solution and Time selection Last.
- In the Title section select Title type None.
- In the Plot Settings section select \mathbf{x}-axis label x and y -axis label $\mathrm{v}(\mathrm{x}, 150)$.
- Right-click on Results \rightarrow Profile, View 1 and select Line Graph from the list.
- Locate the Settings window for Line Graph.
- In the Data section select Data set From parent.
- In the Selection section select Selection All domains.
- In the y-Axis Data section select Expression v.
- In the x-Axis Data section select Parameters Expression and Expression x.
- In the Coloring and Style section select Line Solid, Color Blue and Width 2 in the Line style subsection.

Plot Group 4: Profile, View 2

- Right-click on Results and select 1D Plot Group from the list.
- Locate the Settings window for 1D Plot Group.
- In the Label text field, type Profile, View 2.
- In the Data section select Data set Study 1: Frozen Equation/Frozen Solution and Time selection All.
- In the Title section select Title type None.
- In the Plot Settings section select \mathbf{x}-axis label \mathbf{x} and \mathbf{y}-axis label \mathbf{t}.
- Right-click on Results \rightarrow Profile, View 2 and select Line Graph from the list.
- Locate the Settings window for Line Graph.
- In the Data section select Data set From parent.
- In the Selection section select Selection All domains.
- In the y-Axis Data section select Expression t.
- In the x-Axis Data section select Parameters Expression and Expression x.
- Right-click on Results \rightarrow Profile, View $2 \rightarrow$ Line Graph 1 and select Color Expression.
- Click on Results \rightarrow Profile, View $\mathbf{2} \rightarrow$ Line Graph $\mathbf{1} \rightarrow$ Color Expression 1.
- Locate the Settings window for Color Expression.
- In the Expression section select Expression v.

Plot Group 5: Velocities

- Right-click on Results and select 1D Plot Group from the list.
- Locate the Settings window for 1D Plot Group.
- In the Label text field, type Velocities.
- In the Data section select Data set Study 2: Frozen Equation/Frozen Solution and Time selection All.
- In the Title section select Title type None.
- In the Plot Settings section select \mathbf{x}-axis label \mathbf{t} and \mathbf{y}-axis label $\mathbf{m u}(\mathrm{t})$.
- Right-click on Results \rightarrow Velocities and select Point Graph from the list.
- Locate the Settings window for Point Graph.
- In the Data section select Data set From parent.
- In the Selection section select Selection All boundaries. Now, select boundary point 2 and click on the minus sign - to remove the point from selection.
- In the y-Axis Data section select Expression mu1.
- In the x-Axis Data section select Parameters Expression and Expression t.
- In the Coloring and Style section select Line Solid, Color Blue and Width 2 in the Line style subsection.
Plot Group 6: Positions
- Right-click on Results and select 1D Plot Group from the list.
- Locate the Settings window for 1D Plot Group.
- In the Label text field, type Positions.
- In the Data section select Data set Study 2: Frozen Equation/Frozen Solution and Time selection All.
- In the Title section select Title type None.
- In the Plot Settings section select \mathbf{x}-axis label \mathbf{t} and \mathbf{y}-axis label gamma(t).
- Right-click on Results \rightarrow Positions and select Point Graph from the list.
- Locate the Settings window for Point Graph.
- In the Data section select Data set From parent.
- In the Selection section select Selection All boundaries. Now, select boundary point 2 and click on the minus sign - to remove the point from selection.
- In the y-Axis Data section select Expression g1.
- In the x-Axis Data section select Parameters Expression and Expression t.
- In the Coloring and Style section select Line Solid, Color Blue and Width 2 in the Line style subsection.
Plot Group 7: Reference function
- Right-click on Results and select 1D Plot Group from the list.
- Locate the Settings window for 1D Plot Group.
- In the Label text field, type Reference Function.
- In the Data section select Data set Study 2: Frozen Equation/Frozen Solution and Time selection First.
- In the Title section select Title type None.
- In the Plot Settings section select \mathbf{x}-axis label x and y -axis label $\mathrm{vh}(\mathrm{x})$.
- Right-click on Results \rightarrow Reference Function and select Line Graph from the list.
- Locate the Settings window for Line Graph.
- In the Data section select Data set From parent.
- In the Selection section select Selection All domains.
- In the y-Axis Data section select Expression vh.
- In the x-Axis Data section select Parameters Expression and Expression x.
- In the Coloring and Style section select Line Solid, Color Blue and Width 2 in the Line style subsection.
Plot Group 8: $\left\|v_{t}\right\|_{L^{2}}$ and $\mu_{1, t}$
- Right-click on Results and select 1D Plot Group from the list.
- Locate the Settings window for 1D Plot Group.
- In the Label text field, type L2-Norm of vt and abs of mu1t.
- In the Data section select Data set Study 2: Frozen Equation/Frozen Solution and Time selection All.
- In the Title section select Title type None.
- In the Plot Settings section select x-axis label t. The y-axis label remains disabled.
- In the Axis section enable the checkbox for \mathbf{y}-axis \log scale.
- Right-click on Results \rightarrow L2-Norm of vt and abs of mu1t and select Point Graph from the list.
- Locate the Settings window for Point Graph.
- In the Data section select Data set From parent.
- In the Selection section select Selection All boundaries. Now, select boundary point 2 and click on the minus sign - to remove the point from selection.
- In the y-Axis Data section select Expression sqrt(sqr_vt).
- In the x-Axis Data section select Parameters Expression and Expression t.
- In the Coloring and Style section select Line Solid, Color Blue and Width 2.
- In the Legends section enable the Show legends checkbox, select Legends Manual and enter the legend $\left\|\mathbf{v} _\mathbf{t}\right\| _\mathbf{L} \hat{\mathbf{2}}$.
- Right-click on Results \rightarrow L2-Norm of vt and abs of mu1t and select Point Graph from the list.
- Locate the Settings window for Point Graph.
- In the Data section select Data set From parent.
- In the Selection section select Selection All boundaries. Now, select boundary point 2 and click on the minus sign - to remove the point from selection.
- In the y-Axis Data section select Expression abs(mu1t).
- In the x-Axis Data section select Parameters Expression and Expression t.
- In the Coloring and Style section select Line Dashed, Color Red and Width 2.
- In the Legends section enable the Show legends checkbox, select Legends Manual and enter the legend $\left|\mathbf{m u} 1_{\mathbf{t}} \mathbf{t}\right|$ in the Line style subsection.

11.3. Results for eigenvalue study.

Plot Group 9: Eigenvalues and Spectrum

- Right-click on Results and select 1D Plot Group from the list.
- Locate the Settings window for 1D Plot Group.
- In the Label text field, type Eigenvalues and Spectrum.
- In the Data section select Data set Study 2: Frozen Equation/Eigenvalues and Eigenfunctions and Eigenvalue selection All.
- In the Title section select Title type None.
- In the Plot Settings section select x-axis label Re lambda and y-axis label Im lambda.
- In the Axis section enable the Manual axis limits checkbox and select \mathbf{x} minimum -6, x maximum 2 , y minimum -1 and y maximum 1 .
- Right-click on Results \rightarrow Eigenvalues and Spectrum and select Line Graph from the list.
- Locate the Settings window for Line Graph.
- In the Data section select Data set Study 2: Frozen Equation/Eigenvalues and Eigenfunctions, Eigenvalue selection From list and select all eigenvalues except the zero eigenvalue.
- In the Selection section select Selection All domains.
- In the \mathbf{y}-Axis Data section select Expression imag(lambda).
- In the x-Axis Data section select Parameters Expression and Expression -real(lambda).
- In the Coloring and Style section select Line Solid, Color Red and Width 1 in the Line style subsection, and Marker Circle as well es Positioning in data points in the Line markers subsection.
- Right-click on Results \rightarrow Eigenvalues and Spectrum and select Line Graph from the list.
- Locate the Settings window for Line Graph.
- In the Data section select Data set Study 2: Frozen Equation/Eigenvalues and Eigenfunctions, Eigenvalue selection From list and select the zero eigenvalue.
- In the Selection section select Selection All domains.
- In the \mathbf{y}-Axis Data section select Expression imag(lambda).
- In the x-Axis Data section select Parameters Expression and Expression -real(lambda).
- In the Coloring and Style section select Line None, Color Blue and Width 1 in the Line style subsection, and Marker Circle as well es Positioning in data points in the Line markers subsection.
Plot Group 10: Eigenfunctions
- Right-click on Results and select 1D Plot Group from the list.
- Locate the Settings window for 1D Plot Group.
- In the Label text field, type Eigenfunctions.
- In the Data section select Data set Study 2: Frozen Equation/Eigenvalues and Eigenfunctions, Eigenvalue selection From list and select all eigenvalues except the zero eigenvalue.
- In the Title section select Title type None.
- In the Plot Settings section select \mathbf{x}-axis label \mathbf{x} and \mathbf{y}-axis label $\mathbf{v}(\mathbf{x})$.
- Right-click on Results \rightarrow Eigenfunctions and select Line Graph from the list.
- Locate the Settings window for Line Graph.
- In the Data section select Data set From parent.
- In the Selection section select Selection All domains.
- In the \mathbf{y}-Axis Data section select Expression v.
- In the x-Axis Data section select Parameters Expression and Expression x.
- In the Coloring and Style section select Line Solid, Color Cycle and Width 2 in the Line style subsection.

[^0]: ${ }^{1}$ e-mail: dotten@math.uni-bielefeld.de, phone: +49 (0)521 1064784 ,
 fax: +49 (0)521 106 6498, homepage: http://www.math.uni-bielefeld.de/~dotten/.

