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Exercise 8 (Cubic-quintic Ginzburg-Landau equation: Oscillating pulse).
Consider the cubic-quintic Ginzburg-Landau equation

ut = α△u+ δu+ β|u|2u+ γ|u|4u, x ∈ R
d, t > 0(1)

for some α, β, γ ∈ C with Reα > 0, δ ∈ R and u = u(x, t) ∈ C. In a)-d), we implement the
real-valued version of (1): Decomposing

u = u1 + iu2, α = a1 + ia2, β = b1 + ib2, γ = c1 + ic2

with u1, u2, a1, a2, b1, b2, c1, c2 ∈ R and introducing

A =

(

a1 −a2
a2 a1

)

, B =

(

b1 −b2
b2 b1

)

, C =

(

c1 −c2
c2 c1

)

, u =

(

u1

u2

)

with A,B,C ∈ R
2,2 and u = u(x, t) ∈ R

2 the real-valued system associated with (1) reads as

ut = A△u+ δu+B|u|2u+ C|u|4u, x ∈ R
d, t > 0.

a) Consider the one-dimensional nonfrozen cubic-quintic Ginzburg-Landau equation

(2)

ut = αuxx + δu+ β|u|2u+ γ|u|4u , x ∈ Ω, t ∈ (0, T1],

u(0) = u0 , x ∈ Ω̄, t = 0,

ux = 0 , x ∈ ∂Ω, t ∈ [0, T1],

Solve the real-valued system associated with (2)

(3)

ut = Auxx + δu+B|u|2u+ C|u|4u , x ∈ Ω, t ∈ (0, T1],

u(0) = u0 , x ∈ Ω̄, t = 0,

ux = 0 , x ∈ ∂Ω, t ∈ [0, T1],

on the spatial domain Ω = (−20, 20) for end time T1 = 70, initial data u0 = (u
(1)
0 , u

(2)
0 )T

with u
(1)
0 (x) = 2.5

1+(x

5
)
2 , u

(2)
0 (x) = 0 and parameters α = 1, β = 3 + i, γ = −11

4
+ i and

δ = − 1
10

. For the space discretization use linear Lagrange elements with maximal element
size △x = 0.1. For the time discretization use the BDF method of maximum order 2 with
intermediate time steps, time stepsize △t = 0.1, relative tolerance rtol = 10−3 and absolute
tolerance atol = 10−5 with global method set to be unscaled. The nonlinear equations should
be solved by the Newton method. i.e. automatic (Newton).

b) Consider the one-dimensional nonfrozen cubic-quintic Ginzburg-Landau equation

(4)

v̂t = αv̂xx + δv̂ + β|v̂|2v̂ + γ|v̂|4v̂ , x ∈ Ω, t ∈ (0, T2],

v̂(0) = v̂0 , x ∈ Ω̄, t = 0,

v̂x = 0 , x ∈ ∂Ω, t ∈ [0, T2],



Solve the real-valued system associated with (4)

(5)

v̂t = Av̂xx + δv̂ +B|v̂|2v̂ + C|v̂|4v̂ , x ∈ Ω, t ∈ (0, T2],

v̂(0) = v̂0 , x ∈ Ω̄, t = 0,

v̂x = 0 , x ∈ ∂Ω, t ∈ [0, T2],

on the spatial domain Ω = (−20, 20) for end time T2 = 70, initial data v̂0(x) = u0(x) and
parameters α = 1, β = 3+i, γ = −11

4
+i and δ = − 1

10
. For the space discretization use linear

Lagrange elements with maximal element size △x = 0.1. For the time discretization use the
BDF method of maximum order 2 with intermediate time steps, time stepsize △t = 0.1,
relative tolerance rtol = 10−3 and absolute tolerance atol = 10−5 with global method set to
be unscaled. The nonlinear equations should be solved by the Newton method. i.e. automatic
(Newton).

c) Consider the frozen cubic-quintic Ginzburg-Landau equation

(6)

vt = αvξξ + iµv + δv + β|v|2v + γ|v|4v , ξ ∈ Ω, t ∈ (0, T3],

v(0) = v0 , ξ ∈ Ω̄, t = 0,

vξ = 0 , ξ ∈ ∂Ω, t ∈ [0, T3],

0 = Re (v − v̂, iv̂)L2(Ω,C) , t ∈ [0, T3],

γt = µ , t ∈ (0, T3],

γ(0) = 0 , t = 0

Solve the real-valued system associated with (6)

(7)

vt = Avξξ + µS2v + δv +B|v|2v + C|v|4v , ξ ∈ Ω, t ∈ (0, T3],

v(0) = v0 , ξ ∈ Ω̄, t = 0,

vξ = 0 , ξ ∈ ∂Ω, t ∈ [0, T3],

0 = (v − v̂, S2v̂)L2(Ω,R2) , t ∈ [0, T3],

γt = µ , t ∈ (0, T3],

γ(0) = 0 , t = 0

on the spatial domain Ω = (−20, 20) for end time T3 = 450, initial data v0(ξ) = u0(ξ),
reference function v̂(ξ) as the solution of (5) at end time T2 and parameters α = 1, β = 3+i,

γ = −11
4
+ i, δ = − 1

10
. and S2 =

(

0 −1
1 0

)

. For the space discretization use linear Lagrange

elements with maximal element size △x = 0.1. For the time discretization use the BDF
method of maximum order 2 with intermediate time steps, time stepsize △t = 0.1, relative
tolerance rtol = 10−3 and absolute tolerance atol = 10−5 with global method set to be
unscaled. The nonlinear equations should be solved by the Newton method (automatic
(Newton)).

d) Solve the eigenvalue problem for the linearization of the real-valued version of the Gross-
Pitaevskii equation

(8)
λw = Awξξ + µ⋆S2w +Dvf(v⋆)w , ξ ∈ Ω,

wξ = 0 , ξ ∈ ∂Ω

on the spatial domain Ω = (−20, 20), where Dvf(v) denotes the derivative of

f(v) = δv +B|v|2v + C|v|4vv, i.e. Dvf(v) = δI2 +B|v|2 + 2BvvT + C|v|4 + 4C|v|2vvT .



For v⋆ and µ⋆ use the solutions v and µ of (7) at the end time T2 = 450. Determine
neigs = 400 eigenvalues λ and correspondig eigenfunctions w. The eigenvalues should be
closest in absolute value around the shift −1.

e) Postprocessing and Visualization of results: Create the following plots to visualize the
results of the computations:

– Oscillating Pulse, View 1: Plot the solution u1 of (3) at time t = 0, 2, 3, 4 and 8.

– Oscillating Pulse, View 1: Plot the solution u2 of (3) at time t = 0, 2, 3, 4 and 8.

– Oscillating Pulse, View 2: Create a time-space plot for the solution u1 of (3).

– Oscillating Pulse, View 2: Create a time-space plot for the solution u2 of (3).

– Reference function: Plot the template solutions v̂1 and v̂2 of (5) at time T2.

– Profile, View 1: Plot the solution v1 and v2 of (7) at the end time T3.

– Profile, View 2: Create a time-space plot for the solution v1 of (7).

– Profile, View 2: Create a time-space plot for the solution v2 of (7).

– Velocity: Plot the velocity µ of (7) for time t from 0 to T3.

– Position: Plot the position γ of (7) for time t from 0 to T3.

– Convergence indicator: Plot ‖vt(t)‖L2(Ω,R2) and |µt(t)| for time t from 0 to T3.

– Eigenvalues and Spectrum: Plot the eigenvalues λ of (8).

– Eigenfunctions: Plot the eigenfunction w of (8) belonging to the zero eigenvalue.


