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Exercise 8 (Cubic-quintic Ginzburg-Landau equation: Oscillating pulse).
Consider the cubic-quintic Ginzburg-Landau equation

(1) uy = alu+ 6u+ BlufPu+ylu/'u, R t>0

for some «a, f,7 € C with Rea > 0, 0 € R and v = u(z,t) € C. In a)-d), we implement the
real-valued version of (1): Decomposing

u=uy +1iug, «a=a;+iay, [=0b +1iby, v=c1+ico
with wy, us, ay, as, by, by, c1,co € R and introducing
3 3) G e )
as ay )’ bs by )’ e ¢ )’ Us
with A, B,C € R*? and u = u(z,t) € R? the real-valued system associated with (1) reads as
w, = AAu+ Su + Blu*u + Clul*u, =€ R t>0.
a) Consider the one-dimensional nonfrozen cubic-quintic Ginzburg-Landau equation

Up = QUgy + 6u + Blulu+y|ul'u 2z €Q, t e (0,T],
(2) u(0) = ug ,x €N t=0,
Uy = 0 ,x €00, tel0, T,

Solve the real-valued system associated with (2)

Uy = Aty + 0u + BlulPu+ Clul*u , 2 € Q, t € (0,T1],

(3) u(0) = ug e t=0,
Uy = 0 ,x € tel0,Ty,
on the spatial domain © = (—20,20) for end time 77 = 70, initial data uy = (uél),uéZ))T
with ugl)(x) = 1+2('i)2, u(()Q)(x) = 0 and parameters @ = 1, # = 3+, v = —4 + i and
5
0= —1—10. For the space discretization use linear Lagrange elements with maximal element

size Ax = 0.1. For the time discretization use the BDF method of maximum order 2 with
intermediate time steps, time stepsize At = 0.1, relative tolerance rtol = 1072 and absolute
tolerance atol = 10~° with global method set to be unscaled. The nonlinear equations should
be solved by the Newton method. i.e. automatic (Newton).

b) Consider the one-dimensional nonfrozen cubic-quintic Ginzburg-Landau equation
Dy = Qg + 00 + B0 +7|0*0 2 € Q, t € (0,T),

(4) 5(0) = 0 e t=0,
b, =0 , €00, tel0, Ty,



Solve the real-valued system associated with (4)

0 = Abyy + 00 + Blo[*0 + C|o|*0 , 2 € Q, t € (0, T3],
(5) 5(0) = By L 1eQ, t=0,
0, =0 , €00, tel0, Ty,

on the spatial domain Q = (—20,20) for end time Ty = 70, initial data 0g(x) = ug(x) and
parameters « = 1, f = 341,y = —14—1 +iand d = —1—10. For the space discretization use linear
Lagrange elements with maximal element size Ax = 0.1. For the time discretization use the
BDF method of maximum order 2 with intermediate time steps, time stepsize At = 0.1,
relative tolerance rtol = 10~2 and absolute tolerance atol = 10~° with global method set to
be unscaled. The nonlinear equations should be solved by the Newton method. i.e. automatic
(Newton).

Consider the frozen cubic-quintic Ginzburg-Landau equation

v = auge + ipv + v + Blol*v +alulte €€ Q, t e (0,T4),

v(0) = vy L EeQ, t=0,
ve =0 LE€ a0, te0,T,
(6) 0= Re (v —9,i0) 200, L te 0,7y,
V= , t € (0,T3],
4(0) =0 t=0

Solve the real-valued system associated with (6)

vy = Avge + pSav + dv + BloPv + Clu|*v , £ € Q, t € (0, T3],

v(0) = vy L EeQ, =0,
™ ve =0 ,E€ 00, tel0,Ty,
0= (v—1,50)20r 1 €0, T3],
Y= , t € (0,T3],
7(0) =0 , £=0

on the spatial domain 2 = (—20,20) for end time 75 = 450, initial data vy(§) = uo(§),
reference function () as the solution of (5) at end time 75 and parameters o = 1, § = 3+1,
0 —1
1 0
elements with maximal element size Az = 0.1. For the time discretization use the BDF
method of maximum order 2 with intermediate time steps, time stepsize At = 0.1, relative
tolerance rtol = 1072 and absolute tolerance atol = 107° with global method set to be
unscaled. The nonlinear equations should be solved by the Newton method (automatic

(Newton)).

v = —17} +1i,0= —1—10. and Sy = . For the space discretization use linear Lagrange

Solve the eigenvalue problem for the linearization of the real-valued version of the Gross-
Pitaevskii equation

A = Awge + pSow + Dy f(v)w € € Q,

(8) w§:0 ,EG@Q

on the spatial domain €2 = (—20, 20), where D, f(v) denotes the derivative of

f(v) = 0v + Blv]*v + C|v[*vv, i.e. D, f(v) = 615 + Blv|* + 2Bvv” + Clv|* + 4C|v[2vv”.



For v, and p, use the solutions v and p of (7) at the end time 7, = 450. Determine
neigs = 400 eigenvalues A and correspondig eigenfunctions w. The eigenvalues should be
closest in absolute value around the shift —1.

e) Postprocessing and Visualization of results: Create the following plots to visualize the
results of the computations:
— Oscillating Pulse, View 1: Plot the solution u; of (3) at time ¢t = 0,2,3,4 and 8.
— Oscillating Pulse, View 1: Plot the solution uy of (3) at time ¢t = 0,2,3,4 and 8.
— Oscillating Pulse, View 2: Create a time-space plot for the solution u; of (3).
— Oscillating Pulse, View 2: Create a time-space plot for the solution us of (3).
— Reference function: Plot the template solutions 0; and 0, of (5) at time 7°2.
— Profile, View 1: Plot the solution v; and vy of (7) at the end time T5.
— Profile, View 2: Create a time-space plot for the solution vy of (7).
— Profile, View 2: Create a time-space plot for the solution vy of (7).
— Velocity: Plot the velocity p of (7) for time ¢ from 0 to T5.
— Position: Plot the position 7 of (7) for time ¢ from 0 to 7.
— Convergence indicator: Plot [[vy(?)]|2(q g2y and [ (?)] for time ¢ from 0 to T5.
— Eigenvalues and Spectrum: Plot the eigenvalues A of (8).

— Eigenfunctions: Plot the eigenfunction w of (8) belonging to the zero eigenvalue.



