Mathematical Modelling and Simulation with Comsol Multiphysics II

Winter term 2015/2016

Exercise 8

Dr. Denny Otten
Bearbeitung: Montag, 16.11.2015, 12:30-14:00 Uhr (während der Übung).
Exercise 8 (Cubic-quintic Ginzburg-Landau equation: Oscillating pulse).
Consider the cubic-quintic Ginzburg-Landau equation

$$
\begin{equation*}
u_{t}=\alpha \triangle u+\delta u+\beta|u|^{2} u+\gamma|u|^{4} u, \quad x \in \mathbb{R}^{d}, t \geqslant 0 \tag{1}
\end{equation*}
$$

for some $\alpha, \beta, \gamma \in \mathbb{C}$ with $\operatorname{Re} \alpha>0, \delta \in \mathbb{R}$ and $u=u(x, t) \in \mathbb{C}$. In a)-d), we implement the real-valued version of (1): Decomposing

$$
u=u_{1}+i u_{2}, \quad \alpha=a_{1}+i a_{2}, \quad \beta=b_{1}+i b_{2}, \quad \gamma=c_{1}+i c_{2}
$$

with $u_{1}, u_{2}, a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} \in \mathbb{R}$ and introducing

$$
A=\left(\begin{array}{cc}
a_{1} & -a_{2} \\
a_{2} & a_{1}
\end{array}\right), \quad B=\left(\begin{array}{cc}
b_{1} & -b_{2} \\
b_{2} & b_{1}
\end{array}\right), \quad C=\left(\begin{array}{cc}
c_{1} & -c_{2} \\
c_{2} & c_{1}
\end{array}\right), \quad u=\binom{u_{1}}{u_{2}}
$$

with $A, B, C \in \mathbb{R}^{2,2}$ and $u=u(x, t) \in \mathbb{R}^{2}$ the real-valued system associated with (1) reads as

$$
u_{t}=A \triangle u+\delta u+B|u|^{2} u+C|u|^{4} u, \quad x \in \mathbb{R}^{d}, t \geqslant 0 .
$$

a) Consider the one-dimensional nonfrozen cubic-quintic Ginzburg-Landau equation

$$
\begin{align*}
u_{t} & =\alpha u_{x x}+\delta u+\beta|u|^{2} u+\gamma|u|^{4} u & & , x \in \Omega, t \in\left(0, T_{1}\right] \\
u(0) & =u_{0} & & , x \in \bar{\Omega}, t=0, \tag{2}\\
u_{x} & =0 & & , x \in \partial \Omega, t \in\left[0, T_{1}\right],
\end{align*}
$$

Solve the real-valued system associated with (2)

$$
\begin{align*}
u_{t} & =A u_{x x}+\delta u+B|u|^{2} u+C|u|^{4} u & & , x \in \Omega, t \in\left(0, T_{1}\right], \\
u(0) & =u_{0} & & , x \in \bar{\Omega}, t=0, \tag{3}\\
u_{x} & =0 & & , x \in \partial \Omega, t \in\left[0, T_{1}\right],
\end{align*}
$$

on the spatial domain $\Omega=(-20,20)$ for end time $T_{1}=70$, initial data $u_{0}=\left(u_{0}^{(1)}, u_{0}^{(2)}\right)^{T}$ with $u_{0}^{(1)}(x)=\frac{2.5}{1+\left(\frac{x}{5}\right)^{2}}, u_{0}^{(2)}(x)=0$ and parameters $\alpha=1, \beta=3+i, \gamma=-\frac{11}{4}+i$ and $\delta=-\frac{1}{10}$. For the space discretization use linear Lagrange elements with maximal element size $\triangle x=0.1$. For the time discretization use the BDF method of maximum order 2 with intermediate time steps, time stepsize $\Delta t=0.1$, relative tolerance rtol $=10^{-3}$ and absolute tolerance atol $=10^{-5}$ with global method set to be unscaled. The nonlinear equations should be solved by the Newton method. i.e. automatic (Newton).
b) Consider the one-dimensional nonfrozen cubic-quintic Ginzburg-Landau equation

$$
\begin{align*}
\hat{v}_{t} & =\alpha \hat{v}_{x x}+\delta \hat{v}+\beta|\hat{v}|^{2} \hat{v}+\gamma|\hat{v}|^{4} \hat{v} & & , x \in \Omega, t \in\left(0, T_{2}\right], \\
\hat{v}(0) & =\hat{v}_{0} & & , x \in \bar{\Omega}, t=0, \tag{4}\\
\hat{v}_{x} & =0 & & , x \in \partial \Omega, t \in\left[0, T_{2}\right],
\end{align*}
$$

Solve the real-valued system associated with (4)

$$
\begin{align*}
\hat{v}_{t} & =A \hat{v}_{x x}+\delta \hat{v}+B|\hat{v}|^{2} \hat{v}+C|\hat{v}|^{4} \hat{v} & & , x \in \Omega, t \in\left(0, T_{2}\right] \\
\hat{v}(0) & =\hat{v}_{0} & & , x \in \bar{\Omega}, t=0, \tag{5}\\
\hat{v}_{x} & =0 & & , x \in \partial \Omega, t \in\left[0, T_{2}\right],
\end{align*}
$$

on the spatial domain $\Omega=(-20,20)$ for end time $T_{2}=70$, initial data $\hat{v}_{0}(x)=u_{0}(x)$ and parameters $\alpha=1, \beta=3+i, \gamma=-\frac{11}{4}+i$ and $\delta=-\frac{1}{10}$. For the space discretization use linear Lagrange elements with maximal element size $\triangle x=0.1$. For the time discretization use the BDF method of maximum order 2 with intermediate time steps, time stepsize $\Delta t=0.1$, relative tolerance rtol $=10^{-3}$ and absolute tolerance atol $=10^{-5}$ with global method set to be unscaled. The nonlinear equations should be solved by the Newton method. i.e. automatic (Newton).
c) Consider the frozen cubic-quintic Ginzburg-Landau equation

$$
\begin{align*}
v_{t} & =\alpha v_{\xi \xi}+i \mu v+\delta v+\beta|v|^{2} v+\gamma|v|^{4} v & & , \xi \in \Omega, t \in\left(0, T_{3}\right], \\
v(0) & =v_{0} & & , \xi \in \bar{\Omega}, t=0, \\
v_{\xi} & =0 & & , \xi \in \partial \Omega, t \in\left[0, T_{3}\right], \\
0 & =\operatorname{Re}(v-\hat{v}, i \hat{v})_{L^{2}(\Omega, \mathbb{C})} & & t \in\left[0, T_{3}\right], \tag{6}\\
\gamma_{t} & =\mu & & , t \in\left(0, T_{3}\right], \\
\gamma(0) & =0 & & t=0,
\end{align*}
$$

Solve the real-valued system associated with (6)

$$
\begin{align*}
v_{t} & =A v_{\xi \xi}+\mu S_{2} v+\delta v+B|v|^{2} v+C|v|^{4} v & & , \xi \in \Omega, t \in\left(0, T_{3}\right], \\
v(0) & =v_{0} & & , \xi \in \bar{\Omega}, t=0, \\
v_{\xi} & =0 & & , \xi \in \partial \Omega, t \in\left[0, T_{3}\right], \\
0 & =\left(v-\hat{v}, S_{2} \hat{v}\right)_{L^{2}\left(\Omega, \mathbb{R}^{2}\right)} & & t \in\left[0, T_{3}\right], \tag{7}\\
\gamma_{t} & =\mu & & t \in\left(0, T_{3}\right], \\
\gamma(0) & =0 & & t=0,
\end{align*}
$$

on the spatial domain $\Omega=(-20,20)$ for end time $T_{3}=450$, initial data $v_{0}(\xi)=u_{0}(\xi)$, reference function $\hat{v}(\xi)$ as the solution of (5) at end time T_{2} and parameters $\alpha=1, \beta=3+i$, $\gamma=-\frac{11}{4}+i, \delta=-\frac{1}{10}$. and $S_{2}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. For the space discretization use linear Lagrange elements with maximal element size $\triangle x=0.1$. For the time discretization use the BDF method of maximum order 2 with intermediate time steps, time stepsize $\triangle t=0.1$, relative tolerance rtol $=10^{-3}$ and absolute tolerance atol $=10^{-5}$ with global method set to be unscaled. The nonlinear equations should be solved by the Newton method (automatic (Newton)).
d) Solve the eigenvalue problem for the linearization of the real-valued version of the GrossPitaevskii equation

$$
\begin{array}{ll}
\lambda w=A w_{\xi \xi}+\mu_{\star} S_{2} w+D_{v} f\left(v_{\star}\right) w & , \xi \in \Omega, \\
w_{\xi}=0 & , \xi \in \partial \Omega \tag{8}
\end{array}
$$

on the spatial domain $\Omega=(-20,20)$, where $D_{v} f(v)$ denotes the derivative of

$$
f(v)=\delta v+B|v|^{2} v+C|v|^{4} v v \text {, i.e. } D_{v} f(v)=\delta I_{2}+B|v|^{2}+2 B v v^{T}+C|v|^{4}+4 C|v|^{2} v v^{T} \text {. }
$$

For v_{\star} and μ_{\star} use the solutions v and μ of (7) at the end time $T_{2}=450$. Determine neigs $=400$ eigenvalues λ and correspondig eigenfunctions w. The eigenvalues should be closest in absolute value around the shift -1 .
e) Postprocessing and Visualization of results: Create the following plots to visualize the results of the computations:

- Oscillating Pulse, View 1: Plot the solution u_{1} of (3) at time $t=0,2,3,4$ and 8 .
- Oscillating Pulse, View 1: Plot the solution u_{2} of (3) at time $t=0,2,3,4$ and 8 .
- Oscillating Pulse, View 2: Create a time-space plot for the solution u_{1} of (3).
- Oscillating Pulse, View 2: Create a time-space plot for the solution u_{2} of (3).
- Reference function: Plot the template solutions \hat{v}_{1} and \hat{v}_{2} of (5) at time T2.
- Profile, View 1: Plot the solution v_{1} and v_{2} of (7) at the end time T_{3}.
- Profile, View 2: Create a time-space plot for the solution v_{1} of (7).
- Profile, View 2: Create a time-space plot for the solution v_{2} of (7).
- Velocity: Plot the velocity μ of (7) for time t from 0 to T_{3}.
- Position: Plot the position γ of (7) for time t from 0 to T_{3}.
- Convergence indicator: Plot $\left\|v_{t}(t)\right\|_{L^{2}\left(\Omega, \mathbb{R}^{2}\right)}$ and $\left|\mu_{t}(t)\right|$ for time t from 0 to T_{3}.
- Eigenvalues and Spectrum: Plot the eigenvalues λ of (8).
- Eigenfunctions: Plot the eigenfunction w of (8) belonging to the zero eigenvalue.

