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2. Freezing Oscillating Waves in Reaction Diffusion
Systems

2.1 Oscillating waves in reaction diffusion systems
Consider a system of reaction diffusion equations on R?
0 uy(w,t) = ADu(z, t) + f(u(z,t) , € R >0,
u(z,0) = ug(x) ,r€RY =0,
with diffusion matrix A € C™™, nonlinearity f : C™ — C™, initial data uo : R — C™ and
solution u : R? x [0,00) — C™. We assume that f satisfies f(e?z) = e f(2) for any p € R
and z € C™. The operator A denotes the Laplacian given by
d

We are interested in oscillating wave solutions of (1): An oscillating (or phaserotating) wave of
(1) is a solution u, : R? x [0,00) — C™ of the form

(2) u(r,t) = ety (x), € Rt > 0.

The function v, : R — C™ is called the profile and u, € R the (oscillation or phase) velocity
of the oscillating wave.

Our aim is to approximate oscillating wave solutions of (1). The idea for approximating the
oscillating wave u, is to determine the profile v, and the velocity u, simultaneously. This
requires to transform (1) into a co-oscillating coordinate system.

Transforming (1) via u(z,t) = e v (z,t) in a co-oscillating frame yields

3 vi(z,t) = ADv(z,t) +ipo(z) + f(u(z,t) , 2 € R >0,

v(z,0) = up(x) ,r €RY t=0.
Inserting (2) into (1) shows, that v, is a stationary solution of (3), i.e.
(4) 0 = AN, (z) + ip, () + f(v(x)) , v € R

We are also interested in nonlinear stability of oscillating waves. It is well known from the
literature, that in many cases spectral stability implies nonlinear stability. For investigating
spectral stability of a oscillating wave, we must analyze the spectrum of the linearization of the
right hand side in (3) at the wave profile v,, i.e.

[Lw] (z) = ADw(x) + ipaw(z) + Df (v, (2)w(z) , z € R
This requires to find solutions (A, w) of the eigenvalue problem
(5) () = Aw,(z) + ipw(x) + Df (uu(a)w() o e RY,

with eigenfunction w : R — C™ and eigenvalue A € C.

Approximating v, via (3) requires the knowledge about the velocity pu, which is in general
unknown. This motivates to introduce the freezing method, whose idea is it to approximate
the profile v, and the velocity u, simultaneously.
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2.2 Freezing method for oscillating waves

Consider again a system of reaction diffusion equations on R%, cf. (1),
ug(z,t) = ADu(z,t) + f(u(x,t)) , xR >0,
u(z,0) = ug(x) ,r€RY ¢t =0.

Introducing new unknowns (¢) € R (position) and v(z,t) € C™ (profile) via the oscillating
wave ansatz

(6)

(7) u(x,t) = e oz, t) ,zeRL >0
and inserting (7) into (6) yields
(8) v(z,t) = ADv(z,t) + iy (Dv(z, t) + flo(z,t) , xR t>0.

It is convenient to introduce a further unknown p(t) € R (velocity) via v.(t) = p(t). Then, (8)

reads as
©) vi(2,t) = ADv(z,t) +ip(t)v(z, t) + f(v(z,t) , 2 €RY >0,
2(t) = () >0
Equ. (9) has to be equipped with suitable initial data. Requiring v(0) = 0, (7) and (6) imply
(10) v(r,0) =ug(z) , 2 € R t=0.
Collecting the equations (9), v(0) = 0 and (10) we obtain
ve(z,t) = ADv(z,t) +ip(t)v(x, t) + f(v(z,t)) , xR >0,

(11) v(x,0) = up(z) ,reRY =0,
n(t) = p(t) >0,
v(0)=0 ,t=0.

(11) contains the equations for v and . But so far, the system (11) is not well-posed, since
there is still no equation for pu. To determine p we require an additional algebraic constraint,
a so called phase condition: For this purpose let © : R? — C™ be a template function, e.g.
0 = ug. The idea of the phase condition is to choose v(-,t) such that

. —igar (2 NANTE:
I;léél H'U('vt) —€ ng(.)HLQ(Rd,(Cm) = ||'U('vt) - v(')HL?(Rd,Cm) 62 0.
A necessary condition to guarantee that the left hand side attains its minimum at g = 0 is that
the first derivative of ||[v(,t) — e_igﬁ(-)|]i2(Rd7(Cm) evaluated at g = 0 vanishes, i.e. for all ¢t > 0

! d —ig —ig ~ PN
(12) 0= o (v(-,t) — e70(-),v(-, 1) — e gU<'>)L2(Rd,<Cm) = 2Re (v(+,t) — 9,i0) 12 (ga om) -
g=0

Combining (11) and (12) yields a partial differential algebraic evolution equation (PDAE)
vi(z,t) = ADv(z, t) +ip(t)v(x, t) + f(o(z,t)) , xR ¢ >0,

v(x,0) = up(z) ,reRY =0,
(13) O — Re (’U(',t) - ,ﬁ, Z,ﬁ)L2(Rd,Cm) 3 t 2 07
7t<t) = M(t) ) t> 07
v(0) =0 ,t=0.

The last two equations in (13) for the position 7 are decoupled from the other equations in (13).
Therefore, the v-equation can be solved in a postprocessing step. The y-equation is called the
reconstruction equation for the oscillating wave. Since (v, ) satisfy

0 = ADv(x) + v () + fue(x)) , x € R,

O — R,e ('U* - ’ﬁ, Z@)LQ(Rd,Cm) 9



we expect for stability reasons, that the solution (v, i, y) of (13) satisfies

(14) v(t) = vy,  pu(t) = pe as t— oc.

As an indicator for the convergence in (14) we check the quantities

(15) [0 Dl 2 aomy - and - [pe(?)]

at each time instance ¢ during the computation. In fact, both of these quantities should be
small (=~ 1071%), since v, and p, do not vary in time.

2.3 Numerical approximation of traveling waves via freezing method

Solving (1), (13) and (5) numerically, requires to truncate these equations to bounded domains.
Let © C R be a bounded open domain, then (1), (13) and (5) must be satisfied for x € Q. To
guarantee the well-posedness of these problems, we must equip the equations with appropriate
boundary conditions. Normally, we choose homogeneous Neumann boundary conditions (also
known as no-flux boundary conditions), i.e.

0
a—Z(x) =0,z €099, S—Z(x) =0, z € 99.
where %(z) := Vu(z) - n denotes the directional derivative of u along the (unit) normal vector

n = n(x) € R? at the boundary point x € 9. In this context, dQ denotes the boundary of
Q and Q the closure of Q. E.g. if Q = (a,b) with —0co < @ < b < oo then 9 = {a,b} and
Q= [a,b]. If Q= Br(0) :={z € R?| |2| < R} with R > 0 then 99 = {x € R?| |z| = R} and
Q= {r € R?| |z| < R}. Numerically, we solve the following equations:

Step 1: (Nonfrozen Equation)

w(z,t) = ADu(z, t) + f(u(z,t)) ,z€Q, te (0,11,

(16) u(z,0) = ug(z) Lz e t=0,
%(w,t)zo , €00, tel0,Ty.

First, we determine the solution u of (16). The quantities A, f, ug, 2 and 17 are given.
Step 2: (Frozen Equation)

vi(w,t) = ADv(x,t) +ip(t)v(z, t) + fo(x,t)) ,x e, te (0,1,

v(2,0) = vo(z), 1 €N ,t=0,
ov
(17) %(:L’,t):(] ,xE@Q, te [O,TQ],
O — Re (’U(', t) - @7Z@>L2(Q,Cm) 5 t c [O, T2]7
7t<t) = M<t> ) te <O7T2]7
7(0)=0 ,t=0.

Then, we determine the solution (v, u,vy) of (17). The quantities A, f, vy, 0, 2 and T, are
given. The final time 75 may be different to the end time 7 from (16). The template function
is often chosen as 0(z) = ug(z) or 0(x) = u(x,T}), where u(-,T;) denotes the solution of (16)
at the end time 7). Also the initial data vy is often chosen as vy (x) = ug(z) or vo(x) = u(z, T).
The end time 75 in (17) is often chosen such that the values of the quantities [[v(-,?)|2(0,cm)
and | (t)], cf. (15), are near 10716,

Step 3: (Eigenvalue Problem)

w(z) = ADw(z) + ipw(z) + Df(v(x)w(z) ,z€Q,
(18) dw
on

Finally, we determine (a predescribed number neig of) eigenvalues A\ and associated eigenfunc-
tions w of (18). The quantities A, iy, vy, f, €2 and neig are given. The profile v, and the velocity

() =0 , T € 0.



iy come actually from a simulation, more precisely we set p, := p(73) and v, (§) = v(&, Tz),
where 1(T5) and v(-, T) denote two components of the solution of (17) at the end time T5.

Note that equation (18) requires f to be holomorphic. This is very restrictive and in many
applications not satisfied. For instance, the nonlinearities of the Ginzburg-Landau equation,
the Schrodinger equation and the Gross-Pitaevskii equation are not holomorphic at the origin
0, but they are real-differentiable. This motivates to formulate the real-valued versions of (16),

(17) and (18).
2.4 Spectra and eigenfunctions of oscillating waves
We now look for solutions (A, w) of the eigenvalue problem
2w (z) = [Lw](z) == AAw(z) + ipaw(x) + Df(v(z))w(z), z € R
2.4.1 Point spectrum of oscillating waves on the imaginary axis

Case 1: (f holomorphic). Consider the oscillating wave equation
(19) 0= AN, (2) + ipv, () + f(vo(x)), 2 € RY, d > 1,

with diffusion matrix A € C™™  nonlinearity f : C™ — C™, phase velocity u, € R and profile
v, : R4 — C™.
For g € R we define the group action [a(g)v](z) := e “v(x). Applying a(g) on both hand sides
in (19) yields (provided that f satisfies f(e*z) = e“"f( ) for any ¢ € R and z € C™)

(

0= CL(Q) [AAU*< ) + LUy .T}) + f(U*< ))]
(20) = AAfa(g)v.(2)] + ipsfa(g)v(@)] + flalg)v.(z))
= ANe v, () + ipe v, (x) + fle v, (2)), * € R

Taking the derivative % in (20) evaluated at g = 0, we obtain (provided that v, € C?(R%, C™)
and f € C''(C™,C™) holomorphic)

0= {dilg <AAe@'%*(:c) e v, (2) + fle o (x )))}

9=0

_ {Agewu@) T ipe0,(2) + Df<eigv*<x>>eigv*<x>}

= —i (AAU*(ZL‘) + v (x) + Df(v*(x))v*(x)), r € R

This leads to the equation

0 = AAv,(2) + i, () + D f(ve(x))ve(z), 2 € R
Therefore, (A, w(x)) := (0, v,(x)) solves the eigenvalue problem
(21) Mw(x) = [Lw](z) := AAw(z) + ipaw(z) + Df(v,(z))w(z), = € RY,

i.e. the function w(x) = v, () is an eigenfunction associated with the eigenvalue A\ = 0, provided
the v, is not identically 0.

Procedure: Considering (19) as an operator equation, differentiating (19) w.r.t. (the function!!!)
v, and evaluating at v, yields the solution (A, w(x)) := (0, v,(x)) of (21).

Theorem 2.1 (Point spectrum of oscillating waves, complex version). Let v, € C?(R%, C™) be a
nontrivial classical solution of (19) for some A € C™™, u, € R and a holomorphic nonlinearity
f e CYC™ C™) satisfying
f(ez) =e“f(z) forany p€R and z€C™
Then
A=0, w(r)=uv(r), =R’



solves the eigenvalue problem (21). In particular, the algebraic multiplicity of the eigenvalue
A =0 1s at least 1.

Case 2: (f real-differentiable). Consider the real-valued version of (19) which is
(22) 0= AAV(2) + p1uSova(7) + £(vi()), 2 €RY, d > 1,

A —A

with diffusion matrix A = (Ag A

) € R?m2m skew-symmetric matrix Sy = ( [O _ém) €

? : R?™ — R?™ phase velocity i, € R and profile v, : R — R?™,
2

where A; = Re A, Ay =ImA, fy =Ref and fo =1Im f.
For g € R we define the group action [a(g)v](z) := E(g)v(x), where

(9
E(g) = (OSE ? —sin( 9>[m) € R,

R2m2m ponlinearity f =

sin(—g)1,, cos(—g)l,

Applying a(g) on both hand sides in (22) yields (note that E(g)A = AE(g), E(g)S2 = S2E(g)
and E(g)f(v,(x)) = f(E(g)v.(z)) since f(e*¥z) = e f(z) for any ¢ € R and z € C™)

0= a(g) [AAVL(2) + 152vi(2) + £(vi(2))]
(23) = E(9)ALvV.(2) + 1. E(9)52v(2) + E(g)f (vi(2))
— AAE(), (1) + 1 S2B(g)ve(x) + E(E(g)v,(x), # € RY
Taking the derivative % in (23) evaluated at g = 0, we obtain (provided that v, € C?(R? R?™)
and f € CY(R?™, R*") real-differentiable)

0= [ (AnBl) + 1B o) + B )

g=0

- [AAE’(g)v*(:c) T 1SaE (g)va(a) + Df<E<g>v*<x>>E'<g>v*<x>}

— (AASQV*(SU) + s Sav () + Df(v*(x))ng*(x)), r € R

where we used
Blo)= (Snl 0 o) w1, )=
This leads to the equation
0= AASov, (2) + 1, S2v, (z) + Df (v, (2))Sov, (), 2 € R
Therefore, (A, w(zx)) := (0, Sev,(z)) solves the eigenvalue problem
(24) M (r) = [Lw](x) := AAw(z) + p1.Syw(x) + DEf (v, (z))w(z), € RY,

i.e. the function w(x) = v,(z) is an eigenfunction associated with the eigenvalue A = 0,
provided the v, is not identically 0.

Procedure: Considering (22) as an operator equation, differentiating (22) w.r.t. (the function!!!)
v, and evaluating at Syv, yields the solution (A, w(z)) := (0, Sav,(z)) of (24).

Theorem 2.2 (Point spectrum of oscillating waves, real version). Let v, € C?(R? R?™) be

a nontrivial classical solution of (22) for some A = <ﬁ1 _AAQ) € RT™Im A Ay € R™™,
2 1

Uy € R and a real-differentiable nonlinearity £ € C*(R*™, R*™) satisfying
f(E(g)z) = E(g9)f(z) forany g€R and z¢cR™.

Then
A=0, w(z)=Sw(r), zcR



solves the eigenvalue problem (24). In particular, the algebraic multiplicity of the eigenvalue
A =0 1s at least 1.

2.4.2 Essential spectrum of localized oscillating waves

Case 1: (f holomorphic). Consider the oscillating wave equation in R?
(25) 0 = AAv () + i (2) + fv(2)), © € R

with diffusion matrix A € C™™, nonlinearity f : C™ — C™, constant asymptotic states
Voo € C™ (ie. f(vs) = 0), phase velocity u, € R and profile v, : R? — C™ satisfying
Ve () = Voo € C™ as |z| = 0.

Initial value problem: The main idea to detecting the essential spectrum of L is to look for

solutions of
(26) vi(x,t) = [Lv](,t) := ADv(z,t) +ipo(z,t) + Df (ve(x))v(x,t) , 2 € R >0,
v(x,0) = vo(x) ,r €RYt=0.

Decomposition of D f(v,(z)): Introducing the matrix Q(x) € C™™ via

Q(z) == Df(vi(w)) — Df(vs), @ € R,

we obtain from (26)
(27)
vi(,t) = [Lov)(x,t) == ADv(2,t) +ipo(z,t) + Df(ve)v(z,t) + Q(2)v(w,t), ¥ € R ¢ > 0.

Limiting operator (simplified operator, far-field operator): Since the essential spectrum depends
only on the limiting equation for |z| — oo, we let formally |x| — oo (but only in the coefficient
matrices). Since Q(z) — 0 as |z| — oo, we can drop the term @Q(x) in (27) and obtain

(28) vi(z,t) = [Loov] (2, 1) := ADv(2, ) +ipv(z, t) + Df (ves)v(a, t), € R, t > 0.

Fourier transform: Since we seck for bounded solutions of (28), we perform a Fourier transfor-
mation in space and time. Inserting the Fourier transform

d
(29) v(z,t) =M, N e C,w eRL G €C™, || =1, w- o := ijxj
j=1

into (28) and dividing by e*e™® yields a finite dimensional eigenvalue problem
Mo = (—|wlPA+ ipdn 4+ Df(vs)) 0
Dispersion relation: Every A € C satisfying
det (—|w|?A +iptly + D f(vs) — M) =0
for some w € R? belongs to the essential spectrum of £, see Figure 2.1.

Theorem 2.3 (Essential spectrum of oscillating waves, complex version). Let v, € C?(R?, C™)
be a nontrivial classical solution of (25) satisfying v.(x) — Vs as |z| = 00 for some vy, € C™
and let A € C™™, u, € R and a holomorphic function f € C*(C™, C™) with f(vs) = 0. Then,
the line

Soc i={A € C | det (—|w|*A + iptuLy + D f(vs0) — AL) =0 for some w € R}
={A€o (—|wlPA+ipdn+ Df(vs)) | w € R}

belongs to the essential spectrum Oess(L) of L, i.e. Soo C Tess(L).
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FIGURE 2.1. Subset S, of the essential spectrum of an oscillating wave for a
scalar-valued (m = 1), holomorphic nonlinearity and for parameters p, = —1,

Df(vs) =—%and A=1 (red), A=1+1 (green), A =i (blue).

Case 2: (f real-differentiable). Consider the real-valued version of (25) which is
(30) 0= AAV(2) 4+ 1.Sov,(2) + f(v.(2)), s € RY, d > 1,

A —A,

with diffusion matrix A = ( A, A

) € R?™2™m_ skew-symmetric matrix Sy = ( [O _ém) <

R2™2m - ponlinearity f = (f 1) : R*™ — R?7™ constant asymptotic states vo, € R*™ (i.e.

f2
f(vs) = 0), phase velocity p, € R and profile v, : R? — R?™ satisfying v,(z) — vo € R*™ as
Initial value problem: The main idea to detecting the essential spectrum of L is to look for
solutions of

(31) vi(z,t) = [LV](z,t) := AAV(2,t) + p,Sov(z, t) + Df(v,(2))v(z,t) ,z € Rt >0,
v(z,0) = vo(z) ,x € Rt =0.
Decomposition of Df(v,(x)): Introducing the matrix Q(z) € R*™?™ via

Q(z) := Df(v. (7)) — Df(v.), = € RY,
we obtain from (31)

(32)
vi(z,t) = [LqV](z,t) = AAV(z,t) + p,Sov(z, t) + DF (v )v(z, 1) + Q(z)v(w, 1), » € RY ¢ > 0.
Limiting operator (simplified operator, far-field operator): Since the essential spectrum depends

only on the limiting equation for |z| — oo, we let formally |z| — oo (but only in the coefficient
matrices). Since Q(x) — 0 as |z| — 0o, we can drop the term in (32) and obtain

(33)  vi(x,t) = [LooV](z, 1) = AAV(2,t) + 11,59V (2, t) + Df(voo)v(z,t), € RY ¢ > 0.

Fourier transform: Since we seek for bounded solutions of (33), we perform a Fourier transfor-
mation in space and time. Inserting the Fourier transform
d
(34) v(z,t) =M 5, A€ C,w eRLVEC™, V| =1, w1 := ijxj
j=1

into (33) and dividing by e*e™? yields a finite dimensional eigenvalue problem
M = (—|w]?A + 11,5 + Df(vio)) v
Dispersion relation: Every A € C satisfying
det (—|w|?A + p,Ss + Df(veo) — Aloy) = 0

for some w € R? belongs to the essential spectrum of £, see Figure 2.2.



Theorem 2.4 (Essential spectrum of oscillating waves, real version). Let v, € C?(R? R?™) be
a nontrivial classical solution of (30) satisfying vi(z) — Voo as |z| — 0o for some vo, € R™

and let A = i; _AI?Q € R¥m2m A Ay € R™™, pu, € R and a real-differentiable function
f € CYR*™,R*™) with f(vs) = 0. Then, the line
Soo i={A € C | det (—|w|*A + (1.9 + Df (Vo) — Alap) = 0 for some w € R?}
={A €0 (—|w]A + p.S> + Df(vo)) | w € R}

belongs to the essential spectrum Oess(L) of L, i.e. Soo C Tess(L).
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FIGURE 2.2. Subset S, of the essential spectrum of an oscillating wave for a
scalar-valued (m = 1), real-differentiable nonlinearity and for parameters p, =

—1, Df(ve) = =3I and A = I, (red), A = I, + S5 (green), A = S5 (blue).

Example 2.5 (Cubic-quintic Ginzburg-Landau equation). Consider the cubic-quintic Ginzburg-
Landau equation
uy = aNu+ Su + Blul®u + ylul*u, z € R t >0,
for some «, f,7 € C with Rea > 0, § € R and u = u(z,t) € C. The nonlinearity
f:C—=C, flu)=(0+Bluf +lul*)u,
which is of the form f(u) = g(|u|?)u with polynomial g(w) := § + Bw +~yw?, is not holomorphic
at u = 0, but it is real-differentiable. Decomposing
U =uy +ius, «a=a;+iay, [=0b +1iby, v=c1+ics

with wy, us, ay, as, by, be, ¢y, co € R and introducing

Al )G ) e ) ()
as a; )’ be by )’ e ¢ )’ Us
with A, B, C € R?? and u = u(z,t) € R?, the associated real-valued system reads as
W, = AAu + ou + Blu|?’u + Clu|*u, z€R% ¢t>0,
where the (real-valued) nonlinearity is given by
f:R? = R? f(u) = (61, + Blu]* + Clu/*)u

For the parameters
=1 =3 _ § = 1
o = ) /B e 7 - 4 _'_ Z7 - 10
the cubic-quintic Ginzburg-Landau equation has an oscillating pulse solution u,(x,t) = e *v, ()
with velocity p, &~ —1.3 and profile v, conntecting the asymptotic state v, = 0, i.e. v,(2) = Vs
as |z| — oo. Note that neither the profile nor the velocity are given explicitly. The (real-valued)

nonlinearity f satisfies f(v,,) = 0 and Df(v.,) = 0I5. The dispersion relation states that
Sao i={A € C | det (—|w|*A + 1.5 4+ Df(veo) — Alz) = 0 for some w € R?}



belongs to gess(L). Due to

—|wl?a; +6 — X wl?as — 1,
0 = det ( ‘_‘L|21aQ o _‘L|\2a12+ 5#_ )\) = (—|w|Pay + 6 — N)? + (JwPag — )%,

every Ao = Ajo(w) € C satistying
Mo = —|w)?a; + 8 £i(|wl’az — 1)

for some w € R? belongs to the essential spectrum of £. The essential spectrum of the oscillating
pulse in the cubic-quintic Ginzburg-Landau equation is illustrated in Figure 2.3.
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FIGURE 2.3. Essential spectrum of the cubic-quintic Ginzburg-Landau equation
for an oscillating pulse with a =1, =3, v = —1741 +1i,0= —% and d =1

Example 2.6 (Nonlinear Schrodinger equation). Consider the nonlinear Schrédinger equation
w, = iAu + BlulPu, x € RY ¢ >0,
for some § € C and u = u(x,t) € C. The nonlinearity
[:CoC, fu) = Blufu,
which is of the form f(u) = g(Ju|*)u with polynomial g(w) := Bw, is not holomorphic at u = 0,
but it is real-differentiable. Decomposing
u=u +iup, =0+ by,

with uy, us, by, by € R and introducing

o 0 —1 . b1 _b2 (U

A=) ) e

with A, B € R?*? and u = u(z,t) € R?, the associated real-valued system reads as
w, = AAu+Blul’u, zeRY t>0,
where the (real-valued) nonlinearity is given by
f:R*> - R?* f(u) = Blul*u
For the parameter § = 2¢ the nonlinear Schrédinger equation has an oscillating pulse solution
uy(z,t) = e Mo, (x) with velocity p, ~ —1 and profile v, conntecting the asymptotic state
Voo = 0, 1.e. 0,(2) = v as |x| — 00. The (real-valued) nonlinearity f satisfies f(v) = 0 and
Df(v.,) = 0. The (real version of the) dispersion relation states that
Soo i={X € C | det (—|w[*A + 1.9 + Df(vio) — AM») = 0 for some w € R?}

belongs to oess(L). Due to

Y wl? =,
OZdet(—(MZ—M*) | ‘—AM):)‘QJFHW‘Q_M*

2

)




every Ao = Ajo(w) € C satistying
)\1’2 =43 HW|2 — M*’

for some w € R? belongs to the essential spectrum of £. The essential spectrum of the oscillating
pulse in the nonlinear Schrédinger equation is illustrated in Figure 2.4.

157+

051

ImA
o

-05

-15

-1 -0.5 0 0.5 1
Re\

FIGURE 2.4. Essential spectrum of the nonlinear Schrodinger equation for an
oscillating pulse with =2 and d =1



