
Mathematical Modelling and Simulation with
Comsol Multiphysics II
Winter term 2015/2016
Dr. Denny Otten
09.11.2015

2. Freezing Oscillating Waves in Reaction Diffusion

Systems

2.1 Oscillating waves in reaction diffusion systems

Consider a system of reaction diffusion equations on R
d

(1)
ut(x, t) = A△u(x, t) + f(u(x, t)) , x ∈ R

d, t > 0,

u(x, 0) = u0(x) , x ∈ R
d, t = 0,

with diffusion matrix A ∈ Cm,m, nonlinearity f : Cm → Cm, initial data u0 : Rd → Cm and
solution u : Rd × [0,∞) → Cm. We assume that f satisfies f(eiϕz) = eiϕf(z) for any ϕ ∈ R

and z ∈ C
m. The operator △ denotes the Laplacian given by

△u(x) :=

d
∑

i=1

∂2u

∂x2
i

(x), x ∈ R
d.

We are interested in oscillating wave solutions of (1): An oscillating (or phaserotating) wave of
(1) is a solution u⋆ : R

d × [0,∞) → Cm of the form

(2) u⋆(x, t) = e−iµ⋆tv⋆(x), x ∈ R
d, t > 0.

The function v⋆ : Rd → Cm is called the profile and µ⋆ ∈ R the (oscillation or phase) velocity
of the oscillating wave.
Our aim is to approximate oscillating wave solutions of (1). The idea for approximating the
oscillating wave u⋆ is to determine the profile v⋆ and the velocity µ⋆ simultaneously. This
requires to transform (1) into a co-oscillating coordinate system.
Transforming (1) via u(x, t) = e−iµ⋆tv(x, t) in a co-oscillating frame yields

(3)
vt(x, t) = A△v(x, t) + iµ⋆v(x) + f(v(x, t)) , x ∈ R

d, t > 0,

v(x, 0) = u0(x) , x ∈ R
d, t = 0.

Inserting (2) into (1) shows, that v⋆ is a stationary solution of (3), i.e.

(4) 0 = A△v⋆(x) + iµ⋆v⋆(x) + f(v⋆(x)) , x ∈ R
d.

We are also interested in nonlinear stability of oscillating waves. It is well known from the
literature, that in many cases spectral stability implies nonlinear stability. For investigating
spectral stability of a oscillating wave, we must analyze the spectrum of the linearization of the
right hand side in (3) at the wave profile v⋆, i.e.

[Lw] (x) = A△w(x) + iµ⋆w(x) +Df(v⋆(x))w(x) , x ∈ R
d.

This requires to find solutions (λ, w) of the eigenvalue problem

(5) λw(x) = Awx(x) + iµ⋆w(x) +Df(v⋆(x))w(x) , x ∈ R
d,

with eigenfunction w : R → Cm and eigenvalue λ ∈ C.
Approximating v⋆ via (3) requires the knowledge about the velocity µ⋆ which is in general
unknown. This motivates to introduce the freezing method, whose idea is it to approximate
the profile v⋆ and the velocity µ⋆ simultaneously.
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2.2 Freezing method for oscillating waves

Consider again a system of reaction diffusion equations on Rd, cf. (1),

(6)
ut(x, t) = A△u(x, t) + f(u(x, t)) , x ∈ R

d, t > 0,

u(x, 0) = u0(x) , x ∈ R
d, t = 0.

Introducing new unknowns γ(t) ∈ R (position) and v(x, t) ∈ Cm (profile) via the oscillating
wave ansatz

(7) u(x, t) = e−iγ(t)v(x, t) , x ∈ R
d, t > 0

and inserting (7) into (6) yields

(8) vt(x, t) = A△v(x, t) + iγt(t)v(x, t) + f(v(x, t)) , x ∈ R
d, t > 0.

It is convenient to introduce a further unknown µ(t) ∈ R (velocity) via γt(t) = µ(t). Then, (8)
reads as

(9)
vt(x, t) = A△v(x, t) + iµ(t)v(x, t) + f(v(x, t)) , x ∈ R

d, t > 0,

γt(t) = µ(t) , t > 0.

Equ. (9) has to be equipped with suitable initial data. Requiring γ(0) = 0, (7) and (6) imply

(10) v(x, 0) = u0(x) , x ∈ R
d, t = 0.

Collecting the equations (9), γ(0) = 0 and (10) we obtain

(11)

vt(x, t) = A△v(x, t) + iµ(t)v(x, t) + f(v(x, t)) , x ∈ R
d, t > 0,

v(x, 0) = u0(x) , x ∈ R
d, t = 0,

γt(t) = µ(t) , t > 0,

γ(0) = 0 , t = 0.

(11) contains the equations for v and γ. But so far, the system (11) is not well-posed, since
there is still no equation for µ. To determine µ we require an additional algebraic constraint,
a so called phase condition: For this purpose let v̂ : Rd → C

m be a template function, e.g.
v̂ = u0. The idea of the phase condition is to choose v(·, t) such that

min
g∈R

∥

∥v(·, t)− e−ig v̂(·)
∥

∥

2

L2(Rd,Cm)
= ‖v(·, t)− v̂(·)‖2L2(Rd,Cm) , t > 0.

A necessary condition to guarantee that the left hand side attains its minimum at g = 0 is that
the first derivative of ‖v(·, t)− e−ig v̂(·)‖

2
L2(Rd,Cm) evaluated at g = 0 vanishes, i.e. for all t > 0

0
!
=

[

d

dg

(

v(·, t)− e−igv̂(·), v(·, t)− e−igv̂(·)
)

L2(Rd,Cm)

]

g=0

= 2Re (v(·, t)− v̂, iv̂)L2(Rd,Cm) .(12)

Combining (11) and (12) yields a partial differential algebraic evolution equation (PDAE)

(13)

vt(x, t) = A△v(x, t) + iµ(t)v(x, t) + f(v(x, t)) , x ∈ R
d, t > 0,

v(x, 0) = u0(x) , x ∈ R
d, t = 0,

0 = Re (v(·, t)− v̂, iv̂)L2(Rd,Cm) , t > 0,

γt(t) = µ(t) , t > 0,

γ(0) = 0 , t = 0.

The last two equations in (13) for the position γ are decoupled from the other equations in (13).
Therefore, the γ-equation can be solved in a postprocessing step. The γ-equation is called the
reconstruction equation for the oscillating wave. Since (v⋆, µ⋆) satisfy

0 = A△v⋆(x) + iµ⋆v⋆(x) + f(v⋆(x)) , x ∈ R,

0 = Re (v⋆ − v̂, iv̂)L2(Rd,Cm) ,



we expect for stability reasons, that the solution (v, µ, γ) of (13) satisfies

v(t) → v⋆, µ(t) → µ⋆ as t → ∞.(14)

As an indicator for the convergence in (14) we check the quantities

‖vt(·, t)‖L2(Rd,Cm) and |µt(t)|(15)

at each time instance t during the computation. In fact, both of these quantities should be
small (≈ 10−16), since v⋆ and µ⋆ do not vary in time.

2.3 Numerical approximation of traveling waves via freezing method

Solving (1), (13) and (5) numerically, requires to truncate these equations to bounded domains.
Let Ω ⊂ R be a bounded open domain, then (1), (13) and (5) must be satisfied for x ∈ Ω. To
guarantee the well-posedness of these problems, we must equip the equations with appropriate
boundary conditions. Normally, we choose homogeneous Neumann boundary conditions (also
known as no-flux boundary conditions), i.e.

∂u

∂n
(x) = 0, x ∈ ∂Ω,

∂v

∂n
(x) = 0, x ∈ ∂Ω.

where ∂u
∂n
(x) := ∇u(x) ·n denotes the directional derivative of u along the (unit) normal vector

n = n(x) ∈ Rd at the boundary point x ∈ ∂Ω. In this context, ∂Ω denotes the boundary of
Ω and Ω the closure of Ω. E.g. if Ω = (a, b) with −∞ < a < b < ∞ then ∂Ω = {a, b} and
Ω = [a, b]. If Ω = BR(0) := {x ∈ Rd | |x| < R} with R > 0 then ∂Ω = {x ∈ Rd | |x| = R} and
Ω = {x ∈ Rd | |x| 6 R}. Numerically, we solve the following equations:
Step 1: (Nonfrozen Equation)

(16)

ut(x, t) = A△u(x, t) + f(u(x, t)) , x ∈ Ω, t ∈ (0, T1],

u(x, 0) = u0(x) , x ∈ Ω, t = 0,

∂u

∂n
(x, t) = 0 , x ∈ ∂Ω, t ∈ [0, T1].

First, we determine the solution u of (16). The quantities A, f , u0, Ω and T1 are given.
Step 2: (Frozen Equation)

(17)

vt(x, t) = A△v(x, t) + iµ(t)v(x, t) + f(v(x, t)) , x ∈ Ω, t ∈ (0, T2],

v(x, 0) = v0(x), x ∈ Ω , t = 0,

∂v

∂n
(x, t) = 0 , x ∈ ∂Ω, t ∈ [0, T2],

0 = Re (v(·, t)− v̂, iv̂)L2(Ω,Cm) , t ∈ [0, T2],

γt(t) = µ(t) , t ∈ (0, T2],

γ(0) = 0 , t = 0.

Then, we determine the solution (v, µ, γ) of (17). The quantities A, f , v0, v̂, Ω and T2 are
given. The final time T2 may be different to the end time T1 from (16). The template function
is often chosen as v̂(x) = u0(x) or v̂(x) = u(x, T1), where u(·, T1) denotes the solution of (16)
at the end time T1. Also the initial data v0 is often chosen as v0(x) = u0(x) or v0(x) = u(x, T1).
The end time T2 in (17) is often chosen such that the values of the quantities ‖v(·, t)‖L2(Ω,Cm)

and |µt(t)|, cf. (15), are near 10−16.
Step 3: (Eigenvalue Problem)

(18)

λw(x) = A△w(x) + iµ⋆w(x) +Df(v⋆(x))w(x) , x ∈ Ω,

∂w

∂n
(x) = 0 , x ∈ ∂Ω.

Finally, we determine (a predescribed number neig of) eigenvalues λ and associated eigenfunc-
tions w of (18). The quantities A, µ⋆, v⋆, f , Ω and neig are given. The profile v⋆ and the velocity



µ⋆ come actually from a simulation, more precisely we set µ⋆ := µ(T2) and v⋆(ξ) := v(ξ, T2),
where µ(T2) and v(·, T2) denote two components of the solution of (17) at the end time T2.
Note that equation (18) requires f to be holomorphic. This is very restrictive and in many
applications not satisfied. For instance, the nonlinearities of the Ginzburg-Landau equation,
the Schrödinger equation and the Gross-Pitaevskii equation are not holomorphic at the origin
0, but they are real-differentiable. This motivates to formulate the real-valued versions of (16),
(17) and (18).

2.4 Spectra and eigenfunctions of oscillating waves

We now look for solutions (λ, w) of the eigenvalue problem

λw(x) = [Lw](x) := A△w(x) + iµ⋆w(x) +Df(v⋆(x))w(x), x ∈ R
d.

2.4.1 Point spectrum of oscillating waves on the imaginary axis

Case 1: (f holomorphic). Consider the oscillating wave equation

(19) 0 = A△v⋆(x) + iµ⋆v⋆(x) + f(v⋆(x)), x ∈ R
d, d > 1,

with diffusion matrix A ∈ Cm,m, nonlinearity f : Cm → Cm, phase velocity µ⋆ ∈ R and profile
v⋆ : R

d → Cm.
For g ∈ R we define the group action [a(g)v](x) := e−igv(x). Applying a(g) on both hand sides
in (19) yields (provided that f satisfies f(eiϕz) = eiϕf(z) for any ϕ ∈ R and z ∈ Cm)

(20)

0 = a(g) [A△v⋆(x) + iµ⋆v⋆(x) + f(v⋆(x))]

= A△[a(g)v⋆(x)] + iµ⋆[a(g)v⋆(x)] + f(a(g)v⋆(x))

= A△e−igv⋆(x) + iµ⋆e
−igv⋆(x) + f(e−igv⋆(x)), x ∈ R

d.

Taking the derivative d
dg

in (20) evaluated at g = 0, we obtain (provided that v⋆ ∈ C2(Rd,Cm)

and f ∈ C1(Cm,Cm) holomorphic)

0 =

[

d

dg

(

A△e−igv⋆(x) + iµ⋆e
−igv⋆(x) + f(e−igv⋆(x))

)]

g=0

= −i

[

A△e−igv⋆(x) + iµ⋆e
−igv⋆(x) +Df(e−igv⋆(x))e

−igv⋆(x)

]

g=0

= −i

(

A△v⋆(x) + iµ⋆v⋆(x) +Df(v⋆(x))v⋆(x)

)

, x ∈ R
d.

This leads to the equation

0 = A△v⋆(x) + iµ⋆v⋆(x) +Df(v⋆(x))v⋆(x), x ∈ R
d.

Therefore, (λ, w(x)) := (0, v⋆(x)) solves the eigenvalue problem

(21) λw(x) = [Lw](x) := A△w(x) + iµ⋆w(x) +Df(v⋆(x))w(x), x ∈ R
d,

i.e. the function w(x) = v⋆(x) is an eigenfunction associated with the eigenvalue λ = 0, provided
the v⋆ is not identically 0.
Procedure: Considering (19) as an operator equation, differentiating (19) w.r.t. (the function!!!)
v⋆ and evaluating at v⋆ yields the solution (λ, w(x)) := (0, v⋆(x)) of (21).

Theorem 2.1 (Point spectrum of oscillating waves, complex version). Let v⋆ ∈ C2(Rd,Cm) be a

nontrivial classical solution of (19) for some A ∈ Cm,m, µ⋆ ∈ R and a holomorphic nonlinearity

f ∈ C1(Cm,Cm) satisfying

f(eiϕz) = eiϕf(z) for any ϕ ∈ R and z ∈ C
m.

Then

λ = 0, w(x) = v⋆(x), x ∈ R
d



solves the eigenvalue problem (21). In particular, the algebraic multiplicity of the eigenvalue

λ = 0 is at least 1.

Case 2: (f real-differentiable). Consider the real-valued version of (19) which is

(22) 0 = A△v⋆(x) + µ⋆S2v⋆(x) + f(v⋆(x)), x ∈ R
d, d > 1,

with diffusion matrix A =

(

A1 −A2

A2 A1

)

∈ R2m,2m, skew-symmetric matrix S2 =

(

0 −Im
Im 0

)

∈

R2m,2m, nonlinearity f =

(

f1
f2

)

: R2m → R2m, phase velocity µ⋆ ∈ R and profile v⋆ : R
d → R2m,

where A1 = ReA, A2 = ImA, f1 = Re f and f2 = Im f .
For g ∈ R we define the group action [a(g)v](x) := E(g)v(x), where

E(g) =

(

cos(−g)Im − sin(−g)Im
sin(−g)Im cos(−g)Im

)

∈ R
2m,2m.

Applying a(g) on both hand sides in (22) yields (note that E(g)A = AE(g), E(g)S2 = S2E(g)
and E(g)f(v⋆(x)) = f(E(g)v⋆(x)) since f(eiϕz) = eiϕf(z) for any ϕ ∈ R and z ∈ Cm)

(23)

0 = a(g) [A△v⋆(x) + µ⋆S2v⋆(x) + f(v⋆(x))]

= E(g)A△v⋆(x) + µ⋆E(g)S2v⋆(x) + E(g)f(v⋆(x))

= A△E(g)v⋆(x) + µ⋆S2E(g)v⋆(x) + f(E(g)v⋆(x)), x ∈ R
d.

Taking the derivative d
dg

in (23) evaluated at g = 0, we obtain (provided that v⋆ ∈ C2(Rd,R2m)

and f ∈ C1(R2m,R2m) real-differentiable)

0 =

[

d

dg

(

A△E(g)v⋆(x) + µ⋆S2E(g)v⋆(x) + f(E(g)v⋆(x))

)]

g=0

=

[

A△E ′(g)v⋆(x) + µ⋆S2E
′(g)v⋆(x) +Df(E(g)v⋆(x))E

′(g)v⋆(x)

]

g=0

= −

(

A△S2v⋆(x) + µ⋆S
2
2v⋆(x) +Df(v⋆(x))S2v⋆(x)

)

, x ∈ R
d.

where we used

E ′(g) =

(

sin(−g)Im cos(−g)Im
− cos(−g)Im sin(−g)Im

)

, [E ′(g)]g=0 =

(

0 Im
−Im 0

)

= −S2.

This leads to the equation

0 = A△S2v⋆(x) + µ⋆S
2
2v⋆(x) +Df(v⋆(x))S2v⋆(x), x ∈ R

d.

Therefore, (λ, w(x)) := (0, S2v⋆(x)) solves the eigenvalue problem

(24) λw(x) = [Lw](x) := A△w(x) + µ⋆S2w(x) +Df(v⋆(x))w(x), x ∈ R
d,

i.e. the function w(x) = v⋆(x) is an eigenfunction associated with the eigenvalue λ = 0,
provided the v⋆ is not identically 0.
Procedure: Considering (22) as an operator equation, differentiating (22) w.r.t. (the function!!!)
v⋆ and evaluating at S2v⋆ yields the solution (λ, w(x)) := (0, S2v⋆(x)) of (24).

Theorem 2.2 (Point spectrum of oscillating waves, real version). Let v⋆ ∈ C2(Rd,R2m) be

a nontrivial classical solution of (22) for some A =

(

A1 −A2

A2 A1

)

∈ R
2m,2m, A1, A2 ∈ R

m,m,

µ⋆ ∈ R and a real-differentiable nonlinearity f ∈ C1(R2m,R2m) satisfying

f(E(g)z) = E(g)f(z) for any g ∈ R and z ∈ R
2m.

Then

λ = 0, w(x) = S2v⋆(x), x ∈ R
d



solves the eigenvalue problem (24). In particular, the algebraic multiplicity of the eigenvalue

λ = 0 is at least 1.

2.4.2 Essential spectrum of localized oscillating waves

Case 1: (f holomorphic). Consider the oscillating wave equation in Rd

(25) 0 = A△v⋆(x) + iµ⋆v⋆(x) + f(v⋆(x)), x ∈ R
d.

with diffusion matrix A ∈ Cm,m, nonlinearity f : Cm → Cm, constant asymptotic states
v∞ ∈ Cm (i.e. f(v∞) = 0), phase velocity µ⋆ ∈ R and profile v⋆ : Rd → Cm satisfying
v⋆(x) → v∞ ∈ C

m as |x| → ∞.
Initial value problem: The main idea to detecting the essential spectrum of L is to look for
solutions of

(26)
vt(x, t) = [Lv](x, t) := A△v(x, t) + iµ⋆v(x, t) +Df(v⋆(x))v(x, t) , x ∈ R

d, t > 0,

v(x, 0) = v0(x) , x ∈ R
d, t = 0.

Decomposition of Df(v⋆(x)): Introducing the matrix Q(x) ∈ C
m,m via

Q(x) := Df(v⋆(x))−Df(v∞), x ∈ R
d,

we obtain from (26)
(27)
vt(x, t) = [LQv](x, t) := A△v(x, t) + iµ⋆v(x, t) +Df(v∞)v(x, t) +Q(x)v(x, t), x ∈ R

d, t > 0.

Limiting operator (simplified operator, far-field operator): Since the essential spectrum depends
only on the limiting equation for |x| → ∞, we let formally |x| → ∞ (but only in the coefficient
matrices). Since Q(x) → 0 as |x| → ∞, we can drop the term Q(x) in (27) and obtain

(28) vt(x, t) = [L∞v](x, t) := A△v(x, t) + iµ⋆v(x, t) +Df(v∞)v(x, t), x ∈ R
d, t > 0.

Fourier transform: Since we seek for bounded solutions of (28), we perform a Fourier transfor-
mation in space and time. Inserting the Fourier transform

(29) v(x, t) = eλteiω·xv̂, λ ∈ C, ω ∈ R
d, v̂ ∈ C

m, |v̂| = 1, ω · x :=

d
∑

j=1

ωjxj

into (28) and dividing by eλteiω·x yields a finite dimensional eigenvalue problem

λv̂ =
(

−|ω|2A+ iµ⋆Im +Df(v∞)
)

v̂

Dispersion relation: Every λ ∈ C satisfying

det
(

−|ω|2A+ iµ⋆Im +Df(v∞)− λIm
)

= 0

for some ω ∈ Rd belongs to the essential spectrum of L, see Figure 2.1.

Theorem 2.3 (Essential spectrum of oscillating waves, complex version). Let v⋆ ∈ C2(Rd,Cm)
be a nontrivial classical solution of (25) satisfying v⋆(x) → v∞ as |x| → ∞ for some v∞ ∈ Cm

and let A ∈ C
m,m, µ⋆ ∈ R and a holomorphic function f ∈ C1(Cm,Cm) with f(v∞) = 0. Then,

the line

S∞ :=
{

λ ∈ C | det
(

−|ω|2A + iµ⋆Im +Df(v∞)− λIm
)

= 0 for some ω ∈ R
d
}

=
{

λ ∈ σ
(

−|ω|2A+ iµ⋆Im +Df(v∞)
)

| ω ∈ R
d
}

belongs to the essential spectrum σess(L) of L, i.e. S∞ ⊆ σess(L).
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Figure 2.1. Subset S∞ of the essential spectrum of an oscillating wave for a
scalar-valued (m = 1), holomorphic nonlinearity and for parameters µ⋆ = −1,
Df(v∞) = −1

4
and A = 1 (red), A = 1 + i (green), A = i (blue).

Case 2: (f real-differentiable). Consider the real-valued version of (25) which is

(30) 0 = A△v⋆(x) + µ⋆S2v⋆(x) + f(v⋆(x)), x ∈ R
d, d > 1,

with diffusion matrix A =

(

A1 −A2

A2 A1

)

∈ R2m,2m, skew-symmetric matrix S2 =

(

0 −Im
Im 0

)

∈

R2m,2m, nonlinearity f =

(

f1
f2

)

: R2m → R2m, constant asymptotic states v∞ ∈ R2m (i.e.

f(v∞) = 0), phase velocity µ⋆ ∈ R and profile v⋆ : R
d → R

2m satisfying v⋆(x) → v∞ ∈ R
2m as

|x| → ∞.
Initial value problem: The main idea to detecting the essential spectrum of L is to look for
solutions of

(31)
vt(x, t) = [Lv](x, t) := A△v(x, t) + µ⋆S2v(x, t) +Df(v⋆(x))v(x, t) , x ∈ R

d, t > 0,

v(x, 0) = v0(x) , x ∈ R
d, t = 0.

Decomposition of Df(v⋆(x)): Introducing the matrix Q(x) ∈ R2m,2m via

Q(x) := Df(v⋆(x))−Df(v∞), x ∈ R
d,

we obtain from (31)
(32)
vt(x, t) = [LQv](x, t) := A△v(x, t)+µ⋆S2v(x, t)+Df(v∞)v(x, t)+Q(x)v(x, t), x ∈ R

d, t > 0.

Limiting operator (simplified operator, far-field operator): Since the essential spectrum depends
only on the limiting equation for |x| → ∞, we let formally |x| → ∞ (but only in the coefficient
matrices). Since Q(x) → 0 as |x| → ∞, we can drop the term in (32) and obtain

(33) vt(x, t) = [L∞v](x, t) := A△v(x, t) + µ⋆S2v(x, t) +Df(v∞)v(x, t), x ∈ R
d, t > 0.

Fourier transform: Since we seek for bounded solutions of (33), we perform a Fourier transfor-
mation in space and time. Inserting the Fourier transform

(34) v(x, t) = eλteiω·xv̂, λ ∈ C, ω ∈ R
d, v̂ ∈ C

2m, |v̂| = 1, ω · x :=

d
∑

j=1

ωjxj

into (33) and dividing by eλteiω·x yields a finite dimensional eigenvalue problem

λv̂ =
(

−|ω|2A+ µ⋆S2 +Df(v∞)
)

v̂

Dispersion relation: Every λ ∈ C satisfying

det
(

−|ω|2A+ µ⋆S2 +Df(v∞)− λI2m
)

= 0

for some ω ∈ Rd belongs to the essential spectrum of L, see Figure 2.2.



Theorem 2.4 (Essential spectrum of oscillating waves, real version). Let v⋆ ∈ C2(Rd,R2m) be

a nontrivial classical solution of (30) satisfying v⋆(x) → v∞ as |x| → ∞ for some v∞ ∈ Rm

and let A =

(

A1 −A2

A2 A1

)

∈ R2m,2m, A1, A2 ∈ Rm,m, µ⋆ ∈ R and a real-differentiable function

f ∈ C1(R2m,R2m) with f(v∞) = 0. Then, the line

S∞ :=
{

λ ∈ C | det
(

−|ω|2A+ µ⋆S2 +Df(v∞)− λI2m
)

= 0 for some ω ∈ R
d
}

=
{

λ ∈ σ
(

−|ω|2A+ µ⋆S2 +Df(v∞)
)

| ω ∈ R
d
}

belongs to the essential spectrum σess(L) of L, i.e. S∞ ⊆ σess(L).
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Figure 2.2. Subset S∞ of the essential spectrum of an oscillating wave for a
scalar-valued (m = 1), real-differentiable nonlinearity and for parameters µ⋆ =
−1, Df(v∞) = −1

4
I2 and A = I2 (red), A = I2 + S2 (green), A = S2 (blue).

Example 2.5 (Cubic-quintic Ginzburg-Landau equation). Consider the cubic-quintic Ginzburg-
Landau equation

ut = α△u+ δu+ β|u|2u+ γ|u|4u, x ∈ R
d, t > 0,

for some α, β, γ ∈ C with Reα > 0, δ ∈ R and u = u(x, t) ∈ C. The nonlinearity

f : C → C, f(u) = (δ + β|u|2 + γ|u|4)u,

which is of the form f(u) = g(|u|2)u with polynomial g(w) := δ+βw+γw2, is not holomorphic
at u = 0, but it is real-differentiable. Decomposing

u = u1 + iu2, α = a1 + ia2, β = b1 + ib2, γ = c1 + ic2

with u1, u2, a1, a2, b1, b2, c1, c2 ∈ R and introducing

A =

(

a1 −a2
a2 a1

)

, B =

(

b1 −b2
b2 b1

)

, C =

(

c1 −c2
c2 c1

)

, u =

(

u1

u2

)

with A,B,C ∈ R2,2 and u = u(x, t) ∈ R2, the associated real-valued system reads as

ut = A△u+ δu+B|u|2u+C|u|4u, x ∈ R
d, t > 0,

where the (real-valued) nonlinearity is given by

f : R2 → R
2, f(u) = (δI2 +B|u|2 +C|u|4)u

For the parameters

α = 1, β = 3, γ = −
11

4
+ i, δ = −

1

10
the cubic-quintic Ginzburg-Landau equation has an oscillating pulse solution u⋆(x, t) = e−µ⋆tv⋆(x)
with velocity µ⋆ ≈ −1.3 and profile v⋆ conntecting the asymptotic state v∞ = 0, i.e. v⋆(x) → v∞
as |x| → ∞. Note that neither the profile nor the velocity are given explicitly. The (real-valued)
nonlinearity f satisfies f(v∞) = 0 and Df(v∞) = δI2. The dispersion relation states that

S∞ :=
{

λ ∈ C | det
(

−|ω|2A+ µ⋆S2 +Df(v∞)− λI2
)

= 0 for some ω ∈ R
d
}



belongs to σess(L). Due to

0 = det

(

−|ω|2a1 + δ − λ |ω|2a2 − µ⋆

−|ω|2a2 + µ⋆ −|ω|2a1 + δ − λ

)

= (−|ω|2a1 + δ − λ)2 + (|ω|2a2 − µ⋆)
2,

every λ1,2 = λ1,2(ω) ∈ C satisfying

λ1,2 = −|ω|2a1 + δ ± i(|ω|2a2 − µ⋆)

for some ω ∈ Rd belongs to the essential spectrum of L. The essential spectrum of the oscillating
pulse in the cubic-quintic Ginzburg-Landau equation is illustrated in Figure 2.3.

Reλ
-1 -0.5 0 0.5

Im
λ

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 2.3. Essential spectrum of the cubic-quintic Ginzburg-Landau equation
for an oscillating pulse with α = 1, β = 3, γ = −11

4
+ i, δ = − 1

10
and d = 1

Example 2.6 (Nonlinear Schrödinger equation). Consider the nonlinear Schrödinger equation

ut = i△u+ β|u|2u, x ∈ R
d, t > 0,

for some β ∈ C and u = u(x, t) ∈ C. The nonlinearity

f : C → C, f(u) = β|u|2u,

which is of the form f(u) = g(|u|2)u with polynomial g(w) := βw, is not holomorphic at u = 0,
but it is real-differentiable. Decomposing

u = u1 + iu2, β = b1 + ib2,

with u1, u2, b1, b2 ∈ R and introducing

A =

(

0 −1
1 0

)

, B =

(

b1 −b2
b2 b1

)

u =

(

u1

u2

)

with A,B ∈ R2,2 and u = u(x, t) ∈ R2, the associated real-valued system reads as

ut = A△u+B|u|2u, x ∈ R
d, t > 0,

where the (real-valued) nonlinearity is given by

f : R2 → R
2, f(u) = B|u|2u

For the parameter β = 2i the nonlinear Schrödinger equation has an oscillating pulse solution
u⋆(x, t) = e−µ⋆tv⋆(x) with velocity µ⋆ ≈ −1 and profile v⋆ conntecting the asymptotic state
v∞ = 0, i.e. v⋆(x) → v∞ as |x| → ∞. The (real-valued) nonlinearity f satisfies f(v∞) = 0 and
Df(v∞) = 0. The (real version of the) dispersion relation states that

S∞ :=
{

λ ∈ C | det
(

−|ω|2A+ µ⋆S2 +Df(v∞)− λI2
)

= 0 for some ω ∈ R
d
}

belongs to σess(L). Due to

0 = det

(

−λ |ω|2 − µ⋆

−(|ω|2 − µ⋆) −λ

)

= λ2 +
∣

∣|ω|2 − µ⋆

∣

∣

2
,



every λ1,2 = λ1,2(ω) ∈ C satisfying

λ1,2 = ±i
∣

∣|ω|2 − µ⋆

∣

∣

for some ω ∈ Rd belongs to the essential spectrum of L. The essential spectrum of the oscillating
pulse in the nonlinear Schrödinger equation is illustrated in Figure 2.4.
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Figure 2.4. Essential spectrum of the nonlinear Schrödinger equation for an
oscillating pulse with β = 2i and d = 1


