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3. Freezing Rotating Waves in Reaction Diffusion Systems

3.1 Rotating waves in reaction diffusion systems

Consider a system of reaction diffusion equations in d space dimensions

(1)
ut(x, t) = A△u(x, t) + f(u(x, t)) , x ∈ R

d, t > 0, d > 2,

u(x, 0) = u0(x) , x ∈ R
d, t = 0,

with diffusion matrix A ∈ Rm,m, nonlinearity f : Rm → Rm, initial data u0 : Rd → Rm and
solution u : Rd × [0,∞) → R

m. The operator △ denotes the Laplacian given by

△u(x) :=

d
∑

i=1

∂2u

∂x2
i

(x), x ∈ R
d.

We are interested in rotating wave solutions of (1): A rotating wave of (1) is a solution u⋆ :
Rd × [0,∞) → Rm of the form

(2) u⋆(x, t) = v⋆
(

e−tS⋆ (x− x⋆)
)

, x ∈ R
d, t > 0,

with a time-independent function v⋆ : R
d → R

m, a skew-symmetric matrix S⋆ ∈ R
d,d, i.e.

ST
⋆ = −S⋆, and a vector x⋆ ∈ Rd. The function v⋆ : Rd → Rm is called the profile of the

rotating wave. The vector x⋆ ∈ Rd can be considered as the center of rotation for d = 2 and
as the support vector of the axis of rotation for d = 3. In case d ∈ {2, 3}, S⋆ ∈ Rd,d can be

considered as the angular velocity tensor associated to the angular velocity vector ω ∈ R
d(d−1)

2

containing Sij
⋆ , i = 1, . . . , d − 1, j = i + 1, . . . , d. Note that the skew-symmetry of S⋆ implies

that e−tS⋆ is a rotation matrix. A rotating wave u⋆ is called a localized, if

lim
|x|→∞

|v⋆(x)− v∞| = 0 for some v∞ ∈ R
m.

Our aim is to approximate rotating wave solutions of (1). The idea for approximating the
rotating wave u⋆ is to determine the profile v⋆, the angular velocity tensor S⋆ and the vector
x⋆. This requires to transform (1) into a co-rotating coordinate system.
Transforming (1) via u(x, t) = v(ξ, t) with ξ := e−tS⋆ (x− x⋆) in a co-rotating frame yields

(3)
vt(ξ, t) = A△v(ξ, t) + 〈S⋆ξ,∇v(ξ, t)〉+ f(v(ξ, t)) , ξ ∈ R

d, t > 0, d > 2,

v(ξ, 0) = u0(ξ) , ξ ∈ R
d, t = 0,

where the drift term is defined by

(4) 〈S⋆x,∇v(x)〉 :=

d
∑

i=1

d
∑

j=1

Sij
⋆ xjDiv(x), Di :=

∂

∂xi

In case of skew-symmetric matrices S⋆ = −ST
⋆ , the drift term from (3) is a rotational term

containing angular derivatives

(5) 〈S⋆x,∇v(x)〉 =
d−1
∑

i=1

d
∑

j=i+1

Sij
⋆ (xjDi − xiDj) v(x).

1



The operator A△v(x) + 〈S⋆x,∇v(x)〉 is called the Ornstein-Uhlenbeck operator. It is given
by the sum of the diffusion term A△v(x) and the drift term 〈S⋆x,∇v(x)〉 and has unbounded
(indeed linearly growing) coefficients.
Inserting (2) into (1) shows, that v⋆ is a stationary solution of (3), i.e. v⋆ solves the rotating
wave equation

(6) 0 = A△v⋆(ξ) + 〈S⋆ξ,∇v⋆(ξ)〉+ f(v⋆(ξ)) , ξ ∈ R
d.

We are also interested in nonlinear stability of rotating waves. It is well known from the
literature, that (at least for d = 2) spectral stability implies nonlinear stability. For investigating
spectral stability of rotating waves, we must analyze the spectrum of the linearization of the
right hand side in (3) at the wave profile v⋆, i.e.

[Lw] (ξ) = A△w(ξ) + 〈S⋆ξ,∇w(ξ)〉+Df(v⋆(ξ))w(ξ) , ξ ∈ R
d.

This requires to find solutions (λ, w) with λ ∈ C and w : Rd → Cm of the eigenvalue problem

(7) λw(ξ) = A△w(ξ) + 〈S⋆ξ,∇w(ξ)〉+Df(v⋆(ξ))w(ξ) , ξ ∈ R
d,

with eigenfunction w : Rd → Cm and eigenvalue λ ∈ C.
Approximating v⋆ via (3) requires the knowledge about the angular velocity tensor S⋆ which
is in general unknown. This motivates to introduce the freezing method, whose idea is it to
approximate the profile v⋆, the angular velocity tensor S⋆ and the vector x⋆ ∈ Rd simultaneously.

3.2 Freezing method for rotating waves

Consider again a system of reaction diffusion equations, cf. (1),

(8)
ut(x, t) = A△u(x, t) + f(u(x, t)) , x ∈ R

d, t > 0, d > 2,

u(x, 0) = u0(x) , x ∈ R, t = 0.

Introducing new unknowns γ(t) = (R(t), τ(t)) ∈ SO(d) × Rd = SE(d) (position) and v(ξ, t) ∈
Rm (profile) via the rotating wave ansatz

(9) u(x, t) = v(ξ, t), ξ := R(t)−1 (x− τ(t)) , x ∈ R
d, t > 0,

inserting (9) into (8) (the computation will be omitted) and introducing a new unknown µ(t) =

(S(t), λ(t)) ∈ so(d)× Rd = se(d) via

(

Rt(t)
τt(t)

)

=

(

R(t)S(t)
R(t)λ(t)

)

yields

(10)

vt(ξ, t) = A△v(ξ, t) + 〈S(t)ξ + λ(t),∇v(ξ, t)〉+ f(v(ξ, t)) , ξ ∈ R
d, t > 0,

(

Rt(t)
τt(t)

)

=

(

R(t)S(t)
R(t)λ(t)

)

, t > 0.

Equ. (10) has to be equipped with suitable initial data. Requiring R(0) = Id and τ(0) = 0, (9)
and (8) imply

(11) v(ξ, 0) = u0(ξ) , ξ ∈ R
d, t = 0.

Collecting the equations (10), R(0) = Id, τ(0) = 0 and (11) we obtain

(12)

vt(ξ, t) = A△v(ξ, t) + 〈S(t)ξ + λ(t),∇v(ξ, t)〉+ f(v(ξ, t)) , ξ ∈ R
d, t > 0,

v(ξ, 0) = u0(ξ) , ξ ∈ R
d, t = 0,

(

Rt(t)
τt(t)

)

=

(

R(t)S(t)
R(t)λ(t)

)

, t > 0,

(

R(0)
τ(0)

)

=

(

Id
0

)

, t = 0.

(12) contains the equations for v and γ = (R, τ). But so far, the system (12) is not well-posed,
since there is still no equation for µ = (S, λ). To determine µ we require an additional algebraic



constraint, a so called phase condition: For this purpose let v̂ : Rd → Rm be a template
function, e.g. v̂ = u0. The idea of the phase condition is to choose v(·, t) such that

min
g:=(R̃,̃(τ))∈SE(d)

∥

∥

∥
v(·, t)− v̂(R̃−1(· − τ̃ ))

∥

∥

∥

2

L2(Rd,Rm)
= ‖v(·, t)− v̂(·)‖2L2(Rd,Rm) , t > 0.

A necessary condition to guarantee that the left hand side attains its minimum at g = (Id, 0) is

that the first derivative of
∥

∥

∥
v(·, t)− v̂(R̃−1(· − τ̃))

∥

∥

∥

2

L2(Rd,Rm)
evaluated at g := (R̃, τ̃) = (Id, 0)

vanishes, i.e.

(13)

0
!
=

[

d

d(R̃, τ̃)

(

v(·, t)− v̂(R̃−1(· − τ̃ )), v(·, t)− v̂(R̃−1(· − τ̃))
)

L2(Rd,Rm)

]

g=0

= 2
(

v(·, t)− v̂,
〈

S̃ ·+λ̃,∇v̂
〉)

L2(Rd,Rm)
∀ (S̃, λ̃) ∈ se(d).

Requiring (13) for every basis element (Iij − Iji, 0) (i = 1, . . . , d−1, j = i+1, . . . , d) and (0, el)
(l = 1, . . . , d) of se(d), we obtain for all t > 0

(14)
0 = (v(·, t)− v̂, (ξjDi − ξiDj)v̂)L2(Rd,Rm) , i = 1, . . . , d− 1, j = i+ 1, . . . , d,

0 = (v(·, t)− v̂, Dlv̂)L2(Rd,Rm) , l = 1, . . . , d.

Combining (12) and (14) yields a partial differential algebraic evolution equation (PDAE)

(15)

vt(ξ, t) = A△v(ξ, t) + 〈S(t)ξ + λ(t),∇v(ξ, t)〉+ f(v(ξ, t)) , ξ ∈ R
d, t > 0,

v(ξ, 0) = u0(ξ) , ξ ∈ R
d, t = 0,

0 = (v(·, t)− v̂, (ξjDi − ξiDj)v̂)L2(Rd,Rm) , t > 0,

0 = (v(·, t)− v̂, Dlv̂)L2(Rd,Rm) , t > 0,
(

Rt(t)
τt(t)

)

=

(

R(t)S(t)
R(t)λ(t)

)

, t > 0,

(

R(0)
τ(0)

)

=

(

Id
0

)

, t = 0.

The last two equations in (15) for the position γ = (R, τ) are decoupled from the other equations
in (15). Therefore, the γ-equation can be solved in a postprocessing step. The γ-equation is
called the reconstruction equation for the rotating wave. Since (v⋆, µ⋆) with µ⋆ = (S⋆, λ⋆)
satisfy

0 = A△v⋆(ξ) + 〈S⋆ξ + λ⋆,∇v⋆(ξ)〉+ f(v⋆(ξ)) , ξ ∈ R
d,

0 = (v⋆ − v̂, (ξjDi − ξiDj)v̂)L2(Rd,Rm) , 0 = (v⋆ − v̂, Dlv̂)L2(Rd,Rm) ,

we expect for stability reasons, that the solution (v, µ, γ) of (15) satisfies

v(t) → v⋆, µ(t) = (S(t), λ(t)) → µ⋆ = (S⋆, λ⋆) as t → ∞.(16)

As an indicator for the convergence in (16) we check the quantities

‖vt(·, t)‖L2(Rd,Rm) and |µt(t)|(17)

at each time instance t during the computation. In fact, both of these quantities should be
small (≈ 10−16), since v⋆ and µ⋆ do not vary in time.

3.3 Numerical approximation of rotating waves via freezing method

Solving (1), (15) and (7) numerically, requires to truncate these equations to bounded domains.
Let Ω ⊂ Rd be a bounded open domain, then (1) must be satisfied for x ∈ Ω, and equations
(15) and (7) for ξ ∈ Ω. To guarantee the well-posedness of these problems, we must equip the



equations with appropriate boundary conditions. Normally, we choose homogeneous Neumann
boundary conditions (also known as no-flux boundary conditions), i.e.

∂u

∂n
(x) = 0, x ∈ ∂Ω,

∂v

∂n
(ξ) = 0, ξ ∈ ∂Ω.

In this context, ∂Ω denotes the boundary of Ω and Ω the closure of Ω, e.g. Ω = BR(x0) = {x ∈
Rd | |x−x0| < R} ⊂ Rd with R > 0 and x0 ∈ Rd then ∂Ω = ∂BR(x0) = {x ∈ Rd | |x−x0| = R}

and Ω = BR(x0) = {x ∈ R
d | |x− x0| 6 R}. Numerically, we solve the following equations:

Step 1: (Nonfrozen Equation)

(18)

ut(x, t) = A△u(x, t) + f(u(x, t)) , x ∈ Ω, t ∈ (0, T1], d > 2,

u(x, 0) = u0(x) , x ∈ Ω, t = 0,

∂u

∂n
(x, t) = 0 , x ∈ ∂Ω, t ∈ [0, T1].

First, we determine the solution u of (18). The quantities A, f , u0, Ω and T1 are given.
Step 2: (Frozen Equation)

(19)

vt(ξ, t) = A△v(ξ, t) + 〈S(t)ξ + λ(t),∇v(ξ, t)〉+ f(v(ξ, t)) , ξ ∈ Ω, t ∈ (0, T2],

v(ξ, 0) = v0(ξ) , ξ ∈ Ω, t = 0,

∂v

∂n
(x, t) = 0 , ξ ∈ ∂Ω, t ∈ [0, T2],

0 = (v(·, t)− v̂, (ξjDi − ξiDj)v̂)L2(Ω,Rm) , t ∈ [0, T2],

0 = (v(·, t)− v̂, Dlv̂)L2(Ω,Rm) , t ∈ [0, T2],
(

Rt(t)
τt(t)

)

=

(

R(t)S(t)
R(t)λ(t)

)

, t ∈ (0, T2],

(

R(0)
τ(0)

)

=

(

Id
0

)

, t = 0.

Then, we determine the solution (v, µ, γ) with µ = (S, λ) and γ = (R, τ) of (19). The quantities
A, f , v0, v̂, Ω and T2 are given. The final time T2 may be different to the end time T1 from (18).
The template function is often chosen as v̂(ξ) = u0(ξ) or v̂(ξ) = u(ξ, T1), where u(·, T1) denotes
the solution of (18) at the end time T1. Sometimes one must solve (18) to obtain a suitable
template function v̂. Also the initial data v0 is often chosen as v0(ξ) = u0(ξ) or v0(ξ) = u(ξ, T1).
The end time T2 in (19) is often chosen such that the values of the quantities ‖v(·, t)‖L2(Ω,Rm)

and |µt(t)|, cf. (17), are near 10−16.
Step 3: (Eigenvalue Problem)

(20)

λw(ξ) = A△w(ξ) + 〈S⋆ξ + λ⋆,∇w(ξ)〉+Df(v⋆(ξ))w(ξ) , ξ ∈ Ω,

∂w

∂n
(ξ) = 0 , ξ ∈ ∂Ω.

Finally, we determine (a predescribed number neig of) eigenvalues λ and associated eigenfunc-
tions w of (20). The quantities A, µ⋆ = (S⋆, λ⋆), v⋆, f , Ω and neig are given. The profile v⋆ and
the velocity µ⋆ = (S⋆, λ⋆) come actually from a simulation, more precisely we set µ⋆ := µ(T2)
and v⋆(ξ) := v(ξ, T2), where µ(T2) and v(·, T2) denote two components of the solution of (19)
at the end time T2.


