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1. Freezing Traveling Waves in Reaction Diffusion Systems

1.1 Traveling waves in reaction diffusion systems

Consider a system of reaction diffusion equations in one space dimension

(1)
ut(x, t) = Auxx(x, t) + f(u(x, t)) , x ∈ R, t > 0,

u(x, 0) = u0(x) , x ∈ R, t = 0,

with diffusion matrix A ∈ Rm,m, nonlinearity f : Rm → Rm, initial data u0 : R → Rm and
solution u : R× [0,∞) → Rm.
We are interested in traveling wave solutions of (1): A traveling wave of (1) is a solution
u⋆ : R× [0,∞) → R

m of the form

(2) u⋆(x, t) = v⋆(x− µ⋆t) , x ∈ R, t > 0,

with

lim
ξ→+∞

v⋆(ξ) = v+ ∈ R
m, lim

ξ→−∞

v⋆(ξ) = v− ∈ R
m, f(v+) = f(v−) = 0.

The function v⋆ : R → R
m is called the profile and µ⋆ ∈ R the (translational) velocity of the

traveling wave. The traveling wave u⋆ is called a traveling pulse, if v+ = v−, and a traveling
front, if v+ 6= v−. The wave travels to the left, if µ⋆ < 0 and to the right, if µ⋆ > 0. In case
µ⋆ = 0, in which we are not interested, u⋆ is called a standing wave.
Our aim is to approximate traveling wave solutions of (1). The idea for approximating the
traveling wave u⋆ is to determine the profile v⋆ and the velocity µ⋆. This requires to transform
(1) into a co-moving coordinate system.
Transforming (1) via u(x, t) = v(ξ, t) with ξ := x− µ⋆t in a co-moving frame yields

(3)
vt(ξ, t) = Avξξ(ξ, t) + µ⋆vξ(ξ, t) + f(v(ξ, t)) , ξ ∈ R, t > 0,

v(ξ, 0) = u0(ξ) , ξ ∈ R, t = 0.

Inserting (2) into (1) shows, that v⋆ is a stationary solution of (3), i.e.

(4) 0 = Av⋆,ξξ(ξ) + µ⋆v⋆,ξ(ξ) + f(v⋆(ξ)) , ξ ∈ R.

We are also interested in nonlinear stability of traveling waves. It is well known from the
literature, that in many cases spectral stability implies nonlinear stability. For investigating
spectral stability of a traveling wave, we must analyze the spectrum of the linearization of the
right hand side in (3) at the wave profile v⋆, i.e.

[Lw] (ξ) = Awξξ(ξ) + µ⋆wξ(ξ) +Df(v⋆(ξ))w(ξ) , ξ ∈ R.

This requires to find solutions (λ, w) of the eigenvalue problem

(5) λw(ξ) = Awξξ(ξ) + µ⋆wξ(ξ) +Df(v⋆(ξ))w(ξ) , ξ ∈ R,

with eigenfunction w : R → Cm and eigenvalue λ ∈ C.
Approximating v⋆ via (3) requires the knowledge about the velocity µ⋆ which is in general
unknown. This motivates to introduce the freezing method, whose idea is it to approximate
the profile v⋆ and the velocity µ⋆ simultaneously.
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1.2 Freezing method for traveling waves

Consider again a system of reaction diffusion equations in one space dimension, cf. (1),

(6)
ut(x, t) = Auxx(x, t) + f(u(x, t)) , x ∈ R, t > 0,

u(x, 0) = u0(x) , x ∈ R, t = 0.

Introducing new unknowns γ(t) ∈ R (position) and v(ξ, t) ∈ Rm (profile) via the traveling wave
ansatz

(7) u(x, t) = v(ξ, t), ξ := x− γ(t) , x ∈ R, t > 0

and inserting (7) into (6) yields

(8) vt(ξ, t) = Avξξ(ξ, t) + γt(t)vξ(ξ, t) + f(v(ξ, t)) , ξ ∈ R, t > 0.

It is convenient to introduce a further unknown µ(t) ∈ R (velocity) via γt(t) = µ(t). Then, (8)
reads as

(9)
vt(ξ, t) = Avξξ(ξ, t) + µ(t)vξ(ξ, t) + f(v(ξ, t)) , ξ ∈ R, t > 0,

γt(t) = µ(t) , t > 0.

Equ. (9) has to be equipped with suitable initial data. Requiring γ(0) = 0, (7) and (6) imply

(10) v(ξ, 0) = u0(ξ) , ξ ∈ R, t = 0.

Collecting the equations (9), γ(0) = 0 and (10) we obtain

(11)

vt(ξ, t) = Avξξ(ξ, t) + µ(t)vξ(ξ, t) + f(v(ξ, t)) , ξ ∈ R, t > 0,

v(ξ, 0) = u0(ξ) , ξ ∈ R, t = 0,

γt(t) = µ(t) , t > 0,

γ(0) = 0 , t = 0.

(11) contains the equations for v and γ. But so far, the system (11) is not well-posed, since
there is still no equation for µ. To determine µ we require an additional algebraic constraint, a
so called phase condition: For this purpose let v̂ : R → Rm be a template function, e.g. v̂ = u0.
The idea of the phase condition is to choose v(·, t) such that

min
g∈R

‖v(·, t)− v̂(· − g)‖2L2(R,Rm) = ‖v(·, t)− v̂(·)‖2L2(R,Rm) , t > 0.

A necessary condition to guarantee that the left hand side attains its minimum at g = 0 is that
the first derivative of ‖v(·, t)− v̂(· − g)‖2L2(R,Rm) evaluated at g = 0 vanishes, i.e. for all t > 0

0
!
=

[

d

dg
(v(·, t)− v̂(· − g), v(·, t)− v̂(· − g))L2(R,Rm)

]

g=0

= 2 (v(·, t)− v̂, v̂ξ)L2(R,Rm) .(12)

Combining (11) and (12) yields a partial differential algebraic evolution equation (PDAE)

(13)

vt(ξ, t) = Avξξ(ξ, t) + µ(t)vξ(ξ, t) + f(v(ξ, t)) , ξ ∈ R, t > 0,

v(ξ, 0) = u0(ξ) , ξ ∈ R, t = 0,

0 = (v(·, t)− v̂, v̂ξ)L2(R,Rm) , t > 0,

γt(t) = µ(t) , t > 0,

γ(0) = 0 , t = 0.

The last two equations in (13) for the position γ are decoupled from the other equations in (13).
Therefore, the γ-equation can be solved in a postprocessing step. The γ-equation is called the
reconstruction equation for the traveling wave. Since (v⋆, µ⋆) satisfy

0 = Av⋆,ξξ(ξ) + µ⋆v⋆,ξ(ξ) + f(v⋆(ξ)) , ξ ∈ R,

0 = (v⋆ − v̂, v̂ξ)L2(R,Rm) ,



we expect for stability reasons, that the solution (v, µ, γ) of (13) satisfies

v(t) → v⋆, µ(t) → µ⋆ as t → ∞.(14)

As an indicator for the convergence in (14) we check the quantities

‖vt(·, t)‖L2(R,Rm) and |µt(t)|(15)

at each time instance t during the computation. In fact, both of these quantities should be
small (≈ 10−16), since v⋆ and µ⋆ do not vary in time.

1.3 Numerical approximation of traveling waves via freezing method

Solving (1), (13) and (5) numerically, requires to truncate these equations to bounded domains.
Let Ω ⊂ R be a bounded open domain, then (1) must be satisfied for x ∈ Ω, and equations
(13) and (5) for ξ ∈ Ω. To guarantee the well-posedness of these problems, we must equip the
equations with appropriate boundary conditions. Normally, we choose homogeneous Neumann
boundary conditions (also known as no-flux boundary conditions), i.e.

ux(x) = 0, x ∈ ∂Ω, vξ(ξ) = 0, ξ ∈ ∂Ω.

In this context, ∂Ω denotes the boundary of Ω and Ω the closure of Ω, e.g. Ω = (a, b) with
−∞ < a < b < ∞ then ∂Ω = {a, b} and Ω = [a, b]. Numerically, we solve the following
equations:
Step 1: (Nonfrozen Equation)

(16)

ut(x, t) = Auxx(x, t) + f(u(x, t)) , x ∈ Ω, t ∈ (0, T1],

u(x, 0) = u0(x) , x ∈ Ω, t = 0,

ux(x, t) = 0 , x ∈ ∂Ω, t ∈ [0, T1].

First, we determine the solution u of (16). The quantities A, f , u0, Ω and T1 are given.
Step 2: (Frozen Equation)

(17)

vt(ξ, t) = Avξξ(ξ, t) + µ(t)vξ(ξ, t) + f(v(ξ, t)) , ξ ∈ Ω, t ∈ (0, T2],

v(ξ, 0) = v0(ξ), ξ ∈ Ω , t = 0,

vξ(ξ, t) = 0 , ξ ∈ ∂Ω, t ∈ [0, T2],

0 = (v(·, t)− v̂, v̂ξ)L2(Ω,Rm) , t ∈ [0, T2],

γt(t) = µ(t) , t ∈ (0, T2],

γ(0) = 0 , t = 0.

Then, we determine the solution (v, µ, γ) of (17). The quantities A, f , v0, v̂, Ω and T2 are
given. The final time T2 may be different to the end time T1 from (16). The template function
is often chosen as v̂(ξ) = u0(ξ) or v̂(ξ) = u(ξ, T1), where u(·, T1) denotes the solution of (16) at
the end time T1. Also the initial data v0 is often chosen as v0(ξ) = u0(ξ) or v0(ξ) = u(ξ, T1).
The end time T2 in (17) is often chosen such that the values of the quantities ‖v(·, t)‖L2(Ω,Rm)

and |µt(t)|, cf. (15), are near 10−16.
Step 3: (Eigenvalue Problem)

(18)
λw(ξ) = Awξξ(ξ) + µ⋆wξ(ξ) +Df(v⋆(ξ))w(ξ) , ξ ∈ Ω,

wξ(ξ) = 0 , ξ ∈ ∂Ω.

Finally, we determine (a predescribed number neig of) eigenvalues λ and associated eigenfunc-
tions w of (18). The quantities A, µ⋆, v⋆, f , Ω and neig are given. The profile v⋆ and the velocity



µ⋆ come actually from a simulation, more precisely we set µ⋆ := µ(T2) and v⋆(ξ) := v(ξ, T2),
where µ(T2) and v(·, T2) denote two components of the solution of (17) at the end time T2.

1.4 Spectra and eigenfunctions of traveling waves

We now look for solutions (λ, w) of the eigenvalue problem

λw(x) = [Lw](x) := A△w(x) + µT
⋆∇w(x) +Df(v⋆(x))w(x), x ∈ R

d.

1.4.1 Point spectrum of traveling waves on the imaginary axis

Consider the traveling wave equation

(19) 0 = A△v⋆(x) + µT
⋆∇v⋆(x) + f(v⋆(x)), x ∈ R

d, d > 1,

with diffusion matrix A ∈ R
m,m, nonlinearity f : Rm → R

m, translational velocity µ⋆ ∈ R
d and

profile v⋆ : R
d → Rm.

For g ∈ Rd we define the group action [a(g)v](x) := v(x−g). Applying a(g) on both hand sides
in (19) yields

(20)

0 = a(g)
[

A△v⋆(x) + µT
⋆∇v⋆(x) + f(v⋆(x))

]

= A△[a(g)v⋆(x)] + µT
⋆∇[a(g)v⋆(x)] + a(g)f(v⋆(x))

= A△v⋆(x− g) + µT
⋆∇v⋆(x− g) + f(v⋆(x− g)), x ∈ R

d.

Taking the derivative d
dg

in (20) evaluated at g = 0, we obtain (provided that v⋆ ∈ C3(Rd,Rm)

and f ∈ C1(Rm,Rm))

0 =

[

d

dg

(

A△v⋆(x− g) + µT
⋆∇v⋆(x− g) + f(v⋆(x− g))

)]

g=0

=

[

−
(

A△Djv⋆(x− g) + µT
⋆∇Djv⋆(x− g) +Df(v⋆(x− g))Djv⋆(x− g)

)

j=1,...,d

]

g=0

= −
(

A△Djv⋆(x) + µT
⋆∇Djv⋆(x) +Df(v⋆(x))Djv⋆(x)

)

j=1,...,d

, x ∈ R
d.

This leads to a total of d equations

0 = A△Djv⋆(x) + µT
⋆∇Djv⋆(x) +Df(v⋆(x))Djv⋆(x)

= Dj

(

A△v⋆(x) + µT
⋆∇v⋆(x) + f(v⋆(x))

)

, x ∈ R
d, j = 1, . . . , d.

Therefore, (λ, w(x)) := (0, Djv⋆(x)), j = 1, . . . , d, solves the eigenvalue problem

(21) λw(x) = [Lw](x) := A△w(x) + µT
⋆∇w(x) +Df(v⋆(x))w(x), x ∈ R

d,

i.e. the function w(x) = Djv⋆(x) is an eigenfunction associated with the eigenvalue λ = 0,
provided the v⋆ is nontrivial (i.e. not constant), since otherwise we have w(x) = 0.
Procedure: Applying Dj to (19) yields the solution (λ, w(x)) := (0, Djv⋆(x)) of (21).

Theorem 1.1 (Point spectrum of traveling waves). Let v⋆ ∈ C3(Rd,Rm) be a nontrivial clas-
sical solution of (19) for some A ∈ Rm,m, µ⋆ ∈ Rd and f ∈ C1(Rm,Rm). Then

λ = 0, w(x) = Djv⋆(x), x ∈ R
d, j = 1, . . . , d

solves the eigenvalue problem (21). In particular, the algebraic multiplicity of the eigenvalue
λ = 0 is greater or equal d.

Example 1.2 (Nagumo equation). The Nagumo equation

ut = uxx + u(1− u)(u− b), x ∈ R, t > 0, 0 < b < 1,

has an explicit traveling wave solution u⋆(x, t) = v⋆(x− µ⋆t) with

v⋆(x) =
1

1 + e
−

x
√

2

, µ⋆ = −
√
2

(

1

2
− b

)

(Huxley wave),



i.e. v⋆ and µ⋆ solve the associated traveling wave equation

0 = v⋆,xx(x) + µ⋆v⋆,x(x) + v⋆(x) (1− v⋆(x)) (v⋆(x)− b) , x ∈ R.

The eigenvalue problem for the linearization

λw(x) = wxx(x) + µ⋆wx(x)− 3w2(x) + 2(b+ 1)w(x)− b, x ∈ R,

(with f(u) = u(1− u)(u− b) and Df(u) = −3u2 + 2(b+ 1)u− b) has the solution

λ = 0, w(x) = v⋆,x(x) =
1√
2

e
−

x
√

2

(

1 + e
−

x
√

2

)2 , x ∈ R.

Consider the traveling wave equation in divergence form

(22) 0 = A∇T (Q∇v⋆(x)) + µT
⋆∇v⋆(x) + f(v⋆(x)), x ∈ R

d, d > 1,

with A ∈ Rm,m, Q ∈ Rd,d and

A∇T (Q∇v⋆(x)) = A

d
∑

i=1

d
∑

j=1

Di (QijDjv⋆(x)) .

Applying Dj to (22), j = 1, . . . , d, yields (provided that v⋆ ∈ C3(Rd,Rm) and f ∈ C1(Rm,Rm))

0 = A∇T (Q∇Djv⋆(x)) + µT
⋆∇Djv⋆(x) +Df(v⋆(x))Djv⋆(x), x ∈ R

d,

since A, Q and µ⋆ do not depend on x. Therefore, (λ, w(x)) = (0, Djv⋆(x)), j = 1, . . . , d, solves
the eigenvalue problem

(23) λw(x) = [Lw](x) := A∇T (Q∇w(x)) + µT
⋆∇w(x) +Df(v⋆(x))w(x), x ∈ R

d.

Corollary 1.3 (Point spectrum of traveling waves, divergence form). Let v⋆ ∈ C3(Rd,Rm)
be a nontrivial classical solution of (22) for some A ∈ Rm,m, Q ∈ Rd,d, µ⋆ ∈ Rd and f ∈
C1(Rm,Rm). Then

λ = 0, w(x) = Djv⋆(x), x ∈ R
d, j = 1, . . . , d

solve the eigenvalue problem (23). In particular, the algebraic multiplicity of the eigenvalue
λ = 0 is greater or equal d.

1.4.2 Essential spectrum of traveling waves

For simplicity consider the traveling wave equation in one space dimension (d = 1)

(24) 0 = Av⋆,xx(x) + µ⋆v⋆,x(x) + f(v⋆(x)), x ∈ R.

with diffusion matrix A ∈ Rm,m, nonlinearity f : Rm → Rm, constant asymptotic states
v± ∈ Rm (i.e. f(v±) = 0), translational velocity µ⋆ ∈ R and profile v⋆ : R → Rm satisfying
v⋆(x) → v± ∈ Rm as x → ±∞.
Initial value problem: The main idea to detecting the essential spectrum of L is to look for
solutions of

(25)
vt(x, t) = [Lv](x, t) := Avxx(x, t) + µ⋆vx(x, t) +Df(v⋆(x))v(x, t) , x ∈ R, t > 0,

v(x, 0) = v0(x) , x ∈ R, t = 0.

Decomposition of Df(v⋆(x)): Introducing the matrices Q±(x) ∈ Rm,m via

Q±(x) := Df(v⋆(x))−Df(v±), x ∈ R,

we obtain from (25)
(26)
vt(x, t) = [L±v](x, t) := Avxx(x, t) + µ⋆vx(x, t) +Df(v±)v(x, t) +Q±(x)v(x, t), x ∈ R, t > 0.

Limiting operator (simplified operator, far-field operator): Since the essential spectrum depends
only on the limiting equation for x → ±∞, we let formally x → ±∞ (but only in the coefficient



matrices). Since Q+(x) → 0 as x → +∞ and Q−(x) → 0 as x → −∞, we can drop the term
Q±(x) in (26) and obtain

(27) vt(x, t) = Avxx(x, t) + µ⋆vx(x, t) +Df(v±)v(x, t), x ∈ R, t > 0.

Fourier transform: Since we seek for bounded solutions of (27), we perform a Fourier transfor-
mation in space and time. Inserting the Fourier transform

(28) v(x, t) = eλteiωxv̂, λ ∈ C, ω ∈ R, v̂ ∈ C
m, |v̂| = 1

into (27) and dividing by eλteiωx yields a finite dimensional eigenvalue problem

λv̂ =
(

−ω2A+ iωµ⋆Im +Df(v±)
)

v̂

Dispersion relation: Every λ ∈ C satisfying

det
(

−Aω2 + iωµ⋆Im +Df(v±)− λIm
)

= 0

for some ω ∈ R belongs to the essential spectrum of L.

Theorem 1.4 (Essential spectrum of traveling waves, d = 1). Let v⋆ ∈ C2(R,Rm) be a non-
trivial classical solution of (24) satisfying v⋆(x) → v± as x → ±∞ for some v± ∈ R and let
A ∈ Rm,m, µ⋆ ∈ R and f ∈ C1(Rm,Rm) with f(v±) = 0. Then algebraic curves ( asymptotic
parabolas)

S± :=
{

λ ∈ C | det
(

−Aω2 + iωµ⋆Im +Df(v±)− λIm
)

= 0 for some ω ∈ R
}

=
{

λ ∈ σ
(

−Aω2 + iωµ⋆Im +Df(v±)
)

| ω ∈ R
}

belongs to the essential spectrum σess(L) of L, i.e. S± ⊆ σess(L).
Example 1.5 (Fisher’s equation). The Fisher’s equation

ut = uxx + u(1− u), x ∈ R, t > 0,

has a traveling front solution u⋆(x, t) = v⋆(x − µ⋆t) with velocity µ⋆ ≈ −2 and profile v⋆
connecting the asymptotic states v+ = 1 and v− = 0, i.e. v⋆(x) → v± as x → ±∞. Note
that neither the profile nor the velocity are given explicitly. The nonlinearity f(u) = u(1− u)
satisfies f(v±) = 0, f ′(v+) = −1 and f ′(v−) = 1. The dispersion relation states that

S± := {λ = −ω2 + iωµ⋆ + f ′(v±) | ω ∈ R} ⊆ σess(L)
i.e.

S+ := {λ = −ω2 + iωµ⋆ − 1 | ω ∈ R} ⊆ σess(L),
S− := {λ = −ω2 + iωµ⋆ + 1 | ω ∈ R} ⊆ σess(L).

The essential spectrum of the traveling front in Fisher’s equation is illustrated in Figure 1.1.
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Figure 1.1. Essential spectrum of Fisher’s equation



Example 1.6 (Nagumo equation). The Nagumo equation

ut = uxx + u(1− u)(u− b), x ∈ R, t > 0, 0 < b < 1.

has an explicit traveling front solution u⋆(x, t) = v⋆(x− µ⋆t) with

v⋆(x) =
1

1 + e
−

x
√

2

, µ⋆ = −
√
2

(

1

2
− b

)

(Huxley wave),

v+ = 1 and v− = 0. The nonlinearity f(u) = u(1− u)(u− b) satisfies f(v±) = 0, f ′(v+) = b− 1
and f ′(v−) = −b. The dispersion relation states that

S± := {λ = −ω2 + iωµ⋆ + f ′(v±) | ω ∈ R} ⊆ σess(L)

i.e.

S+ := {λ = −ω2 + iωµ⋆ − b | ω ∈ R} ⊆ σess(L),
S− := {λ = −ω2 + iωµ⋆ + (b− 1) | ω ∈ R} ⊆ σess(L).

The essential spectrum of the traveling front in the Nagumo equation is illustrated in Figure
1.2.
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Figure 1.2. Essential spectrum of the Nagumo equation for parameter b = 1
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Example 1.7 (Quintic Nagumo equation). Consider the quintic Nagumo equation

ut = uxx + u(1− u)(u− α1)(u− α3)(u− α3), x ∈ R, t > 0, 0 < α1 < α2 < α3 < 1.

For the parameters α1 =
2
5
, α2 =

1
2
, α3 =

17
20

the quintic Nagumo equation has a traveling front
solution u⋆(x, t) = v⋆(x−µ⋆t) with velocity µ⋆ ≈ 0.07 and profile v⋆ conntecting the asymptotic
states v+ = 1 and v− = 0, i.e. v⋆(x) → v± as x → ±∞. Note that neither the profile nor the
velocity are given explicitly. The nonlinearity f(u) = u(1− u)(u−α1)(u−α3)(u−α3) satisfies
f(v±) = 0, f ′(v+) = −(1−α1)(1−α2)(1−α3) and f ′(v−) = −α1α2α3. The dispersion relation
states that

S± := {λ = −ω2 + iωµ⋆ + f ′(v±) | ω ∈ R} ⊆ σess(L)
i.e.

S+ := {λ = −ω2 + iωµ⋆ − (1− α1)(1− α2)(1− α3) | ω ∈ R} ⊆ σess(L),
S− := {λ = −ω2 + iωµ⋆ − α1α2α3 | ω ∈ R} ⊆ σess(L).

The essential spectrum of the traveling front in the quintic Nagumo equation is illustrated in
Figure 1.3.
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Figure 1.3. Essential spectrum of the quintic Nagumo equation for parameters
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Example 1.8 (Fitz-Hugh Nagumo system). Consider the FitzHugh-Nagumo system
(

u1,t

u2,t

)

=

(

1 0
0 D

)(

u1,xx

u2,xx

)

+

(

u1 − ζu3
1 − u2 + α

β(γu1 − δu2 + ε)

)

, x ∈ R, t > 0

for some D > 0, α, β, γ, δ, ε, ζ ∈ R, ζ 6= 0 and ui = ui(x, t) ∈ R for i = 1, 2. Using the notation

u =
(

u1, u2

)T ∈ R
2 and f : R2 → R

2, f(u) =

(

u1 − ζu3
1 − u2 + α

β(γu1 − δu2 + ε)

)

,

the FitzHugh-Nagumo system can also be written as

ut = Auxx + f(u), x ∈ R, t > 0, A :=

(

1 0
0 D

)

.

(a) For the parameters (parabolic case)

D =
1

10
, α = 0, β =

2

25
, γ = 1, δ = 3, ε =

7

10
, ζ =

1

3

and for the parameters (parabolic-hyperbolic case)

D = 0, α = 0, β =
2

25
, γ = 1, δ = 3, ε =

7

10
, ζ =

1

3

the Fitz-Hugh Nagumo system has a traveling front solution u⋆(x, t) = v⋆(x − µ⋆t) with
velocity µ⋆ ≈ −0.8560 (parabolic case) and µ⋆ ≈ −0.8664 (parabolic-hyperbolic case) and
profile v⋆ conntecting the asymptotic states

v− =

(

1.18769696080266
0.629232320266825

)

and v+ =

(

−1.56443178284120
−0.288143927613547

)

,

i.e. v⋆(x) → v± as x → ±∞. Note that neither the profile nor the velocity are given
explicitly. The nonlinearity

f(u) =

(

u1 − ζu3
1 − u2 + α

β(γu1 − δu2 + ε)

)

satisfies

f(v±) =

(

0
0

)

and Df(v±) =

(

1− 3ζ
(

v
(1)
±

)2

−1

βγ −βδ

)

.

The dispersion relation states that

S± :=

{

λ ∈ C | det
(

−ω2

(

1 0
0 D

)

+ iωµ⋆I2 +

(

1− 3ζ
(

v
(1)
±

)2

−1

βγ −βδ

)

− λI2

)

= 0, ω ∈ R

}



belongs to σess(L), i.e. both sets

S+ :=

{

λ ∈ C | det
(

−ω2

(

1 0
0 D

)

+ iωµ⋆I2 +

(

1− 3ζ
(

v
(1)
+

)2

−1

βγ −βδ

)

− λI2

)

= 0, ω ∈ R

}

,

S− :=

{

λ ∈ C | det
(

−ω2

(

1 0
0 D

)

+ iωµ⋆I2 +

(

1− 3ζ
(

v
(1)
−

)2

−1

βγ −βδ

)

− λI2

)

= 0, ω ∈ R

}

are contained in σess(L). Due to

0 =det

(

−ω2 + iωµ⋆ + 1− 3ζ
(

v
(1)
±

)2

− λ −1

βγ −ω2D + iωµ⋆ − βδ − λ

)

=λ2 − (a+ b)λ + (ab+ c)

with abbreviations

a := −ω2 + iωµ⋆ + 1− 3ζ
(

v
(1)
±

)2

, b := −ω2D + iωµ⋆ − βδ, c := βγ,

every λ±

1,2 = λ±

1,2(ω) ∈ C satisfying

λ±

1,2 =
1

2

(

(a+ b)±
√

(a+ b)2 − 4(ab+ c)
)

,

for some ω ∈ R belongs to the essential spectrum of L. The essential spectrum of the
traveling front in the FitzHugh-Nagumo system is illustrated in Figure 1.4(a).

(b) For the parameters (parabolic case)

D =
1

10
, α = 0, β =

2

25
, γ = 1, δ = 0.8, ε =

7

10
, ζ =

1

3

and for the parameters (parabolic-hyperbolic case)

D = 0, α = 0, β =
2

25
, γ = 1, δ = 0.8, ε =

7

10
, ζ =

1

3

the Fitz-Hugh Nagumo system has a traveling pulse solution u⋆(x, t) = v⋆(x − µ⋆t) with
velocity µ⋆ ≈ −0.7892 (parabolic case) and µ⋆ ≈ −0.8121 (parabolic-hyperbolic case) and
profile v⋆ conntecting the asymptotic state

v± =

(

−1.19940803524404
−0.624260044055044

)

,

i.e. v⋆(x) → v± as x → ±∞. Note that neither the profile nor the velocity are given
explicitly. The nonlinearity

f(u) =

(

u1 − ζu3
1 − u2 + α

β(γu1 − δu2 + ε)

)

satisfies

f(v±) =

(

0
0

)

and Df(v±) =

(

1− 3ζ
(

v
(1)
±

)2

−1

βγ −βδ

)

.

The dispersion relation states that

S± :=

{

λ ∈ C | det
(

−ω2

(

1 0
0 D

)

+ iωµ⋆I2 +

(

1− 3ζ
(

v
(1)
±

)2

−1

βγ −βδ

)

− λI2

)

= 0, ω ∈ R

}

belongs to σess(L). Similarly to (a), we obtain that every λ±

1,2 = λ±

1,2(ω) ∈ C satisfying

λ±

1,2 =
1

2

(

(a+ b)±
√

(a+ b)2 − 4(ab+ c)
)

,



for some ω ∈ R, where

a := −ω2 + iωµ⋆ + 1− 3ζ
(

v
(1)
±

)2

, b := −ω2D + iωµ⋆ − βδ, c := βγ,

belongs to the essential spectrum of L. The essential spectrum of the traveling pulse in the
FitzHugh-Nagumo system is illustrated in Figure 1.4(b).
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Figure 1.4. Essential spectrum of the Nagumo equation for a traveling front
with D = 1

10
in (a) and with D = 0 in (c), and for a traveling pulse with D = 1

10
in (b) and with D = 0 in (d)

Example 1.9 (Barkley model). Consider the Barkley model
(

u1,t

u2,t

)

=

(

1 0
0 D

)(

u1,xx

u2,xx

)

+

(

1
ε
u1(1− u1)

(

u1 − u2+b
a

)

u1 − u2

)

, x ∈ R, t > 0

for some D > 0, a, b, ε > 0 and ui = ui(x, t) ∈ R for i = 1, 2. Using the notation

u =
(

u1, u2

)T ∈ R
2 and f : R2 → R

2, f(u) =

(

1
ε
u1(1− u1)

(

u1 − u2+b

a

)

u1 − u2

)

,

the Barkley model can also be written as

ut = Auxx + f(u), x ∈ R, t > 0, A :=

(

1 0
0 D

)

.

For the parameters (parabolic case)

D =
1

10
, a =

3

4
, b =

1

100
, ε =

1

50



and for the parameters (parabolic-hyperbolic case)

D = 0, a =
3

4
, b =

1

100
, ε =

1

50
the Barkley model has a traveling pulse solution u⋆(x, t) = v⋆(x−µ⋆t) with velocity µ⋆ ≈ 4.6616
(parabolic case) and µ⋆ ≈ 4.6785 (parabolic-hyperbolic case) and profile v⋆ conntecting the
asymptotic state

v± =

(

0
0

)

,

i.e. v⋆(x) → v± as x → ±∞. Note that neither the profile nor the velocity are given explicitly.
The nonlinearity

f(u) =

(

1
ε
u1(1− u1)

(

u1 − u2+b

a

)

u1 − u2

)

satisfies

f(v±) =

(

0
0

)

and Df(v±) =

(

− b
εa

0
1 −1

)

.

The dispersion relation states that

S± :=

{

λ ∈ C | det
(

−ω2

(

1 0
0 D

)

+ iωµ⋆I2 +

(

− b
εa

0
1 −1

)

− λI2

)

= 0, ω ∈ R

}

belongs to σess(L). Due to

0 = det

(

−ω2 + iωµ⋆ − b
εa

− λ 0
1 −ω2D + iωµ⋆ − 1− λ

)

= (−ω2 + iωµ⋆ −
b

εa
− λ)(−ω2D + iωµ⋆ − 1− λ)

we obtain that every λ±

1,2 = λ±

1,2(ω) ∈ C satisfying

λ±

1 = −ω2 + iωµ⋆ −
b

εa
, λ±

2 = −ω2D + iωµ⋆ − 1

for some ω ∈ R, belongs to the essential spectrum of L. The essential spectrum of the traveling
pulse in the Barkley model is illustrated in Figure 1.5(b).
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Figure 1.5. Essential spectrum of the Barkley model for a traveling pulse with
D = 1

10
in (a) and with D = 0 in (b)


