1. Freezing Traveling Waves in Reaction Diffusion Systems

1.1 Traveling waves in reaction diffusion systems

Consider a system of reaction diffusion equations in one space dimension

$$
\begin{array}{ll}
u_{t}(x, t)=A u_{x x}(x, t)+f(u(x, t)) & , x \in \mathbb{R}, t>0 \\
u(x, 0)=u_{0}(x) & , x \in \mathbb{R}, t=0 \tag{1}
\end{array}
$$

with diffusion matrix $A \in \mathbb{R}^{m, m}$, nonlinearity $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, initial data $u_{0}: \mathbb{R} \rightarrow \mathbb{R}^{m}$ and solution $u: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}^{m}$.
We are interested in traveling wave solutions of (1): A traveling wave of (1) is a solution $u_{\star}: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}^{m}$ of the form

$$
\begin{equation*}
u_{\star}(x, t)=v_{\star}\left(x-\mu_{\star} t\right) \quad, x \in \mathbb{R}, t \geqslant 0, \tag{2}
\end{equation*}
$$

with

$$
\lim _{\xi \rightarrow+\infty} v_{\star}(\xi)=v_{+} \in \mathbb{R}^{m}, \quad \lim _{\xi \rightarrow-\infty} v_{\star}(\xi)=v_{-} \in \mathbb{R}^{m}, \quad f\left(v_{+}\right)=f\left(v_{-}\right)=0
$$

The function $v_{\star}: \mathbb{R} \rightarrow \mathbb{R}^{m}$ is called the profile and $\mu_{\star} \in \mathbb{R}$ the (translational) velocity of the traveling wave. The traveling wave u_{\star} is called a traveling pulse, if $v_{+}=v_{-}$, and a traveling front, if $v_{+} \neq v_{-}$. The wave travels to the left, if $\mu_{\star}<0$ and to the right, if $\mu_{\star}>0$. In case $\mu_{\star}=0$, in which we are not interested, u_{\star} is called a standing wave.
Our aim is to approximate traveling wave solutions of (1). The idea for approximating the traveling wave u_{\star} is to determine the profile v_{\star} and the velocity μ_{\star}. This requires to transform (1) into a co-moving coordinate system.

Transforming (1) via $u(x, t)=v(\xi, t)$ with $\xi:=x-\mu_{\star} t$ in a co-moving frame yields

$$
\begin{array}{ll}
v_{t}(\xi, t)=A v_{\xi \xi}(\xi, t)+\mu_{\star} v_{\xi}(\xi, t)+f(v(\xi, t)) & , \xi \in \mathbb{R}, t>0 \\
v(\xi, 0)=u_{0}(\xi) & , \xi \in \mathbb{R}, t=0 . \tag{3}
\end{array}
$$

Inserting (2) into (1) shows, that v_{\star} is a stationary solution of (3), i.e.

$$
\begin{equation*}
0=A v_{\star, \xi \xi}(\xi)+\mu_{\star} v_{\star, \xi}(\xi)+f\left(v_{\star}(\xi)\right), \xi \in \mathbb{R} \tag{4}
\end{equation*}
$$

We are also interested in nonlinear stability of traveling waves. It is well known from the literature, that in many cases spectral stability implies nonlinear stability. For investigating spectral stability of a traveling wave, we must analyze the spectrum of the linearization of the right hand side in (3) at the wave profile v_{\star}, i.e.

$$
[\mathcal{L} w](\xi)=A w_{\xi \xi}(\xi)+\mu_{\star} w_{\xi}(\xi)+D f\left(v_{\star}(\xi)\right) w(\xi) \quad, \xi \in \mathbb{R}
$$

This requires to find solutions (λ, w) of the eigenvalue problem

$$
\begin{equation*}
\lambda w(\xi)=A w_{\xi \xi}(\xi)+\mu_{\star} w_{\xi}(\xi)+D f\left(v_{\star}(\xi)\right) w(\xi) \quad, \xi \in \mathbb{R} \tag{5}
\end{equation*}
$$

with eigenfunction $w: \mathbb{R} \rightarrow \mathbb{C}^{m}$ and eigenvalue $\lambda \in \mathbb{C}$.
Approximating v_{\star} via (3) requires the knowledge about the velocity μ_{\star} which is in general unknown. This motivates to introduce the freezing method, whose idea is it to approximate the profile v_{\star} and the velocity μ_{\star} simultaneously.

1.2 Freezing method for traveling waves

Consider again a system of reaction diffusion equations in one space dimension, cf. (1),

$$
\begin{array}{ll}
u_{t}(x, t)=A u_{x x}(x, t)+f(u(x, t)) & , x \in \mathbb{R}, t>0 \\
u(x, 0)=u_{0}(x) & , x \in \mathbb{R}, t=0 \tag{6}
\end{array}
$$

Introducing new unknowns $\gamma(t) \in \mathbb{R}$ (position) and $v(\xi, t) \in \mathbb{R}^{m}$ (profile) via the traveling wave ansatz

$$
\begin{equation*}
u(x, t)=v(\xi, t), \xi:=x-\gamma(t) \quad, x \in \mathbb{R}, t \geqslant 0 \tag{7}
\end{equation*}
$$

and inserting (7) into (6) yields

$$
\begin{equation*}
v_{t}(\xi, t)=A v_{\xi \xi}(\xi, t)+\gamma_{t}(t) v_{\xi}(\xi, t)+f(v(\xi, t)) \quad, \xi \in \mathbb{R}, t>0 \tag{8}
\end{equation*}
$$

It is convenient to introduce a further unknown $\mu(t) \in \mathbb{R}$ (velocity) via $\gamma_{t}(t)=\mu(t)$. Then, (8) reads as

$$
\begin{align*}
v_{t}(\xi, t) & =A v_{\xi \xi}(\xi, t)+\mu(t) v_{\xi}(\xi, t)+f(v(\xi, t)) & & , \xi \in \mathbb{R}, t>0 \\
\gamma_{t}(t) & =\mu(t) & & t>0 . \tag{9}
\end{align*}
$$

Equ. (9) has to be equipped with suitable initial data. Requiring $\gamma(0)=0$, (7) and (6) imply

$$
\begin{equation*}
v(\xi, 0)=u_{0}(\xi) \quad, \xi \in \mathbb{R}, t=0 \tag{10}
\end{equation*}
$$

Collecting the equations (9), $\gamma(0)=0$ and (10) we obtain

$$
\begin{align*}
v_{t}(\xi, t) & =A v_{\xi \xi}(\xi, t)+\mu(t) v_{\xi}(\xi, t)+f(v(\xi, t)) & & , \xi \in \mathbb{R}, t>0, \\
v(\xi, 0) & =u_{0}(\xi) & & , \xi \in \mathbb{R}, t=0, \\
\gamma_{t}(t) & =\mu(t) & & t>0, \tag{11}\\
\gamma(0) & =0 & & , t=0 .
\end{align*}
$$

(11) contains the equations for v and γ. But so far, the system (11) is not well-posed, since there is still no equation for μ. To determine μ we require an additional algebraic constraint, a so called phase condition: For this purpose let $\hat{v}: \mathbb{R} \rightarrow \mathbb{R}^{m}$ be a template function, e.g. $\hat{v}=u_{0}$. The idea of the phase condition is to choose $v(\cdot, t)$ such that

$$
\min _{g \in \mathbb{R}}\|v(\cdot, t)-\hat{v}(\cdot-g)\|_{L^{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)}^{2}=\|v(\cdot, t)-\hat{v}(\cdot)\|_{L^{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)}^{2} \quad, t \geqslant 0
$$

A necessary condition to guarantee that the left hand side attains its minimum at $g=0$ is that the first derivative of $\|v(\cdot, t)-\hat{v}(\cdot-g)\|_{L^{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)}^{2}$ evaluated at $g=0$ vanishes, i.e. for all $t \geqslant 0$

$$
\begin{equation*}
0 \stackrel{!}{=}\left[\frac{d}{d g}(v(\cdot, t)-\hat{v}(\cdot-g), v(\cdot, t)-\hat{v}(\cdot-g))_{L^{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)}\right]_{g=0}=2\left(v(\cdot, t)-\hat{v}, \hat{v}_{\xi}\right)_{L^{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)} \tag{12}
\end{equation*}
$$

Combining (11) and (12) yields a partial differential algebraic evolution equation (PDAE)

$$
\begin{align*}
v_{t}(\xi, t) & =A v_{\xi \xi}(\xi, t)+\mu(t) v_{\xi}(\xi, t)+f(v(\xi, t)) & & , \xi \in \mathbb{R}, t>0 \\
v(\xi, 0) & =u_{0}(\xi) & & , \xi \in \mathbb{R}, t=0, \\
0 & =\left(v(\cdot, t)-\hat{v}, \hat{v}_{\xi}\right)_{L^{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)} & & t \geqslant 0, \tag{13}\\
\gamma_{t}(t) & =\mu(t) & & t>0, \\
\gamma(0) & =0 & & , t=0 .
\end{align*}
$$

The last two equations in (13) for the position γ are decoupled from the other equations in (13). Therefore, the γ-equation can be solved in a postprocessing step. The γ-equation is called the reconstruction equation for the traveling wave. Since $\left(v_{\star}, \mu_{\star}\right)$ satisfy

$$
\begin{aligned}
& 0=A v_{\star, \xi \xi}(\xi)+\mu_{\star} v_{\star, \xi}(\xi)+f\left(v_{\star}(\xi)\right), \xi \in \mathbb{R}, \\
& 0=\left(v_{\star}-\hat{v}, \hat{v}_{\xi}\right)_{L^{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)}
\end{aligned}
$$

we expect for stability reasons, that the solution (v, μ, γ) of (13) satisfies

$$
\begin{equation*}
v(t) \rightarrow v_{\star}, \quad \mu(t) \rightarrow \mu_{\star} \quad \text { as } \quad t \rightarrow \infty . \tag{14}
\end{equation*}
$$

As an indicator for the convergence in (14) we check the quantities

$$
\begin{equation*}
\left\|v_{t}(\cdot, t)\right\|_{L^{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)} \quad \text { and } \quad\left|\mu_{t}(t)\right| \tag{15}
\end{equation*}
$$

at each time instance t during the computation. In fact, both of these quantities should be small $\left(\approx 10^{-16}\right)$, since v_{\star} and μ_{\star} do not vary in time.

1.3 Numerical approximation of traveling waves via freezing method

Solving (1), (13) and (5) numerically, requires to truncate these equations to bounded domains. Let $\Omega \subset \mathbb{R}$ be a bounded open domain, then (1) must be satisfied for $x \in \Omega$, and equations (13) and (5) for $\xi \in \Omega$. To guarantee the well-posedness of these problems, we must equip the equations with appropriate boundary conditions. Normally, we choose homogeneous Neumann boundary conditions (also known as no-flux boundary conditions), i.e.

$$
u_{x}(x)=0, x \in \partial \Omega, \quad v_{\xi}(\xi)=0, \xi \in \partial \Omega .
$$

In this context, $\partial \Omega$ denotes the boundary of Ω and $\bar{\Omega}$ the closure of Ω, e.g. $\Omega=(a, b)$ with $-\infty<a<b<\infty$ then $\partial \Omega=\{a, b\}$ and $\bar{\Omega}=[a, b]$. Numerically, we solve the following equations:

Step 1: (Nonfrozen Equation)

$$
\begin{align*}
u_{t}(x, t) & =A u_{x x}(x, t)+f(u(x, t)) & & , x \in \Omega, t \in\left(0, T_{1}\right], \\
u(x, 0) & =u_{0}(x) & & , x \in \bar{\Omega}, t=0, \tag{16}\\
u_{x}(x, t) & =0 & & , x \in \partial \Omega, t \in\left[0, T_{1}\right] .
\end{align*}
$$

First, we determine the solution u of (16). The quantities A, f, u_{0}, Ω and T_{1} are given.
Step 2: (Frozen Equation)

$$
\begin{align*}
v_{t}(\xi, t) & =A v_{\xi \xi}(\xi, t)+\mu(t) v_{\xi}(\xi, t)+f(v(\xi, t)) & & \xi \in \Omega, t \in\left(0, T_{2}\right], \\
v(\xi, 0) & =v_{0}(\xi), \xi \in \bar{\Omega} & & , t=0, \\
v_{\xi}(\xi, t) & =0 & & , \xi \in \partial \Omega, t \in\left[0, T_{2}\right], \\
0 & =\left(v(\cdot, t)-\hat{v}, \hat{v}_{\xi}\right)_{L^{2}\left(\Omega, \mathbb{R}^{m}\right)} & & , t \in\left[0, T_{2}\right], \tag{17}\\
\gamma_{t}(t) & =\mu(t) & & \left., t=0, T_{2}\right], \\
\gamma(0) & =0 & &
\end{align*}
$$

Then, we determine the solution (v, μ, γ) of (17). The quantities $A, f, v_{0}, \hat{v}, \Omega$ and T_{2} are given. The final time T_{2} may be different to the end time T_{1} from (16). The template function is often chosen as $\hat{v}(\xi)=u_{0}(\xi)$ or $\hat{v}(\xi)=u\left(\xi, T_{1}\right)$, where $u\left(\cdot, T_{1}\right)$ denotes the solution of (16) at the end time T_{1}. Also the initial data v_{0} is often chosen as $v_{0}(\xi)=u_{0}(\xi)$ or $v_{0}(\xi)=u\left(\xi, T_{1}\right)$. The end time T_{2} in (17) is often chosen such that the values of the quantities $\|v(\cdot, t)\|_{L^{2}\left(\Omega, \mathbb{R}^{m}\right)}$ and $\left|\mu_{t}(t)\right|$, cf. (15), are near 10^{-16}.
Step 3: (Eigenvalue Problem)

$$
\begin{array}{rlrl}
\lambda w(\xi) & =A w_{\xi \xi}(\xi)+\mu_{\star} w_{\xi}(\xi)+D f\left(v_{\star}(\xi)\right) w(\xi) & & , \xi \in \Omega, \tag{18}\\
w_{\xi}(\xi) & =0 & , \xi \in \partial \Omega .
\end{array}
$$

Finally, we determine (a predescribed number neig of) eigenvalues λ and associated eigenfunctions w of (18). The quantities $A, \mu_{\star}, v_{\star}, f, \Omega$ and neig are given. The profile v_{\star} and the velocity
μ_{\star} come actually from a simulation, more precisely we set $\mu_{\star}:=\mu\left(T_{2}\right)$ and $v_{\star}(\xi):=v\left(\xi, T_{2}\right)$, where $\mu\left(T_{2}\right)$ and $v\left(\cdot, T_{2}\right)$ denote two components of the solution of (17) at the end time T_{2}.

1.4 Spectra and eigenfunctions of traveling waves

We now look for solutions (λ, w) of the eigenvalue problem

$$
\lambda w(x)=[\mathcal{L} w](x):=A \triangle w(x)+\mu_{\star}^{T} \nabla w(x)+D f\left(v_{\star}(x)\right) w(x), x \in \mathbb{R}^{d} .
$$

1.4.1 Point spectrum of traveling waves on the imaginary axis

Consider the traveling wave equation

$$
\begin{equation*}
0=A \triangle v_{\star}(x)+\mu_{\star}^{T} \nabla v_{\star}(x)+f\left(v_{\star}(x)\right), x \in \mathbb{R}^{d}, d \geqslant 1, \tag{19}
\end{equation*}
$$

with diffusion matrix $A \in \mathbb{R}^{m, m}$, nonlinearity $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, translational velocity $\mu_{\star} \in \mathbb{R}^{d}$ and profile $v_{\star}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$.
For $g \in \mathbb{R}^{d}$ we define the group action $[a(g) v](x):=v(x-g)$. Applying $a(g)$ on both hand sides in (19) yields

$$
\begin{align*}
0 & =a(g)\left[A \triangle v_{\star}(x)+\mu_{\star}^{T} \nabla v_{\star}(x)+f\left(v_{\star}(x)\right)\right] \\
& =A \triangle\left[a(g) v_{\star}(x)\right]+\mu_{\star}^{T} \nabla\left[a(g) v_{\star}(x)\right]+a(g) f\left(v_{\star}(x)\right) \tag{20}\\
& =A \triangle v_{\star}(x-g)+\mu_{\star}^{T} \nabla v_{\star}(x-g)+f\left(v_{\star}(x-g)\right), x \in \mathbb{R}^{d} .
\end{align*}
$$

Taking the derivative $\frac{d}{d g}$ in (20) evaluated at $g=0$, we obtain (provided that $v_{\star} \in C^{3}\left(\mathbb{R}^{d}, \mathbb{R}^{m}\right)$ and $\left.f \in C^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)\right)$

$$
\begin{aligned}
0 & =\left[\frac{d}{d g}\left(A \triangle v_{\star}(x-g)+\mu_{\star}^{T} \nabla v_{\star}(x-g)+f\left(v_{\star}(x-g)\right)\right)\right]_{g=0} \\
& =\left[-\left(A \triangle D_{j} v_{\star}(x-g)+\mu_{\star}^{T} \nabla D_{j} v_{\star}(x-g)+D f\left(v_{\star}(x-g)\right) D_{j} v_{\star}(x-g)\right)_{j=1, \ldots, d}\right]_{g=0} \\
& =-\left(A \triangle D_{j} v_{\star}(x)+\mu_{\star}^{T} \nabla D_{j} v_{\star}(x)+D f\left(v_{\star}(x)\right) D_{j} v_{\star}(x)\right)_{j=1, \ldots, d}, x \in \mathbb{R}^{d} .
\end{aligned}
$$

This leads to a total of d equations

$$
\begin{aligned}
0 & =A \triangle D_{j} v_{\star}(x)+\mu_{\star}^{T} \nabla D_{j} v_{\star}(x)+D f\left(v_{\star}(x)\right) D_{j} v_{\star}(x) \\
& =D_{j}\left(A \triangle v_{\star}(x)+\mu_{\star}^{T} \nabla v_{\star}(x)+f\left(v_{\star}(x)\right)\right), x \in \mathbb{R}^{d}, j=1, \ldots, d .
\end{aligned}
$$

Therefore, $(\lambda, w(x)):=\left(0, D_{j} v_{\star}(x)\right), j=1, \ldots, d$, solves the eigenvalue problem

$$
\begin{equation*}
\lambda w(x)=[\mathcal{L} w](x):=A \triangle w(x)+\mu_{\star}^{T} \nabla w(x)+D f\left(v_{\star}(x)\right) w(x), x \in \mathbb{R}^{d}, \tag{21}
\end{equation*}
$$

i.e. the function $w(x)=D_{j} v_{\star}(x)$ is an eigenfunction associated with the eigenvalue $\lambda=0$, provided the v_{\star} is nontrivial (i.e. not constant), since otherwise we have $w(x)=0$.
Procedure: Applying D_{j} to (19) yields the solution $(\lambda, w(x)):=\left(0, D_{j} v_{\star}(x)\right)$ of (21).
Theorem 1.1 (Point spectrum of traveling waves). Let $v_{\star} \in C^{3}\left(\mathbb{R}^{d}, \mathbb{R}^{m}\right)$ be a nontrivial classical solution of (19) for some $A \in \mathbb{R}^{m, m}, \mu_{\star} \in \mathbb{R}^{d}$ and $f \in C^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$. Then

$$
\lambda=0, \quad w(x)=D_{j} v_{\star}(x), \quad x \in \mathbb{R}^{d}, \quad j=1, \ldots, d
$$

solves the eigenvalue problem (21). In particular, the algebraic multiplicity of the eigenvalue $\lambda=0$ is greater or equal d.
Example 1.2 (Nagumo equation). The Nagumo equation

$$
u_{t}=u_{x x}+u(1-u)(u-b), x \in \mathbb{R}, t \geqslant 0,0<b<1,
$$

has an explicit traveling wave solution $u_{\star}(x, t)=v_{\star}\left(x-\mu_{\star} t\right)$ with

$$
v_{\star}(x)=\frac{1}{1+e^{-\frac{x}{\sqrt{2}}}}, \quad \mu_{\star}=-\sqrt{2}\left(\frac{1}{2}-b\right) \quad(\text { Huxley wave }),
$$

i.e. v_{\star} and μ_{\star} solve the associated traveling wave equation

$$
0=v_{\star, x x}(x)+\mu_{\star} v_{\star, x}(x)+v_{\star}(x)\left(1-v_{\star}(x)\right)\left(v_{\star}(x)-b\right), x \in \mathbb{R} .
$$

The eigenvalue problem for the linearization

$$
\lambda w(x)=w_{x x}(x)+\mu_{\star} w_{x}(x)-3 w^{2}(x)+2(b+1) w(x)-b, x \in \mathbb{R}
$$

(with $f(u)=u(1-u)(u-b)$ and $D f(u)=-3 u^{2}+2(b+1) u-b$) has the solution

$$
\lambda=0, \quad w(x)=v_{\star, x}(x)=\frac{1}{\sqrt{2}} \frac{e^{-\frac{x}{\sqrt{2}}}}{\left(1+e^{-\frac{x}{\sqrt{2}}}\right)^{2}}, \quad x \in \mathbb{R} .
$$

Consider the traveling wave equation in divergence form

$$
\begin{equation*}
0=A \nabla^{T}\left(Q \nabla v_{\star}(x)\right)+\mu_{\star}^{T} \nabla v_{\star}(x)+f\left(v_{\star}(x)\right), x \in \mathbb{R}^{d}, d \geqslant 1, \tag{22}
\end{equation*}
$$

with $A \in \mathbb{R}^{m, m}, Q \in \mathbb{R}^{d, d}$ and

$$
A \nabla^{T}\left(Q \nabla v_{\star}(x)\right)=A \sum_{i=1}^{d} \sum_{j=1}^{d} D_{i}\left(Q_{i j} D_{j} v_{\star}(x)\right) .
$$

Applying D_{j} to (22), $j=1, \ldots, d$, yields (provided that $v_{\star} \in C^{3}\left(\mathbb{R}^{d}, \mathbb{R}^{m}\right)$ and $f \in C^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$)

$$
0=A \nabla^{T}\left(Q \nabla D_{j} v_{\star}(x)\right)+\mu_{\star}^{T} \nabla D_{j} v_{\star}(x)+D f\left(v_{\star}(x)\right) D_{j} v_{\star}(x), x \in \mathbb{R}^{d}
$$

since A, Q and μ_{\star} do not depend on x. Therefore, $(\lambda, w(x))=\left(0, D_{j} v_{\star}(x)\right), j=1, \ldots, d$, solves the eigenvalue problem

$$
\begin{equation*}
\lambda w(x)=[\mathcal{L} w](x):=A \nabla^{T}(Q \nabla w(x))+\mu_{\star}^{T} \nabla w(x)+D f\left(v_{\star}(x)\right) w(x), x \in \mathbb{R}^{d} . \tag{23}
\end{equation*}
$$

Corollary 1.3 (Point spectrum of traveling waves, divergence form). Let $v_{\star} \in C^{3}\left(\mathbb{R}^{d}, \mathbb{R}^{m}\right)$ be a nontrivial classical solution of (22) for some $A \in \mathbb{R}^{m, m}, Q \in \mathbb{R}^{d, d}, \mu_{\star} \in \mathbb{R}^{d}$ and $f \in$ $C^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$. Then

$$
\lambda=0, \quad w(x)=D_{j} v_{\star}(x), \quad x \in \mathbb{R}^{d}, \quad j=1, \ldots, d
$$

solve the eigenvalue problem (23). In particular, the algebraic multiplicity of the eigenvalue $\lambda=0$ is greater or equal d.

1.4.2 Essential spectrum of traveling waves

For simplicity consider the traveling wave equation in one space dimension ($d=1$)

$$
\begin{equation*}
0=A v_{\star, x x}(x)+\mu_{\star} v_{\star, x}(x)+f\left(v_{\star}(x)\right), x \in \mathbb{R} \tag{24}
\end{equation*}
$$

with diffusion matrix $A \in \mathbb{R}^{m, m}$, nonlinearity $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, constant asymptotic states $v_{ \pm} \in \mathbb{R}^{m}$ (i.e. $f\left(v_{ \pm}\right)=0$), translational velocity $\mu_{\star} \in \mathbb{R}$ and profile $v_{\star}: \mathbb{R} \rightarrow \mathbb{R}^{m}$ satisfying $v_{\star}(x) \rightarrow v_{ \pm} \in \mathbb{R}^{m}$ as $x \rightarrow \pm \infty$.
Initial value problem: The main idea to detecting the essential spectrum of \mathcal{L} is to look for solutions of

$$
\begin{array}{ll}
v_{t}(x, t)=[\mathcal{L} v](x, t):=A v_{x x}(x, t)+\mu_{\star} v_{x}(x, t)+D f\left(v_{\star}(x)\right) v(x, t) & , x \in \mathbb{R}, t>0, \\
v(x, 0)=v_{0}(x) & , x \in \mathbb{R}, t=0 . \tag{25}
\end{array}
$$

Decomposition of $\operatorname{Df}\left(v_{\star}(x)\right)$: Introducing the matrices $Q_{ \pm}(x) \in \mathbb{R}^{m, m}$ via

$$
Q_{ \pm}(x):=D f\left(v_{\star}(x)\right)-D f\left(v_{ \pm}\right), x \in \mathbb{R},
$$

we obtain from (25)

$$
\begin{equation*}
v_{t}(x, t)=\left[\mathcal{L}_{ \pm} v\right](x, t):=A v_{x x}(x, t)+\mu_{\star} v_{x}(x, t)+D f\left(v_{ \pm}\right) v(x, t)+Q_{ \pm}(x) v(x, t), x \in \mathbb{R}, t>0 \tag{26}
\end{equation*}
$$

Limiting operator (simplified operator, far-field operator): Since the essential spectrum depends only on the limiting equation for $x \rightarrow \pm \infty$, we let formally $x \rightarrow \pm \infty$ (but only in the coefficient
matrices). Since $Q_{+}(x) \rightarrow 0$ as $x \rightarrow+\infty$ and $Q_{-}(x) \rightarrow 0$ as $x \rightarrow-\infty$, we can drop the term $Q_{ \pm}(x)$ in (26) and obtain

$$
\begin{equation*}
v_{t}(x, t)=A v_{x x}(x, t)+\mu_{\star} v_{x}(x, t)+D f\left(v_{ \pm}\right) v(x, t), x \in \mathbb{R}, t>0 . \tag{27}
\end{equation*}
$$

Fourier transform: Since we seek for bounded solutions of (27), we perform a Fourier transformation in space and time. Inserting the Fourier transform

$$
\begin{equation*}
v(x, t)=e^{\lambda t} e^{i \omega x} \hat{v}, \lambda \in \mathbb{C}, \omega \in \mathbb{R}, \hat{v} \in \mathbb{C}^{m},|\hat{v}|=1 \tag{28}
\end{equation*}
$$

into (27) and dividing by $e^{\lambda t} e^{i \omega x}$ yields a finite dimensional eigenvalue problem

$$
\lambda \hat{v}=\left(-\omega^{2} A+i \omega \mu_{\star} I_{m}+D f\left(v_{ \pm}\right)\right) \hat{v}
$$

Dispersion relation: Every $\lambda \in \mathbb{C}$ satisfying

$$
\operatorname{det}\left(-A \omega^{2}+i \omega \mu_{\star} I_{m}+D f\left(v_{ \pm}\right)-\lambda I_{m}\right)=0
$$

for some $\omega \in \mathbb{R}$ belongs to the essential spectrum of \mathcal{L}.
Theorem 1.4 (Essential spectrum of traveling waves, $d=1$). Let $v_{\star} \in C^{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)$ be a nontrivial classical solution of (24) satisfying $v_{\star}(x) \rightarrow v_{ \pm}$as $x \rightarrow \pm \infty$ for some $v_{ \pm} \in \mathbb{R}$ and let $A \in \mathbb{R}^{m, m}, \mu_{\star} \in \mathbb{R}$ and $f \in C^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ with $f\left(v_{ \pm}\right)=0$. Then algebraic curves (asymptotic parabolas)

$$
\begin{aligned}
S_{ \pm} & :=\left\{\lambda \in \mathbb{C} \mid \operatorname{det}\left(-A \omega^{2}+i \omega \mu_{\star} I_{m}+D f\left(v_{ \pm}\right)-\lambda I_{m}\right)=0 \text { for some } \omega \in \mathbb{R}\right\} \\
& =\left\{\lambda \in \sigma\left(-A \omega^{2}+i \omega \mu_{\star} I_{m}+D f\left(v_{ \pm}\right)\right) \mid \omega \in \mathbb{R}\right\}
\end{aligned}
$$

belongs to the essential spectrum $\sigma_{\text {ess }}(\mathcal{L})$ of \mathcal{L}, i.e. $S_{ \pm} \subseteq \sigma_{\text {ess }}(\mathcal{L})$.
Example 1.5 (Fisher's equation). The Fisher's equation

$$
u_{t}=u_{x x}+u(1-u), x \in \mathbb{R}, t \geqslant 0
$$

has a traveling front solution $u_{\star}(x, t)=v_{\star}\left(x-\mu_{\star} t\right)$ with velocity $\mu_{\star} \approx-2$ and profile v_{\star} connecting the asymptotic states $v_{+}=1$ and $v_{-}=0$, i.e. $v_{\star}(x) \rightarrow v_{ \pm}$as $x \rightarrow \pm \infty$. Note that neither the profile nor the velocity are given explicitly. The nonlinearity $f(u)=u(1-u)$ satisfies $f\left(v_{ \pm}\right)=0, f^{\prime}\left(v_{+}\right)=-1$ and $f^{\prime}\left(v_{-}\right)=1$. The dispersion relation states that

$$
S_{ \pm}:=\left\{\lambda=-\omega^{2}+i \omega \mu_{\star}+f^{\prime}\left(v_{ \pm}\right) \mid \omega \in \mathbb{R}\right\} \subseteq \sigma_{\text {ess }}(\mathcal{L})
$$

i.e.

$$
\begin{aligned}
S_{+} & :=\left\{\lambda=-\omega^{2}+i \omega \mu_{\star}-1 \mid \omega \in \mathbb{R}\right\} \subseteq \sigma_{\text {ess }}(\mathcal{L}), \\
S_{-} & :=\left\{\lambda=-\omega^{2}+i \omega \mu_{\star}+1 \mid \omega \in \mathbb{R}\right\} \subseteq \sigma_{\text {ess }}(\mathcal{L}) .
\end{aligned}
$$

The essential spectrum of the traveling front in Fisher's equation is illustrated in Figure 1.1.

Figure 1.1. Essential spectrum of Fisher's equation

Example 1.6 (Nagumo equation). The Nagumo equation

$$
u_{t}=u_{x x}+u(1-u)(u-b), x \in \mathbb{R}, t \geqslant 0,0<b<1
$$

has an explicit traveling front solution $u_{\star}(x, t)=v_{\star}\left(x-\mu_{\star} t\right)$ with

$$
v_{\star}(x)=\frac{1}{1+e^{-\frac{x}{\sqrt{2}}}}, \quad \mu_{\star}=-\sqrt{2}\left(\frac{1}{2}-b\right) \quad \text { (Huxley wave) },
$$

$v_{+}=1$ and $v_{-}=0$. The nonlinearity $f(u)=u(1-u)(u-b)$ satisfies $f\left(v_{ \pm}\right)=0, f^{\prime}\left(v_{+}\right)=b-1$ and $f^{\prime}\left(v_{-}\right)=-b$. The dispersion relation states that

$$
S_{ \pm}:=\left\{\lambda=-\omega^{2}+i \omega \mu_{\star}+f^{\prime}\left(v_{ \pm}\right) \mid \omega \in \mathbb{R}\right\} \subseteq \sigma_{\mathrm{ess}}(\mathcal{L})
$$

i.e.

$$
\begin{aligned}
& S_{+}:=\left\{\lambda=-\omega^{2}+i \omega \mu_{\star}-b \mid \omega \in \mathbb{R}\right\} \subseteq \sigma_{\mathrm{ess}}(\mathcal{L}), \\
& S_{-}:=\left\{\lambda=-\omega^{2}+i \omega \mu_{\star}+(b-1) \mid \omega \in \mathbb{R}\right\} \subseteq \sigma_{\mathrm{ess}}(\mathcal{L}) .
\end{aligned}
$$

The essential spectrum of the traveling front in the Nagumo equation is illustrated in Figure 1.2 .

Figure 1.2. Essential spectrum of the Nagumo equation for parameter $b=\frac{1}{4}$

Example 1.7 (Quintic Nagumo equation). Consider the quintic Nagumo equation

$$
u_{t}=u_{x x}+u(1-u)\left(u-\alpha_{1}\right)\left(u-\alpha_{3}\right)\left(u-\alpha_{3}\right), x \in \mathbb{R}, t \geqslant 0,0<\alpha_{1}<\alpha_{2}<\alpha_{3}<1 .
$$

For the parameters $\alpha_{1}=\frac{2}{5}, \alpha_{2}=\frac{1}{2}, \alpha_{3}=\frac{17}{20}$ the quintic Nagumo equation has a traveling front solution $u_{\star}(x, t)=v_{\star}\left(x-\mu_{\star} t\right)$ with velocity $\mu_{\star} \approx 0.07$ and profile v_{\star} conntecting the asymptotic states $v_{+}=1$ and $v_{-}=0$, i.e. $v_{\star}(x) \rightarrow v_{ \pm}$as $x \rightarrow \pm \infty$. Note that neither the profile nor the velocity are given explicitly. The nonlinearity $f(u)=u(1-u)\left(u-\alpha_{1}\right)\left(u-\alpha_{3}\right)\left(u-\alpha_{3}\right)$ satisfies $f\left(v_{ \pm}\right)=0, f^{\prime}\left(v_{+}\right)=-\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)\left(1-\alpha_{3}\right)$ and $f^{\prime}\left(v_{-}\right)=-\alpha_{1} \alpha_{2} \alpha_{3}$. The dispersion relation states that

$$
S_{ \pm}:=\left\{\lambda=-\omega^{2}+i \omega \mu_{\star}+f^{\prime}\left(v_{ \pm}\right) \mid \omega \in \mathbb{R}\right\} \subseteq \sigma_{\mathrm{ess}}(\mathcal{L})
$$

i.e.

$$
\begin{aligned}
& S_{+}:=\left\{\lambda=-\omega^{2}+i \omega \mu_{\star}-\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)\left(1-\alpha_{3}\right) \mid \omega \in \mathbb{R}\right\} \subseteq \sigma_{\text {ess }}(\mathcal{L}), \\
& S_{-}:=\left\{\lambda=-\omega^{2}+i \omega \mu_{\star}-\alpha_{1} \alpha_{2} \alpha_{3} \mid \omega \in \mathbb{R}\right\} \subseteq \sigma_{\text {ess }}(\mathcal{L}) .
\end{aligned}
$$

The essential spectrum of the traveling front in the quintic Nagumo equation is illustrated in Figure 1.3.

Figure 1.3. Essential spectrum of the quintic Nagumo equation for parameters $\alpha_{1}=\frac{2}{5}, \alpha_{2}=\frac{1}{2}, \alpha_{3}=\frac{17}{20}$

Example 1.8 (Fitz-Hugh Nagumo system). Consider the FitzHugh-Nagumo system

$$
\binom{u_{1, t}}{u_{2, t}}=\left(\begin{array}{ll}
1 & 0 \\
0 & D
\end{array}\right)\binom{u_{1, x x}}{u_{2, x x}}+\binom{u_{1}-\zeta u_{1}^{3}-u_{2}+\alpha}{\beta\left(\gamma u_{1}-\delta u_{2}+\varepsilon\right)}, \quad x \in \mathbb{R}, t \geqslant 0
$$

for some $D \geqslant 0, \alpha, \beta, \gamma, \delta, \varepsilon, \zeta \in \mathbb{R}, \zeta \neq 0$ and $u_{i}=u_{i}(x, t) \in \mathbb{R}$ for $i=1,2$. Using the notation

$$
u=\left(u_{1}, u_{2}\right)^{T} \in \mathbb{R}^{2} \quad \text { and } \quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(u)=\binom{u_{1}-\zeta u_{1}^{3}-u_{2}+\alpha}{\beta\left(\gamma u_{1}-\delta u_{2}+\varepsilon\right)}
$$

the FitzHugh-Nagumo system can also be written as

$$
u_{t}=A u_{x x}+f(u), \quad x \in \mathbb{R}, t \geqslant 0, \quad A:=\left(\begin{array}{ll}
1 & 0 \\
0 & D
\end{array}\right) .
$$

(a) For the parameters (parabolic case)

$$
D=\frac{1}{10}, \quad \alpha=0, \quad \beta=\frac{2}{25}, \quad \gamma=1, \quad \delta=3, \quad \varepsilon=\frac{7}{10}, \quad \zeta=\frac{1}{3}
$$

and for the parameters (parabolic-hyperbolic case)

$$
D=0, \quad \alpha=0, \quad \beta=\frac{2}{25}, \quad \gamma=1, \quad \delta=3, \quad \varepsilon=\frac{7}{10}, \quad \zeta=\frac{1}{3}
$$

the Fitz-Hugh Nagumo system has a traveling front solution $u_{\star}(x, t)=v_{\star}\left(x-\mu_{\star} t\right)$ with velocity $\mu_{\star} \approx-0.8560$ (parabolic case) and $\mu_{\star} \approx-0.8664$ (parabolic-hyperbolic case) and profile v_{\star} conntecting the asymptotic states

$$
v_{-}=\binom{1.18769696080266}{0.629232320266825} \quad \text { and } \quad v_{+}=\binom{-1.56443178284120}{-0.288143927613547}
$$

i.e. $v_{\star}(x) \rightarrow v_{ \pm}$as $x \rightarrow \pm \infty$. Note that neither the profile nor the velocity are given explicitly. The nonlinearity

$$
f(u)=\binom{u_{1}-\zeta u_{1}^{3}-u_{2}+\alpha}{\beta\left(\gamma u_{1}-\delta u_{2}+\varepsilon\right)}
$$

satisfies

$$
f\left(v_{ \pm}\right)=\binom{0}{0} \quad \text { and } \quad D f\left(v_{ \pm}\right)=\left(\begin{array}{cc}
1-3 \zeta\left(v_{ \pm}^{(1)}\right)^{2} & -1 \\
\beta \gamma & -\beta \delta
\end{array}\right) .
$$

The dispersion relation states that
$S_{ \pm}:=\left\{\lambda \in \mathbb{C} \left\lvert\, \operatorname{det}\left(-\omega^{2}\left(\begin{array}{ll}1 & 0 \\ 0 & D\end{array}\right)+i \omega \mu_{\star} I_{2}+\left(\begin{array}{cc}1-3 \zeta\left(v_{ \pm}^{(1)}\right)^{2} & -1 \\ \beta \gamma & -\beta \delta\end{array}\right)-\lambda I_{2}\right)=0\right., \omega \in \mathbb{R}\right\}$
belongs to $\sigma_{\text {ess }}(\mathcal{L})$, i.e. both sets

$$
\begin{aligned}
& S_{+}:=\left\{\lambda \in \mathbb{C} \left\lvert\, \operatorname{det}\left(-\omega^{2}\left(\begin{array}{ll}
1 & 0 \\
0 & D
\end{array}\right)+i \omega \mu_{\star} I_{2}+\left(\begin{array}{cc}
1-3 \zeta\left(v_{+}^{(1)}\right)^{2} & -1 \\
\beta \gamma & -\beta \delta
\end{array}\right)-\lambda I_{2}\right)=0\right., \omega \in \mathbb{R}\right\}, \\
& S_{-}:=\left\{\lambda \in \mathbb{C} \left\lvert\, \operatorname{det}\left(-\omega^{2}\left(\begin{array}{ll}
1 & 0 \\
0 & D
\end{array}\right)+i \omega \mu_{\star} I_{2}+\left(\begin{array}{cc}
1-3 \zeta\left(v_{-}^{(1)}\right)^{2} & -1 \\
\beta \gamma & -\beta \delta
\end{array}\right)-\lambda I_{2}\right)=0\right., \omega \in \mathbb{R}\right\}
\end{aligned}
$$

are contained in $\sigma_{\text {ess }}(\mathcal{L})$. Due to

$$
\begin{aligned}
0 & =\operatorname{det}\left(\begin{array}{cc}
-\omega^{2}+i \omega \mu_{\star}+1-3 \zeta\left(v_{ \pm}^{(1)}\right)^{2}-\lambda & -1 \\
\beta \gamma & -\omega^{2} D+i \omega \mu_{\star}-\beta \delta-\lambda
\end{array}\right) \\
& =\lambda^{2}-(a+b) \lambda+(a b+c)
\end{aligned}
$$

with abbreviations

$$
a:=-\omega^{2}+i \omega \mu_{\star}+1-3 \zeta\left(v_{ \pm}^{(1)}\right)^{2}, \quad b:=-\omega^{2} D+i \omega \mu_{\star}-\beta \delta, \quad c:=\beta \gamma,
$$

every $\lambda_{1,2}^{ \pm}=\lambda_{1,2}^{ \pm}(\omega) \in \mathbb{C}$ satisfying

$$
\lambda_{1,2}^{ \pm}=\frac{1}{2}\left((a+b) \pm \sqrt{(a+b)^{2}-4(a b+c)}\right)
$$

for some $\omega \in \mathbb{R}$ belongs to the essential spectrum of \mathcal{L}. The essential spectrum of the traveling front in the FitzHugh-Nagumo system is illustrated in Figure 1.4(a).
(b) For the parameters (parabolic case)

$$
D=\frac{1}{10}, \quad \alpha=0, \quad \beta=\frac{2}{25}, \quad \gamma=1, \quad \delta=0.8, \quad \varepsilon=\frac{7}{10}, \quad \zeta=\frac{1}{3}
$$

and for the parameters (parabolic-hyperbolic case)

$$
D=0, \quad \alpha=0, \quad \beta=\frac{2}{25}, \quad \gamma=1, \quad \delta=0.8, \quad \varepsilon=\frac{7}{10}, \quad \zeta=\frac{1}{3}
$$

the Fitz-Hugh Nagumo system has a traveling pulse solution $u_{\star}(x, t)=v_{\star}\left(x-\mu_{\star} t\right)$ with velocity $\mu_{\star} \approx-0.7892$ (parabolic case) and $\mu_{\star} \approx-0.8121$ (parabolic-hyperbolic case) and profile v_{\star} conntecting the asymptotic state

$$
v_{ \pm}=\binom{-1.19940803524404}{-0.624260044055044}
$$

i.e. $v_{\star}(x) \rightarrow v_{ \pm}$as $x \rightarrow \pm \infty$. Note that neither the profile nor the velocity are given explicitly. The nonlinearity

$$
f(u)=\binom{u_{1}-\zeta u_{1}^{3}-u_{2}+\alpha}{\beta\left(\gamma u_{1}-\delta u_{2}+\varepsilon\right)}
$$

satisfies

$$
f\left(v_{ \pm}\right)=\binom{0}{0} \quad \text { and } \quad D f\left(v_{ \pm}\right)=\left(\begin{array}{cc}
1-3 \zeta\left(v_{ \pm}^{(1)}\right)^{2} & -1 \\
\beta \gamma & -\beta \delta
\end{array}\right)
$$

The dispersion relation states that

$$
S_{ \pm}:=\left\{\lambda \in \mathbb{C} \left\lvert\, \operatorname{det}\left(-\omega^{2}\left(\begin{array}{ll}
1 & 0 \\
0 & D
\end{array}\right)+i \omega \mu_{\star} I_{2}+\left(\begin{array}{cc}
1-3 \zeta\left(v_{ \pm}^{(1)}\right)^{2} & -1 \\
\beta \gamma & -\beta \delta
\end{array}\right)-\lambda I_{2}\right)=0\right., \omega \in \mathbb{R}\right\}
$$

belongs to $\sigma_{\text {ess }}(\mathcal{L})$. Similarly to (a), we obtain that every $\lambda_{1,2}^{ \pm}=\lambda_{1,2}^{ \pm}(\omega) \in \mathbb{C}$ satisfying

$$
\lambda_{1,2}^{ \pm}=\frac{1}{2}\left((a+b) \pm \sqrt{(a+b)^{2}-4(a b+c)}\right)
$$

for some $\omega \in \mathbb{R}$, where

$$
a:=-\omega^{2}+i \omega \mu_{\star}+1-3 \zeta\left(v_{ \pm}^{(1)}\right)^{2}, \quad b:=-\omega^{2} D+i \omega \mu_{\star}-\beta \delta, \quad c:=\beta \gamma,
$$

belongs to the essential spectrum of \mathcal{L}. The essential spectrum of the traveling pulse in the FitzHugh-Nagumo system is illustrated in Figure 1.4(b).

Figure 1.4. Essential spectrum of the Nagumo equation for a traveling front with $D=\frac{1}{10}$ in (a) and with $D=0$ in (c), and for a traveling pulse with $D=\frac{1}{10}$ in (b) and with $D=0$ in (d)

Example 1.9 (Barkley model). Consider the Barkley model

$$
\binom{u_{1, t}}{u_{2, t}}=\left(\begin{array}{cc}
1 & 0 \\
0 & D
\end{array}\right)\binom{u_{1, x x}}{u_{2, x x}}+\binom{\frac{1}{\varepsilon} u_{1}\left(1-u_{1}\right)\left(u_{1}-\frac{u_{2}+b}{a}\right)}{u_{1}-u_{2}}, \quad x \in \mathbb{R}, t \geqslant 0
$$

for some $D \geqslant 0, a, b, \varepsilon>0$ and $u_{i}=u_{i}(x, t) \in \mathbb{R}$ for $i=1,2$. Using the notation

$$
u=\left(u_{1}, u_{2}\right)^{T} \in \mathbb{R}^{2} \quad \text { and } \quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(u)=\binom{\frac{1}{\varepsilon} u_{1}\left(1-u_{1}\right)\left(u_{1}-\frac{u_{2}+b}{a}\right)}{u_{1}-u_{2}}
$$

the Barkley model can also be written as

$$
u_{t}=A u_{x x}+f(u), \quad x \in \mathbb{R}, t \geqslant 0, \quad A:=\left(\begin{array}{ll}
1 & 0 \\
0 & D
\end{array}\right) .
$$

For the parameters (parabolic case)

$$
D=\frac{1}{10}, \quad a=\frac{3}{4}, \quad b=\frac{1}{100}, \quad \varepsilon=\frac{1}{50}
$$

and for the parameters (parabolic-hyperbolic case)

$$
D=0, \quad a=\frac{3}{4}, \quad b=\frac{1}{100}, \quad \varepsilon=\frac{1}{50}
$$

the Barkley model has a traveling pulse solution $u_{\star}(x, t)=v_{\star}\left(x-\mu_{\star} t\right)$ with velocity $\mu_{\star} \approx 4.6616$ (parabolic case) and $\mu_{\star} \approx 4.6785$ (parabolic-hyperbolic case) and profile v_{\star} conntecting the asymptotic state

$$
v_{ \pm}=\binom{0}{0},
$$

i.e. $v_{\star}(x) \rightarrow v_{ \pm}$as $x \rightarrow \pm \infty$. Note that neither the profile nor the velocity are given explicitly. The nonlinearity

$$
f(u)=\binom{\frac{1}{\varepsilon} u_{1}\left(1-u_{1}\right)\left(u_{1}-\frac{u_{2}+b}{a}\right)}{u_{1}-u_{2}}
$$

satisfies

$$
f\left(v_{ \pm}\right)=\binom{0}{0} \quad \text { and } \quad D f\left(v_{ \pm}\right)=\left(\begin{array}{cc}
-\frac{b}{z a} & 0 \\
1 & -1
\end{array}\right) .
$$

The dispersion relation states that

$$
S_{ \pm}:=\left\{\lambda \in \mathbb{C} \left\lvert\, \operatorname{det}\left(-\omega^{2}\left(\begin{array}{ll}
1 & 0 \\
0 & D
\end{array}\right)+i \omega \mu_{\star} I_{2}+\left(\begin{array}{cc}
-\frac{b}{\varepsilon a} & 0 \\
1 & -1
\end{array}\right)-\lambda I_{2}\right)=0\right., \omega \in \mathbb{R}\right\}
$$

belongs to $\sigma_{\text {ess }}(\mathcal{L})$. Due to

$$
\begin{aligned}
0 & =\operatorname{det}\left(\begin{array}{cc}
-\omega^{2}+i \omega \mu_{\star}-\frac{b}{\varepsilon a}-\lambda & 0 \\
1 & -\omega^{2} D+i \omega \mu_{\star}-1-\lambda
\end{array}\right) \\
& =\left(-\omega^{2}+i \omega \mu_{\star}-\frac{b}{\varepsilon a}-\lambda\right)\left(-\omega^{2} D+i \omega \mu_{\star}-1-\lambda\right)
\end{aligned}
$$

we obtain that every $\lambda_{1,2}^{ \pm}=\lambda_{1,2}^{ \pm}(\omega) \in \mathbb{C}$ satisfying

$$
\lambda_{1}^{ \pm}=-\omega^{2}+i \omega \mu_{\star}-\frac{b}{\varepsilon a}, \quad \lambda_{2}^{ \pm}=-\omega^{2} D+i \omega \mu_{\star}-1
$$

for some $\omega \in \mathbb{R}$, belongs to the essential spectrum of \mathcal{L}. The essential spectrum of the traveling pulse in the Barkley model is illustrated in Figure 1.5(b).

Figure 1.5. Essential spectrum of the Barkley model for a traveling pulse with $D=\frac{1}{10}$ in (a) and with $D=0$ in (b)

