Abstracts

Spatial decay of rotating waves in parabolic systems
DENNY OTTEN
Consider a reaction diffusion system
ug(z,t) = AAu(z,t) + f(u(x,t)), t >0,z € RY d > 2,
u(z,0) = ug(x) ,t=0,zcR%

with diffusion matrix A € RMYN nonlinearity f € C?(RY,RY), initial data
up : R — RY and solution u : R? x [0, co[— RY.
A rotating wave of (1) is a special solution uy : R? x [0, 0o[— R¥ of the form

uy (2, 1) = v, (e 1),

(1)

where v, : R? — R¥ is the profile (pattern) and 0 # S € R%4 is a skew-symmetric
matrix. Examples of rotating waves are spiral waves, scroll waves, spinning soli-
tons, etc.

If u solves (1) then the function v(x,t) = u(e*Sz,t), transformed into a rotating
frame, solves

vi(x,t) = ADv(z,t) + (Sz, Vou(z, 1)) + f(v(z,t)), t >0, 2 € RY, d > 2,
v(x,0) = up(x) ,t=0,2cR

The linear operator is of Ornstein-Uhlenbeck type with an unbounded drift term
containing angular derivatives

(2)

d d 9 d—1 d 9 9
(Sz,Vu(z)) := ZZSijxja—ziv(x) = Z Z Sij (wja_zz - xza—z]) v(z).
=1 j=1 i=1 j=i+1
Observe that v, is a stationary solution of (2), meaning that v, solves
(3) AAv(z) + (Sz, Vo(z)) + f(v(z)) =0, 2 € RY, d > 2.

Investigating steady state problems of this type is motivated by the stability theory
of rotating patterns in several space dimensions, [1]. Equation (3) determines the
shape and the angular speed of a rotating wave.

In this talk, we prove under certain conditions that every classical solution of
(3) which falls below a certain threshold at infinity, must decay exponentially
in space, meaning that the pattern is exponentially localized. This guarantees an
exponentially small cut-off error if we restrict (3) to a bounded domain and justifies
the numerical computation of rotating waves from boundary value problems on
bounded domains.

We require f(vs) =0 and Reo (D f(vs)) < 0 for some v € RY. In addition to
Reo(A) > 0 we impose the cone-condition

MmAllp—2| <2y/p—1ReX VA eo(A) for some 1 < p < o0

1



2 Oberwolfach Report /

and assume that A, Df(vs) € RM¥ are simultaneously diagonalizable over C.
Further, we choose constants ag, by, amax > 0 such that

ap < Re A, A € amax VA€ T(A), Reu<-by<0Vu€o(Df(v)).
Following [6], we call a positive function 6 € C(R%, R) a weight function of expo-
nential growth rate n > 0 provided that
3Cy > 0: Bz +y) < Cob(x)e Va,y e R

Finally, the exponentially weighted Sobolev spaces for 1 < p < o0, k € Ny are
defined by

LyRYLRY) i= {v € Ligo (R, RY) [ [|60]| 1, < o0},

WP (R RY) == {v € LH(RY,RY) | DPu e LH(RE,RY) VB < k} .
Under these assumptions the following statement holds:
Theorem 1. For everyl < p < oo, 0 <9 < 1 and for every radially nondecreasing
weight function § € C(RY,R) of exponential growth rate n > 0 with
2 aobo
0<n’ <93
KRR

there exists K1 = K1(A, f,Vc0,d,p,0,9) > 0 with the following property:
Every classical solution v, of equation (3) such that vy, — vo € LP(R%,RY) and

sup |ve(x) — voo| < K1 for some Ry >0
|z[>Ro

satisfies
v, — Voo € WP (RYRM).

In this talk we present the main idea of the proof based upon a linearization at
infinity, also known as far-field linearization. Our investigations of the associated
Ornstein-Uhlenbeck operator generalizes the results of [3], [4]. We determine the
maximal domain of the operator in LP(R? CY), analyze its constant and variable
coeflicient perturbations and derive resolvent estimates.

We apply the theory to the cubic-quintic complex Ginzburg-Landau equation

ut:aAu+u(u+ﬁ|u|2+’y|u|4), u=u(z,t) € C,

where u : R% x [0, 00[— C, d € {2,3}. For the parameters

1+1'6—5+' o r, o1
g TP Ty ThT 107" T 73

this equation exhibits so called spinning soliton solutions, [2], see Figure 1. The
solitons are localized in the sense of Theorem 1 with the bound

o =

1
0< P <V— < —
" 3p2  3p?

Details of the results may be found in the preprint [5] which forms the core of the
authors’ PhD thesis.

for 2<p<6.
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(a) d=2 (b) d=3
FIGURE 1. Spinning solitons of the Ginzburg-Landau equation
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