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Consider a reaction diffusion system

ut(x, t) = A△u(x, t) + f(u(x, t)), t > 0, x ∈ R
d, d > 2,

u(x, 0) = u0(x) , t = 0, x ∈ R
d.

(1)

with diffusion matrix A ∈ RN,N , nonlinearity f ∈ C2(RN ,RN ), initial data
u0 : Rd → RN and solution u : Rd × [0,∞[→ RN .
A rotating wave of (1) is a special solution u⋆ : Rd × [0,∞[→ RN of the form

u⋆(x, t) = v⋆(e
−tSx),

where v⋆ : Rd → RN is the profile (pattern) and 0 6= S ∈ Rd,d is a skew-symmetric
matrix. Examples of rotating waves are spiral waves, scroll waves, spinning soli-
tons, etc.
If u solves (1) then the function v(x, t) = u(etSx, t), transformed into a rotating
frame, solves

vt(x, t) = A△v(x, t) + 〈Sx,∇v(x, t)〉 + f(v(x, t)), t > 0, x ∈ R
d, d > 2,

v(x, 0) = u0(x) , t = 0, x ∈ R
d.

(2)

The linear operator is of Ornstein-Uhlenbeck type with an unbounded drift term
containing angular derivatives

〈Sx,∇v(x)〉 :=
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Observe that v⋆ is a stationary solution of (2), meaning that v⋆ solves

A△v(x) + 〈Sx,∇v(x)〉 + f(v(x)) = 0, x ∈ R
d, d > 2.(3)

Investigating steady state problems of this type is motivated by the stability theory
of rotating patterns in several space dimensions, [1]. Equation (3) determines the
shape and the angular speed of a rotating wave.
In this talk, we prove under certain conditions that every classical solution of
(3) which falls below a certain threshold at infinity, must decay exponentially
in space, meaning that the pattern is exponentially localized. This guarantees an
exponentially small cut-off error if we restrict (3) to a bounded domain and justifies
the numerical computation of rotating waves from boundary value problems on
bounded domains.
We require f(v∞) = 0 and Reσ (Df(v∞)) < 0 for some v∞ ∈ R

N . In addition to
Reσ(A) > 0 we impose the cone-condition

|Imλ| |p− 2| 6 2
√

p− 1Reλ ∀λ ∈ σ(A) for some 1 < p < ∞
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and assume that A, Df(v∞) ∈ R
N,N are simultaneously diagonalizable over C.

Further, we choose constants a0, b0, amax > 0 such that

a0 6 Reλ, |λ| 6 amax ∀λ ∈ σ(A), Reµ 6 −b0 < 0 ∀µ ∈ σ(Df(v∞)).

Following [6], we call a positive function θ ∈ C(Rd,R) a weight function of expo-
nential growth rate η > 0 provided that

∃Cθ > 0 : θ(x + y) 6 Cθθ(x)e
η|y| ∀x, y ∈ R

d.

Finally, the exponentially weighted Sobolev spaces for 1 6 p 6 ∞, k ∈ N0 are
defined by

L
p
θ(R

d,RN ) :=
{

v ∈ L1
loc(R

d,RN ) | ‖θv‖Lp < ∞
}

,

W
k,p
θ (Rd,RN ) :=

{

v ∈ L
p
θ(R

d,RN ) | Dβu ∈ L
p
θ(R

d,RN ) ∀ |β| 6 k
}

.

Under these assumptions the following statement holds:

Theorem 1. For every 1 < p < ∞, 0 < ϑ < 1 and for every radially nondecreasing

weight function θ ∈ C(Rd,R) of exponential growth rate η > 0 with

0 6 η2 6 ϑ
2

3

a0b0

a2maxp
2

there exists K1 = K1(A, f, v∞, d, p, θ, ϑ) > 0 with the following property:

Every classical solution v⋆ of equation (3) such that v⋆ − v∞ ∈ Lp(Rd,RN ) and

sup
|x|>R0

|v⋆(x) − v∞| 6 K1 for some R0 > 0

satisfies

v⋆ − v∞ ∈ W
1,p
θ (Rd,RN ).

In this talk we present the main idea of the proof based upon a linearization at
infinity, also known as far-field linearization. Our investigations of the associated
Ornstein-Uhlenbeck operator generalizes the results of [3], [4]. We determine the
maximal domain of the operator in Lp(Rd,CN ), analyze its constant and variable
coefficient perturbations and derive resolvent estimates.
We apply the theory to the cubic-quintic complex Ginzburg-Landau equation

ut = α△u+ u
(

µ+ β |u|
2
+ γ |u|

4
)

, u = u(x, t) ∈ C,

where u : Rd × [0,∞[→ C, d ∈ {2, 3}. For the parameters

α =
1

2
+

1

2
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10
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1

2

this equation exhibits so called spinning soliton solutions, [2], see Figure 1. The
solitons are localized in the sense of Theorem 1 with the bound

0 6 η2 6 ϑ
1

3p2
<

1

3p2
for 2 6 p 6 6.

Details of the results may be found in the preprint [5] which forms the core of the
authors’ PhD thesis.
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(a) d = 2 (b) d = 3

Figure 1. Spinning solitons of the Ginzburg-Landau equation
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