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Problem
Consider the stationary problem
alu+ cDyu+ f(u) = 0, x € R?

where u : R?2 — RN is unknown, o € R with a > 0, ¢ € R with
c#0and f: RN — RN are given and Dy is defined as

Dy = —x i + x: 0
© T T %0k Loxg
Under the assumptions
There exists a constant vector us, € RN such that
(A1) limRr—s00 SUP| >R |U(X) — Uss| =0,
(A2) f e CHRN,RN) and By, := Df(uy) is negative definite.

we want to show unique solvability and exponential decay, i.e.
|u(x) — tso| < Ce™ M,
‘Dﬁ ‘<Ce Cxl 1< 18| < 2.
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Example

Consider the quintic complex Ginzburg-Landau equation (QCGL):
2 4
ue = atsu+u(p+Bluf +]u*)

with v : R2 x [0, 00[— C. For the parameters

1 1 5 1. 1

a 2+2I7/3 > Th TR >

this equation exhibits so called spinning soliton solutions.
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Motivation
Consider the stationary problem

alu+ cDyu + f(u) =0, x € R?.
Let us € RN be a stationary point (satisfying (A1) and (A2))
alAus + cDyuse + f(use) =0
i.e. f(us)=0. Since f € CY(RN,RN) by Taylor's theorem we

obtain for every u = u(x) € RV

F(u) = f(uoo)+/0 DF (te + £(u — o)) dt (1 — 1)

—a(x)
Using assumption (A1) we have
a(x) — By, as |x| = oo
where By, := Df (us) € RNV, Define g(x) := a(x) — Bwo, then
q(x) = 0, as |x| = oc.
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Now we decompose q in the following way

q(x) = q1(x) + q2(x)

where ¢ is a small perturbation and g, is compactly supported.
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From the preliminary idea we obtain

0=alAu+ cDyu+ f(u)
= alAu+ cDyu+ au
= alAu+ cDyu+ Bou+ qu
= alAu+ cDyu+ Bou + qru + qou.

Therefore, we must study the following operators

Loou :=aAu+ cDyu + By u, (const. coeff. operator)
Lg u:=alAu+ cDyu+ Bou+ qru, (small pert. of L)
Lqu :=alu+ cDyu+ Bu+ qu.  (compact pert. of Lg,)

Today we will only analyze the £..-operator.
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The operator L,

Consider the operator
Loou = aAu+ cDyu+ Byou =g

where By, := Df (ux) € KN*N . To decouple the equation let us
assume that B, is diagonalizable over K € {R,C}, i. e.

JY e KVN . yIB Y = Ay

where Ao = diag(A®, ..., AY) and A, ..., A% € K are the
eigenvalues of By,. Since B, is assumed to be negative definite,
Re A < 0 for every i = 1,..., N. Substituting in L., we obtain

alAu+ cDyu+ YAy Y~ lu=g.
Multiplying from left by Y1
aAY tu+ DY tu+ AoY tu=Y g

and substituting v := Y 1u as well as r :== Y~1g we finally arrive
at

aAv + cDyv + Noov = r.
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By this way we have decoupled the system. Therefore, it is
sufficient to analyze the operator L in the scalar case with N =1,
i. e.

Loou = alu+ cDyu—du=g

where «, 0 € K with Re o, Re § > 0. For convenience we discuss
only the case K = R. To show exponential decay we consider this
operator on an exponentially weighted function space.
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Weight Functions

Let w™! € CY(R9,]0,00[) N L1(RY,]0, 00]) be a positive and
integrable weight function with

IVw(x)| < Cw(x) Vx € RY.

Example

Let n € Rwithnp >0
> wy(x) = e with C =5 (lack of differentiability at x = 0)
> wy(x) = e XP+1 with C = 7 (smooth version of "]
> wy(x) = cosh(n|x|) with C =n (smooth at x = 0)

Henceforth we will consider w,(x) = €.
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Weighted Sobolev Spaces

Let p € R with 1 < p < oo and d, N € N. Define the exponentially
weighted LP-space

LR, RY) := {u € Lioe(RY,RY) | |Ju 1z < o0},

ullp = (/Rd (e”‘x‘ IU(x)l)pdx>% ,

k, d Ny _ d mN B d N
WiP(RYRY) = {u € LRI, R) | DPu € LA(RY,RM) ¥ |8] < K},

1
i = Z |o?u]”

1BI<k

P

LP

(Wk PRI, RN, ||o ||Wkp) is a Banach space for 1 < p < oo and

(HA(RY RN) := W2 (R RY), o]l = 1ol 2 ) is a Hilbert
n

space for k € No. Remark: WP(RY RN) = Wkr(RY RN).

11/32



Homogeneous Equation
Consider the initial value problem

ur = alAu+ cDyu — 6u = Lou

u(0) = wg (1)

where u: R? x [0, 00[— R is unknown, /A denotes the Laplacian
and Dy denotes the angular derivative given by

P P o 0
=L P p, =
02 " 02 2o o

Assumptions:
(A3) a € R with a > 0 (diffusion coefficient)
(A4) ¢ € R with ¢ # 0 (angular velocity)

(A5) 0 € R with 6 > 0 (propagation constant)
(A6) n € R with > 0 (decay rate)

(A7) u

0 € LH(R?,R) with p € R and 1 < p < oo (initial data)

A6
A7
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Definition
A heat kernel of (1) with respect to (Lh(R? R), H‘HLZ) is a function

H : R? x R?x]0, oo[— R with (x,&,t) — H(x,&, t),

such that
(H1) H € C*(R? x R?x]0, oo[,R)
(H2) H.(e,&,t) = LooH(e,&,1) VEECR2YE>0

(H3) ¥ uo € LE(R2R) - lim || fza H(o. &, £)u0(€)dE — uo(e)]] 5 = O
t>0

>

Let H be a heat kernel of (1), then the solution of (1) is given by

H(x, &, t d¢ ,t>0

u(x, t) = fRz (&, t)uo(£)de =: etﬁ‘x’uo(x).
uo(x) ,t=0

Hence, we get the stationary solution & of (1) by going to the limit

t — o0.
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Theorem

Under the assumptions (A3)—(A7) the heat kernel

H : R? x R?x]0,00[— R of (1) with respect to (Lh(R? R), Ho||L,n7)
is given by

1 5 1 |ata,_¢]?
H = — ot at‘e 2 é‘
(&) 47rate )
where
L O —C D) ) 6 6
Qs—<c 0 >€R,D¢ ma +n6&

Now the solution of (1) is given by

1 bt L fefxg]?
u(x, t) = {fRz Frat € ¢ u(§)ds >0 =: et g ().

a up(x) ,t=0
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Theorem )
Let the assumptions (A3)—(A7) be satisfied with 0 < n < f% ,
aZp

then we have fort > 0

(§—n2
||U(t)H[_f7 < C(t) HUOHLE, e (6-n poz)t7

IDu(e)ll,p < C(2) [luollp €= O-7P2)E i = 1,2

Hence the stationary solution (of the homogeneous equation) is

i =0 (in Lh-sense).
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Inhomogeneous Equation

Consider the initial value problem

ur = alAu+ cDyu —6u —g =Lou—g

u(0) = wg 2

Assumption:

(A8) g € Lb(R?,R) (inhomogenity) |

By Duhamel’s principle we obtain the solution

t
u(t) = et~ uy —/ e(t=9)Loo gdfs.
0
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Again, by going to the limit t — oo we obtain the stationary
solution of (2)

D(X):‘/ / L et akale el g(e)drde
RrR2 Jo

4ot

Remark: The Green's function coincides with the integral over the
heat kernel

G(x,€) = /0 T Hix, €, t)de
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Radial exponential decay and regularity estimates

Theorem )
Let the assumptions (A3)—(A8) be satisfied with 0 < n < % and
aZp

let t(x) denote the solution of Lo,u = g, then we have
o e W, P(R2 R) with

lalls

10:2 e

C5 ||g||L’n7 5

<
< C6 ||g||L’n7 NS 1727

where C; = Cj(a, 6,n,p) >0, j =5,6.

Unfortunately, up to now the estimates on |al | Az]|,» and
Ic| || Dyti]|,» have failed. Nevertheless as a consequence we have
n

Lo : LP(R* R) D D(Lo) — LP(R? R)

is a linear, densely defined, closed operator.
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Proof

For 1 < p < oo we obtain
HuHLp = Hen' ()|,

_6t ‘eto. 5| +n)|e| ( )d{dt
</

-k
f

R2 47rat

/ L ot gtgferee hnlel g
Rr2 4rat
1
/ / oot stz |e el g () ge| i)
R2 47Tat
1
e e ;
</ (/Rz 4rat 1g(&)] d¢ dX dt

LP

dt
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Transformation theorem: d € N, Q € R? open, ® : Q — (Q) C
RY diffeomorphism, u integrable on ®(Q), then it holds

/ u(y)dy = / u((x)) [det(DD(x)] dx
() Q

Using the transformation theorem in & with ®(¢) = et@x — & =: ¢},
Q=R? (= ¢ = et® — ¢ and det(Dd(¢)) = 1, ®(R?) = R?)

/ooo </R </Rﬁ gl el g 5)|d5> >%dt
UL s )
0 2 2

[
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Splitting the heat kernel and using Holder's inequality in ¢ with
1<q<ooand%+%:1yie|ds

:/0°° </Rz </Rz (47T1at el >1

el | g(ef@x — zﬁ)‘ dw> g dx) ? dt

- L ot gkelof?
< 4ot
\/0 (/Rz< R2 47rat dlﬁ

, 1
1 P
/((ﬁ ) o “Q“”‘) dwdx) dt
B Nl )
_/ </Rz drat® v
g(e* x—zp)‘ dl/)dX) dt

Q
=

Aot

[

=

/ / t= g 0l gnplx|
R2 JR2 47Tat
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By the transformation theorem it is easy to verify that

/ R L 3
R

2 4t

Using this and Fubini's theorem we resume with (remark that
1_p-1
) )

o0 1 1
- (/Rm et ‘“”)

/ / o9t gk [0l2 gnplx]

R2 JR2 4-7T0ét

/ _1&/ L oot gelup
Rr2 4rat

e”p‘x‘ (ef x—lb)‘pdxdzp)P dt

1

g(ef¥x — 1/1)‘pdzpdx> " dt

N
N
~
w

N



Transformation theorem: d € N, Q € R open, ® : Q — &(Q) C
R diffeomorphism, u integrable on ®(Q), then it holds

[ wtn)dy = [ u(@(x)) lder( Do) dx
o(Q) Q

Using the transformation theorem in x with ®(x) = e!®x — ¢ =: y,
Q=R? (= x = e 9y + 1) and det(DP(x)) = 1, d(R?) = R?)
and remark that |ef@¢| = (|

= [T ([ el
0 R2 drat

el |g(ef@x — o) s dxd) g dt
. )

:/me—iét / 1 s e
0 Rr2 4mat

/Rz (en\yﬂbl |g(y)|>p dydqb) % dt
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Once again, using Holder's inequality in y with % 4+ 11

. [eS) p
obtain

> _%& 1 —5t—?‘w| / 17|y+1/;\ 1
/0 © <R2 4t ! e ‘g()’)D dyd+ " dt

:/OO e_%& / b e 0t—zog V12
0 Rr2 4mat

/ (en(\y+w|—|y|)en|y| | g(y)o” dyd1/}> " dt
R2

g/oo e_‘176t</ Le St— g [
0 Rr2 4rat
P P %
<esssupen(ly+w—ly)> / <eny |g(y)|> dydw> "
y€ER? R2

=lgll p/oo e ot Le“”/ L LI 1 dt
b Jo dmact R2

=

24 /32



Integral 1: Let A, B € R, then

1 1
X —AS1Bs 1  Brz g2 <32> 2
se ds = — + eaAa | erf — +1
/0 2A 4A% ( ( 4A

Using the transformation theorem to transform the 1-integral into
polar coordinates and using the above mentioned Integral 1 with

A:ﬁand B=mnp

1
e“”/ e—ﬁ|w|2+np|wd¢> " dt
R2

1
o0 _l 1 o0 -
~ lell,e / e qf”(—e-& / se_"itser”psds)pdt
n 0 20ét 0
_1 (

e—6t + 7_‘_% (772[)2041')% e—(é—nzpza)t
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Finally, using Holder's inequality in t with % + % =1 we obtain

n

(erf ((nzpzat)%> 1 )i W

0 . .
= Hg”L” / e_aét <e_6t + 7T% (772p2at) 2 e_(5t—n2P2a)t
0

Tl=
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Integral 2: Let A,B € R with 0 < B < A, then
® 1 11
tze”(A=B)t (orf (B2t2) +1) dt
I (et (B3¢2) +1)
1
A—B\:
— AT (A B)~2 <7TA+(A—B); Bz — arctan ((T) ))

Using the above mentioned Integral 2 with A = § and B = n°p?«a

lelup ( /0 ) e—ardtf ( /0‘” -
e () o

1
1\a (1
:HgHLg<g>q<5+7ﬂ]lJa(5 77P0z) —i—T((S npa)l

1
3 5 — 2.2 2
nga (6 —n*p?a) 2 arctan <<7n271732l;04>

le

N
N———
N———
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Because of % = ijl we finally get

4]

1
!
_3 J — 2,2 3 P
_nga (6 — n*p?a)” 2 arctan ((#) ))

3
1 Tnpc 3 pPpla 2 1
:Hg”Lg <5—p+ 51 (5_n2p2a) 2+T(5—772P204)

1

1o L

77p0é 3 5_772,[320( 3 P
o (6 — n°p a) 2 arctan ((W

=G gll.e

L 3
1\a (1 3 2p2a_5 .
= Hg”Lg (g) (5 + ™pa (5 — 772p2a) 2 4 npo 2 (5 . T]2p2a)
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Open Problems

v

Solvability in complex case (i. e. «,0 € C with
Re a,Re § > 0)

Estimates of |«| ||AD||L,; and |c| ||D¢Z’||Lf,

v

v

Analytical representation of D(L)
Heat kernel w. r. t. (BCunif(Rz,R), H’”oo,n)

v
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Why we can choose w.l.o.g. u,, =07

Let us, € RN be a stationary point (i.e.

alAuy + cDyus + f(uss) = 0). Defining v = u — uy and
g(v) = f(us + v) we obtain by Taylor's theorem for every
u=u(x) RN

Ve = (U — Uso)t = Ut

= alAu+ cDyu + f(u)

1
— v+ Dy + Flun) + / DF (1o + (1 — 11n0))dt (1 — uo0)
0
1
= aA(u — us) + cDy(u — us) —I—/ Df (Uso + t(u — Uso))dt(u — Uso
0

1
:aAv+cD¢v+/ Df (uso + tv)dtv
0
= alv + cDyv + g(v)

where vy, := 0 € RN is a stationary point of the v-equation.

Hence, we can assume w.l.o.g. us = 0.
30/32



The operator L,
Consider the operator
Loou:=AAu+ cDyu+ Boou = g
where B, := Df (ux) € KN*N and A € KV*N. To decouple the

equation let us assume that A and B, are simultaneously
diagonalizable over K € {R,C}, i. e.

JY e KVN . y=lAY = Ajand YIBLY = Ay

where A\ = diag(\],..., A\}), Ao = diag( A, ..., AY),

PV ,)\ﬁ € Kand A{®,..., A% € K are the eigenvalues of A and
B, respectively. Since A and B, are assumed to be positive and
negative definite, respectively, Re A% > 0 and Re A% < 0 for every
i=1,...,N. Substituting in L., we obtain

YAAY PAu+ cDyu+ YA Y tu = g.
Multiplying from left by Y1
AAY Tu+ DY tu+ Ao Y tu=Y g
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and substituting v := Y 1u as well as r :== Y~1g we finally arrive
at

ANaAV + cDgv + Aov = r.

By this way we have decoupled the system. Therefore it is sufficient
to analyse the operator L, in the scalar case with N =1, i.e.

Loou = alAu+ cDyu —éu=g

where «, 6 € K with Re @ > 0 and Re § > 0.

Remark: A, Boo € KN*N are simultaneously diagonalizable over
K € {R,C} if and only if A and By, are diagonalizable over

K € {R,C} and ABy, = B A.
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