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Problem
Consider the stationary problem
alu+ cDyu+ f(u) = 0, x € R?

where u : R?2 — RN is unknown, o € R with a > 0, ¢ € R with
c#0and f: RN — RN are given and Dy is defined as

Dy = —x i + x: 0
© T T %0k Loxg
Under the assumptions
There exists a constant vector us, € RN such that
(A1) limRr—s00 SUP| >R |U(X) — Uss| =0,
(A2) f e CHRN,RN) and By, := Df(uy) is negative definite.

We want to show solvability and uniqueness of an exponential
decaying solution, i.e.

|u(x) — uso| < Ce™ M,

‘Dﬁ ‘<Ce 1< |8 <2
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Motivation
Consider the stationary problem

alu+ cDyu + f(u) =0, x € R?.
Let us € RN be a stationary point (satisfying (A1) and (A2))
alAus + cDyuse + f(use) =0
i.e. f(us)=0. Since f € CY(RN,RN) by Taylor's theorem we

obtain for every u = u(x) € RV

F(u) = f(uoo)+/0 DF (te + £(u — o)) dt (1 — 1)

—a(x)
Using assumption (A1) we have
a(x) — By, as |x| = oo
where By, := Df (us) € RNV, Define g(x) := a(x) — Bwo, then
q(x) = 0, as |x| = oc.
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Now we decompose q in the following way

q(x) = q1(x) + q2(x)

where ¢ is a small perturbation and g, is compactly supported.
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From the preliminary idea we obtain (taking w.l.o.g. us = 0)

0=alAu+ cDyu+ f(u)
= alAu+ cDyu+ au
= alAu+ cDyu+ Bsou + qu
= alAu+ cDyu+ Bsou + qru + qou.

Therefore, we must study the following operators

Loou :=aAu+ cDyu + By u, (const. coeff. operator)
Lg u :=alAu+ cDyu+ Bou+ qru, (small pert. of L)
Lqu:=alu+ cDyu+ Bou+ qu.  (compact pert. of Lg,)

Today we will analyze the £g,-operator.



Assumptions

(A3) a € R with a > 0 (diffusion coefficient)

(A4) c € R with ¢ # 0 (angular velocity)

(A5) ¢ € R with > 0 (propagation constant)

(A6) n € R with n > 0 (decay rate)

(A8) g € Lh(R?,R) with p € R and 1 < p < oo (inhomogenity)
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The operator L

Consider the operator

Loou = aAu+ cDgu — du.

Theorem
Let the assumptions (A3)—(A8) be satisfied with 0 < n <

(=%
=1 o
he]

@2
Then Lo : LH(R? R) D D(Lo) — LH(R?,R) is a linear, densely
defined, closed operator and generates a C°-semigroup. Moreover,
let t(x) denote the solution of Lo.u = g, then we have
o e W, P(R2 R) with

lall.s

|| Dit| p

C5 ||g||LZ’
C6 ||g||L’n7 ’ = 1’27

IN - IN

where C; = Cj(a, 6,m,p) >0, j =5,6.




The operator L,

Consider the operator
Lgu:=alu+ cDyu— du+ quu

with a small perturbation g1 = g1(x). To solve the stationary
equation

Lgu:=alAu+cDyu—ou+qu=g

we make the following additional assumption:

(A9) g1 € L®(R?,R) (small perturbation, i.e. small w.r.t. |-]|,~) ]

Remark: Lg, is a small perturbation of L.
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Integral equation
Consider the stationary equation

Lgu=alu+cDyu—ou+qu=g
Putting the term gyu on the r.h.s. we obtain
Loou = alAu+ cDyu —du=g— quu

Taking the solution representation for & (obtained by L) we find
the integral equation

/ / drat o0t e e e (g(&) — qu(&)u(8)) dtde
R2 T
=: [Su](x)

Motivation:
» self-mapping
» contraction mapping
» solvability (by contraction mapping principle)
» exponential decay (by roughness theorem)
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Self-mapping properties of S

Lemma (Self-mapping on LP(R? R))
1
Let the assumptions (A3)—(A9) be satisfied with 0 < n < 22— If
az2p
u € Lh(R2 R), then we have Su € L5(R? R) and it holds the
estimate

ISullip < G5 (llglleg + llaall = llullp)

where Cs = Cs(a, 9,1, p) > 0 is from Theorem 1.

Proof: Let u € LJ(R? R). Using Hélder's inequality (with

1_1,1 :
5 =5+ 35) we obtain

ISullip < Gs llg — arellys < Cs (llglleg + gl 1ullz )

i.e. Sue Lh(R?%R).
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Contraction properties of S

Lemma (Contraction mapping on LP(R? R))

1
1

Let the assumptions (A3)—(A9) be satisfied with 0 < n < % and
aZp

g1l < CLS with Cs > 0 from Theorem 1. Then we have

1Su— Svll,p < G laally llu — vl e Vo, v € L2(R%,R)

Proof: Let u,v € LH(R? R). Using Hélder's inequality (with
11,1 i
5 =5+ 55) we obtain

ISt~ Svllie < Gs llas(u = V)llie < Cs lal o 1w — vile
Since Gs ||q1]|;0 < 1 it follows that S is a contraction mapping on
LP(R?,R).
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Solvability by Contraction mapping principle

Theorem (Solvability on LP(R? R))

1

Let the assumptions (A3)—(A9) be satisfied with 0 < n <

"’"“‘ N

a2p

laill; < Cis with Cs > 0 from Theorem 1. Then
e LP(R®R): Si=10

Moreover, i solves Lq, u = g and for every initial data
up € LH(R?,R) the sequence uy.1 = Suy, k € No, converges to
and it holds the apriori bound

k
G5 Nl gl oo

Uk—l._l P ——— — =
lue=Tles < 726 ol

||U1 = UOHLZ Vk e Ny

Proof: Since S is a self-mapping contraction, the aim follows by
the contraction mapping principle.
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Roughness theorem

The Roughness theorem shows, that the solution for the
(perturbed) variable coefficient operator L4, decays exponentially,
if the solution of the constant coefficient operator £, decays
exponentially.

Theorem (Roughness theorem)

1
Let the assumptions (A3)—(A9) be satisfied with 0 < n < % and
aZp

g1l < Cis Moreover, let i € L) (IR?,R) denote the solution of
Lg,u=g, then we have U € W, P(R2,R) with

Cs
ulljp  ————— gllp
I8l < 7= T el
Go .
Dia||;p K ———— |lgll ;. i = 1,2,
|| 1 ||L 1_C5||q1H[_oo H ||L,,7

where Cs and Cg are from Theorem 1.
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Proof

Proof: Consider up(x) = 0 for all x € R?, i.e. up € LJ(R? R) and
”U()”Lg = 0. Form the apriori bound follows that

Ialle < 17— wllyp + lnlle

< % s — vollz + ol o

- (% +1> oz
1

“1-Glal~ [|Suoll .

< i (lelis + ol ol
G

= m lell, -
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Consequence

Consider the operator

Lgu = alu+ cDgu— ou+ qru.

Corollary
Let the assumptions (A3)—(A9) be satisfied with 0 < n <

‘Nh—-

and

NI

aZp

laill; < Cis with Cs > 0 from Theorem 1. Then
Lq : LA(R?R) D D(Ly,) — LP(R? R)

is a linear, densely defined, closed operator and generates a
CO-semigroup. Moreover, we have

D(Lq,) = D(Loo)-
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The operator £,

Consider the operator

Lqu = alu+ cDyu—du+ (g1 + q) u
—_———
=q
with a compact perturbation g = g2(x).

Remark: Lg is a compact perturbation of L.
Motivation: Formally we decompose L, — s, s € C, as follows

(Lg—s)u=alu+cDyu—ou+qu—su=0
< alAu+ cDyu—ou+ qu—su=(q—q)u
= (Lo —s)u=(q—q)u

— (/ — (g1 — q)(Laqy — s)—l) (Lo —S)u=0

(Lg—s)= (/ —(q1—q)(Lg — 5)_1) (Lqy — )
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Assumptions
Let s € C and consider

(Lg—9)=(I—(q1—a)(Lg —5)") (Lay — 9)
We make the following additional assumptions

(A10) g € L=(R?,R) (variable coefficient function)
(A11) Diu, Dou, Dyu € D(Lg) are nontrivial (where L u = 0)

One can show that £ possess the algebraic simple eigenvalues
s1=1ic,sp =—ic,s3=0
(i.e. dmN(Lg —sj) =1, j = 1,2,3) with eigenfunctions

Y1 = Diu+ iDQU, Y2 = Diu — iD2U, Y3 = D¢U.

(A12) Lq has no eigenvalues s € C with Re s > — Re ¢, except for
51, 52, 53. J
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Approach

Consider the decomposition

(Lg—s)= (/ — (g1 — q)(Lg — 5)_1) (Lqgy — )

Fredholm theory:
» Lgq — s is Fredholm of index 0 for s € C with Re s > —Re ¢

(Lgy —5)isa I|near homeomorphism
(g1 — q)(Lg, — s)~! compact operator
(Riesz-Frechet-Kolmogorov, compactness of multiplication
operator)
» | — (g1 — q)(Lg, — 5)~* Fredholm of index 0
(compact perturbation of the identity)
» (Lg, —s) is Fredholm of index 0
» (Lq —s) is Fredholm of index 0

» Fredholm alternative

vy

» L7, (formal/abstract) adjoint operator
» solvability (by Fredholm alternative)
» uniqueness of exponentially decaying function

19/20



Main result

Consider the operator

Lqu = alu+ cDyu —du+ (q1 + g2) u
———

=q

Theorem
Let the assumptions (A1)—(A12) be satisfied. Let ii € LP(R?, R)

denote the solution of Lqu =0, then we have G € L§(R?,R) for all

1
0<n< ‘Sf.

az2p
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