Exponential decay of two-dimensional rotating waves (Part 2)

Denny Otten

CRC 701: Spectral Structures and Topological Methods in Mathematics
Faculty of Mathematics
Bielefeld University

15. July 2011

Outline

Review

The operator \mathcal{L}_{q_1}

The operator \mathcal{L}_q

Problem

Consider the stationary problem

$$\alpha \triangle u + cD_{\phi}u + f(u) = 0, x \in \mathbb{R}^2$$

where $u: \mathbb{R}^2 \to \mathbb{R}^N$ is unknown, $\alpha \in \mathbb{R}$ with $\alpha > 0$, $c \in \mathbb{R}$ with $c \neq 0$ and $f: \mathbb{R}^N \to \mathbb{R}^N$ are given and D_{ϕ} is defined as

$$D_{\phi} := -x_2 \frac{\partial}{\partial x_1} + x_1 \frac{\partial}{\partial x_2}$$

Under the assumptions

There exists a constant vector $u_{\infty} \in \mathbb{R}^N$ such that

- (A1) $\lim_{R\to\infty} \sup_{|x|\geqslant R} |u(x)-u_{\infty}|=0$,
- (A2) $f \in C^1(\mathbb{R}^N, \mathbb{R}^N)$ and $B_{\infty} := Df(u_{\infty})$ is negative definite.

We want to show solvability and uniqueness of an exponential decaying solution, i.e.

$$|u(x) - u_{\infty}| \leqslant Ce^{-C|x|},$$

 $|D^{\beta}u(x)| \leqslant Ce^{-C|x|}, 1 \leqslant |\beta| \leqslant 2.$

Motivation

Consider the stationary problem

$$\alpha \triangle u + cD_{\phi}u + f(u) = 0, x \in \mathbb{R}^2.$$

Let $u_{\infty} \in \mathbb{R}^N$ be a stationary point (satisfying (A1) and (A2))

$$\alpha \triangle u_{\infty} + cD_{\phi}u_{\infty} + f(u_{\infty}) = 0$$

i.e. $f(u_{\infty}) = 0$. Since $f \in C^1(\mathbb{R}^N, \mathbb{R}^N)$ by Taylor's theorem we obtain for every $u = u(x) \in \mathbb{R}^N$

$$f(u) = \underbrace{f(u_{\infty})}_{=0} + \underbrace{\int_{0}^{1} Df(u_{\infty} + t(u - u_{\infty})) dt}_{=:a(x)} (u - u_{\infty}).$$

Using assumption (A1) we have

$$a(x) \to B_{\infty}$$
, as $|x| \to \infty$

where
$$B_{\infty}:=Df(u_{\infty})\in\mathbb{R}^{N\times N}$$
. Define $q(x):=a(x)-B_{\infty}$, then $q(x)\to 0$, as $|x|\to \infty$.

Now we decompose q in the following way

$$q(x) = q_1(x) + q_2(x)$$

where q_1 is a small perturbation and q_2 is compactly supported.

From the preliminary idea we obtain (taking w.l.o.g. $u_{\infty}=0$)

$$0 = \alpha \triangle u + cD_{\phi}u + f(u)$$

$$= \alpha \triangle u + cD_{\phi}u + au$$

$$= \alpha \triangle u + cD_{\phi}u + B_{\infty}u + qu$$

$$= \alpha \triangle u + cD_{\phi}u + B_{\infty}u + q_1u + q_2u.$$

Therefore, we must study the following operators

$$\begin{split} \mathcal{L}_{\infty} u := & \alpha \triangle u + c D_{\phi} u + B_{\infty} u, \\ \mathcal{L}_{q_{1}} u := & \alpha \triangle u + c D_{\phi} u + B_{\infty} u + q_{1} u, \\ \mathcal{L}_{q} u := & \alpha \triangle u + c D_{\phi} u + B_{\infty} u + q u. \end{split} \quad \text{(compact pert. of } \mathcal{L}_{\alpha_{1}})$$

Today we will analyze the \mathcal{L}_{q_1} -operator.

Assumptions

```
(A3) \alpha \in \mathbb{R} with \alpha > 0 (diffusion coefficient)

(A4) c \in \mathbb{R} with c \neq 0 (angular velocity)

(A5) \delta \in \mathbb{R} with \delta > 0 (propagation constant)

(A6) \eta \in \mathbb{R} with \eta \geqslant 0 (decay rate)

(A8) g \in L^p_{\eta}(\mathbb{R}^2, \mathbb{R}) with \rho \in \mathbb{R} and 1 \leqslant \rho < \infty (inhomogenity)
```

The operator \mathcal{L}_{∞}

Consider the operator

$$\mathcal{L}_{\infty}u:=\alpha\triangle u+cD_{\phi}u-\delta u.$$

Theorem

Let the assumptions (A3)–(A8) be satisfied with $0 \leqslant \eta < \frac{\delta^{\frac{1}{2}}}{\alpha^{\frac{1}{2}}p}$.

Then $\mathcal{L}_{\infty}: L^p_{\eta}(\mathbb{R}^2, \mathbb{R}) \supset \mathcal{D}(\mathcal{L}_{\infty}) \to L^p_{\eta}(\mathbb{R}^2, \mathbb{R})$ is a linear, densely defined, closed operator and generates a C^0 -semigroup. Moreover, let $\bar{u}(x)$ denote the solution of $\mathcal{L}_{\infty}u = g$, then we have $\bar{u} \in W^{1,p}_{\eta}(\mathbb{R}^2, \mathbb{R})$ with

$$\begin{split} \|\bar{u}\|_{L^{p}_{\eta}} \leqslant C_{5} \|g\|_{L^{p}_{\eta}} \,, \\ \|D_{i}\bar{u}\|_{L^{p}_{\eta}} \leqslant C_{6} \|g\|_{L^{p}_{\eta}} \,, \; i = 1, 2, \end{split}$$

where $C_j = C_j(\alpha, \delta, \eta, p) > 0$, j = 5, 6.

The operator \mathcal{L}_{q_1}

Consider the operator

$$\mathcal{L}_{q_1}u := \alpha \triangle u + cD_{\phi}u - \delta u + q_1u$$

with a small perturbation $q_1 = q_1(x)$. To solve the stationary equation

$$\mathcal{L}_{q_1}u := \alpha \triangle u + cD_{\phi}u - \delta u + q_1u = g$$

we make the following additional assumption:

(A9)
$$q_1 \in L^\infty(\mathbb{R}^2,\mathbb{R})$$
 (small perturbation, i.e. small w.r.t. $\left\|\cdot
ight\|_{L^\infty}$)

Remark: \mathcal{L}_{q_1} is a <u>small</u> perturbation of \mathcal{L}_{∞} .

Integral equation

Consider the stationary equation

$$\mathcal{L}_{q_1}u = \alpha \triangle u + cD_{\phi}u - \delta u + q_1u = g$$

Putting the term q_1u on the r.h.s. we obtain

$$\mathcal{L}_{\infty}u = \alpha \triangle u + cD_{\phi}u - \delta u = g - q_1u$$

Taking the solution representation for \bar{u} (obtained by \mathcal{L}_{∞}) we find the integral equation

$$u(x) = -\int_{\mathbb{R}^2} \int_0^\infty \frac{1}{4\pi\alpha t} e^{-\delta t - \frac{1}{4\alpha t} \left| e^{tQ} x - \xi \right|^2} \left(g(\xi) - q_1(\xi) u(\xi) \right) dt d\xi$$
$$=: [Su](x)$$

Motivation:

- self-mapping
- contraction mapping
- solvability (by contraction mapping principle)
- exponential decay (by roughness theorem)

Self-mapping properties of S

Lemma (Self-mapping on $L^p_\eta(\mathbb{R}^2,\mathbb{R})$)

Let the assumptions (A3)–(A9) be satisfied with $0 \leqslant \eta < \frac{\delta^{\frac{1}{2}}}{\alpha^{\frac{1}{2}p}}$. If $u \in L^p_{\eta}(\mathbb{R}^2, \mathbb{R})$, then we have $Su \in L^p_{\eta}(\mathbb{R}^2, \mathbb{R})$ and it holds the estimate

$$||Su||_{L^{p}_{\eta}} \leqslant C_{5} \left(||g||_{L^{p}_{\eta}} + ||q_{1}||_{L^{\infty}} ||u||_{L^{p}_{\eta}} \right)$$

where $C_5 = C_5(\alpha, \delta, \eta, p) > 0$ is from Theorem 1.

Proof: Let $u \in L^p_{\eta}(\mathbb{R}^2, \mathbb{R})$. Using Hölder's inequality (with $\frac{1}{p} = \frac{1}{p} + \frac{1}{\infty}$) we obtain

$$||Su||_{L^p_{\eta}} \leqslant C_5 ||g - q_1 u||_{L^p_{\eta}} \leqslant C_5 (||g||_{L^p_{\eta}} + ||q_1||_{L^{\infty}} ||u||_{L^p_{\eta}})$$

i.e. $Su \in L^p_\eta(\mathbb{R}^2, \mathbb{R})$.

Contraction properties of S

Lemma (Contraction mapping on $L_n^p(\mathbb{R}^2,\mathbb{R})$)

Let the assumptions (A3)–(A9) be satisfied with $0 \leqslant \eta < \frac{\delta^{\frac{1}{2}}}{\alpha^{\frac{1}{2}}p}$ and

 $\|q_1\|_{L^{\infty}}<rac{1}{C_5}$ with $C_5>0$ from Theorem 1. Then we have

$$||Su - Sv||_{L^p_{\eta}} \leqslant C_5 ||q_1||_{L^{\infty}} ||u - v||_{L^p_{\eta}} \, \forall \, u, v \in L^p_{\eta}(\mathbb{R}^2, \mathbb{R})$$

Proof: Let $u, v \in L^p_{\eta}(\mathbb{R}^2, \mathbb{R})$. Using Hölder's inequality (with $\frac{1}{p} = \frac{1}{p} + \frac{1}{\infty}$) we obtain

$$||Su - Sv||_{L^p_{\eta}} \leqslant C_5 ||q_1(u - v)||_{L^p_{\eta}} \leqslant C_5 ||q_1||_{L^{\infty}} ||u - v||_{L^p_{\eta}}$$

Since $C_5 \|q_1\|_{L^\infty} < 1$ it follows that S is a contraction mapping on $L^p_\eta(\mathbb{R}^2,\mathbb{R})$.

Solvability by Contraction mapping principle

Theorem (Solvability on $L^p_{\eta}(\mathbb{R}^2,\mathbb{R})$)

Let the assumptions (A3)–(A9) be satisfied with $0 \leqslant \eta < \frac{\delta^{\frac{1}{2}}}{\alpha^{\frac{1}{2}}p}$ and $\|q_1\|_{L^{\infty}} < \frac{1}{C_5}$ with $C_5 > 0$ from Theorem 1. Then

$$\exists_1 \bar{u} \in L^p_\eta(\mathbb{R}^2, \mathbb{R}) : S\bar{u} = \bar{u}$$

Moreover, \bar{u} solves $\mathcal{L}_{q_1}u=g$ and for every initial data $u_0\in L^p_\eta(\mathbb{R}^2,\mathbb{R})$ the sequence $u_{k+1}=Su_k$, $k\in\mathbb{N}_0$, converges to \bar{u} and it holds the apriori bound

$$\|u_k - \bar{u}\|_{L^p_{\eta}} \leqslant \frac{C_5^k \|q_1\|_{L^{\infty}}^k}{1 - C_5 \|q_1\|_{L^{\infty}}} \|u_1 - u_0\|_{L^p_{\eta}} \ \forall \ k \in \mathbb{N}_0$$

Proof: Since S is a self-mapping contraction, the aim follows by the contraction mapping principle.

Roughness theorem

The Roughness theorem shows, that the solution for the (perturbed) variable coefficient operator \mathcal{L}_{q_1} decays exponentially, if the solution of the constant coefficient operator \mathcal{L}_{∞} decays exponentially.

Theorem (Roughness theorem)

Let the assumptions (A3)–(A9) be satisfied with $0 \leqslant \eta < \frac{\delta^{\frac{1}{2}}}{\alpha^{\frac{1}{2}}p}$ and $\|q_1\|_{L^\infty} < \frac{1}{C_5}$. Moreover, let $\bar{u} \in L^p_\eta(\mathbb{R}^2,\mathbb{R})$ denote the solution of $\mathcal{L}_{q_1}u = g$, then we have $\bar{u} \in W^{1,p}_\eta(\mathbb{R}^2,\mathbb{R})$ with

$$\|\bar{u}\|_{L_{\eta}^{p}} \leqslant \frac{C_{5}}{1 - C_{5} \|q_{1}\|_{L^{\infty}}} \|g\|_{L_{\eta}^{p}},$$

$$\|D_{i}\bar{u}\|_{L_{\eta}^{p}} \leqslant \frac{C_{6}}{1 - C_{5} \|q_{1}\|_{L^{\infty}}} \|g\|_{L_{\eta}^{p}}, i = 1, 2,$$

where C_5 and C_6 are from Theorem 1.

Proof

Proof: Consider $u_0(x)=0$ for all $x\in\mathbb{R}^2$, i.e. $u_0\in L^p_\eta(\mathbb{R}^2,\mathbb{R})$ and $\|u_0\|_{L^p_\eta}=0$. Form the apriori bound follows that

$$\begin{split} \|\overline{u}\|_{L^p_{\eta}} &\leqslant \|\overline{u} - u_1\|_{L^p_{\eta}} + \|u_1\|_{L^p_{\eta}} \\ &\leqslant \frac{C_5 \|q_1\|_{L^{\infty}}}{1 - C_5 \|q_1\|_{L^{\infty}}} \|u_1 - u_0\|_{L^p_{\eta}} + \|u_1\|_{L^p_{\eta}} \\ &= \left(\frac{C_5 \|q_1\|_{L^{\infty}}}{1 - C_5 \|q_1\|_{L^{\infty}}} + 1\right) \|u_1\|_{L^p_{\eta}} \\ &= \frac{1}{1 - C_5 \|q_1\|_{L^{\infty}}} \|Su_0\|_{L^p_{\eta}} \\ &\leqslant \frac{C_5}{1 - C_5 \|q_1\|_{L^{\infty}}} \left(\|g\|_{L^p_{\eta}} + \|q_1\|_{L^{\infty}} \|u_0\|_{L^p_{\eta}}\right) \\ &= \frac{C_5}{1 - C_5 \|q_1\|_{L^{\infty}}} \|g\|_{L^p_{\eta}}. \end{split}$$

Consequence

Consider the operator

$$\mathcal{L}_{q_1}u := \alpha \triangle u + cD_{\phi}u - \delta u + q_1u.$$

Corollary

Let the assumptions (A3)–(A9) be satisfied with $0\leqslant \eta<\frac{\delta^{\frac{1}{2}}}{\alpha^{\frac{1}{2}}p}$ and $\|q_1\|_{L^\infty}<\frac{1}{C_5}$ with $C_5>0$ from Theorem 1. Then

$$\mathcal{L}_{q_1}: L^p_{\eta}(\mathbb{R}^2, \mathbb{R}) \supset \mathcal{D}(\mathcal{L}_{q_1}) \to L^p_{\eta}(\mathbb{R}^2, \mathbb{R})$$

is a linear, densely defined, closed operator and generates a C^0 -semigroup. Moreover, we have

$$\mathcal{D}(\mathcal{L}_{q_1}) = \mathcal{D}(\mathcal{L}_{\infty}).$$

The operator \mathcal{L}_q

Consider the operator

$$\mathcal{L}_{q}u := \alpha \triangle u + cD_{\phi}u - \delta u + \underbrace{(q_{1} + q_{2})}_{=q}u$$

with a compact perturbation $q_2 = q_2(x)$.

Remark: \mathcal{L}_q is a compact perturbation of \mathcal{L}_{q_1} .

Motivation: Formally we decompose $\mathcal{L}_q - s$, $s \in \mathbb{C}$, as follows

$$(\mathcal{L}_{q} - s) u = \alpha \triangle u + cD_{\phi}u - \delta u + qu - su = 0$$

$$\iff \alpha \triangle u + cD_{\phi}u - \delta u + q_{1}u - su = (q_{1} - q) u$$

$$\iff (\mathcal{L}_{q_{1}} - s) u = (q_{1} - q) u$$

$$\iff (I - (q_{1} - q)(\mathcal{L}_{q_{1}} - s)^{-1}) (\mathcal{L}_{q_{1}} - s) u = 0$$

i.e.

$$(\mathcal{L}_q - s) = (I - (q_1 - q)(\mathcal{L}_{q_1} - s)^{-1})(\mathcal{L}_{q_1} - s)$$

Assumptions

Let $s \in \mathbb{C}$ and consider

$$(\mathcal{L}_q - s) = (I - (q_1 - q)(\mathcal{L}_{q_1} - s)^{-1})(\mathcal{L}_{q_1} - s)$$

We make the following additional assumptions

- (A10) $q \in L^{\infty}(\mathbb{R}^2, \mathbb{R})$ (variable coefficient function)
- (A11) $D_1u,\,D_2u,\,D_\phi u\in\mathcal{D}(\mathcal{L}_q)$ are nontrivial (where $\mathcal{L}_q u=0$)

One can show that \mathcal{L}_q possess the algebraic simple eigenvalues

$$s_1 = ic, s_2 = -ic, s_3 = 0$$

(i.e. $\dim \mathcal{N}(\mathcal{L}_q - s_j) = 1$, j = 1, 2, 3) with eigenfunctions

$$\varphi_1 = D_1 u + i D_2 u, \ \varphi_2 = D_1 u - i D_2 u, \ \varphi_3 = D_{\phi} u.$$

(A12) \mathcal{L}_q has no eigenvalues $s \in \mathbb{C}$ with $\operatorname{Re} s > -\operatorname{Re} \delta$, except for s_1, s_2, s_3 .

Approach

Consider the decomposition

$$(\mathcal{L}_q - s) = (I - (q_1 - q)(\mathcal{L}_{q_1} - s)^{-1})(\mathcal{L}_{q_1} - s)$$

Fredholm theory:

- ▶ $\mathcal{L}_q s$ is Fredholm of index 0 for $s \in \mathbb{C}$ with Re $s > \operatorname{Re} \delta$
 - $(\mathcal{L}_{q_1} s)$ is a linear homeomorphism
 - $(q_1 q)(\mathcal{L}_{q_1} s)^{-1}$ compact operator (Riesz-Frechet-Kolmogorov, compactness of multiplication operator)
 - ▶ $I (q_1 q)(\mathcal{L}_{q_1} s)^{-1}$ Fredholm of index 0 (compact perturbation of the identity)
 - $(\mathcal{L}_{q_1} s)$ is Fredholm of index 0
 - $(\mathcal{L}_q s)$ is Fredholm of index 0
- Fredholm alternative
 - $\triangleright \mathcal{L}'_{a}$ (formal/abstract) adjoint operator
 - solvability (by Fredholm alternative)
 - uniqueness of exponentially decaying function

Main result

Consider the operator

$$\mathcal{L}_{q}u := \alpha \triangle u + cD_{\phi}u - \delta u + \underbrace{(q_{1} + q_{2})}_{=q}u$$

Theorem

Let the assumptions (A1)–(A12) be satisfied. Let $\bar{u} \in L^p(\mathbb{R}^2,\mathbb{R})$ denote the solution of $\mathcal{L}_q u = 0$, then we have $\bar{u} \in L^p_\eta(\mathbb{R}^2,\mathbb{R})$ for all $0 \leqslant \eta < \frac{\delta^{\frac{1}{2}}}{\alpha^{\frac{1}{2}}p}$.