

Figure 1: Gegeben sind zwei Geraden g und h sowie ein Punkt P. Die Gerade g soll so um den Punkt P gedreht werden, dass sie parallel zu h liegt.

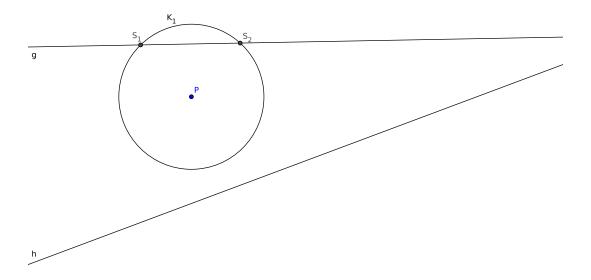


Figure 2: Der Kreis K_1 wird mit genuegend grossem Radius r_1 konstruiert, so dass er g in den Punkten S_1 und S_2 schneidet.

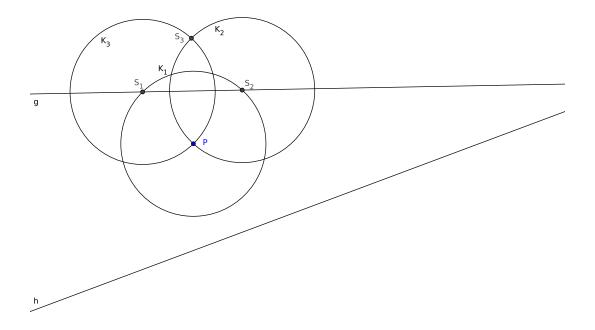


Figure 3: Die Kreise $K_2(S_2, r_1)$ und $K_3(S_1, r_1)$ schneiden sich in P und S_3 .

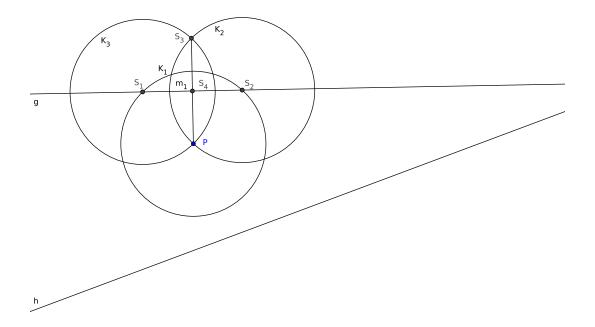


Figure 4: Die Strecke $m_1 = \overline{PS_3}$ steht senkrecht auf $g. g \cap m_1 =: S_4$.

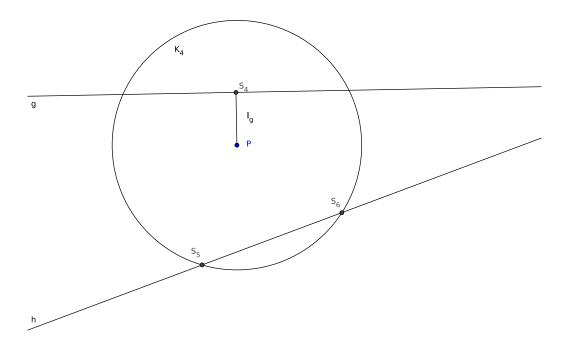


Figure 5: Wir erhalten somit das Lot l_g von P auf g als $l_g = \overline{PS_4}$. Nun konstruieren wir den Kreis K_4 mit Radius r_2 . $K_4 \cap h = \{S_5, S_6\}$.

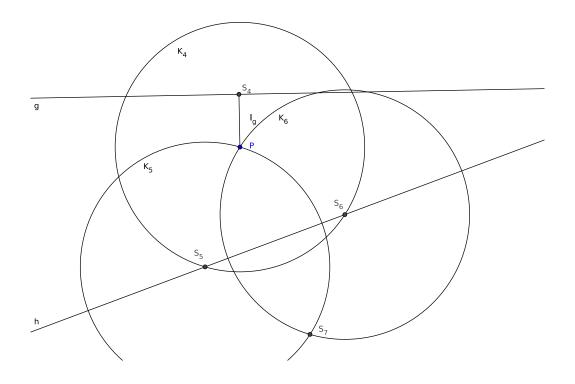


Figure 6: Wir konstruieren $K_5(S_5, \overline{S_5P}, K_6(S_6, \overline{S_6P}, K_5 \cap K_6 = \{P, S_7\}.$

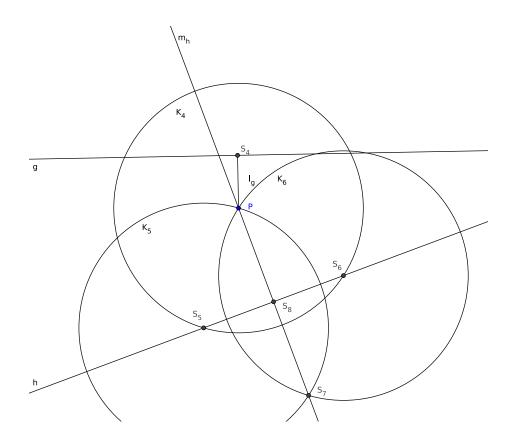


Figure 7: Die Gerade m_h durch P und S_7 steht senkrecht auf h.

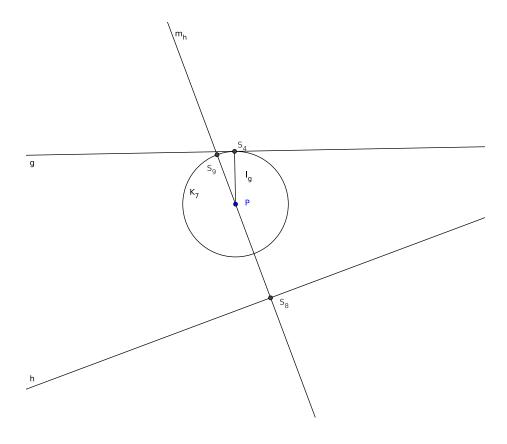


Figure 8: Wir konstruieren den Kreis $K_7(P, \overline{PS_4})$. $K_7 \cap m_h = S_9$ (und ein weitere Punkt, den einzuzeichnen ich vergessen habe).

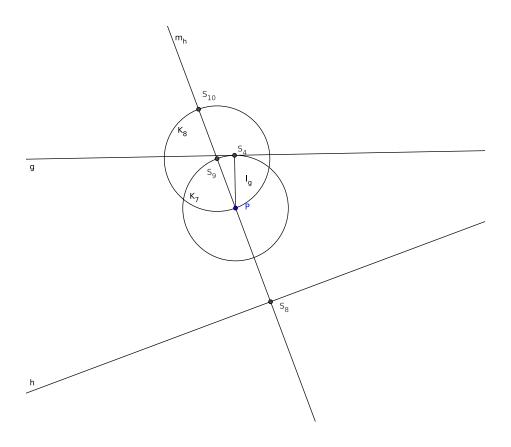


Figure 9: Wir konstruieren $K_8(S_9, \overline{S_9P}), K_8 \cap m_h = \{P, S_{10}\}.$

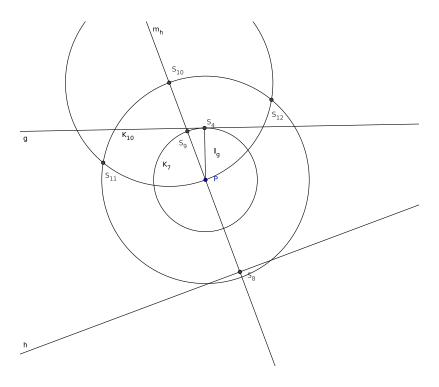


Figure 10: Vermittels zweier Kreise mit Radius $\overline{S_{10}P}$ um S_{10} und P erhalten wir die Punkte S_{11} und $S_{12},...$

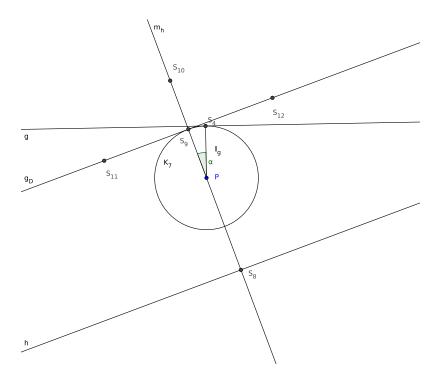


Figure 11: ...durch die wir die gedrehte Gerade g_D konstruieren. Der Drehwinkel ist mit α gekennzeichnet.

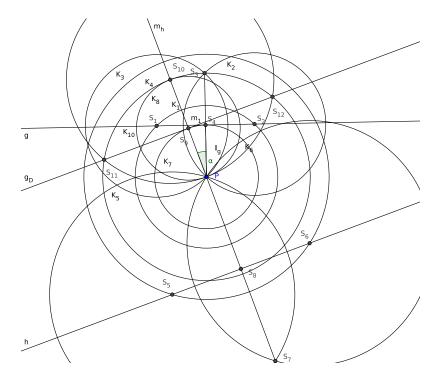


Figure 12: Ich hoffe, dass ihr in der Klausur auch nur die entscheidenen Teile der Kreise etc. zeichnen muesst:)

Warum funktionierte das jetzt auf diese Art und Weise? Bei der Drehung um den Punkt P bleiben die Abstaende der einzelnen Punkte von g erhalten (eine Drehung ist eine Isometrie). Insbesondere hat der Lotfusspunkt S_4 nach der Drehung immer noch den Abstand $|l_g|$ zu P, liegt also auf dem Kreis K_7 . Wenn zwei Gerade parallel sind, dann ist eine Senkrechte auf einer der beiden Gerade auch senkrecht auf der anderen der beiden Geraden. Somit muss die gedrehte Gerade g_D senkrecht zu m_h stehen. Dadurch, dass wir m_h so konstruiert haben, dass $P \in m_h$ gilt, muss auch der Lotfusspunkt des Lotes von P nach g_D auf m_h liegen. Der Schnittpunkt S_9 von K_7 und m_h bestimmt seine Position also eindeutig. Die durch uns konstruierte Senkrechte auf m_h durch S_9 ist somit die gesuchte Gerade g_D , der Drehwinkel ist gerade der Winkel zwischen l_g und m_h . Wir haben eine von zwei moeglichen Drehungen konstruiert. Die andere findet ihr sicher selbst.

PS: ich konnte leider den Schriftsatz nicht auf deutsch stellen. Stoert euch bitte nicht an den fehlenden Sonderzeichen (und ueberfluessigen Rechtschreibfehlern).