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In this chapter we consider functions
fTR" >R

of n > 1 variables (multivariate functions). Such functions are the basic building block
of formal economic models.



2 Differential Calculus for Functions of n Variables

2.1 Partial Derivatives

Everywhere below: U C R" will be an open set in the space (R™, || - ||) (with the
Euclidean norm || - ||) and f: U — R,

U>S (z1,...,2,) = f(x1,...,2,) € R.

Definition 2.1.1. The function f is partially differentiable with respect to the i-th
coordinate (or variable) x;, at a given point x € U, if the following limit exists

D) = i F 20 =12

=lm — [f(z1,..., @i, @i + hyXig, .oy xn) — f2, .0 20)],
h—0 h

where e; :={0,...,0,1,0,...,0} is the basis vector in R™.
i—1
Since U is open, there exists an open ball B.(x) C U. In the definition of émg one
—

considers only “small” h with |h| < ¢.
D, f(x) is called the ¢-th partial derivative of f at point x.

Notation: We also write D, f(x), 0;f(x), 0f(x)/0z;.

The partial derivative D;f(x) can be interpreted as a usual derivative w.r.t. the i-
th coordinate, whereby all the other n — 1 coordinates are kept fixed. Namely, in the
e—neighbourhood of z;, let us define a function

(i —e,2i+¢€) &= gi(€) == f(@1i-1, & Tig1, - Tn).
Then by Definition 2.1.1,

D) i 94 )

— 4 i
h—0 h = gi(wi).

Definition 2.1.2. A function f : U — R is called partially differentiable if D;f(x)
exists for all x € U and all 1 < i < n. Furthermore, f is called continuously partially
differentiable, if all partial derivatives

Dif:U—>R, 1<i<n

are continuous functions.



Example 2.1.3.

(i) Distance function

r(z):=lz|=y\/23+...+22, z€R"

Let us show that r(x) is partially differentiable at all points x € R™\{0}.

§— gi(§) 1:\/£U%+...+€2+...+$%6R.

Use the chain rule for the derivatives of real-valued functions (cf. standard courses

in Calculus) =
or 1 2x; T

—(x) = — = .

8@( 2\/x%+...+62+721 T(J:)
Generalization: Let f : Ry — R be differentiable, then R" > x — f(r(z)) is
partially differentiable at all points x € R™\{0} and

0 , or o T;
2 J0) = 10) o = )

ox; r

(i1)) Cobb—Douglas production function with n inputs

a1 .02

flz) =aftas®. . aym fora; >0, 1<i<n,

defined on
U:={(x1,...,2,)| z; >0, 1 <i<n}.

Calculate the so-called marginal-product function of input i

of a1
) = T Lt = )
axl( ) L ’ ZT;

Mathematicians will say: multiplicative functions with separable variables, polynomi-
als. Economists are especially interested in the case o; € (0, 1).

This is an example of homogeneous functions of order (degree)
a=a,+...+ a,, which means

fAz) =X f(x), YA>0, x € U.
Moreover, the Cobb—Douglas function is log —linear:

log f(z) = aglogxy + ... + v, log x,,.



(11i) Quasilinear utility function:
Fm,2) = m + ()

with m € Ry (i.e., m >0) and some u: R — R.

of of
— =1, — =u/(2).
om 7 Oz w(w)
(iv) Constant elasticity of substitution (CES) production function with n
inputs, which describes aggregate consumption for n types of goods.

flzy, ..o xy) = (012) + ... + 5nx2)1/a,

with a > 0, 5,->Oandz 0; = 1,

1<i<n

defined on the open domain
U:={(z1,...,2,) | 2, >0, 1 <i<n}.

We calculate the marginal-product function

of
85(]Z‘

a—1
-l

19
[e%

1
() = - (0125 + ...+ 0pz)

l1—«a

= 6 (6128 .. Gt e
Note that f is homogeneous : f(Ax) = Af(x).
Definition 2.1.4. Let U C R" be open and f : U — R be partially differentiable. Then,

the vector 3 3
Vf(x):=gradf(z) := (8_£<x)’ ey 8xf (x)) eR"

15 called the gradient of f at point x € U.

Example 2.1.5.
(i) Distance function r(x)

gradr(z) = eR", zeU:=R"\{0}.

T

r(z)

(i) Let f,g: U — R be partially differentiable. Then
V(f-9)=f-Vg+g-Vf.

Proof. This follows from the product rule

B o9 of




2.2 Directional Derivatives

Fix a directional vector v € R™ with |v| = 1 (of unit length!).

Definition 2.2.1. The directional derivative of f : U — R at a point x € U along the
unit vector v € R"™ (i.e., with |v| = 1) is given by

Opf(x) := D, f(x) := lim flw+ho) = f(x)

h—0 h

Remark 2.2.2.

(i) Define a new function

h — gu(h) :==

If g,(h) is differentiable at h = 0, then f(
direction v and

f(z + hv).
x) is differentiable at point x € U along

Dy f(x) = g,(0).

(i1) From the above definitions it is clear that the partial derivatives = directional deriva-
tives along the basis vectors e;;1 <1 < n,

of
8£L'i

() = D, f(x), 1 <i<n.

Example 2.2.3. Consider the “saddle” function in R?
f(zy,m5) i= —2% + 23,
and find D, f(z) along the direction v := (v/2/2,v/2/2) , |v| = 1. Define
2 2
gulh) - = = (01 +1V3/2) + (2 + hV3/2)
= —a? + 2+ V2h(zy — 21).

Then D,f(z) = ¢.,(0) = V2(zy — x1). Note that D,f(x) = 0 if x; = xy. The function f
has its minimum at the diagonal x1 = x5.

Relation between V f(z) and D, f(z):

Duf(z) = (V(x),0)e = 3 015 (2) - vs. (+)
i=1
Proof. will be done later, as soon as we prove the chain rule for V f. ]



2.3 Higher Order Partials

Let f: U — R be partially differentiable, i.e.,

0

fU—->R1<:i<n.

Analogously, for 1 < j < n we can define (if it exists)

19) 0
— : R.

' or O iti=j
Ox;0x; — Ox? -

Notation:

Warning: In general,
0% f
&Uj@xi

O f
8$jailfi

+ if i # j.

Theorem 2.3.1 ((A. Schwarz); also known as Young'’s theorem). Let U C R" be open
and f: U — R be twice continuously differentiable, f € C*(U), (i.e., all derivatives

az?gm,l <1i,j <n, are continuous). Then for allz € U and 1 <i,j7 <mn

f(z) _ *f(x)
83:]0.% N 827]'81'2'7

i.e., for cross-partial derivatives, the order of differentiation in their computing is irrele-
vant.

Example: (i) The above theorem works:
[, m0) i= af + bryzo + 23, (21,22) € R

Counterexample: (ii) The above theorem does not work:

- .z9) € R2\ {(0,0
Flar, ) = $1$2x%+x% (z1,29) \ {(0,0)}
0, (.I'l,ll?g) = (0,0)
We calculate o o/
0x101 (0,0)=-1#1= 0x901, (0,0).

Reason: f ¢ C*(U).



Notation:
8kf
8l'ik R (%cil ’

for any iy,...,ix € {1,...n}.

Diki1f7

In general, for any v € R™ with |v| = 1, we have by (%)

Do f ()] < [V f(2)]gn -
Geometrical interpretation of V f: Define the normalized vector

Vi)

= — c R".
TR

Then, for this v

Dy f(x) = (V[ (2), v)gn = [V (2)]pn -
In other words, the gradient V f(x) of f at point x is the direction in which the slope of f
is the largest in absolute value.

2.4 Total Differentiability

Intuition: Repetition of the 1-dim case

Definition 2.4.1. A function g : R — R is differentiable at point x € R if the following

limit exists h
lim glw+h) = 9(x) =:¢'(z) e R. (%)
h—0 h

Geometrical picture: Locally, i.e., for small |h| — 0, we can approximate the values
of g(x + h) by the linear function g(z) + ah with a := ¢'(z) € R. Indeed, the limit (%) can

be rewritten as
(et h) () + o)

h—0 h =0

The approximation error E,(h) equals

E,(h):==g(x+h) —[g(x) +ah] € R

and it goes to zero with h:

E
fm 2o o el B
h—0 h h—0  |h|



The latter can be written as

E,(h) =0(h) as h—0,
glx+h)~g(x)+ah as h—D0.

Summary: ¢g: R — R is differentiable at x € R if, for points x + h sufficiently close to
x, the values g(x + h) admit a “nice” approximation by a linear function g(x) + ah, with
an error

Ey(h) := g(x + h) — g(x) — ah
that goes to zero “faster” than h itself, i.e.,

E,(h
o [EaB)

h=0  |h =0

Now we extend the notion of differentiability to functions f : R — R™, for arbitrary
n,m>1:

fi(z) filzy, ... xp)

R">x=(x1,...,2,) = f(x) = : = : e R™.

fm () fm(21, ..., 20)

Definition 2.4.2. Let U C R" be open, and let f: U — R™. The function f is (totally)
differentiable at a point x € U if there exists a linear mapping

A:R" - R™

such that in some neighbourhood of x, (i.e., for small enough h € R™ with |h| < €), there
18 a presentation
fx+h)= f(x)+ Ah+ Ef(h), ()
where the error term
E¢(h) := f(x +h) — f(x) — Ah € R™
obeys

E¢(h)|gm
o JE (Wl
0 Al

The derivative Df(x) of f at point x is the matriz A.

= 0.

Remark 2.4.3.

(i) FEach linear map A : R™ — R™ can be represented by the m x nmatrix (with m rows
and n columns)

a1 a19 N AT
921 929 ... Qop
(ai)1<ism = S R
1§]Sn . . .
Am1 Am2 ... (Qmn

8



which describes the action of the linear map A on the canonical basis (e;)1<j<n in

R", e; = (0,...,0,1,0,...,0)" (vertical column or n x lmatriz),
\_\(—/
j
alj
A2, m .
Ae; = _ eR™, 1<j5<n.
Qmyj

Below we always tdentify the linear mapping A : R™ — R™ with this matrixz, which

acts as
ail @iy ... Qip hy apthy + ...+ amhy,
Ap a?1 a?Q o a?n h'g _ as hy + . + asphy, cR™
A1 a,'ng cee Omn hn Amih1 + ...+ @b,
whereby the vector h = (hq,...,h,) € R" is considered as an n x 1 matriz.

The identity (+x) can be rewritten in coordinate form as

{ﬁ@+m=ﬁmwéj1%m+&mx

1=1,...,m,

with 2 (h
tim | Z

h=0 |||

It is obvious that the vector-valued function f : U — R™ is differentiable at a point
x € U if and only if all coordinate mappings f; : U — R, 1 <1 < m, are differentiable.

(11) Symbolically we write

Ey(h) = o(|hllz.), ash— 0,

(iii) Let f:R™ — R (i.e., m =1). Then

A=(a, az, ..., ay)=(a)}- (1xn-matriz)

and .
fla+h) = f(x)+ > ah;+ Es(h),
j=1

where E¢(h) € R is such that
|Ef(h)]

h—0 ||Al]

9



Theorem 2.4.4. Let f : U — R™ be differentiable at a point x € U, i.e.,
flz+h) = f(z)+Ah+o(||h[g~)
with a matrix
A= (Gz‘j)lgigm-
1Z57<n
Then:

(i) f is continuous at x

(ii) All components f; : U — R, 1 < i <m, are partially differentiable at the point x

and ofi(x)
i\&T .
8(1}]- = Clij, 1 S J S n.

In other words, the derivative D f(x) of f at x is the matrix of first partial deriva-

tives %x(jx) of the component functions f;:
Of1(x) Of1(x) Of1(x)
ox ox ox
Of2(z)  Of2(w) 0f2(x)
Df(l') _ ox1 Oxo e Oxn
8f7n($) af'm(-T) 8f7n($)
o1 Oz ot OTn

Such a matrix is called the Jacobian matrix of the function f. Notation:

Df(z) = M(I) = (gi; (x))gz‘gm'

cey Ty L<i<m

Proof of Theorem 2.4.4.

(i) We have
flx+h)= f(x)+Ah+o(]|h]]), as h — 0.

Since limy_,o Ah = 0 and limy,_,g 0 (||2]]) = 0, finally
lim f(x 4+ h) = f(z).

h—0
(ii) Foreach 1 <i<m
fi@+h) = fi(@) + > ah; + Ei(h),  with Ei(h) = o(|[h]) as h — 0.
j=1
Hence for

hi:=te; €R", [[n|=1t], teR,1<j<n,

10



with e; = (0,...,0,1,0,...,0) being the canonical basis vector in R", it holds
\“‘,—J
J
f,(.’B + tej) = fl(x) + tai]‘ + Ei(tej),
Ei (tej)

Ofi, . . Jilwtte)— filz) , _
g, W)= ! = g =

]

Warning: The inverse statement is not true! Partial differentiability alone does not
imply total differentiability. However, the continuity of all x g—i(as) would be sufficient
to guarantee total differentiability (cf. Theorem 2.4.5 below).

For functions of real variables f : U — R, x € U C R with n = 1, the notions of
partial and total differentiability coincide. So, the total differentiability is a new concept

only in the multidimensional case n > 1.

Theorem 2.4.5 (without proof here). Let U C R™ be open, and let f : U — R™ be
partially differentiable. If all partial derivatives

Ofi
81‘]‘ ’

I<i<m, 1<j<n,

are continuous at the point x € U, then f is (totally) differentiable at x.

We summarize: For f: U — R™ the following implications hold:

continuously partially differentiable

\
totally differentiable

4
partially differentiable.

Example 2.4.6. Let C := (¢;j)1<ij<n be a symmetric n x n matriz, i.e.,
cij = Cij, for alli,j,

and let .
f(z) = (Cx,x)gn := Z ciirizy, f:R" =R,

1,j=1

11



be the corresponding quadratic form. Then

flx+h) = (Cx+h),x+ h)gn
= (Cz,z)+ (Cx,h) + (Ch,x) + (Ch,h)
(Cx,x)y 4+ 2(Cx,h) + (Ch, h)
= f(z) + (a,h) + E(h),

with
a = 2Cx, E(h)=(Ch,h)g., |E(h)|<|IC]|-[h]lg.?
1/2
11 = NCllggr = mx<2 cfj) .
1<j<n
Since
0] _,
h—0 Hh” ’

we conclude that
ADf(x) = 2Cx € R™.

Alternatively, we can calculate the partial derivatives

8:1;] QZ CijT; =2 ;cﬁxi =2(Cx); € R,

which are continuous functions of x. So, by Theorem 2.4.5
IDf(x) =2Cx =2((Cx);)’_, € R" (1 x n — matriz).

Remark 2.4.7 (Remark to Theorem 2.4.5). Partially differentiable functions need not
be continuous! The reason is that we consider limits along the azes, but not arbitrary
sequences (Tx)k>1 C U converging to a given point x € U.

Exercise 2.4.8. Let f : R? — R be defined by

fla,y) = {%6_%’ rro
0, z = 0.
Show that:
(i) [ is continuous on every line drawn through (0,0);
(ii) f is not continuous at (0,0).

(Hint: Consider y; = cxi with T, — 0 as k — 00.)

12



2.5 Chain Rule
Theorem 2.5.1 (Chain Rule, without proof). Let us be given two functions,
f:U—=>R"andg:V — R,

where U C R™, V. C R™ are open and f(U) C V. Suppose that f is differentiable at some
x € U and g respectively at y := f(x). Then the composite function

h:=gof:U—R"
is differentiable at x, and its derivative is given by (via matriz multiplication)
Dh(x) = Dg(f(x)) Df(x). (p x n-matriz) (%)
—
pxXm mxn

Idea of the proof. For any z,z € U

hz)—h(z) = g(f(z)) —g(f(2));
g diff. = h(z) = (@) ~ Dg(f(z)) (f(2) = [(2)), as f(z) = f(2),
fdiff. = h(x)—h(@) ~ Dg(f(x)) Df(x) (x — %), as T — x.

A rigorous proof should take into account the error terms. ]

In (x) we have the product of two matrices: Let B be a p x m matrix and A be an
m X n matrix,

ail a2 Q1n
a21 a9 .. Qon
A = (ag)1<i<m = . . . (m x n),
1SJSTL . . .
m1 Am2 ... Gmp
bll b12 .. blm
bai bae ... boy
B = (bki)i<k<p = | . . ) (p x m).
1<i<m : : :
Qp1 Ap2 ... Gpm

Then their product C' := BA is a p X n matrix defined as follows:

Ci1 Ci2 ... Cin
Co1 Co9 ... Cop
BA=:C= (cxjhizkp=| . . s
1<j<n : : :
Cpl Cpg Cpn

with the entries

m
Ckj ::Zbki'aijy 1<k<p 1<j<n
=1

13



Typical applications of the Chain Rule
(i) Let f : R — R™ and g : R — R, we define
h:=gof:R—=R.

fi(t)
Ra>t— : =z e R",
fa(t)

R">x = (x1,...,2,) = g(x1,...,2,) € R,

RSt — h(t) = g(fi(t), ..., fult).

fi®)
Df(t) = : eR",
fu(®)

Dy(e) = Vale) = (
By Theorem 2.5.1
W(t) = Dglf(t)]Df(t)

7o)
dg Jg .
_ <a—m(f(t)>,-.-,a—%(f(t))>><( : )

Then

t
o= ()= (5)=re® o) = glonss) mna -2
T2
Then
h(t) = g(f(t)) =t —t*, R(t)=1—4 tcR.
On the other hand

= (5 )s Voo = (1 -20)

and hence (substituting xo by t*)

B () = (1, —262) x ( 21t ) "

14



(ii) Applications to directional derivatives (Section 2.2 revisited)

Let U C R™ be open, and let f : U — R be differentiable. Choose some unit vector
v € R" with |v] = 1. Then the directional derivative along v is defined by

fx +tv) - f(=)

Opf(z) : = g% ;
_df (xv +tv)
B dt t=0

Theorem 2.5.3. Let f : U — R be totally differentiable and let v € R™ with |v| = 1.
Then, for any x € U

0,1 (2) = (V@) V) = Y 520 v

Proof. By the above definition

with a scalar function

G IT—->R T:=(—c¢)CR (len=m=1),
Io5t—g,(t) = flx+tv) €R,

where € > 0 is small enough such that B.(z) C U. But

where we set
I3t—p(t)=x+tveR" p0):=uzx.

Obviously, ¢ is differentiable and ¢'(t) = v € R” for all t € Z. By the chain rule
(Theorem 2.5.1)

Gul0) = DI -0 = 3 S ol0) -0 = (V60,0

and for t =0

15



(iii) Further rules: Linearity, i.e., for any f,g: U — R™

D(f+g9)=Df+ Dy,
D(af)=aDf, acR.

Example: Polar coordinates

x:(mf’w), r>0, p€eR.
7 sin

Let us be given a differentiable function f : R? — R, (21, 15) — f(x1,22) € R. Then,

7 COS

g(r,cp)::f( ),r>0,30€R,

rsin

defines a differential function ¢ : (0,4+00) x R — R with partial derivatives

ag(r, of(r, af(r, .
g(arw) _ fa(xlsf)) cos o + fa(xf) sin .
(?g(a?;,ogo) = _T—afa(;w) sin ¢ + 7’—8 8(;’;0) COS (.

2.6 Taylor’s Formula

Intuition: Review of 1-dim
Let us recall the following:

Theorem 2.6.1 (Mean value theorem). Let f : R — R be a continuously differentiable
function (i.e.,f € C*(R)). Then for each a,b € R, a < b, there exists 0 € (a,b) such that

fb) = fla) = f'(6) - (b—a). (%)

Taylor’s formula is a generalization of (x) to (k + 1)—times differentiable functions
(k =0,1,2,...). As a result we get a (finite) series expansion of a function f about a
fixed point, up to the (k 4+ 1)—th Taylor remainder. The following is well known from
Calculus:

Definition 2.6.2 (Taylor’s Formula). Let f : R — R be a (k 4+ 1)—times continuously
differentiable function on an open interval Z C R. Then for all x,x + h € Z, we have the
Taylor approximation of f

fO(z)
!

k
fla+h)=fl)+Y z W+ Eppq, ()
=1

16



where the (k + 1)—th error term Eyyq1 can be represented by

FED (2 4+ A\h)
(k+1)!

for some A = A(z,h) € (0,1). Recall thatl!:=1-(l—-1)-...-2-1 and 0! := 1.

Ejy1(z, h) = Rt

This is the so-called Lagrange form of the remainder term Ej.,. Of course, Ej; and
A depend on the point z, around which we write the expansion, as well as on the increment
h. Since A € (0,1), we see that = + A\h is some intermediate point between = and x + Ah.
Obviously, limy, .o Exy1(z, h)/h* = 0 and hence Ej,1(x, h) = o(h¥), h — 0.

Sometimes, Taylor’s formula is written in the equivalent form
f K
flz+h) )+ Z o(h*), h — 0.

If £ =0, we just get the mean value theorem ()
flx+h)— f(x)= f'(x+ Ah)h, A€ (0,1).
Generalization to several variables

Theorem 2.6.3 (Multi-dimensional Taylor’s Formula). Let U C R™ be open; let x € U
and hence Bs(x) C U for some 6 > 0. Let

f:U—=R
be (k + 1)—times continuously differentiable (i.e.,f € C*tY(U)) Then for any h € R™ with

|h||gn < & there exists @ = 0(x, h) € (0,1) such that
DO&
farm= 3 P g, (5 %)
0<|a|<k

with Egy1(z,h) = 32 0=k DAt por where the summation is over all (i.e., with all

ot

possible permutations) multi-indices
a=(ay,...,ap) € (Zy)" with order (degree)|a| < k.
Multi-index notation:
lal =a1+ ...+ an, ay € Zy :={0,1,2,...},
El'=Fk-(k—1)-...-2-1, 0 :=1,
h* = h{*hy* - - hym, h = (hy, he,- -+, hy,) € R",
ol f(z
D*f(a) = DEDE: - D) = g o)

Proof will be done below.

17



Corollary 2.6.4. Under the above conditions

fern =3 20 oqmm), no.

|
0<|al<k ot
Remark 2.6.5.

(i) Actually, the later formula with o(||h||¥) is true if we just know that f is k-times
differentiable at the point x. But for the Lagrange representation of the error term
Eji1(x, h) in Theorem 2.6.3, we have to assume that f € C*H(U).

(i1) If we do not allow permutations of indexes, then in Taylor’s formula instead of |c|!
we should take oq! ...yl

Example 2.6.6 (Particular Cases).
(i) Taylor approximation of order k =2 for f € C*(U)

flz+h) = +Zaf hi+ = Z - hih; + o([|h])?)
= f(z) + (gradf(x), h)gn (h Hessf(z) - h)gn + o(||R|*), h — 0.

We here use the gradient of f
gradf(z) i= Vf(2) i= Df(z) i= (i f(@), ... 0uf(2)) € R”

and the Hesstan of f (i.e., its matrixz of second derivatives)

2f(x)  0%f(x) 2% f(x)
Bm Ox10x2 " Ox10Tn
82f(l’) 6’2f(275) o 32f{(33)
Hessf(z) := D*f(x) := dm-d“ 83? 8“_04””
Pf(x)  *f(x) % f(x)
O0rndxr1 Oxndxra ox2

For shorthand,
Hessf () := (0r,0r, f (%)) 1<i<n, ,
1<j<n
which is a symmetric n X n matriz by Theorem 2.3.1.
(ii) Forn =k = 2 we have in the coordinate form
flxr+hy, x4+ hy) = f(w1,22) + Op, f(x1, 2) Ry + Oy (1, 22) Pa
1
+§8§1f($1, x2)hi + 02 4, f (1, T2)hihs

1
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Proof of Theorem 2.6.3. Set
g(t) = f(z+th), teZ 2[0,1].

Applying the one-dimensional Taylor formula to the function g on an open interval Z C R,
we get with some A = A(t) € (0,1)

gt) = g(0)+g'(0)t+ %g"(O)tQ + ég"’(O)t?’ +...

(k+1)( )tk+1.

1
—a®(0)tk
g O+ G

By the chain rule

g t) = (Df(x +th),h)gn, ¢"(t) = (D*f(x +th)h, h)gn, ...
and hence ¢'(0) = (D f(z), h)gn, ¢"(0) = (D*f(x)h, h)gn, ..

Finally we put ¢t = 1 and get the required expression for g(1) = f(x + h).
Example 2.6.7. Compute the Taylor approzimation of order two (k = n = 2) of the

Cobb-Douglas function
fla,y) = *y** at point (1,1).

Solution 2.6.8. In the open domain U = {z >0, y > 0} C R?

of _ 1 3/4y3/4 %: 3 1/4y—1/47

or 4 Oy 4"
0 f 3 . 0 f 3
o) _ 9 —ra 3 9 9 14, -5/
a2~ 160 Y a2 160 Yo
Pf_PF 3
Oxdy  Oydxr 16 '
Evaluating these derivatives at x =y =1 gives
of_1 of_3 &f _of 3 *f _3
oxr 4’ oy 4 oz  Oy2 16’ 0xdy 16
Therefore,
1 3 3.9 9 3 9 9
flz+thyy+tg) = 1+Zh+z}q_3_2<h +g )—|—1—6hg—|—0(h +g°), as h,g — 0.
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2.7 Implicit Functions

Before we studied explicit functions

f:U—=R™
R"D> U sz— f(x) ="y eR™,
open
U1 fl(xlv"‘axn>
: = : c R™.
Ym fm(x17~-uxn)

This ideal situation does not always occur in economic models. Frequently, such models
are described by “mized” equations like

F(z,y)=0, F:U; x Uy - R™, (%)

CRn CRm™

i.e., in coordinate form

Fi(xy, . o 20 Y1y Ym) = 0,

Fo(xy, .o Zn; Y1y oy Ym) = 0,

where x1,...,x, € R are called exogenous variables and y1,...,y,n € R resp. endogenous
variables.
In particular, for m = n = 1 we have

F(z,y) =0, z,y€R.

As a rule, we cannot solve (%) by some explicit formula separating the independent
variables x1,...,x, on one side and v, ..., ¥, on the other.

Interpretation: x = (z1,...,x,) is a vector of parameters and y = (y1, ..., Yyn) is the
output vector we seek to describe the model. If for each (z1,...,x,) € U the equation (%)
determines a unique value (yi,...,yn) € R™, we say that we have an implicit function

y=g(x)eR™ xecUl.

Below we study existence and differentiability properties of implicit functions.
Intuition: 1-dim case:
Let U C R? be open, and consider a  differentiable function

F:U—R, (z,y)— F(z,y).
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Fix some point (zg,yo) € U such that F(zg,y0) = 0, and suppose (!!!) that there
exists a differentiable function

g:Z—=R, z—g@), g(x) =1,
defined on some open interval 7 > z, such that
(z,g9(x)) € U and F(z,g(x)) =0 for all z € Z.

Differentiating the equation F(x,g(x)) = 0, we get by the Chain Rule that

5P @ g(@) + 5 Plagla)) - g(0) =0, €T

Assuming that

0
a_yF(anyO) 7& 07

we conclude that 5
%F (w0, Yo0)

/
g (x0) = — :
a%F(iUo,Z/o)

Indeed we have the following classical theorem from Calculus.

Theorem 2.7.1 (1-dim Implicit Function Theorem, IFT). Suppose that F(z,y) is a con-
tinuously differentiable function on an open domain U C R?, (i.e., F € CY(U), which
means that 0,F,0,F : U — R are continuous). Let a point (zo,yo) € U be such that
F(zo,y0) = 0. If

%F(ﬁoayo) # 0,
then there exist open intervals
I>x9, I3y, IxJCU,
and a continuously differentiable function
9:Z—J, g(xo) = o,
such that F(x,g(x)) =0 for allx € T and

%F(l‘o’yo)
a_yF(ilfoayo)

Furthermore, such g is unique: if (x,y) € Z x J and F(x,y) = 0, then surely y = g(x).
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Remark 2.7.2. The proof of the existence of g in Theorem 2.7.1 is based on the Banach
Contraction Theorem (Th. 1.12) and is highly non-trivial. This is a local result since it
is stated on some (probably very small) open intervals T > xo, J > yo.

Interpretation in economics: Comparative Statistics:
The IFT allows to study in what direction does the equilibrium y(x) change in a control
variable z. The equilibrium is typically described by some equation F(z,y) = 0.

Example 2.7.3.

(i) Let T = (—a,a), consider the function describing an upper half-circle
y:=g(r) =va®—2% v €.

By direct calculations -
/ -
g’ (x) = a2_x2,x€I.
Let us check that IF'T gives the same result. We have

Y’ =g (r) = a® - 2* =
) :

F(z,y) =2>+y*—a*=0
on the open domain U = {(z,y)| x € Z, y > 0} C R2. So, for any (z,y) € U
oF oF
T or, 920, and
2z

T
g’ (x) = — = - .
g() 2v/a? — 22 Va? — 2

(ii) A cubic implicit function

F(z,y) =2 —32y+y*—7=0, (z,y) € R?,

with
(z0,50) = (4,3) and  F(zo,40) = 0.
Indeed,
or
= 27 — 3y = —1 at (20, o),
or
8_y = —3x + 3y2 =15 at (:C()?yO)'

Theorem 2.7.1 tells us that F(x,y) = 0 indeed defines y = g(z) as a C' function of
x around the point with coordinates xo = 4 and yy = 3. Furthermore,
8 (xo,90) 1

Y (o) = ¢'(mg) = — " = —.

—y(xmyo) 15
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(11i) A unit circle is described by

Flr,y)=2"+y*—1=0
oF OF
th & =2z, = =2y.
with —— x, o5 Y
(a) Let first (xg,y0) = (0,1), so that ‘g—lg(mo,yo) =0, ‘Z—Z(xo,yo) = 2 # 0. By Theorem
2.7.1 the implicit function y = g(x) exists around xy = 0 and yo = 1, with
g'(x0) = —0/2 = 0. In this case we have an explicit formula

V() = 1-2° =

y(x) = V1—2a2>0.

We also can compute directly
Y (z) = 1_—2”5’
21— a?

(b) On the other hand, no nice function y = g(x) exists around the initial point

(z0,%0) = (1,0). Actually, Theorem 2.7.1 does not apply since g—g(xo,yo) = 0.

On the picture we can see two branches tending to the point (1,0) :
y(zr) =£Vv1—22

IFT, Multidimensional Case

y'(zo) = 0.

Theorem 2.7.4 (Multidimensional IFT). Let Uy C R™ and Uy C R™ be open domains
and let
F:UIXU2_>Rm7 (m,y)—>F(aZ,y),

be continuously differentiable, i.e., F € C'(U; x Us), which means that all &, gg; :
J

Uy x Uy — R are continuous, 1 < 5 <n, 1 < ik <m. Let a point (xg,yo) € Uy x Uy
be such that F(xo,yo) = 0. Suppose that the m X m-matriz of partial derivatives w.r.t.
Yy = (yla"'vym)

or  oF or
B
or2 or2 2
oF . 8(F1,,Fm) . B Bys " Oym
OFy  OFm OFm
Oy dy2 " Oym

is tnvertible at the point (xo,o), i.e., its determinant

OF
det a—y(ll'[), yo) # 0.

Then, there exist:

23



(i) open neighbourhoods V, C U, of xy resp. Vo C Uy of yo (in general, they can be
smaller than Uy resp. Us),

(ii) a continuously differentiable function
g: ‘/1 — ‘/27 with 9(130) = Yo,
such that
F(z,g(x)) =0 for all x € V;.

Such function is unique in the following sense: if (x,y) € Vi x V, obey F(x,y) =0, then
y = g(x). Furthermore, the derivative al point x, equals

OF -1 9F
Dg(xg) = — [_(9 (Cﬁoayo)] - (0, %) -
S—— ) P \8x ,

Example 2.7.5 (Special Cases).
(i) m=1, ie, F:R" xR — R,
F(z1,...,20;y1) = 0.
The implicit function
y=g(x1,...,2,) €R
exists under the sufficient condition

oF

a—y(iﬂo,yo) # 0.

Then Dg(zo) = Vg(zo) = (0;9(x0));—,, whereby the partial derivatives 9;g(xo) w.r.t.

xj are given by

0; F(xy,
0:9(x0) = _M

, 1 <7< n.
3—5(170,?/0)

(ii) n=1,m=2 ie, F:RxR?— R?

{ F1($»yly?/2) = 07
F2(377y1>y2) = 0.

The sufficient condition is stated in terms of
oF,  OF
- ( % 2 )
Ofp 0fp ’
9y Oy1  Oy2
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namely,
or (8F1 oF, 0F 8F2)(x yo) £ 0
0, Y0 .

det 2 (20, y9) = Lo of
¢ dy (0, %0) Oyr O0ya Oy Oy

Then there exists g(x) = (g1(x), g2(2)) € R* around xo and
OF)

= () - () (Bl

Numerical Example: n =1, m =2, i.e., F : R x R? = R?,

—22% +y} +y3 =0,
F(l',yhy?) = { CC'2 + 61/1*1 _ 2y2 =0

at point xo = 1,y = (1,1). After calculations

2y1 2ys
DyF(IJylin) = < eyl—l _2 > )

and at the point (xg,yo) € R x R?

2 2
DyF<Ian0> = ( 1 —9 > )

det Dy F(zo,y0) =2-(=2)—1-2=—6 #0.
The inverse matriz
OF o —2 =2 1/3 1/3
(a_y<‘”“’y")) ~ 6 ( 12 > - ( 1/6 —1/3

Also, by direct calculations

)

e dg 13 1/3 4 /3
- (35 0 () ().

dx 1/6 —1/3
Reminder: Let
a b .
A= ( . d) with det A := ad — be # 0.

Then, the inverse matriz is calculated by
1 d —b
ATl = . :
det A < —c a )
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2.8 Inverse Functions
Let f: U — R", U C R" - open set (now m =n!).
Problem: Does there exist an inverse mapping

g:=f1:fU)=U?

Theorem 2.8.1. Let U C R™ be open domains and let f : U — R™ be continuously
differentiable, i.e., f € CY(U). Let xy € U and yo := f(x). Suppose that the Jacobi
matriz of partial derivatives

ofi 9N of1
o1 Oxo T Oz
ofs  Of2 Of2
pf=| P
Ofn  Ofm Ofn
o1 Oxzo Ctt Oz

is tnvertible at point xq, i.e., its determinant # 0. Then, there erist open neigh-
bourhoods Uy C U of xy resp. Vo C R"™ of yo such that the mapping

Uy — Vo
is one-to-one (bijection) and the inverse function

g:=f1:Vo—= Uy, acting by
(frof)@) ==, (fofHy=y, Veel, YyeW,

1s continuously differentiable on Vy. Furthermore, the following holds:

Dyg(yo) = [Df(xo)]il-
Proof. Define the function
F:UxR"—R",
Fla,y) =y — f(x).
Then F(zo,y0) = 0 and

OF OF OF

%(l’?y) = —Df(:C), a_x($07y0) = —Df(:lfo) # 0, 8_y($’y) = Idg-,

where Idgn is the identity n x n-matrix. We claim that the equation
F(z,y) ==y — f(z) =0
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locally defines the implicit function z := g(y) = f~(y). Indeed, by Theorem 2.8.1 there
exist Vy C R™ and a function g : Vo — R", g € C'(V}), such that
z=9(y), y=fl9¥), y € V.

So,
g=f"tonV,

and

oF

Dyg(yo) = — {%(9307?40)} - Idgn = — [Df(w0)] " .

Special case: n =1 and f : U — R. The sufficient condition is

f'(wo) # 0.

Then> gl(yo) = f/(1550>

Example 2.8.2. Let

(5)-
=40

By IFT, f is (locally) invertible at every point (z,y) € R? except (0,0). But globally f is
not one-to-one, since for all (x,y) € R?

1(y)=(5)

2.9 Unconstrained Optimization

2 _ .2
(xz J >ER2, x,y € R. Then,
Ty
)

2v 2y
2y 2z

) , det Df(z,y) = 4(2* + 9.

We now turn to study of optimization theory under assumptions of differentiability.
Definition 2.9.1. Let U C R" be an open domain and let

f:U—=R
be an objective function whose extrema we would like to analyse.

(i) A point x* € U is a local maximum (resp. minimum) of f if there exists a ball
B.(z*) C U such that for all x € B.(x*)

f@®) = f(x)( resp. f(a7) < f(x)).

Local mazx or min are called local extrema.
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(ii) A point x* € U is a global (or absolute) maxrimum (resp.minimum) of f if for
allz €U
f(@®) = f(@)( resp. f(z") < [f(x)).

(iii) A point x* € U is a strict local mazximum (resp. minimum) of f if there exists
a ball B.(z*) C U such that for all x # x* in B.(z")

fl@®) > f(z)( resp. f(z") < f(x)).
Remark 2.9.2. In the definition of the global extrema, the function f : U — R™ can be
defined on any domain U, which is not necessarily open.

We want to use methods of Calculus to find local extrema. So, we need smoothness
(i.e., differentiability) of f.

2.10 First-Order Conditions

Aim: To find necessary conditions for local extrema.

Theorem 2.10.1 (Necessary Condition for Local Extrema). Let U C R"™ be an open
domain and f : U — R be partially differentiable on U (i.e., all its partial derivatives
Of/0x; : U — R, 1 <i <mn, exist). Then,

x* € U is a local extremum for f

= gradf(z*) = Vf(z") = <§—a{l(:v*), . ,%(m*)) = 0.

Proof. For i =1,...,n define a function

t — gi(t) :== f(a" +te;), where
e;=(0,...,0,.1 0,...,0) € R" is a unit basis vector in R".
=~
Here t € (—¢,¢) with a sufficiently small € > 0 such that
{z"+te; | —e<t<e}CB(a")CUforall<i<n.

If x* is a local extremum for f(xy,...,x,), then clearly each real function g;(t) : (—e,e) = R
has a local extremum at t = 0. Applying the one-dimensional necessary condition for
extrema (well known from Calculus), we conclude that

of
8xi

(z") = g;(0) = 0.
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2.11 Second-Order Conditions

Aim: To find sufficient conditions for local extrema.

Definition 2.11.1. Any point x* € U satisfying the 1st condition V f(x*) = 0 is called a
critical point of f on U.

The 1st order conditions for local optima do not distinguish between maxima and
minima. To determine whether some critical point z* € U is a local max or min, we need
to examine the behaviour of the second derivative D?f(z*). To this end, we assume that
[ is twice continuously differentiable on U, i.e., f € C?*(U), which means that all
%{;g : U — R are continuous, 1 <14, j < n. To formulate the sufficient conditions we need
to use the Hessian of f, which is the n X n matrix of 2nd partial derivatives:

’f(x)  0*f(x) 92 f(x)
Ot Oz10z2 " O110zn
0% f(x) 82f(Qw) - 2@
Hessf(z) := D*f(x) := [ 279 % Bezan
Pf(x)  0*f(x) 9 f(x)
Orndr1  Oxndzy 822

Since f € C*(U), by Theorem 2.3.1

Pfx) _ Pf(x)
8%8% N 8%0%’

1<4,5 <n,

so that D?f(x) is a symmetric matrix. By Taylor’s approzimation of the 2nd order
f(@™ +h) = f(a") + (grad f ("), h)pn + %(h, Hessf(z") - h)gn + o(|[A]*), h — 0.
Since Vf(z*) =0,
fl@*4+h)~ f(z") + %(h, Hessf(z*) - h)gn, h — 0.
If Hessf(z*) is a negative definite matrix, i.e.,

(y,Hessf(z") y)gn < 0 for all 0 # y € R",

then f(z* + h) < f(x*), i.e., 2" is a strict local max.
If Hessf(z*) is a positive definite matrix, i.e.,

(y,Hessf(z") y)gn > 0 for all 0 # y € R",

then f(x* + h) > f(z*), i.e., * is a strict local min.
We summarize the above analysis in the following theorem:
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Theorem 2.11.2 (Sufficient Conditions for Local Extrema). Let U C R™ be open, the
function f : U — R be twice continuously differentiable on U, and let x* € U obey
Vf(z*) =0. Then:

(i) Hessf(x*) is positive definite (i.e., Hessf(z*) > 0 as a symmetric n X n matriz)
—> x* 15 a strict local min.

The positive definiteness of Hessf(x*) is equivalent to the positivity of alln lead-
ing principal minors of D?f(z*) :

. 827 f(l’*) 82’ f(I*)
Rt @) >0 | 5 se) OBt
a%1f<x*) 8f2f(x*) 8%3f(x*)

95, f(x) Bof(x*) O5af(x*) [ >0, ..., |D*f(z")] = detD*f(*) > 0.

a?%lf(x*) 8§2f($*) a?%gf@*)

> 0,

(i) Hessf(x*) is negative definite (i.e., Hessf(z*) > 0 as a symmetric n X n matriz)
— 2" is a strict local mazx.

The negative definiteness of Hessf(x*) means that the leading principal minors
alternate in sign:

0F 1 f(x*) OFaf(x")
051 f(2*) 03,f(z*)
a%lf(x*) a%zf(x*) 3%3f(x*)

05, f(x*) Bof(a*) Dsaf(z™) | <0, ..oy (=1)"|D*f(a")
5. f(x%) 0F,f(x*) OF3f(x")

0%, f(z*) <0, >0,

> 0.

(iii) Hessf(x*) is indefinite, i.c., for some vectors y; # 0, ya # 0
(y1, Hessf(x™)y1)gn >0 but  (yo, Hessf(2™)yo)pn < 0,
— z* is not a local extremum (i.e., x* is a saddle point )

Remark 2.11.3. A saddle point x* is a min of f in some direction hy # 0 and a max of
[ in other direction hy # 0 (such that (hy,Hessf(xz*)hi)gn > 0, (he, Hessf(xz*)ha) g < 0).

Warning: The positive semidefiniteness Hessf(z*) > 0, i.e.,
(y,Hessf(z*) y)gn >0 forall yeR",
or the negative semidefiniteness Hessf(z*) <0, i.e.,

(y,Hessf(z") y)gn <0 forall yeR",
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does not imply in general that z* is a local ( non-strict) minimum, or respectively, maxi-
mum. Now we cannot ignore the terms o(||2|?) in Taylor’s formula.

Unlike Theorem 2.10.1, the conditions of Theorem 2.11.2 are not necessary conditions!
Remember a standard Counterexample:

file) =2, fola) = —a*,
fi(0) = f1(0) =0, f3(0) = f7(0) = 0.
But f; (resp. fo) has a strict global min (rep. max) at x = 0.
Numerical Examples: f:R? = R, (z,y) — f(z,y)
(i) fla,y)=2"+y",

Vfix)=(22,2y) =0 < x=y=0.

D?f(0) = ( (2) g > , the same for all (x,y),

det D*f(0) =4 >0

Answer: (0,0) is a strict local min.

(i) f(z,y) = 2" —y",
Vf(x)=(22,-2y)=0 <= zxz=y=0.

o= (5 %)
det D*f(0) = —4 < 0.

Answer: (0,0) is a saddle point.
(iii) Hessf(z*) is semidefinite, but we cannot say something about critical points.
Consider functions

filzy) =2 +y', fola,y) =2,
fa(z,y) = a* + ¢,
For each i = 1,2, 3, we have f;(0) =0,V f(0) =0,

2
Hessf(0) = ( 0 8 is positive semidefinite,

i.e., (h,Hessf(xz*)h)g. > 0 for any h € R?.
But, the point (0,0) is:
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(1) strict local min for fi;
(2) @ non-strict local min for fy (since f>(0,y) = 0,Vy € R);

(3) not a local extremum for f3 (f3(t,0) =1*>> 0, f3(0,t) =t < 0if t < 0).

Reminder from Linear Algebra:

Proposition 2.11.4. A symmetric 2 X 2 matrix
A= ( it ) y A12 = (21,
Qg1 G22

1s positive definite if and only if

a;; > 0 and detA := aj1a99 — a%z > 0.
The matriz A is negative definite if and only if

a1 < 0 and detA = aj1a99 — a%2 > 0.
If det A < 0, the matriz A is surely indefinite.

Indeed, for any vector y = (y;,92) € R*:

(Ay,y) = any; + axny; + 2a12Y19s.

Let us assume that y, # 0 and set z = y;/y9, then the quadratic polynomial

(Ay,y)
Y3

= P(Z) = (11122 + 2(1122 + o2, 2 € R,

takes only positive (resp. negative) values for all z € R iff its discriminant A := a3, —

a11Q92 — —detA < 0.

2.12 A Rough Guide: How to Find the Global Maxima/Minima

Problem: to find global maxima (minima) for
f:D — R, DCR" (arbitrary set, not necessary open).

(i) Find and compare the local maxima (minima) in intD — interior of D — and choose
the best.

(ii) Compare with the boundary values f(x), x € D\ intD.
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Numerical Example: Find the max/min of
f(z) = 42 — 52* + 22 over z € [0,1].

Since I := [0, 1] is compact and f is continuous on I, the Weierstrass theorem
guarantees that f has a global max on this interval. There are 2 possibilities: either the
maximum is a local maximum attained on the open interval (0, 1), or it occurs at one of
the boundary points x = 0, 1. In the first case we should meet the 1st order condition:

fl(x) =122 - 102 +2 =0
= x1=1/20rzy=1/3.

So, we have two critical points x; and x5. The 2nd order condition says that

f"(x) =242 — 10
= (1) =2>0and f"(x9) = -2 <0.

Thus, = 1/2 is local min and x = 1/3 is local max. Evaluating f at the four points 0,
1/3, 1/2, and 1 shows that

f0)=0, f(1/3)=7/27, f(1/2) =1/4, f(1)=1;
so x = 1 is the global max resp. x = 1/2 is the global min for f(z), x € [0,1].

Literature: Chapters 16, 17 of C. Simon, L. Blume “Mathematics for Economists”.

Example 2.12.1 (Economical Example: Cobb—Douglas Function).
Cobb—Douglas production function: f(x,y) = z%y° x,y > 0.
Find the mazimum of the profit V(x,y) = px®y® — kyx — kyy. 1st order conditions:

{ paz~y’ = ky,
pbry*~! =k,

After dividing the 1st line by the 2nd one, we get

Putting back in (x), we have
b b
kx — paxa—l <225;x) — pal_bbb (Z_z) xa—i—b—l
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which allows us to find a unique critical point (x*,y*)

1
_ 1 _ a b
L (BENTT preme e

1-—2 p 1——2
1—(a+b 1—(a+b
kx (a+b) k’y (a+b)

. bk,
—= €T .
4 ak,

Is it a mazimum? Calculate

a(a _ 1)ma72yb abxaflybfl
abxaflybfl b(b . 1)$ayb,2 5

det HessV (z,y) = [a(a — 1)b(b — 1) — a®b*] 22" 2y*"2 >

HessV (z,y) = Hessf(xz,y) =p (

if (a—=1)(b—1) > ab ora+b< 1. We also have that

2
%(w,y) <0ifa<l.

So, a sufficient condition for maz is a +b < 1.

2.13 Envelope Theorems

The Envelope Theorem (Umbhiillenden-Theorem) is a general principle describing how
the optimal value of the objective function in a parametrized optimization problem
changes as the parameters of the problem change. In economics, such parameters can
be prices, tax rates, income levels, etc. Such problems constitute the subject of Com-
parative Statistics.

In microeconomic theory, the envelope theorem is used, e.g., to prove Hotelling’s lemma
(1932), Shepard’s lemma (1953) and Roy’s identity (1947).

In applications, it is usually stated non-rigorously, i.e., without the suitable assumptions
which guarantee the differentiability of the so-called optimal value function.

Let

f:R"xR™ =R

be a continuously differentiable function. We call it the objective function f(z,«),
it depends on the choice variable x € R™ and the parameter o € R™. We consider the
unconstrained maximization problem for f, i.e.,

maximize f(zr;a) wr.t. z € R".
Let 2*(«) € R™ be a solution of the above problem, i.e.,
flz*(a); @) > f(z;a) for all x € R™.
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Here we assume that, at each a € R™, such a solution x*(«) € R" exists;
in the case of non-uniqueness we take for x*(a) any one of the maximum points x for
f(z; ). Then,

V() :== max f(z;a) = f(z"(a);a)

TzER™
is the corresponding (optimal) value function.
We are interested in how V' («) depends on o € R™ .
Note that V(«a) = f(2*(a); @) changes for 2 reasons:

(i) directly w.r.t. «, because « is the 2nd variable in f(z;«);
(ii) indirectly, since z*(«a) itself nontrivially depends on a.

Theorem 2.13.1 (Envelope Theorem). Suppose that f(x;«) is continuously differen-
tiable w.r.t. x € R" and o € R™. Suppose additionally that x*(«) is a continuously
differentiable function of « € R™. Then V(«) is also continuously differentiable
and for any a € R™ and 1 <1 <m

oV of . .
(@) = (@),

Proof. By our assumption we have

Therefore, by the chain rule

ov of " Of Oz, .
= “(a); — (" (a); 1< <m.
@ = @R+ 3 Gl el @), 1si<m
The second sum vanishes since by the 1st order condition for extrema (cf. Theorem 2.10.1)
ﬁ(az:’"(oz);oz) =0, foralll<j<n.
81Ej

Thus we get
oV _of L\
aai<&)7 80(2(x (Oé),Oé).

Remark 2.13.2. The same inequality holds if we minimize f(x; ).
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Simplified rule: When calculating 0V/0c;, just forget the max,cg~ and take the
derivatives of f(x; ) w.r.t. «;, and then plug in the optimal solution z*(«). So, we need
to consider only the direct effect of @ on V(«a), ignoring the indirect effect of
().

At this point it would be useful to know when z*(«a) exists and is continuously
differentiable w.r.t. «. To answer this question we can use the Implicit Function
Theorem (IFT).

Assume that f € C?*(R" x R™). We know that z*(«) is a solution to

V.f(x,a) =0

(the necessary condition for extrema), i.e.,

%(m,a) =0,
%(l‘,a) = 0.

Consider a function

g : R"xR" 5 R",
of
(r;a) — (—(x, a)) :
Oz, 1<j<n

The IFT (cf. Theorem 2.8.1) tells us that z*(a) exists as an implicit function and is
continuously differentiable w.r.t. « if the n x n-matrix of partial derivatives of g w.r.t.

x = (x1,...,T,) is invertible, i.e., det D,g(x, @) # 0, where
g1 991 2f 0% f
Ox1 " Oxn 8x§ Tt Ox10zh
9gn 9gn 0%f 2f
Oz ox1 O0xndx1 ox2

D,g = Hess, f = D2f.

Assume that Hess, [ at point (z*(«);«) is a negative definite matrix (which is the
sufficient condition for a strict local maximum w.r.t. z). Hence det D,g(z*(c);0) > 0
if n = 2,4,6,... (or < 0 if respectively, n = 1,3,5,...). These arguments lead to the
following result.

Theorem 2.13.3 (Deep Envelope Theorem, Sammuelson (1947), Auspitz—Lieben (1889)).
Let Uy C R™ and Uy C R™ be open domains and let

f:U xUy =R, (z,a) = f(z; ),
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be twice continuously differentiable (i.c., f € C?(UyxUs)). Suppose that Hess, f(z; )
is negative definite for all x € Uy, a € Uy. Fiz some a € Uy, and let x*(a)) € Uy be a
mazimum of f(x;a) on Uy, i.e.,

fl@*(a);a) = max f(z; )
xecUy
I which, by Theorem 2.11.2, implies |}
Vo f((2"(a);a) = 0.

Then there exists a continuously differentiable function x* : Vo — R™ defined on some
open set Vo C Uy such that

V(o) :=max f(z;a) = f(z"(a);a)

ov of .. |
(@) = (@ ()i

and

Geometrical picture: The curve R” 5 a +— y = V(a) := f(z*(a); @) is the envelope
of the family of curves R™ 5 a — y = V. («a) := f(z; @), indexed by the parameter z € R™.
Indeed, for each x and o we have

flz;0) <V(a).

None of the V,(a)—curves can lie above the curve y = V(a). On the other hand, for each
value of « there exists at least one value z*(a) of x such that f(z*(a);a) = V(a). The
curve a = V(o) () will just touch the curve o — y = V() at the point (z*(v), V(a)),
and so must have exactly the same tangent as the graph of V' at this point, i.e.,

1% of .. .
(@) = S (@)

So, the graph of V(o) is like an envelope that is used to “wrap” or cover all the curves

y = Vi(a).

Example 2.13.4 (Hotelling’s Lemma). A competitive firm cannot change:
(i) output prices p (if you increase p, you lose customers);
(ii) wages w (workers will go to other firms).

But the firm can chose x — the number of workers it uses. Let f(x) is the corresponding
production function. The profit of the firm at given x,p,w is given by

m(z;p,w) = pf(x) —wz.
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The mazimum profit function (also called the firm’s profit function)
V(p,w) = r:{nlgg({pf(:v) —wxr}.

It is important to know how the profit of the firm changes if p,w change:

v oav
op’ ow

By the Envelope Theorem, if the model is “nice” (i.e., we have a continuously differentiable
function x*(p,w)), then formally
ov
a_p = f($*<p’w))’
oV
a_w = —QT* (p7 ’LU),

where x*(p,w) is the optimal number of workers.

Conclusion: when wages are increasing, the maximum profit will be decreasing pro-
portionally to the number of workers.
Formally x* obeys

g(z,w,p) =pf(x") —w=0
By the IFT, a “nice” solution exists if f"(x*) < 0.

2.14 Gateaux and Fréchet Differentials

The notions of directional and total differentiability can be naturally extended to infinite
dimensional spaces.
Let (X, || -||) be a normed space, U C X — open set and f: U — R.

Definition 2.14.1 (Gateaux differentiability). The function f: U — R is Gateaux differ-
entiable at a point x € U along direction v € X, ||v|| = 1, if the following limit exists:

lim% [f(z+tv) — f(x)] = D, f(x).

t—0

D, f(x) € X is called the Gateauxr derivative.

Definition 2.14.2 (Fréchet differentiability). The function f : U — R is Fréchet differ-
entiable at a point x € U if there exists a linear continuous mapping D f(z) : X — X such
that

) 1 ‘
Jim o (e b) = f(2) = D (@)h] =0

Df(x) € L(X,X) is called the Fréchet derivative.
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Fréchet differentiability = Gateaux differentiability along all directions v € X, ||v]| = 1.

Proposition 2.14.3 (Sufficient condition for Fréchet differentiability). If all directional
derivatives
D,f(x), YwelX, |v]=1,

exist in all points x € U and can be represented as
Dy f(z) = L(z)v
with a linear bounded operator L(z) : X — X and the mapping
Usz— L(z) € L(X,X)
is continuous (in the operator norm), then f: U — R is also Fréchet differentiable at all

points v € U and

Proposition 2.14.4 (Necessary condition for extrema). If f has a local extrema in U,
then each D, f(x) =0 forv € X, ||v|| =1, (provided this directional derivative exists).
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