
QE ”Optimization”, WS 2016/17

Part 4. Constrained Optimization (+ extra material)

(about 6-7 Lectures)

Supporting Literature:

Angel de la Fuente, ”Mathematical Methods and Models for
Economists”, Chapter 7;

Sundaram R.K., ”A First Course in Optimization Theory”,
Chapters 5 and 6

Contents

4.1. Equality Constrains: The Lagrange Problem
4.2. A ”Cookbook” Procedure: How to use the Multidimensional Theo-

rem of Lagrange
4.3. Global Sufficient Conditions
4.4. Nonlinear Programming and Kuhn-Tucker Theorem (Optimization

under Inequality Constraints)
4.5. A ”Cookbook” Procedure: How to use the Theorem of Kuhn and

Tucker
4.6. Sufficient Conditions for Concave Lagrangean (”Concave/Convex

Programming”)
4.7. The General Case: Mixed Constraints
4.8. Comparative Statistics and Envelope Theorem
4.9. Concave/Convex Programming
4.10. Linear Programming and Duality Method

1



4.1. Equality Constrains: The Lagrange Problem

Typical Example from Economics:

A consumer chooses how much of the available income I to spend on:

goods units price per unit
1 x1 p1
... ... ...
n xn pn

.

The consumer preferences are measured by the utility function u(x1, ..., xn).
The consumer faces the problem of choosing (x1, ..., xn) in order to maximize
u(x1, ..., xn) subject to the budget constraint p1x1 + ...pnxn = I.

Mathematical formalization:

maximize u(x1, ..., xn),

subject to p1x1 + ...pnxn = I.

We ignore for a moment that x1, ..., xn ≥ 0 and that possibly not the
whole income I may be spent.

To solve this and similar problems economists make use of the Lagrangean
multiplier method.
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4.1.1. Lagrange Problem: Mathematical Formulation

U ⊂ Rn – open set

Let us given functions (usually C1- or even C2-class)

f : U → R, g : U → Rm with m ≤ n.

LP Problem: maximize the objective function f(x) subject to g(x) = 0 :

max
x∈U , g(x)=0

f(x).

The components of g = (g1, ..., gm) are called constraint functions,
D := {x ∈ U | g(x) = 0} is called the constraint set.

The method is named after the Italien/French mathematician
J. L. Lagrange (1736–1813). In economics, the method was first implemented
(≈1876) by the Danish economist H. Westergard.

We are first looking for x∗ ∈ D which are (local) max for f . Such x∗

could be unique or non-unique, could exist or not exist at all.

# Definition 4.1: A point x∗ ∈ D is called a local max (resp. min)
for the LP problem if there exists ε > 0 such that for all x ∈ Bε(x

∗) ∩D.

f(x∗) ≥ f(x) (resp. f(x∗) ≤ f(x)).

Moreover, this point is a global max (resp. min) if f(x∗) ≥ f(x) (resp.
f(x∗) ≤ f(x)) for all x ∈ D.

4.1.2. The Simplest Case of LP (n = 2, m = 1)

(two variables and one equality constraint)

U ⊂ R2, f, g : U → R - continuously differentiable

max {f(x1, x2) | (x1, x2) ∈ U, g(x1, x2) = 0} .

Let (x∗1, x
∗
2) be some local maximizer for LP (provided such exists). How

to find all such (x∗1, x
∗
2)? The Theorem of Lagrange (which will be precisely

formulated later) gives the necessary conditions which should be satisfied
by any local optima in this problem. Based on the Lagrange Theorem, we
should proceed as follows to find all possible candidates for (x∗1, x

∗
2).
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A Formal Scheme of the Lagrange Method

1) Write down the so-called Lagrangean function

L(x1, x2) := f(x1, x2)− λg(x1, x2)

with a constant λ ∈ R – Lagrangean multiplier.

2) Take the partial derivatives of L(x1, x2) w.r.t. x1 and x2

∂

∂x1
L(x1, x2) : =

∂f

∂x1
(x1, x2)− λ

∂g

∂x1
g(x1, x2),

∂

∂x2
L(x1, x2) : =

∂f

∂x2
(x1, x2)− λ

∂g

∂x2
g(x1, x2).

As will be explained below, a solution (x∗1, x
∗
2) to the LP can only be a

point for which
∂

∂x1
L(x1, x2) =

∂

∂x2
L(x1, x2) = 0

for a suitable λ = λ(x∗1, x
∗
2). This leads to the next step:

3) Solve the system of three equations and find all possible so-
lutions (x∗1, x

∗
2;λ
∗) ∈ U × R
∂
∂x1
L(x1, x2) = ∂f

∂x1
(x1, x2)− λ ∂g

∂x1
g(x1, x2) = 0,

∂
∂x2
L(x1, x2) = ∂f

∂x2
(x1, x2)− λ ∂g

∂x2
g(x1, x2) = 0,

∂
∂λ
L(x1, x2) = −g(x1, x2) = 0.

So, any candidate for local extrema (x∗1, x
∗
2) is a solution, with its own

λ∗ ∈ R, to the system

∂L
∂x1

= 0,
∂L
∂x2

= 0,
∂L
∂λ

= 0.

These 3 conditions are called the first order conditions for LP.

Caution: This procedure would not have worked if both ∂g
∂x1

and ∂g
∂x2

were zero at (x∗1, x
∗
2), i.e., (x∗1, x

∗
2) is a critical point of g. The restriction that

U does not contain critical points of g is called a constraint qualification
in the domain U. The restriction that ∇g(x∗1, x

∗
2) 6= 0 implies the constrain

qualification in some neighborhood of the point (x∗1, x
∗
2).
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Remark: (i) A magic process!!! To solve the constraint problem for
two variables (x1, x2) we transform it into the unconstrained problem in
three variables by adding an artificial variable λ).

(ii) The same scheme works whether we are minimizing f(x1, x2). To
distinguish max from min, one needs second order conditions.

Working Example:

Maximize f(x1, x2) = x1x2

subject to 2x1 + x2 = 100.

Solution: Define g(x1, x2) = 2x1 + x2 − 100 and the Lagrangean

L(x1, x2) = x1x2 − λ (2x1 + x2 − 100) .

The 1st order conditions for the solutions of LP:

∂L
∂x1

= x2 − 2λ = 0,
∂L
∂x2

= x1 − λ = 0,

g(x1, x2) = 2x1 + x2 − 100 = 0.

Herefrom, x2 = 2λ, x1 = λ,

2λ+ 2λ = 100 ⇐⇒ λ = 25.

The only candidate for the solution

x1 = 25, x2 = 50, λ = 25.

The constrain qualification holds at all points (x, y) ∈ R2:

∂g

∂x1
= 2,

∂g

∂x2
= 1.

The solution obtained can be confirmed by the substitution method:

x2 = 100− 2x1 =⇒
h(x1) = x1(100− 2x1) = 2x1(50− x1)
h′(x1) = −4x1 + 100 =⇒ x1 = 25

h′′(x1) = −4 < 0.

Therefore, x1 = 25 is a max point for h =⇒ x1 = 25, x2 = 50 is a max
point for f. N
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Justification of the LP scheme: An analytic argument

How to find a local max / min of f(x1, x2) subject to g(x1, x2) = 0.

Let (x∗1, x
∗
2) ∈ U be a local extrema for LP and let ∇g(x∗1, x

∗
2) 6= 0.

Without loss of generality assume that ∂g/∂x2(x
∗
1, x
∗
2) 6= 0. Then by the

Implicit Function Theorem (IFT) the equation

g(x1, x2) = 0

defines a differentiable function x2 := i(x1) such that

g(x1, i(x1)) = 0 near (x∗1, x
∗
2) ∈ U

and i′(x∗1) = −∂g/∂x1
∂g/∂x2

(x∗1, x
∗
2).

Then
h(x1) := f(x1, i(x1))

has a local extremum at the point x∗1. By the Chain Rule

0 = h′(x∗1) =
∂f

∂x1
(x∗1, x

∗
2) +

∂f

∂x2
(x∗1, x

∗
2)i
′(x∗1)

=
∂f

∂x1
(x∗1, x

∗
2)−

∂f

∂x2
(x∗1, x

∗
2)
∂g/∂x1
∂g/∂x2

(x∗1, x
∗
2).

Hence,
∂f

∂x1
(x∗1, x

∗
2) =

∂f/∂x2
∂g/∂x2

(x∗1, x
∗
2)
∂g

∂x1
(x∗1, x

∗
2).

Denoting

(!!!) λ :=
∂f/∂x2
∂g/∂x2

(x∗1, x
∗
2) ∈ R,

we have

∂f

∂x1
(x∗1, x

∗
2)− λ

∂f

∂x1
(x∗1, x

∗
2) = 0,

∂f

∂x2
(x∗1, x

∗
2)− λ

∂f

∂x2
(x∗1, x

∗
2) = 0. �
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4.1.2. More Variables (n ≥ 2, m = 1)

find max (min) f(x1, ..., xn) subject to g(x1, ..., xn) = 0.

Define the Lagrangean with the multiplier λ ∈ R

L(x1, ..., xn) : = f(x1, ..., xn)− λg(x1, ..., xn),

x = (x1, ..., xn) ∈ U ⊂ Rn.

!!! Theorem 4.1 (Necessary Conditions; Lagrange Theorem
for a single constraint equation):

Let U ⊂ Rn be open and let f, g : U → R be continuously differentiable.
Let x∗ = (x∗1, ..., x

∗
n) ∈ U be a local extremum for f(x1, ..., xn) under the

equality constraint g(x1, ..., xn) = 0. Suppose further that ∇g(x∗) 6= 0, i.e.,
at least one of ∂g/∂xj(x

∗) 6= 0, 1 ≤ j ≤ n. Then there exists a unique
number λ∗ ∈ R such that

∂f

∂xj
(x∗) = λ∗

∂g

∂xj
(x∗), for all 1 ≤ j ≤ n,

or ∇f(x∗) = λ∗∇g(x∗).

In particular, for any pair (i, j), 1 ≤ i, j ≤ n,

∂f
∂xi

(x∗)
∂f
∂xj

(x∗)
=

∂g
∂xi

(x∗)
∂g
∂xj

(x∗)
(provided

∂g

∂xj
(x∗) 6= 0).

Constraint qualification (CQ): We assume that ∇g(x∗) 6= 0. The
method in general fails if ∇g(x∗) = 0. All such critical points should be
treated separately by calculating f(x∗).

The Theorem of Lagrange only provides necessary conditions for local
optima x∗ and, moreover, only for those which meet CQ, i.e., ∇g(x∗) 6= 0.
These conditions are not sufficient!
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Counterexample (when the Lagrangean method could fail):

Maximize f(x1, x2) = −x2
subject to g(x1, x2) = x32 − x21 = 0, (x1, x2) ∈ U = R2.

Since x32 = x21 =⇒ x2 ≥ 0. Moreover, x2 = 0 ⇔ x1 = 0.
So, (x∗1, x

∗
2) = (0, 0) is the global max of f under the constraint g = 0. But

∇g(x∗1, x
∗
2) = 0, i.e., the constaint qualification does not hold. Furthermore,

∇f(x1, x2) = (0,−1) for all (x1, x2), and there cannot exist any λ ∈ R such
that

∇f(x∗)− λ∇g(x∗) = 0 (since − 1 6= λ · 0).

The Lagrange Theorem is not applicable. N

Remark: (i) On the technical side: we need ∇g(x∗) 6= 0 to apply IFT.

(ii) If ∇g(x∗) = 0, it still can happen that ∇f(x∗) = λ∇g(x∗) = 0
(Suppose e.g. that f : U → R has a strict global min/max in x∗ and hence
∇f(x∗) = 0).

(iii) It is also possible that the constraint quialifications holds, but the
LP problem has no solutions, see the example below.

f(x1, x2) = x21 − x22
subject to g(x1, x2) = 1− x1 − x2.

Then
∇g(x1, x2) = (−1,−1) 6= 0 everywhere.

Define the Lagrangean

L(x1, x2) = f(x1, x2)− λg(x1, x2).
2x1 + λ = 0
−2x2 + λ = 0

1− x1 − x2 = 0
⇔ λ 6= 0, x1 = −x2, but x1 + x2 = 1,

λ = 0, x1 = x2 = 0, but x1 + x2 = 1,

No solutions to LP !!

Indeed, put x2 = 1− x1, h(x1) := x21 − (1− x1)2 = −1 + 2x1.

No local extrema !! N
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4.1.3. More Variables and More Constraints (n ≥ m)

!!! Theorem 4.2 (Necessary Conditions; General Form of the
Lagrange Theorem):

Let U ⊂ Rn be open and let

f : U → R, g : U → Rm (m ≤ n)

be continuously differentiable. Suppose that x∗ = (x∗1, ..., x
∗
n) ∈ U is a local

extremum for f(x1, ..., xn) under the equality constraints
g1(x1, ..., xn) = 0,
..................

gm(x1, ..., xn) = 0.

Suppose further that the matrix Dg(x∗) has rank m. Then there exists a
unique vector λ∗ = (λ∗1, ..., λ

∗
m) ∈ Rm such that

∂f

∂xj
(x∗) =

∑m

i=1
λ∗i
∂gi
∂xj

(x∗), for all 1 ≤ j ≤ n.

In other words,

∇f(x∗)︸ ︷︷ ︸
1×n

= λ︸︷︷︸
1×m

×DG(x∗)︸ ︷︷ ︸
m×n

(product of 1×m and m× n matrices),

(
∂f

∂x1
(x∗), ...,

∂f

∂xn
(x∗)

)
= (λ∗1, ..., λ

∗
m)×


∂g1
∂x1

(x∗) ... ∂g1
∂xn

(x∗)
...

...
∂gm
∂x1

(x∗) ... ∂gm
∂x1

(x∗)

 .

Constraint Qualification: The rank of the Jacobian matrix

Dg(x∗) =


∂g1
∂x1

(x∗) ... ∂g1
∂xn

(x∗)
...

...
∂gm
∂x1

(x∗) ... ∂gm
∂x1

(x∗)


is equal to the number of the constraints, i.e.,

rank Dg(x∗) = m.

This ensures that Dg(x∗) contains an invertible m ×m submatrix, which
will be used to determine λ∗ ∈ Rm.
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Proof of Theorem 4.2.

Main ingredients of the proof:

(i) Implicit Function Theorem,
(ii) Chain Rule for Derivatives.

By assumption, there exists an m × m submatrix of Dg(x∗) with full
rank, i.e., its determinant is non-zero. Without loss of generality, such
submatrix can be chosen as

D≤mg(x∗) :=


∂g1
∂x1

(x∗) ... ∂g1
∂xm

(x∗)
...

...
∂gm
∂x1

(x∗) ... ∂gm
∂xm

(x∗)


(otherwise we can change the numbering of variables x1, ..., xn). So, we have

detD≤mg(x∗) 6= 0,

and hence there exists the inverse matrix [D≤mg(x∗)]−1 . By the IFT there
exist C1-functions

i1(xm+1, ..., xn), ..., im(xm+1, ..., xn)

such that

g (i1(xm+1, ..., xn), ..., im(xm+1, ..., xn), xm+1, ..., xn) = 0 near (x∗1, ..., x
∗
n),

and moreover

Di(x∗m+1, ..., x
∗
n)︸ ︷︷ ︸

m×(n−m)

= −

D≤m g(x∗1, ..., x
∗
n)︸ ︷︷ ︸

m×n

−1 ×D>mg(x∗1, ..., x
∗
n)︸ ︷︷ ︸

n×(n−m)

,

where

D>mg(x∗) :=


∂g1

∂xm+1
(x∗) ... ∂g1

∂xn
(x∗)

...
...

∂gm
∂xm+1

(x∗) ... ∂gm
∂xn

(x∗)

 .

Then (x∗m+1, ..., x
∗
n) is a local extrema of the C1-function

h(xm+1, ..., xn) := f (i1(xm+1, ..., xn), ..., im(xm+1, ..., xn), xm+1, ..., xn) .

Hence, by the Chain Rule
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0︸︷︷︸
∈ Rn−m

= ∇h(x∗m+1, ..., x
∗
n) =

∇≤mf(x∗1, ..., x
∗
n)︸ ︷︷ ︸

1×m

×Di(x∗m+1, ..., x
∗
n)︸ ︷︷ ︸

m×(n−m)

+∇>mf(x∗1, ..., x
∗
n)︸ ︷︷ ︸

1×(n−m)

= −∇≤mf(x∗)︸ ︷︷ ︸
1×m

× [D≤mg(x∗)]−1︸ ︷︷ ︸
m×m

×D>mg(x∗)︸ ︷︷ ︸
m×(n−m)

+∇>mf(x∗)︸ ︷︷ ︸
1×(n−m)

, or

∇>mf(x∗)︸ ︷︷ ︸
1×(n−m)

= ∇≤mf(x∗)︸ ︷︷ ︸
1×m

× [D≤mg(x∗)]−1︸ ︷︷ ︸
m×m

×D>mg(x∗)︸ ︷︷ ︸
m×(n−m)

∗

(1)

= λ∗︸︷︷︸
1×m

×D>mg(x∗)︸ ︷︷ ︸
m×(n−m)

,where we set

Rm 3 λ∗︸︷︷︸
1×m

:= (λ∗1, ..., λ
∗
m) := ∇≤mf(x∗)︸ ︷︷ ︸

1×m

× [D≤mg(x∗)]−1︸ ︷︷ ︸
m×m

. (∗∗)

So, we have from (∗)

(i)
∂f

∂xj
(x∗) =

∑m

i=1
λ∗i
∂gi
∂xj

(x∗), for all m+ 1 ≤ j ≤ n,

and respectively from (∗∗)

∇≤mf(x∗)︸ ︷︷ ︸
1×m

[D≤mg(x∗)]−1︸ ︷︷ ︸
m×m

= λ∗︸︷︷︸
1×m

⇐⇒

∇≤mf(x∗)︸ ︷︷ ︸
1×m

= λ∗︸︷︷︸
1×m

×D≤mg(x∗) ⇐⇒

(ii)
∂f

∂xj
(x∗) =

∑m

i=1
λ∗i
∂gi
∂xj

(x∗), for all 1 ≤ j ≤ n,

which proves the theorem. �
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4.2. A ”Cookbook” Procedure:
How to use the Multidimensional Theorem of Lagrange

1) Set up the Lagrangean function

U 3 (x1, ..., xn)→ L(x1, ..., xn) := f(x1, ..., xn)−
∑m

i=1
λigi(x1, ..., xn)

with a vector of Lagrange multipliers λ = (λ1, ..., λm) ∈ Rm.

2) Take the partial derivatives of L(x1, ..., xn) w.r.t. xj, 1 ≤ j ≤ n,

∂

∂xj
L(x1, ..., xn) :=

∂f

∂xj
(x1, ..., xn)−

∑m

i=1
λi
∂gi
∂xj

(x1, ..., xn).

3) Find the set of all critical points (x∗1, ..., x
∗
n) ∈ U for the

Lagrangean L(x1, ..., xn). To this end, solve the system of (n + m)
equations{

∂
∂xj
L(x1, ..., xn) = 0, 1 ≤ j ≤ n,

∂
∂λi
L(x1, ..., xn) = −gi(x1, ..., xn) = 0, 1 ≤ i ≤ m,

with (n+m) unknowns

(x1, ..., xn) ∈ U, (λ1, ..., λm) ∈ Rm.

Every critical point (x∗1, ..., x
∗
n;λ∗1, ..., λ

∗
m) ∈ U×Rm for L gives us the

candidate (x∗1, ..., x
∗
n) for the local extrema of the LP, provided this

(x∗1, ..., x
∗
n) satisfies the constraint qualification rank Dg(x∗) = m. To

check whether x∗ is a local (global) max / min, we need to evaluate
f at each point x∗.

The points x∗ at which the constraint qualification fails (i.e., rank
Dg(x∗) < m) should be considered separately since the Lagrange
Theorem is not applicable to them.
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Economic / Numerical Example to LP

Maximize the Cobb-Douglas utility function

u(x1, x2, x3) = x21x
3
2x3, x1, x2, x3 ≥ 0 (∈ R+),

under the budjet constraint

x1 + x2 + x3 = 12.

Solution: The global maximum exists by the Weierstrass theorem, since

u(x1, x2, x3) is a continuous function defined on a compact domain

D :=
{

(x1, x2, x3) ∈ R3
+ | x1 + x2 + x3 = 12

}
.

If any of x1, x2, x3 is zero, then u(x1, x2, x3) = 0, which is not the max
value.

So, it is enough to solve the Lagrange optimization problem in the open
domain

Ů :=
{

(x1, x2, x3) ∈ R3
>0

}
.

The Lagrangean is

L(x1, x2, x3) = x21x
3
2x3 − λ(x1 + x2 + x3 − 12).

The 1st order conditions are
∂L
∂x1

= 2x1x
3
2x3 − λ = 0, (i)

∂L
∂x2

= 3x21x
2
2x3 − λ = 0, (ii)

∂L
∂x3

= x21x
3
2 − λ = 0, (iii)

x1 + x2 + x3 = 12, (iv)

(i) + (ii) =⇒ x2 = 3x1/2;
(i) + (iii) =⇒ x3 = x1/2.

.

Inserting x2 and x3 in (iv) =⇒

x1 + 3x1/2 + x1/2 = 12 =⇒
x1 = 4, x2 = 6, x3 = 2.

The Constraint Qualification in this (as well as in any other) point holds:
∂g
∂x1

= ∂g
∂x2

= ∂g
∂x3

= 1.

Answer: The only possible solution is (4, 6, 2), which is the global max
point.
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Harder Example (with Geometrical Interpretation)

max ( min) f(x, y) = x2 + y2 (square of distance from (0, 0) in R2)

subject to g(x, y) = x2 + xy + y2 − 3 = 0.

Solution: The constraint g(x, y) = 0 defines an ellipse in R2, so we should
find points of the ellipse which have the minimal distance from (0, 0).

The Lagrangean is

L(x, y) = x2 + y2 − λ(x2 + xy + y2 − 3), (x, y) ∈ R2.

The 1st order conditions are
∂L
∂x

= 2x− λ(2x+ y), (i)
∂L
∂y

= 2y − λ(x+ 2y), (ii)

x2 + xy + y2 − 3 = 0. (iii)

(i) =⇒ λ = 2x
2x+y

if y 6= −2x. Inserting λ in (ii) =⇒

2y =
2x

2x+ y
(x+ 2y) =⇒ y2 = x2 ⇐⇒ x = ±y.

(a) Suppose y = x. Then (iii) =⇒ x2 = 1, so x = 1 or x = −1.
We have 2 solution candidates: (x, y) = (1, 1) and (x, y) = (−1, 1) for

λ = 2/3.

(b) Suppose y = −x. Then (iii) =⇒ x2 = 3, so x =
√

3 or x = −
√

3.
We have 2 solution candidates: (x, y) = (

√
3,−
√

3) and (x, y) = (−
√

3,
√

3)
for λ = 2.

(c) It remains to consider y = −2x. Then (i) =⇒ x = y = 0, which
contradicts (iii).

So, we have 4 candidates for the max/min problem:

fmin = f(1, 1) = f(−1,−1) = 2; fmax = f(
√

3,−
√

3) = f(−
√

3,
√

3) = 6.

Next, we check the constraint qualification in these points: ∇g(x, y) =
(2x+ y, 2y + x) 6= 0. The only point where ∇g(x, y) = 0 is x = y = 0, but it
does not satisfy the constraint g(x, y) = 0.

Answer: (1, 1) and (−1, 1) solve the min problem; (
√

3,−
√

3) and (−
√

3,
√

3)
solve the max problem. N
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Economic Example

Suppose we have n resources with units x1, ..., xn ≥ 0 and m consumers
with their utility functions

u1(x), ..., um(x), x = (x1, ..., xn) ∈ Rn
+.

The vector xi := (xi1, ..., xin) ∈ Rn
+ describes the allocation received by the

ith consumer, 1 ≤ i ≤ m.

Problem: Find
max

x1,...,xn∈Rn
+

∑m

i=1
ui(xi)

under the resourse constraint∑m

i=1
xi = ω ∈ Rn

+ (a given endowment vector), i.e.,∑m

i=1
xij = ωj ≥ 0, 1 ≤ j ≤ n.

Solution: The Weierstrass theorem says that the global maximum exists
if u1(x), ..., um(x) are continuous functions.

The Lagrangean with the multiplier vector λ ∈ Rn

L(x1, ..., xn) =
∑m

i=1
ui(xi)−

〈
λ,
∑m

i=1
xi − ω

〉
=

∑m

i=1
ui(x)−

∑n

j=1
λj

(∑m

i=1
xij − ωj

)
.

1st order conditions

∂ui
∂xij

(xi) = λj (independent of i) =⇒

∂ui
∂xij

(xi)

∂ui
∂xik

(xi)
=

λj
λk

, for any pair of resourses k, j and any consumer i.

The left-hand side is the so-called marginal rate of substitution (MRS)
of resourse k for resourse j. This relation is the same for all consumers,
1 ≤ i ≤ m. N
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4.3. Sufficient Conditions
4.3.1. Global Sufficient Conditions

The Lagrange multiplier method gives the necessary conditions. They
also will be sufficient in the following special case.

Concave / Convex Lagrangean

Let everything be as in Theorem 4.2.

Namely, let U ⊂ Rn be open and let

f : U → R, g : U → Rm (m ≤ n)

be continuously differentiable. Consider the Lagrangean

L(x;λ) := f(x)−
∑m

i=1
λigi(x).

Let (x∗, λ∗) ∈ U × R be a critical point of L(x;λ), i.e., it satisfies the 1st
order conditions.

!!! Theorem 4.3. (i) If L(x;λ∗) is a concave function of x ∈ U ,
then x∗ is the global maximum.

(ii) If L(x;λ∗) is a convex function of x ∈ U , then x∗ is the global
minimum.

Proof : By assumption, x obeys the constraint g(x) = 0. Let L(x;λ∗) be
concave on U. Then by Theorem 3.6, for any x ∈ U

h(x) = L(x;λ∗) ≤ L(x∗;λ∗) + 〈∇xL(x∗;λ∗), x− x∗〉Rn

= L(x∗;λ∗) +
〈
∇f(x∗)−

∑m

i=1
λ∗i∇gi(x∗), x− x∗

〉
Rn

= L(x∗;λ∗) + 0 = f(x∗)− 〈λ∗, g(x∗)〉Rn = f(x∗)− 0 = f(x∗). �

Remark: In particular, Th. 4.3 holds if f is concave, g is convex and
λ∗ ≥ 0. Furthermore, all this applies to linear f, g which are both convex
and concave.

16



Economic Example

A firm uses inputs K > 0 of capital and L > 0 of labour, respectively,
to produce a single output Q according to the Cobb-Douglas production
function

Q = KaLb,

where
a, b > 0 and a+ b ≤ 1.

The prices of capital and labour are r > 0 and w > 0, respectively. Solve
the cost minimizing problem

min {rK + wL}
subject to KaLb = Q.

Solution: The Lagrangean is

L(K,L) = rK + wL− λ
(
KaLb −Q

)
.

Note that

f(K,L) := rK + wL is linear and g(k, L) := KaLb −Q is concave.

The 1st order conditions are necessary and sufficient:
r = λaKa−1Lb,
w = λbKaLb−1,
KaLb = Q,

=⇒


λ ≥ 0,

r
w

= aL
bK
⇒ L = K br

aw
,

Ka+b = Q
(
aw
br

)b
.

Answer:

K = Q
1

a+b

(aw
br

) b
a+b

, L = K
br

aw
= Q

1
a+b

(
br

aw

) a
a+b

is the global solution of the Lagrange min problem. N
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4.3.2. Local Sufficient Conditions of 2nd Order

!!! Theorem 4.4. Let U ⊂ Rn be open and let

f : U → R, g : U → Rm (m ≤ n)

be twice continuously differentiable. Define the Lagrangean

L(x;λ) := f(x)− 〈λ, g(x)〉Rm .

Let x∗ ∈ U be such that g(x∗) = 0 and

DxL(x;λ∗) = ∇f(x∗)︸ ︷︷ ︸
1×n

− λ∗︸︷︷︸
1×m

×Dg(x∗)︸ ︷︷ ︸
m×n

= 0

for some Lagrange multiplier λ∗ ∈ Rm, i.e., (x∗, λ∗) is a critical point of
L(x;λ). Consider the matrix of 2nd partial derivatives of L(x;λ∗)
w.r.t. x

D2
xL(x;λ∗) := D2f(x)︸ ︷︷ ︸

n×n

− λ∗︸︷︷︸
1×m

×D2g(x∗)︸ ︷︷ ︸
m×(n×n)

.

Suppose that D2
xL(x;λ∗) is negative definite subject to the constraint

Dg(x∗)︸ ︷︷ ︸
m×n

× h︸︷︷︸
n×1

= 0, i.e., for all x ∈ U

〈
D2
xL(x;λ∗)h, h

〉
Rn < 0 for each 0 6= h ∈ Rn

from the linear constraint subspace Z(x∗) := {h ∈ Rn| Dg(x∗)h = 0}.

Then x∗ is a strict local maximum of f(x) subject to g(x) = 0 (i.e.,
there exists a ball Bε(x

∗) ⊂ U such that f(x∗) > f(x) for all x ∈ Bε(x
∗)

satisfying the constraint g(x) = 0).

Proof (Idea): By Taylor’s formula and the IFT. See e.g. Simon, Blume,
Sect. 19.3, or Sundarem, Sect. 5.3 .
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Illustrative Example with n = 2, m = 1 (see Section 4.2)

Find local max / min of

f(x, y) = x2 + y2

subject to g(x, y) = x2 + xy + y2 − 3 = 0.

Solution: we have seen that the 1st order conditions give 4 candidates

(1, 1), (−1,−1) with λ = 2/3,

(
√

3,−
√

3), (−
√

3,
√

3) with λ = 2.

Calculate

∇g(x, y) = (2x+ y, 2y + x),

L(x, y) = x2 + y2 − λ(x2 + xy + y2 − 3),

D2L(x, y) =

(
2− 2λ −λ
−λ 2− 2λ

)
.

(i) Let x∗ = y∗ = 1, λ∗ = 2/3, and h = (h1, h2) 6= 0.

∇g(x∗, y∗) = (3, 3),

〈∇g(x∗, y∗), h〉 = 0 ⇐⇒ 3h1 + 3h2 = 0 ⇐⇒ h1 = −h2.〈
D2
xL(x;λ∗)h, h

〉
Rn = (2− 2λ∗)h21 − 2λ∗h1h2 + (2− 2λ∗)h22

= 8h21/3 > 0 (for h 6= 0).

By Th. 4.4, x∗ = y∗ = 1 is a local min. The same holds for x∗ = y∗ = −1.

(ii) Let x∗ = −y∗ =
√

3, λ∗ = 2, and h = (h1, h2) 6= 0.

∇g(x∗, y∗) = (
√

3,−
√

3),

〈∇g(x∗, y∗), h〉 = 0 ⇐⇒ h1 = h2.〈
D2
xL(x;λ∗)h, h

〉
Rn = −8h21 < 0 (for h 6= 0).

By Th. 4.4, x∗ =
√

3, y∗ = −
√

3 is a local maximum. The same holds for
x∗ = −

√
3, y∗ =

√
3. N

19



4.4. Nonlinear Programming and (Karush-)
Kuhn-Tucker Theorem.

Optimization under Inequality Constraints

In economics one meets rather inequality than equality constraints (cer-
tain variables should be nonnegative, budget constraints, etc.).

Formulation of the problem

Let U ⊂ Rn be an open set, n,m ∈ N (not necessarily m ≤ n), find

max
x∈U

f(x1, ..., xn)

subject to m inequality constraints
g1(x1, ..., xn) ≤ 0,
..................

gm(x1, ..., xn) ≤ 0.

The points x ∈ U which satisfy these constraints are called admissible
or feasible. Respectively,

D := {x ∈ U | g1(x) ≤ 0, ..., gm(x) ≤ 0}

is called admissible or feasible set.

A point x∗ ∈ U is called a local maximum (resp. minimum) of f
under the above inequality constraints, if there exists a ball Bε(x

∗) ⊂ U such
that f(x∗) ≥ f(x) (resp. f(x∗) ≤ f(x)) for all x ∈ D ∩Bε(x

∗).

Remark: In general, it is possible that m > n, since we have some
inequality constraints. For the sake of concreteness we consider only the
constraints with ”≤”.

In principle, the problem can be solved by the Lagrange method. We have
to examine the critical points of L(x1, ..., xn) in the interior of the domain D
and the behaviour of f(x1, ..., xn) on the boundary of D. However, since the
1950s, the economists generally tacked this such problems by using an ex-
tension of the Lagrange multiplier method due to Karush–Kuhn–Tucker.
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4.4.1. Karush-Kuhn-Tucker (KKT) Theorem

—————————————————————————————

Albert Tucker (1905–1995) was a Canadian-born American mathematician

who made important contributions in topology, game theory, and non-linear pro-

gramming. He chaired the mathematics department of the Princeton University

for about 20 years, one of the longest tenures.

Harold Kuhn (born 1925) is an American mathematician who studied game

theory. He won the 1980 John von Neumann Theory Prize along with David Gale

and Albert Tucker.

He is known for his association with John Nash, as a fellow graduate student, a

lifelong friend and colleague, and a key figure in getting Nash the attention of the

Nobel Prize committee that led to Nash’s 1994 Nobel Prize in Economics. Kuhn

and Nash both had long associations and collaborations with A. Tucker, who was

Nash’s dissertation advisor. Kuhn is credited as the mathematics consultant in

the 2001 movie adaptation of Nash’s life, ”A Beautiful Mind”.

William Karush (1917–1997) was a professor of California State University

at Northridge and is a mathematician best known for his contribution to Karush–

Kuhn–Tucker conditions. He was the first to publish the necessary conditions

for the inequality constrained problem in his Masters thesis (Univ. of Chicago,

1939), although he became renowned after a seminal conference paper by Kuhn

and Tucker (1951).

—————————————————————————————–
Definition: We say that the inequality constraint gi(x) ≤ 0 is effective

(or active, binding) at a point x∗ ∈ U if gi(x
∗) = 0.

Respectively, the constraint gi(x) ≤ 0 is passive (inactive, not bind-
ing) at a point x∗ ∈ U if gi(x

∗) < 0.

Intuitively, only active constraints have effect on the local behaviour of
an optimal solution. If we know from beginning which restrictions would
be binding at an optimum, the Karush-Kuhn-Tucker problem would reduce
to a Lagrange problem, in which we would take the active constraints as
equalities and ignore the rest.
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!!! Theorem 4.5 (Karush-Kuhn-Tucker Theorem or the 1st Or-
der Necessary Conditions for Optima; without proof here):

Let U ⊂ Rn be open and let

f : U → R, g : U → Rm (m,n ∈ N)

be continuously differentiable. Suppose that x∗ = (x∗1, ..., x
∗
n) ∈ U is a local

maximum for f(x1, ..., xn) under the inequality constraints
g1(x1, ..., xn) ≤ 0,
..................

gm(x1, ..., xn) ≤ 0.

Without loss of generality, suppose that the first p (0 ≤ p ≤ m) constraints
are active at point x∗, while the others are inactive.

Furthermore, suppose that the Constraint Qualification (CQ) holds:
the rank of the Jacobian matrix of the binding constraints (which is a p× n
matrix)

Dg≤p(x
∗) =


∂g1
∂x1

(x∗) ... ∂g1
∂xn

(x∗)
...

...
∂gp
∂x1

(x∗) ... ∂gp
∂xn

(x∗)


is equal to p, i.e.,

rank Dg≤p(x
∗) = p.

Then there exists a nonnegative vector λ∗ = (λ∗1, ..., λ
∗
m) ∈ Rm

+ such
that (x∗, λ∗) satisfy the following conditions

[KKT− 1]
∂f

∂xj
(x∗) =

∑m

i=1
λ∗i
∂gi
∂xj

(x∗), for all 1 ≤ j ≤ n;

[KKT− 2] λ∗i gi(x
∗) = 0, for all 1 ≤ i ≤ m.
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Remark: (i) [KKT− 2] is called the “Complementary Slackness”
condition: if one of the inequalities

λ∗i ≥ 0 or gi(x
∗) ≤ 0

is slack (i.e., strict), the other cannot be!{
λ∗i > 0 =⇒ gi(x

∗) = 0,
gi(x

∗) < 0 =⇒ λ∗i = 0.

It is also possible that both λ∗i = gi(x
∗) = 0.

(ii) The Constraint Qualification (CQ) claims that the matrix
Dg≤p(x

∗) is of full range p, i.e., there is no redundant binding constraints,
both in the sense that there are fewer binding constraints than variables
(i.e., p ≤ n) and in the sense that the constraints which are binding are
‘independent’ (otherwise, Dg≤p(x

∗) cannot have the full range p).

By changing min f = max(−f), we get the following

Corollary 4.1: Suppose f, g are defined as in Theorem 4.5 and x∗ ∈ U
is a local minimum. Then the statement of Theorem 4.5 holds true with
the only modification

[KKT− 1′]
∂f

∂xj
(x∗) = −

∑m

i=1
λ∗i
∂gi
∂xj

(x∗), for all 1 ≤ j ≤ n.

23



4.5. A ”Cookbook” Procedure
How to use the Theorem of Karush–Kuhn–Tucker

1) Set up the Lagrangean function

U 3 (x1, ..., xn)→ L(x1, ..., xn) := f(x1, ..., xn)−
∑m

i=1
λigi(x1, ..., xn)

with a vector of nonnegative Lagrange multipliers λ = (λ1, ..., λm) ∈
Rm

+ (i.e., all λi ≥ 0, 1 ≤ i ≤ m).

2) Equate all 1st order partial derivatives of L(x1, ..., xn) w.r.t.
xj, 1 ≤ j ≤ n, to zero:

[KKT− 1]
∂

∂xj
L(x1, ..., xn) =

∂f

∂xj
(x1, ..., xn)−

∑m

i=1
λi
∂gi
∂xj

(x1, ..., xn) = 0.

3) Require (x1, ..., xn) to satisfy the constraints

− ∂

∂λi
L(x1, ..., xn) = gi(x1, ..., xn) ≤ 0, 1 ≤ i ≤ m.

Impose the Complementary Slackness Condition

[KKT− 2] λigi(x1, ..., xn) = 0, 1 ≤ i ≤ m,

whereby λi = 0 if gi(x1, ..., xn) < 0

and gi(x1, ..., xn) = 0 if λi > 0.

4) Find all x∗ = (x∗1, ..., x
∗
n) ∈ U which together with the corre-

sponding values of λ∗1, ..., λ
∗
m satisfy Conditions [KKT− 1], [KKT− 2].

These are the maxima solution candidates, at least one of which
solves the problem (if it has a solution at all). For such x∗ we should
check the Constraint Qualification rank Dg≤p(x

∗) = p, otherwise the
method can give a wrong answer.

Finally, compute all points x ∈ U where the Constraint Qualifi-
cation fails and compare values of f at such points.
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4.5.1. Remarks on Applying KKT Method

1) The sign of λi is important. The multipliers λ∗i ≥ 0 correspond to
the inequality constraints gi(x) ≤ 0, 1 ≤ i ≤ m. Constraints gi(x) ≥ 0
formally lead to the multipliers λ∗i ≤ 0 in [KKT− 1] (by setting g̃i := −gi).

2) λ∗i ≥ 0 correspond to the maximum problem

max
x∈U ; g1(x)≤0,...,gm(x)≤0

f(x).

In turn, the minimum problem

min
x∈U ; g1(x)≤0,...,gm(x)≤0

f(x)

leads to the following modification of the [KKT− 1] (by setting f̃ := −f)

[KKT− 1′]
∂f

∂xj
(x∗) = −

∑m

i=1
λ∗i
∂gi
∂xj

(x∗), for all 1 ≤ j ≤ n.

3) Intuitively, the λi means the sensitivity of the objective function f(x)
w.r.t. a ”small” increase of the parameter ci in tne constraint gi(x) ≤ ci.

4) Possible reasons leading to failure of the Karush-Kuhn-Tucker method:

(i) The Constraint Qualification fails. Even if an optimum x∗ does
exit but does not obey CQ, it may happen that x∗ does not satisfy [KKT− 1],
[KKT− 2].

(ii) There exists no global optimum for the constrained problem at
all. Then there may exist solutions to [KKT− 1], [KKT− 2], which are
however not global, or maybe even local, optima.
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Worked Examples (with n = 2, m = 1)

1) Solve the problem:

max f(x, y) for f(x, y) = x2 + y2 + y + 1

subject to g(x, y) = x2 + y2 − 1 ≤ 0.

Solution: By the Weierstrass Theorem there exists a global maximum
(x∗, y∗) ∈ D of f(x, y) in the closed bounded domain (unit ball)

D :=
{

(x, y) ∈ R2| x2 + y2 ≤ 1
}
.

The Lagrangean is defined for all (x, y) ∈ R2 := U by

L(x, y) := x2 + y2 + y + 1− λ(x2 + y2 − 1).

[KKT− 1]

{
∂L(x,y)
∂x

= 2x− 2λx = 0, (i)
∂L(x,y)
∂y

= 2y + 1− 2λy = 0. (ii)
,

[KKT− 2]

{
λ ≥ 0, x2 + y2 ≤ 1,

λ = 0 if x2 + y2 < 1, x2 + y2 = 1 if λ > 0.
(iii).

We should find all (x∗, y∗) ∈ D which satisfy (i)− (iii) for some λ ≥ 0.

(i) ⇐⇒ 2x(1− λ) = 0 ⇐⇒ λ = 1 or x = 0.

But λ = 1 =⇒︸︷︷︸
(ii)

2y + 1− 2y = 0, contradiction. Hence,

x = 0.

(a) Suppose x2 + y2 = 1 ⇐⇒ y = ±1.
If y = 1 =⇒︸︷︷︸

(ii)

λ = 3/2, which solves (iii).

If y = −1 =⇒︸︷︷︸
(ii)

λ = 1/2, which solves (iii).

(b) Suppose x2 + y2 < 1; x = 0 =⇒ −1 < y < 1, λ = 0.
Then by (ii) y = −1/2.
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We get 3 candidates:

1) (0, 1) with λ = 3/2 and f(0, 1) = 3;
2) (0,−1) with λ = 1/2 and f(0,−1) = 1;
3) (0,−1/2) with λ = 0 and f(0,−1/2) = 3/4.

The point (0,−1/2) is inside D, i.e., the constraint is not active.
At the points (0, 1) and (0,−1) the constraint is active, but ∇g(x, y) =

(2x, 2y) 6= 0 and rankDg(x, y) = 1, i.e., (CQ) holds.

The only point, where (CQ) could fail, i.e., ∇g(x, y) = 0, is x = y = 0
with f(0, 0) = 1. But this point is inside D, i.e. g(0, 0) < 0, and hence the
constraint is passive.

Answer: x = 0, y = 1 is the solution (global maximum). N

2) Counterexample (KKT method fails)

max f(x, y) for f(x, y) = −(x2 + y2)

subject to g(x, y) = y2 − (x− 1)3 ≤ 0.

Elementary analysis: y2 ≤ (x − 1)3 =⇒ x ≥ 1. In particular, the
smallest possible value of x is 1, which corresponds to y = 0. So,

max
g(x,y)≤0

f(x, y) = − min
g(x,y)≤0

(x2 + y2) = −1

is achieved at x∗ = 1, y∗ = 0.

Now, we try to apply the Karush-Kuhn-Tucker method. First we note
that g(x∗, y∗) = 0 and

∇g(x∗, y∗) = (∂xg(x∗, y∗), ∂yg(x∗, y∗)) = (0, 0),

i.e., the Constrained Qualification fails. Formally, we should find λ∗ ≥ 0
such that {

∂xf(x∗, y∗) = λ∗∂xg(x∗, y∗) = 0,
∂yf(x∗, y∗) = λ∗∂yg(x∗, y∗) = 0,

but we see that ∇f(x∗, y∗) = (−2x∗,−2y∗) = (−2, 0) 6= 0. The Kuhn-Tucker
method gives no solutions / critical points, hence it is not applicable. On the
other hand, elementary analysis gives us the global maximum at the above
point x∗ = 1, y∗ = 0. N
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4.5.2. The Simplest Case of KKT Problem (n = 2, m = 1)

Problem: Maximize f(x, y)

Subject to g(x, y) ≤ 0.

! Corollary 4.2 (Karush-Kuhn-Tucker Theorem with one in-
equality constraint):

Let U ⊂ R2 be open and let

f : U → R, g : U → R

be continuously differentiable. Suppose that (x∗, y∗) ∈ U is a local maxi-
mum for f(x, y) under the inequality constraint g(x, y) ≤ 0.

If g(x∗, y∗) = 0 (i.e., the constraint g is active at point (x∗, y∗)), suppose
additionally that rank Dg(x∗) = ∇g(x∗) = 1, i.e.,

∂g

∂x
(x∗, y∗) 6= 0 or

∂g

∂y
(x∗, y∗) 6= 0,

i.e., the Constraint Qualification (CQ) holds.

In any case, form the Lagrangean function

L(x, y) := f(x, y)− λg(x, y).

Then, there exists a multiplier λ∗ ≥ 0 such that

[KKT− 1]
∂L
∂x

(x∗, y∗) =
∂f

∂x
(x∗, y∗)− λ∗ ∂g

∂x
(x∗, y∗) = 0,

∂L
∂y

(x∗, y∗) =
∂f

∂y
(x∗, y∗)− λ∗∂g

∂y
(x∗, y∗) = 0;

[KKT− 2] λ∗ · g(x∗, y∗) = 0, λ∗ ≥ 0, g(x∗, y∗) ≤ 0.
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Why Does the Receipe Work? Geometrical Picture (n = 2, m = 1)

Since we do not know a priori whether or not the constraint will be
binding at the maximizer, we cannot use the only condition [KKT− 1], i.e.,
∂xL(x, y) = ∂yL(x, y) = 0 that we used with equality constraints. We should
complete the statement by the condition [KKT− 2], which says that either
the constraint is binding or its multiplier is zero (or sometime, both).

Idea of Prooving Theorem 4.5:

Case 1: Passive Constraint g(x∗, y∗) < 0.

The point p = (x∗, y∗) is inside the feasible set

D := {(x, y) ∈ U | g(x, y) ≤ 0} .

This means that (x∗, y∗) is an interior maximum of f(x, y) and thus

∂f

∂x
(x∗, y∗) =

∂f

∂y
(x∗, y∗) = 0.

In this case we set λ∗ = 0.

Case 2: Binding Constraint g(x∗, y∗) = 0.

The point p = (x∗, y∗) is on the boundary of the feasible set. In other
words, (x∗, y∗) solves the Lagrange problem, i.e., there exists a Lagrange
multiplier λ∗ ∈ R such that

∂f

∂x
(x∗, y∗) = λ∗

∂g

∂x
(x∗, y∗),

∂f

∂y
(x∗, y∗) = λ∗

∂g

∂y
(x∗, y∗),

or ∇f(x∗, y∗) = λ∗∇g(x∗, y∗).

This time, however, the sign of λ∗ is important! Let us show that λ∗ ≥ 0.
Recall from Sect. 2, that ∇f(x∗, y∗) ∈ R2 points in the direction in which f
inreases most rapidly at the point (x∗, y∗). In particular, ∇g(x∗, y∗) points to
the set g(x, y) ≥ 0 and not to the set g(x, y) ≤ 0. Since (x∗, y∗) maximizes f
on the set g(x, y) ≤ 0, the gradient of f cannot point to the constraint set. If
did, we could increase f and still keep g(x, y) ≤ 0. So, ∇f(x∗, y∗) must point
to the region where g(x, y) ≥ 0. This means that ∇f(x∗, y∗) and ∇g(x∗, y∗)
must point in the same direction. Thus, if ∇f(x∗, y∗) = λ∗∇g(x∗, y∗), the
multiplier λ∗ must be ≥ 0. N
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Trivial Case: n = m = 1.

! Corollary 4.3: Let U ⊂ R be open and let f, g ∈ C1(U). Suppose
that x∗ ∈ U is a local maximum for f(x) under the inequality constraint
g(x) ≤ 0.

If g(x∗) = 0 (i.e., the constraint is active at x∗), suppose additionally
that

g′(x∗) 6= 0

(i.e., the CQ holds). Then there exists a multiplier λ∗ ≥ 0 such that

[KT − 1] f ′(x∗) = λ∗g′(x∗);

[KT − 2] λ∗g(x∗) = 0, λ∗ ≥ 0, g(x∗) ≤ 0.
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4.5.3. The Case n = m = 2.

! Corollary 4.4: Let U ⊂ R2 be open and let

f : U → R, g1 : U → R, g2 : U → R

be continuously differentiable. Suppose that (x∗, y∗) ∈ U is a local maxi-
mum for f(x, y) under the inequality constraints g1(x, y) ≤ 0, g2(x, y) ≤ 0.

(i) If g1(x
∗, y∗) = g2(x

∗, y∗) = 0 (i.e., both constraints are active at
point (x∗, y∗)), suppose additionally that rank Dg(x∗) = 2, i.e.,

detDg(x∗, y∗) =

∣∣∣∣∣∣∣
∂g1
∂x

(x∗, y∗) ∂g1
∂y

(x∗, y∗)
...

∂g2
∂x

(x∗, y∗) ∂g2
∂y

(x∗, y∗)

∣∣∣∣∣∣∣ 6= 0

(i.e., the CQ holds).

(ii) If g1(x
∗, y∗) = 0 and g2(x

∗, y∗) < 0, suppose additionally that rank
Dg1(x

∗, y∗) = 1, i.e., at least one of ∂g1
∂x

(x∗, y∗) and ∂g1
∂y

(x∗, y∗) is not zero.

(iii) If g1(x
∗, y∗) < 0 and g2(x

∗, y∗) = 0, suppose respectively that rank
Dg2(x

∗, y∗) = 1, i.e., at least one of ∂g2
∂x

(x∗, y∗) and ∂g2
∂y

(x∗, y∗) is not zero.

(iv) If both g1(x
∗, y∗) < 0 and g2(x

∗, y∗) < 0, no additional assumptions
are needed (i.e., the CQ holds automatically).

In any case, form the Lagrangean function

L(x, y) := f(x, y)− λ1g1(x, y)− λ2g2(x, y).

Then there exists a multiplier λ∗ = (λ∗1, λ
∗
2) ∈ R2

+ such that:

[KKT− 1]

∂L
∂x

(x∗, y∗) = ∂f
∂x

(x∗, y∗)− λ∗1
∂g1
∂x

(x∗, y∗)− λ∗2
∂g2
∂x

(x∗, y∗) = 0,

∂L
∂y

(x∗, y∗) = ∂f
∂y

(x∗, y∗)− λ∗1
∂g1
∂y

(x∗, y∗)− λ∗2
∂g2
∂y

(x∗, y∗) = 0;

[KKT− 2]

λ∗1g1(x
∗, y∗) = 0, λ∗2g2(x

∗, y∗) = 0,

λ∗1 ≥ 0, λ∗2 ≥ 0, g1(x
∗, y∗) ≤ 0, g2(x

∗, y∗) ≤ 0.
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(More difficult) Example with n = m = 2

min (e−x − y) subject to

{
ex + ey ≤ 6,
y ≥ x.

Solution: Rewrite the problem as

max f(x, y), with f(x, y) := y − e−x, (x, y) ∈ R2 =: U,

subject to {
g1(x, y) := ex + ey − 6 ≤ 0,
g2(x, y) := x− y ≤ 0.

Define the Lagrangean function with λ1, λ2 ≥ 0

L(x, y) := y − e−x − λ1(ex + ey − 6)− λ2(x− y).

The 1st order conditions [KKT-1]{
e−x − λ1ex − λ2 = 0, (i)
1− λ1ey + λ2 = 0. (ii)

The Complementary Slackness [KKT-2]
λ1(e

x + ey − 6) = 0; λ1 ≥ 0; λ1 = 0 if ex + ey < 6, (iii)
λ2(x− y) = 0; λ2 ≥ 0; λ2 = 0 if x < y; (iv)

x ≤ y, ex + ey ≤ 6.

From (ii)
λ2 + 1 = λ1e

y =⇒ λ1 > 0,

and then by (iii)
ex + ey = 6.

Suppose in (iv) that x = y, then ex = ey = 3.

From (i) and (ii) =⇒{
1
3
− 3λ1 − λ2 = 0,

1− 3λ1 + λ2 = 0.
=⇒

{
λ1 = 2/9,
λ2 = −1/3,

which contradicts to (iv) (since now λ2 < 0).
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Hence x < y and λ2 = 0, as well as ex + ey = 6 and λ1 > 0.

(i) =⇒ λ1 = e−2x,
(ii) =⇒ λ1 = e−y

}
=⇒

y = 2x,
e2x + ex = 6

}
=⇒ ex = 2 or ex = −3 (impossible!).

So,

x∗ = ln 2, y∗ = 2x = ln 4,

λ∗1 = 1/4, λ∗2 = 0.

We showed that (x∗, y∗) = (ln 2, ln 4) is the only candidate for a solution.
At this point the constraint g1(x, y) ≤ 0 is binding whereas the constraint
g2(x, y) ≤ 0 is passive. The (CQ) now reads as

∂g1
∂x

(x∗, y∗) = ex
∗ 6= 0 or

∂g1
∂y

(x∗, y∗) = ey
∗ 6= 0

and is satisfied.

Actually, (CQ) holds at all points (x, y) ∈ R2. Namely,

Dg(x, y) =

(
ex ey

1 −1

)
,

with detDg(x, y) = −(ex + ey) < 0 and ∇g1(x, y) 6= 0, ∇g2(x, y) 6= 0 for all
(x, y) ∈ R2.

As we will see from Theorem 4.6, (ln 2, ln 4) is the global minimum
point we need to find. N
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4.6. Sufficient Conditions for Concave Lagrangean
(”Concave/Convex Programming”)

Let U ⊂ Rn be an open, convex set, and let

f : U → R, gi : U → Rm, 1 ≤ i ≤ m (m,n ∈ N)

be continuously differentiable. Furthermore, we assume that

f is concave, gi are convex for all 1 ≤ i ≤ m.

Consider the Karush-Kuhn-Tucker Problem

max
x∈U

f(x)

subject to m inequality constraints

g1(x) ≤ 0, ..., gm(x) ≤ 0.

!!! Theorem 4.6 (Global Sufficient Conditions):

Let (x∗, λ∗) with x∗ ∈ U and λ∗ = (λ∗i )
m
i=1 ∈ Rm

+ satisfy the conditions

[KKT− 1]
∂f

∂xj
(x∗) =

∑m

i=1
λ∗i
∂gi
∂xj

(x∗), for all 1 ≤ j ≤ n;

[KKT− 2] λ∗i ≥ 0, gi(x
∗) ≤ 0, and λ∗i gi(x

∗) = 0 or all 1 ≤ i ≤ m.

Then x∗ is an optimal solution (i.e., global maximum) to the KKT prob-
lem.

Remark: In Theorem 4.6 we do not need to check the Constraint
Qualification!

!!! Theorem 4.7 (Uniqueness):

Under the above conditions, suppose additionally that f is strictly con-
cave. Then the KKT problem

max
x∈U

f(x), subject to gi(x) ≤ 0, 1 ≤ i ≤ m,

has at most one solution.
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Proof of Theorem 4.6.

The proof is similar to the proof of the same fact for the Lagrange Problem
(see Th. 4.3).

Take any feasible point x ∈ D. Since the Lagrangean

L(x, λ∗) := f(x)−
∑m

i=1
λ∗i gi(x), with λ∗i ≥ 0,

is concave on U and by [KKT− 1] it holds ∂xL(x, λ∗) = 0, by Theorem
3.7 we have that x∗ is the global max for L(x, λ∗) on U , i.e.,

L(x∗, λ∗) ≥ L(x, λ∗), for all x ∈ U.

The latter is equivalent to

f(x∗) ≥ f(x) +
∑m

i=1
λ∗i [gi(x

∗)− gi(x)], ∀x ∈ U.

Now let x ∈ D. For each fixed 1 ≤ i ≤ m consider the two cases:

(i) Case gi(x
∗) < 0. By the Complementary Slackness Condition [KKT− 2],

then λ∗i = 0. So, λ∗i (gi(x
∗)− gi(x)) = 0.

(ii) Case gi(x
∗) = 0. Then λ∗i ≥ 0 and for any x ∈ D

λ∗i [gi(x
∗)− gi(x)] = −λ∗i gi(x) ≥ 0.

All together, this shows that always∑m

i=1
λ∗i (gi(x

∗)− gi(x)) ≥ 0,

and hence for all x ∈ D

f(x∗) ≥ f(x) +
∑m

i=1
λ∗i (gi(x

∗)− gi(x)) ≥ f(x). �

Proof of Theorem 4.7.

Suppose that x∗ and x∗ are both optima and x∗ 6= x∗. Set

z =
1

2
(x∗ + x∗).

Each gi is convex, thus gi(z) ≤ 1
2
[gi(x

∗)+gi(x∗)] ≤ 0 and z is feasible. Also
by strict concavity of f

f(z) >
1

2
[f(x∗) + f(x∗)] = f(x∗),

which contradicts to the assumption that x∗ and x∗ are global maxima. �
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4.7. The General Case: Mixed Constraints

It is straightforward to combine the statements of Lagrange (Th. 4.2)
and Karush-Kuhn-Tucker (Th. 4.5) theorems into one result which han-
dles the general case.

!!! Theorem 4.8: Let U ⊂ Rn be open and let

f : U → R, gi : U → R, 1 ≤ i ≤ m+ k,

be continuously differentiable, where

1 ≤ m ≤ n and k ≥ 0.

Suppose that x∗ ∈ U is a local maximum for f(x) under the constraints{
gi(x) = 0, 1 ≤ i ≤ m,

gi(x) ≤ 0, m+ 1 ≤ i ≤ m+ k.

Without loss of generality, suppose that the first p (0 ≤ p ≤ k) inequal-
ity constraints

gi(x) ≤ 0, m+ 1 ≤ i ≤ m+ p,

are active (or binding) at point x∗ (i.e., gi(x
∗) = 0), while the other k−p

inequality constraints

gi(x) ≤ 0, m+ p+ 1 ≤ i ≤ m+ k,

are passive (i.e., gi(x
∗) < 0).

Furthermore, suppose that the Constraint Qualification (CQ) holds:
the rank of the Jacobian matrix of the equality and binding constraints
(which is a (m+ p)× n matrix)

Dg≤(m+p)(x
∗) =


∂g1
∂x1

(x∗) ... ∂g1
∂xn

(x∗)
...

...
∂gm+p

∂x1
(x∗) ... ∂gm+p

∂xn
(x∗)


is equal to m+ p, i.e.,

rank Dg≤(m+p)(x
∗) = m+ p ( ≤ n ).
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Then there exists a (unique) vector λ∗ = (λ∗1, ..., λ
∗
m+k) ∈ Rm+k such

that (x∗, λ∗) satisfy the following conditions

[KKT− 1]
∂f

∂xj
(x∗) =

∑m+k

i=1
λ∗i
∂gi
∂xj

(x∗), for all 1 ≤ j ≤ n;

[KKT− 2] λ∗i ≥ 0, λ∗i gi(x
∗) = 0, for all m+ 1 ≤ i ≤ m+ k.

Remark: By assumption λ∗i ∈ R for 1 ≤ i ≤ m and λ∗i ∈ R+ for
m+ 1 ≤ i ≤ m+ k.

Example:

max (x− y2) subject to

{
x2 + y2 = 4,
x ≥ 0, y ≥ 0.

Solution: First note that the global solution of the max problem ex-
ists by the Weierstrass Theorem.

Next, rewrite the problem as

max f(x, y), f(x, y) := x− y2, (x, y) ∈ R2 =: U,

subject to 
g1(x, y) := x2 + y2 − 4 = 0,

g2(x, y) := −x ≤ 0,
g3(x, y) := −y ≤ 0.

Define the Lagrangean function with λ1, λ2, λ3 ∈ R

L(x, y) := x− y2 − λ1(x2 + y2 − 4) + λ2x+ λ3y.

The 1st order conditions [KKT-1]{
1− 2λ1x+ λ2 = 0, (i)
−2y − 2λ1y + λ3 = 0. (ii)

The Complementary Slackness [KKT-2]{
λ2 ≥ 0, λ2 = 0 if x > 0 or x = 0 if λ2 > 0, (iii)
λ3 ≥ 0, λ3 = 0 if y > 0 or y = 0 if λ3 > 0. (iv)
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The Equality Constraint

x2 + y2 = 4 (v)

and the Inequality Constraints

x ≥ 0, y ≥ 0. (vi)

From (i) since λ2 ≥ 0, x ≥ 0

2λ1x = 1 + λ2 =⇒ λ1 > 0, x > 0.

Analogously, from (ii) since λ3 ≥ 0, y ≥ 0

2y(1 + λ1) = λ3 =⇒ λ3, y > 0 or λ3 = y = 0.

From (iv) λ3 > 0 and y > 0 is impossible, thus

λ3 = y = 0.

Now, by (v) and (vi)
x2 = 4 =⇒ x = 2.

Finally, by (iii) and (i)
λ2 = 0, λ1 = 1/4.

This leads to the solution candidate

x = 2, y = 0, λ1 = 1/4, λ2 = λ3 = 0.

Let us check (CQ) at the point (2, 0). The constraint g2 is passive at this
point and g3 is active. The matrix(

∂g1
∂x

∂g1
∂y

∂g3
∂x

∂g3
∂y

)
=

(
2x 2y
0 −1

)
=

(
4 0
0 −1

)
has full rank (its determinant 6= 0), i.e., (CQ) holds at this point. Moreover,
(x, y) = (2, 0) is the unique point from the feasible domain at which g2 is
passive and g1 is active.
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Finally, let us find all feasible points where (CQ) can fail. Both inequality
constraints g2 and g3 cannot be active, since x = y = 0 does not satisfy
x2 + y2 − 4 = 0. If g2 is active and g3 is passive, then x = 0, y = 2 and(

∂g2
∂x

∂g2
∂y

∂g3
∂x

∂g3
∂y

)
=

(
−1 0
2x 2y

)
=

(
−1 0
0 4

)
has full rank (its determinant 6= 0), i.e., (CQ) holds at this point. So, there
are no more candidates for local extrema.

Answer: constrained global max is f(2, 0) = 2.
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Concluding Remarks

1) From a technical point of view, the CQ condition rankDg≤(m+p)(x
∗) =

m + p ( ≤ n ) is needed to employ the Implicit Function Theorem when
proving the Kuhn-Tucker Theorem 4.8.

2) There is the following extension of Theorem 4.6 to the mixed problem:

Theorem 4.6∗ (Global Sufficient Conditions):

In the formulation of Theorem 4.8, suppose that

f is concave and gi are

{
linear, for 1 ≤ i ≤ m,
convex, for m+ 1 ≤ i ≤ m+ k.

Let (x∗, λ∗) with x∗ ∈ U and λ∗ ∈ Rm+k satisfy the necessary conditions
[KKT− 1] and [KKT− 2]. Then x∗ is an optimal solution (i.e., global
maximum) to the generalized Kuhn-Tucker problem. If f is strictly con-
cave, we have that x∗ is the unique local (and global) maximum (like as in
Theorem 4.9).

3) There is a proper extension of Theorem 4.4 giving sufficient condi-
tions for local maximum in the generalized Karush-Kuhn-Tucker problem.

Theorem 4.4∗ (Local Sufficient Conditions of the 2nd order):

Let U ⊂ Rn be open and let

f : U → R, gi : U → Rm, 1 ≤ i ≤ m+ k,

be twice continuously differentiable. Define the Lagrangean

L(x;λ) := f(x)−
∑m+k

i=1
λigi(x), x ∈ U.

Let x∗ ∈ U and λ∗ ∈ Rm+k be such that the 1st order conditions of Theorem
4.8 are satisfied (whereby we have gi(x

∗) = 0, 1 ≤ i ≤ m+ p, and gi(x
∗) < 0,

m+ p+ 1 ≤ i ≤ m+ k). Suppose that the Hessian of L(x;λ∗) w.r.t. x

D2
xL(x;λ∗) := D2f(x)− λ∗D2g(x), x ∈ U,

is negative definite on the linear constraint subspace

Z(x∗) := {h ∈ Rn | Dg1≤i≤m+p(x
∗)h = 0}.

Then x∗ is a strict local constrained maximum of f.
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4.8. Comparative Statistics and Envelope Theorem

The most general Envelope Theorems (compare with Theorem 2.12!) deal
with constrained problems in which there are parameters in both objective
function f and in the constrains gi.

!!! Theorem 4.9. (Envelope Theorem for the Lagrange Prob-
lem):

Let U ⊂ Rn be open and let m ≤ n. Consider a family of optimization
problems

V (α) : = maxx∈U f(x;α),

subject to g1(x;α) = 0, ..., gm(x;α) = 0,

depending on the (vector) parameter α ∈ RL, L ∈ N.
Let f(x;α) and gi(x;α), 1 ≤ i ≤ m, be continuously differentiable

functions of x ∈ U and α ∈ RL. For any given α, let x∗(α) ∈ U be a solution
of the constrained optimization problem, and let λ∗(α) ∈ Rm be the value of
the associated Lagrange multiplier. Suppose further that x∗(α) and λ∗(α)
are also continuously differentiable functions, and that the Constraint
Qualification (CQ)

rankDgx(x
∗;α) = m

holds for all values of α.

Then the maximum value function V (α) := f(x∗(α);α) is also continu-
ously differentiable and

∂V

∂αl
(α) =

∂L
∂αl

(x∗(α);α)

=
∂f

∂αl
(x∗(α);α)−

∑m

i=1
λi
∂gi
∂αl

(x∗(α);α), 1 ≤ l ≤ L.

Remark: (i) The theorem says that in V (α) we can ignore the indirect
dependence (i.e., via x∗(α)) of ∂V/∂αl on α.

(ii) A similar statement is true for the Karush-Kuhn-Tucker optimization
problem depending on an extra parameter α.
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Economic Examples
(see more in Sects. 7, 8 of A. de la Fuente)

I. General consumer optimization problem with n goods

Maximize the utility function U(x1, ..., xn) depending on the commod-
ity bundle (vector) x := (x1, ..., xn) ∈ Rn

+,

max U(x1, ..., xn),

subject to the budget constraint

p1x1 + ...+ pnxn = w,

where the vector p = (p1, .., pn) ∈ Rn
+ describes the prices and w ≥ 0 is

income or wealth. U∗(w, p) is the maximum under the budget constraint,
the so-called indirect utility function.

Question: ∂U∗(w, p)/∂w , ∂U∗(w, p)/∂p?

Answer is given by the Envelope Theorem. Define the Lagrangean

L(x1, ..., xn;λ) = U(x1, ..., xn)− λ(p1x1 + ...+ pnxn − w).

Then (formally) by Theorem 4.9

(i)
∂U∗

∂w
=

∂L
∂w

= λ∗,

(ii)
∂U∗

∂pj
=

∂L
∂pj

= −λ∗x∗j , 1 ≤ j ≤ n.

Interpretation: (i) λ∗ is the rate of increase in maximum utility as incomes
increases (λ∗ is the so-called marginal utility of income).

(ii) x∗j is the (Marshallian) demand function for good j, it satisfies Roy’s
identity (which is a major result in microeconomics) resulting from Eqs.
(i) + (ii)

x∗j = −∂U
∗/∂pj

∂U∗/∂w
, 1 ≤ j ≤ n.

In other words, Eq. (ii) tells that, for a small price change of good j, the
loss of real income is proportional (with the coefficient λ∗) to change in price
times the quantity demanded, i.e.,

∆U∗ ≈ −λ∗ ·∆pj · x∗j .
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II. General consumer optimization problem with n goods

Minimize the total cost

minC = w1x1 + ...+ wnxn,

subject to the constraint
f(x) = y,

where f(x) is the firm’s production function and y ≥ 0 is the given am-
mount of output to be produced.

x := (x1, ..., xn) ∈ Rn
+ is an input vector,

w := (w1, ..., wn) ∈ Rn
+ decribes the unit prices of labour / input.

The firm wishes to find the cheapest input combination for producing
y units of output.

Define the Lagrangean

L(x;λ) = 〈w, x〉Rn − λ(f(x)− y).

Formally, by the Envelope Theorem

(i)
∂C∗

∂y
=
∂L
∂y

= λ∗ − “shadow” marginal price for producing one more

unit of output;

(ii)
∂C∗

∂wj
=

∂L
∂wj

= x∗j − the firm’s conditional demand function for the

input j; it is known as Shepard’s Lemma.

Remark: The Complementary Slackness Conditions in the Karush-
Kuhn-Tucker Theorem have a very intuitive economic interpretation. The
Lagrange multipliers λ∗ can be seen as shadow prices that measure the
implicit cost of resourse-availability constraints. In this context, it is clear
that if a constraint is not binding (we have more than we need of resourse),
a further increase in the available quantity will not increase profit. On the
other hand, if the multiplier is positive, an increase in the stock will increase
profit. Clearly, this can be the case only if we did not have enough of the
resource to begin with, that is, the constraint is binding. Then we are ready
to pay a positive price λ∗ in order to get a bit more.
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4.9. Concave/Convex Programming

Let U ⊂ Rn be an open, convex set, and let

f : U → R, gi : U → Rm, 1 ≤ i ≤ m (m,n ∈ N)

be continuously differentiable. Furthermore, we assume that

f is concave, gi are convex for all 1 ≤ i ≤ m.

Consider the Karush-Kuhn-Tucker Problem

max
x∈U

f(x)

subject to m inequality constraints

g1(x) ≤ 0, ..., gm(x) ≤ 0.

In Section 4.16 we have already discussed the following theorem:

Theorem 4.6 (Sufficient Conditions for Global Max in Concave
Programming):

Let (x∗, λ∗) with x∗ ∈ U and λ∗ = (λ∗i )
m
i=1 satisfy the conditions

[KKT− 1]
∂f

∂xj
(x∗) =

∑m

i=1
λ∗i
∂gi
∂xj

(x∗), for all 1 ≤ j ≤ n;

[KKT− 2] λ∗i ≥ 0 and λ∗i gi(x
∗) = 0, for all 1 ≤ i ≤ m.

Then x∗ is an global maximum in the Karush-Kuhn-Tucker problem.

An important issue here is that [KKT− 1], [KKT− 2] in Theorem 4.6
are sufficient without any additional information about the Constraint
Qualification (i.e., rank condition).

Indeed, under a mild, additional regularity assumption, these conditions
[KKT− 1], [KKT− 2] are also necessary:
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!!! Theorem 4.10 (Necessary and Sufficient Conditions for
Global Max in Concave Programing):

Suppose there exists some point z ∈ U such that

gi(z) < 0, for all 1 ≤ i ≤ m,

i.e., the interior of the feasible set D is nonempty. This is known as
Slater’s condition.

Then x∗ is a solution to the above Karush-Kuhn-Tucker problem if and
only if there exists λ∗ = (λ∗i )

m
i=1 ∈ Rm such that the following conditions

hold

[KKT− 1]
∂f

∂xj
(x∗) =

∑m

i=1
λ∗i
∂gi
∂xj

(x∗), for all 1 ≤ j ≤ n;

[KKT− 2] λ∗i ≥ 0 and λ∗i gi(x
∗) = 0, for all 1 ≤ i ≤ m.

Slater’s condition is used only in proving that [KKT− 1], [KKT− 2] are
necessary. Note that Slater’s condition plays no role in proving sufficiency!
That is [KKT− 1], [KKT− 2] are sufficient to identify an maximum when
f is concave and gi are convex, regardless of whether Slater’s condition is
satisfied or not.

On the other hand, to get the necessary part of the Karush-Kuhn-Tucker
Theorem, it is much more obvious to check Slater’s conditionis and then to
use them instead of the rank condition in the Constraint Qualification.
However, using Slater’s condition in Th. 4.10, we cannot omit the concavity
assumption on the Lagrangean.
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(Counter-) Example 1 to Theorem 4.10

find max
x∈U

f(x, y), f(x, y) := −x− y − x2 − y2

subject to g(x, y) := (x+ y)2 ≤ 0.

The objective function is concave, the constraint is convex. The 1st order
Karush-Kuhn-Tucker conditions are

[KKT− 1] − 1− 2x = 2λ(x+ y),

−1− 2y = 2λ(x+ y).

The only point with (x + y)2 ≤ 0 is x = y = 0, i.e., D = {(0, 0)} and hence
the constrained maximum is achieved in this point. But for x = y = 0 we
get contradiction (−1 = 0) in [KKT− 1], i.e., the 1st order conditions are
not fulfilled.

Where is a contradiction? The hidden problem is that the Constraint
Qualification fails at the point (0, 0), i.e., ∂g/∂x = ∂g/∂y = 0. Hence, this
point is not obliged to satisfy the Karush-Kuhn-Tucker conditions [KKT− 1]
and [KKT− 2]. On the other hand, Theorem 4.10 is not applicable, since
the interior of D is empty. �

Numerical Example 2

find max {(x− 4)2 + (y − 4)2}
subject to x+ y ≤ 4, x+ 3y ≤ 9.

Solution: Rewrite

f(x, y) : = (x− 4)2 + (y − 4)2, (x, y) ∈ U := R2,

g1(x, y) : = x+ y − 4 ≤ 0, g2(x, y) := x+ 3y − 9 ≤ 0.

The objective function f is concave and the constraints g1, g2 are linear,
so we have the concave optimization problem.
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Furthermore, Slater’s condition is satisfied (we may take z = (0, 0)).
So, [KKT− 1] and [KKT− 2] are necessary and sufficient.

Write the Lagrangean

L(x, y) = (x− 4)2 + (y− 4)2 − λ1(x+ y− 4)− λ2(x+ 3y− 9), (x, y) ∈ R2.

The 1st order conditions

[KKT− 1] 2x− 8− λ1 − λ2 = 0, (i)

2y − 8− λ1 − 3λ2 = 0, (ii)

[KKT− 2] λ1(x+ y − 4) = 0, (iii)

λ2(x+ 3y − 9) = 0, (iv)

λ1, λ2 ≥ 0, x+ y ≤ 4, x+ 3y ≤ 9. (v)

(iii) + (iv) give 4 possibilities:
(a) x+y = 4, x+3y = 9 =⇒ x = 3/2, y = 5/2. Then by (i)+(ii) λ1 = 6,

λ2 = −1 < 0 (contradiction).
(b) x+y = 4, λ2 = 0. Then by (i)+(ii): x = y = 2, λ1 = 4. All conditions

are satisfied, x = y = 2 is a solution.
(c) x+ 3y = 9, λ1 = 0. Then by (i)+(ii): x = 33/10, y = 19/10, violating

x+ y ≤ 4 (contradiction).
(d) λ1 = λ2 = 0. Then by (i)+(ii): x = y = 4, violating x + y ≤ 4

(contradiction).
So, the only local and global maximum is x = y = 2.
We do not need to check (CQ)! �

Numerical Example 3

find max {−(x2 + xy + y2)}
subject to x− 2y ≤ −1, 2x+ y ≤ 2.

Solution: Rewrite

f(x, y) : = −(x2 + xy + y2), (x, y) ∈ U := R2,

g1(x, y) : = x− 2y + 1 ≤ 0, g2(x, y) := 2x+ y − 2 ≤ 0.
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The objective function f is concave, i.e.,

D2f(x, y) =

(
−2 −1
−1 −2

)
, D2f(x, y) = 3 > 0, ∀(x, y) ∈ R2,

and the constraints g1, g2 are linear, so we have the concave optimization
problem.

Furthermore, Slater’s condition is satisfied (we may take z = (−1, 1)).
So, [KKT− 1] and [KKT− 2] are necessary and sufficient.

L(x, y) = −x2 − xy − y2 − λ1(x− 2y + 1)− λ2(2x+ y − 2), (x, y) ∈ R2.

The 1st order conditions

[KKT− 1] −2x− y − λ1 − 2λ2 = 0, (i)

−2y − x+ 2λ1 − λ2 = 0, (ii)

[KKT− 2] λ1(x− 2y + 1) = 0, (iii)

λ2(2x+ y − 2) = 0, (iv)

λ1, λ2 ≥ 0, x− 2y + 1 ≤ 0, 2x+ y ≤ 2. (v)

(iii) + (iv) give 4 possibilities:
(a) x − 2y + 1 = 0, 2x + y = 2 =⇒ x = 3/5, y = 4/5. Then

−6/5− 4/5 = −2 6= λ1 + 2λ2 ≥ 0, contadiction with (i).
(b) x − 2y + 1 = 0, λ2 = 0. Then by (i)+(ii): x = −4/14, y = 5/14,

λ1 = 3/14. All conditions are satisfied, we get a solution.
(c) 2x + y = 2, λ1 = 0. Then by (i)+(ii): x = 1, y = 0, λ2 = −1

(contradiction).
(d) λ1 = λ2 = 0. Then by (i)+(ii): x = y = 0, violating x − 2y + 1 ≤ 0

(contradiction).
So, the only global maximum is x = −4/14, y = 5/14. �
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4.9.1. Summary
of the 1st order conditions that are necessary / sufficient

1. Unconstrained maximization problems for smooth functions on an
open domain U ⊂ Rn

x∗ solves maxx∈U f(x) =⇒ ∂f
∂xj

(x∗) = 0 for all 1 ≤ j ≤ n

(necessary condition);

———-
⇐= if f is concave on U (sufficient condition).

————————————————————

2. Equality-constrained maximization problems with m ≤ n
constraints

x∗ solves maxx∈U f(x) subject to gi(x) = 0, 1 ≤ i ≤ m

=⇒ ∃λ∗ = (λ∗1, ..., λ
∗
m) ∈ Rm s.t. ∂f

∂xj
(x∗) = λ∗j

∂g
∂xj

(x∗) for all 1 ≤ j ≤ n

(necessary condition)

provided (CQ) holds: rankDg(x) = m;

———
⇐= if f is concave and all λigi are convex (even without (CQ)!)

(sufficient condition).
—————————————————————–

3. Inequality-constrained maximization problems with m ≥ 1
constraints

x∗ solves maxx∈U f(x) subject to gi(x) ≤ 0, 1 ≤ i ≤ m

=⇒ ∃λ∗ = (λ∗1, ..., λ
∗
m) ∈ Rm

+ s.t.

[KKT− 1] ∂f
∂xj

(x∗) = λ∗j
∂g
∂xj

(x∗) for all 1 ≤ j ≤ n,

[KKT− 2] λ∗i gi(x
∗) = 0 for all 1 ≤ i ≤ m,

(necessary conditions)

provided (CQ) holds: rankDg≤k(x) = k,
where the first k constraints are active at x∗, i.e., gi(x

∗) = 0, 1 ≤ i ≤ k;

———
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⇐= if f is concave and all gi are convex (even without (CQ)!)
(sufficient condition).

————————————————————-
4. Concave maximization problem

f is concave and all gi are convex

under Slater’s condition: ∃z ∈ U s.t. gi(z) < 0, 1 ≤ i ≤ m,

x∗ solves maxx∈U f(x) subject to gi(x) ≤ 0, 1 ≤ i ≤ m

⇐⇒ ∃λ∗ = (λ∗1, ..., λ
∗
m) ∈ Rm

+ s.t.

[KKT− 1] ∂f
∂xj

(x∗) = λ∗j
∂g
∂xj

(x∗) for all 1 ≤ j ≤ n,

[KKT− 2] λ∗i gi(x
∗) = 0 for all 1 ≤ i ≤ m

(necessary and sufficient conditions).
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4.9.2. Concave Programming without Differentiability

!!! Theorem 4.11 (Necessary Conditions in Concave Pro-
gramming):

Let U ⊂ Rn be an open, convex set, and let

f : U → R be concave,

gi : U → R be convex, 1 ≤ i ≤ m.

Consider the Karush-Kuhn-Tucker Problem

max
x∈U

f(x)

subject to the inequality constraints

g1(x) ≤ 0, ..., gm(x) ≤ 0.

Let x∗ be an optimal solution to the above KKT problem. Suppose that
Slater’s condition holds, i.e., there exists some z ∈ U such that

gi(z) < 0, for all 1 ≤ i ≤ m.

Then there exists a vector λ∗ = (λ∗i ≥ 0)mi=1 ∈ Rm
+ such that{

f(x∗)−
∑m

i=1 λ
∗
i gi(x

∗) ≥ f(x)−
∑m

i=1 λ
∗
i gi(x), for all x ∈ U,

λ∗i gi(x
∗) = 0, for all 1 ≤ i ≤ m.

Idea of Proof: Instead of Differential Calculus, we use the so-called
Supporting Hyperplane Theorem for Convex Sets (see Section 4.24).

The inverse statement to Theorem 4.11 is more trivial.

!!! Theorem 4.12 (Sufficient Conditions in Concave Program-
ming):

Suppose there exist a feasible point x∗ ∈ U (i.e., g(x∗) ≤ 0) and a vector
λ∗ ∈ Rm

+ such that

f(x∗)−
∑m

i=1
λ∗i gi(x

∗) ≥ f(x)−
∑m

i=1
λ∗i gi(x), for all x ∈ U,

λ∗i gi(x
∗) = 0, for all 1 ≤ i ≤ m.

Then x∗ is an optimal solution to the Karush-Kuhn-Tucker problem.
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Proof: Since λ∗i gi(x
∗) = 0 and λ∗i gi(x) ≤ 0, we have

f(x∗) = f(x∗)−
∑m

i=1
λ∗i gi(x

∗)

≥ f(x)−
∑m

i=1
λ∗i gi(x) ≥ f(x), for all x ∈ U. �

4.9.3. Quasi-Concave Programming

Actually, there is the following generalization of Theorem 4.6.

Before : f : U → R concave, gi : U → R convex ;
Now: f : U → R quasi-concave, gi : U → R quasi-convex (see their

definition see Part III).

Theorem 4.12 (Sufficient Conditions for Quasi-Concave Pro-
graming):

Assume that f is strictly quasi-concave , gi are quasi-convex for all
1 ≤ i ≤ m. Let (x∗, λ∗) with x∗ ∈ U and λ∗ = (λ∗i )

m
i=1 satisfy the conditions

[KKT− 1], [KKT− 2]. Suppose additionally that Df(x∗) 6= 0.

Then x∗ is an optimal solution=global maximum in the Karush-Kuhn-
Tucker problem, furthermore such solution is unique.
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4.10. Linear Programming and Duality Method

In mathematics, Linear Programming (LP) is a technique for mini-
mizing or maximizing a linear objective function subject to linear (equality
or inequality) constraints.

LP is a mathematical technique of immense importance! LP is most
extensively used in business and economics, but also in engineering and in-
dustries (transportation, telecommunication, etc.).

Issues especially important for economists :

(i) Basic knowledge of LP theory is needed for practical application in
decision problems;

(ii) Duality theory in LP is a basis for understanding more complicated
optimization problems in economic applications.

Numerical methods, there are a lot of computer programs to find a solution.

LP as a mathematical technique arose during the 2nd World War to plan
expenditures and returns in order to reduce costs of the army and increase
losses of the enemy. It was kept secret until 1947.

The founders: Leonid Kantorovich (develped some LP problems already
in 1939), George Dantzig (published the simplex numerical method in 1947),
John von Neumann (developed the duality theory in 1947).

Dantzig’s original example of finding the best assignment of 70 people to
70 jobs shows the usefulness of LP. The number of all possible combinations
exceeds the number of particles in the universe! However, it takes only a
moment to find the optimum solution by the simplex method.
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Example: The optimal assignment problem.

There are M persons available for N jobs. The value of person i working
1 day at job j is aij ≥ 0, for 1 ≤ i ≤M, 1 ≤ j ≤ N.

The problem: choose asignment of persons to jobs to maximize the total
value

max
M∑
i=1

N∑
j=1

aijxij,

where 0 ≤ xij ≤ 1 represents the proportion of i-person’s time to be spent
by job j.

Thus, we have 2 constraints

(i)
N∑
j=1

xij ≤ 1, 1 ≤ i ≤M,

(ii)
M∑
i=1

xij ≤ 1, 1 ≤ j ≤ N.

(i) means that a person cannot spend more than 100% of her/his time
working;

(ii) means that only one person is allowed on a job at a time.
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4.10.1. General LP Problem

Find a vector x∗ ∈ Rn to maximize

f(x) := (c, x)Rn ,

subject to the constraints (in matrix formulation){
Ax ≤ b (vector inequality),
x ≥ 0 (nonnegativity constraint),

for given vectors

c = (c1, ..., cn) ∈ Rn, b = (b1, ..., bm) ∈ Rm, n,m ∈ N,

and a matrix

A =

 a11 · · · a1n
...

...
am1 · · · amn

 = (aij)1≤i≤m
1≤j≤n

∈ Rm × Rn.

In the coordinate form:

max
∑n

j=1
cixi

subject to n+m inequality constraints
a11x1 + a12x2 + ...+ a1nxn ≤ b1,

.............................
am1x1 + am2x2 + ...+ amnxn ≤ bm,

and
x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0.

Typical interpretation: A firm produces n goods using m machines.
cj – price a firm gets per unit of output of good j, 1 ≤ j ≤ n;
bi – capacity constraint of machine i, 1 ≤ i ≤ m;
aij – capacity of machine i needed for producing one unit of good j.
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Terminology:

D := {x ∈ Rn| x ≥ 0, Ax ≤ b} – constraint set.

A point x ∈ Rn is called feasible if x ∈ D.

LP is called feasible if D 6= ∅; otherwise it is called infeasible (i.e., the
constraints contradict each other).

LP is called bounded if the function f(x) := (c, x)Rn is bounded on D.
Then by the Weierstrass theorem the solution exists!

For the LP problem, the constraint set is a convex polyhedron (or
polytope) in Rn (if D 6= ∅).

The set of constraints in any LP problem may not be satisfiable, but
Farkas’ Lemma (see Part 3) can tell us when this happens.

4.10.2. Karush-Kuhn-Tucker Theorem applied to LP

LP is a special case of concave/convex programming (since any linear
function is both convex and concave) .

As usual, we define the Lagrangean

L(x) := (c, x)Rn − (λ,Ax− b)Rm + (µ, x)Rn

with the Lagrangean multiplier vectors

λ ∈ Rm
+ , µ ∈ Rn

+,

and write the 1st order conditions:
c︸︷︷︸

1×n

= λ∗︸︷︷︸
1×m

· A︸︷︷︸
m×n

− µ∗︸︷︷︸
1×n

, [KKT− 1]

(µ∗, x∗)Rn = 0, [KKT− 2]
(λ∗, Ax∗ − b)Rm = 0.

Assuming Slater’s condition, the following theorem is applicable:

Theorem 4.10 (Necessary and Sufficient Conditions in Concave
Programming):

Suppose intD 6= ∅. Then x∗ ∈ D is a solution to the corresponding
Karush-Kuhn-Tucker problem if and only if [KKT-1] and [KKT-2] hold.
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Herefrom it follows in our context:

!!! Theorem 4.17. (Necessary and Sufficient Conditions in Lin-
ear Programming):

Suppose intD 6= ∅. Then x∗ ∈ D is a solution to the LP problem

max
x≥0, Ax≤b

(c, x)Rn ,

if and only if for some λ∗ ∈ Rm
+ , µ

∗ ∈ Rn
+

c = λ∗A− µ∗, (i)
(µ∗, x∗)Rn = 0, (ii)

(λ∗, Ax∗ − b)Rm = 0, (iii).

Proof (elementary) of sufficiency.
Consider any x ∈ D, i.e., x ≥ 0, Ax ≤ b. Then by (i) we have

(c, x)Rn = (λ∗A− µ∗︸︷︷︸
≥0

, x)Rn ≤ (λ∗A, x)Rn

= ( λ∗︸︷︷︸
≥0

, Ax︸︷︷︸
≤b

)Rm ≤ (λ∗, b)Rm .

On the other hand, we have for any x∗ fulfilling [KKT-1] and [KKT-2]

(c, x∗)Rn = (λ∗A− µ∗, x∗)Rn =︸︷︷︸
by (ii)

(λ∗A, x)Rn

= (λ∗, Ax)Rm =︸︷︷︸
by (iii)

(λ∗, b)Rm .

So, x∗ is optimal. �
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Numerical Example

max f(x1, x2) = x1 + 3x2,

subject to

{
x1 + 2x2 ≤ 10,
x1 ≥ 0, x2 ≥ 0.

The objective function is linear (and hence concave)

f(x1, x2) := x1 + 3x2,

and the constraints are linear (and hence convex)

g1(x1, x2) : = x1 + 2x2 − 10 ≤ 0.

g2(x1, x2) : = −x1 ≤ 0;

g3(x1, x2) : = −x2 ≤ 0.

Obviously, intD 6= ∅. Let us apply the KKT Theorem:

L(x1, x2) := x1 + 3x2 − λ(x1 + 2x2 − 10) + µ1x1 + µ2x2.

{
∂x1L(x1, x2) = 1− λ+ µ1;
∂x2L(x1, x2) = 3− 2λ+ µ2;

and 
λ (x1 + 2x2 − 10) = 0;

µ1x1 = 0;
µ2x2 = 0.

(i) λ = 0 is impossible because then 1 = −µ1 ≤ 0;
(ii) µ1 = 0 is impossible because then λ = 1 and 3 = 2− µ2 ≤ 2;
Hence µ1 > 0 and x1 = 0 ⇒ x2 = 5.

So, we have x∗1 = 0, x∗2 = 5, λ∗ = 3/2, µ∗1 = 1/2, µ∗2 = 0.
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4.10.3. Duality in Linear Programming

To every linear program there is a dual linear program.

Definition: The dual of the standard maximum problem

max (c, x)Rn , (1)

subject to Ax ≤ b, x ≥ 0,

is the standard minimum problem (with the same matrix A)

min (b, y)Rm (2)

subject to y︸︷︷︸
1×m

· A︸︷︷︸
m×n

≥ c, y ≥ 0.

The problem (1) will be now referred to as the primal problem.

max LP(1) in Rn

n variables, m constraints
0 ≤ x ∈ Rn

�
min LP(2) in Rm

m variables, n constraints
0 ≤ y ∈ Rm

It is an easy exercise that the dual of the dual linear program is just the
primal linear program.

Furthermore, every solution for a linear program gives a bound on the
optimal value of the objective function of its dual.

Lemma (Weak Duality): If x ∈ Rn is any feasible point for the primal
program (1) and y ∈ Rm is any feasible point for the dual program (2), then

(c, x)Rn ≤ (b, y)Rm .

Proof:

( c︸︷︷︸
≤yA

, x)Rn ≤ (yA, x)Rn = (y, Ax︸︷︷︸
≤b

)Rm ≤ (y, b)Rm . �

In other words, the optimal value of the objective function of the dual
problem is always greater than or equal to the objective function value
of the primal problem.

Indeed we have the identity here!
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Theorem 4.11 (Strong Duality):

The optimal values of the primal and the dual programs are the same (if
they exist). Namely:

If there exists a feasible point x∗ ∈ Rn solving the primal problem, then
there exists a feasible y∗ ∈ Rm solving the dual problem. Furthermore,

(c, x∗)Rn = (y∗, b)Rm .

Proof is not easy! (via Simplex Method and Farkas’ Lemma, cf. Part 3).

Suppose that both x∗ and y∗ exist. In view of the Weak Duality Lemma,
it remains to show that

(c, x∗)Rn ≥ (y∗, b)Rm .

Nonrigorous ”proof” via Karush-Kuhn-Tucker:

Let us check the 1st order conditions for the dual problem

max h(y) := −(b, y)Rm ,

subject to − yA ≤ −c, − y ≤ 0.

Introduce the Lagrange parameters κ∗ ∈ Rn
+, ν

∗ ∈ Rm
+ . Then

−b = −Aκ∗ − ν∗, (i)
(ν∗, y∗)Rm = 0, (ii)

(c− y∗A, κ∗)Rm = 0. (iii)

From here Aκ∗ ≤ b and κ∗ ≥ 0, so that κ∗ ∈ Rn
+ is feasible in the primal

problem. From the complementary slackness

(c, κ∗)Rn = (y∗A, κ∗)Rn = (y∗, Aκ∗)Rm

= (y∗, Aκ∗ + ν∗)Rm = (y∗, b)Rm .

If x∗ is optimal, then

(c, x∗)Rn ≥ (c, κ∗)Rn = (y∗, b)Rm . �
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As a corollary of the Duality Theorem we have:

Theorem 4.12 (Equilibrium Theorem):

Let x∗ and y∗ be feasible vectors for a primar linear problem and its dual,
respectively. Then x∗ and y∗ are optimal if and only if

y∗i = 0 for all i for which
∑n

j=1
aijx

∗
j < bi,

and
x∗j = 0 for all j for which

∑m

i=1
y∗i aij > cj.

The above equations are simetimes called the Complementary Slack-
ness conditions.

Simplex Algorithm

Developed by G. Dantzig.

Main Issue: The optimum is always attained at a vertex of the poly-
hedron D.

However, the optimum is not necessary unique; it is possible to have a
set of optimal solutions covering an edge or face of the polyhedron, or even
the entire polyhedron.

Algorithm:
– Start at some vertex xold;
– Optimal? Then stop!
– Not =⇒ there exists a neighbor verix xnew such that (c, xnew)Rn ≥

(c, xold)Rn .
The problem is to find the most efficient way to move from one vertix to

the next one.

Graphical method for solving LP: Move the level lines fL(x) := (c, x)Rn−
L and find the intersection with D.
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Some remarks:

(i) Economic Interpretation of the Dual LP: The dual variables
y∗ = (y∗1, y

∗
2, ..., y

∗
m) ≥ 0 can be interpreted as the marginal value of each

constraint’s resource. They are usually called shadow prices and indicate
the imputed value of each resource.

The primal problem deals with physical quantities, but the dual problem
deals with economic values!

(ii) Sometimes it is easier to solve the dual problem! Modern algorithms
solve primal and dual simultaneously!
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