
OQE - PROBLEM SET 10 - SOLUTIONS

Exercise 1. Let f : U → R be a C2-function, where U is an open subset of R2.

Let moreover (x0, y0) be a critical point of f satisfying

detD2f(x0, y0) = det

[
0 1

1 0

]
= −1 < 0.

Then (x0, y0) is a saddle point (see Theorem 2.11.2).

Exercise 2. We want to find and classify the critical points of the function

f : R2 → R that is defined by

(x, y) 7→ f(x, y) = x3 + y3 − 3xy.

To do so, we compute the gradient of f

∇f(x, y) = (3x2 − 3y, 3y2 − 3x)

and the points at each it is equal to (0, 0). We solvex2 − y = 0

y2 − x = 0

getting the points P = (0, 0) and Q = (1, 1). To determine the nature of the critical

points P and Q we compute the Hessian of f :

D2f(x, y) =

[
6x −3

−3 6y

]
.

We then compute

A = D2f(P ) =

[
0 −3

−3 0

]
and B = D2f(Q) =

[
6 −3

−3 6

]
.

In view of Proposition 2.11.4, the maxtrix B is positive definite and so, thanks to

Theorem 2.11.2, the point Q is a strict local minimum; Q is however not a global

minimum since, for example, one has f(0,−5) = −25 < −1 = f(Q). The point P

is a saddle point because A is indefinite: indeed one has[
1 1

]
D2f(P )

[
1

1

]
=

[
1 1

] [ 0 −3

−3 0

][
1

1

]
= −6 < 0

while [
1 −1

]
D2f(P )

[
1

−1

]
=

[
1 −1

] [ 0 −3

−3 0

][
1

−1

]
= 6 > 0.
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Exercise 3. Let f : R2 → R be defined by (x, y) 7→ f(x, y) = xe−x(y2 − 4y).

(a) We want to find and classify all critical points of f . To this end, we compute

∇f(x, y) = (e−x(1− x)(y2 − 4y), xe−x(2y − 4)).

Since the image of the exponential function is R>0, the stationary points of f are

exacly the pairs (x, y) ∈ R2 that are solutions to the following system(1− x)(y2 − 4y) = 0

x(2y − 4)) = 0
.

With not much work, one shows that the stationary points of f are (0, 0), (0, 4),

and (1, 2). To decide the nature of the critical points, we compute

D2f(x, y) =

[
(y2 − 4y)e−x(x− 2) (2y − 4)e−x(1− x)

(2y − 4)e−x(1− x) 2xe−x

]
and thus we have

D2f(0, 0) =

[
0 −4

−4 0

]
, D2f(0, 4) =

[
0 4

4 0

]
, and D2f(1, 2) =

[
4
e 0

0 2
e

]
.

It follows from Proposition 2.11.4 and Theorem 2.11.2 that (0, 0) and (0, 4) are

saddle points, while (1, 2) is a strict local minimum.

(b) We show that f has neither a global maximum nor a global minimum. From (a),

we know that there are no candidate points for local maxima (since the stationary

points are either saddle or local minima). Moreover, since

f(−5, 5) = −20e5 < −4

e
= f(1, 2),

the local minimum (1, 2) is not a global minimum and so f has no global minima

either.

(c) Let the subset S of R2 be defined by S = [0, 5] × [0, 4]. We claim that f|S has

a global maximum and a global minimum. Indeed, the subset S is compact by the

Heine-Borel theorem and so the claim follows from Weierstrass’s theorem.

(d) We compute the global extrema of f|S . Thanks to (a) and (b), we know that

the global extrema of f|S belong to ∂S ∪ {(1, 2)}. We compute

i. f(0, y) = 0;

ii. f(5, y) = 5
e5 (y2 − 4y);

iii. f(x, 0) = 0;

iv. f(x, 4) = 0;

v. f(1, 2) = − 4
e .

One can check that, for each y ∈ [0, 4], one has y2 − 4y ≤ 0 with local minimum

equal to −4 for y = 2. Since f(5, 2) = − 20
e5 > −

4
e = f(1, 2), the global minimum

of f|S corresponds to the point (1, 2). On the other hand, the global maxima are

given by all points in the set {(0, y), (x, 0), (x, 4) ∈ S}.
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Exercise 4. Let a, b, p, t ∈ R>0 be such that p > a + t. Let moreover x be

a variable standing for the number of units of a certain good. Let the functions

c, e, τ, π : R≥0 → R be defined by

i. c(x) = ax+ bx2, the cost of production;

ii. e(x) = px, the amount earned;

iii. τ(x) = tx, the tax;

iv. π(x) = e(x)− c(x)− τ(x), the profit.

(a) We want to find x∗ ∈ R≥0 maximizing the profit. To do so, we first write

π(x) = px− tx− ax− bx2

and therefore compute

π′(x) = p− t− a− 2bx = 0 ⇐⇒ x =
p− t− a

2b
.

Since π′′(x) = −2b < 0, we have that x∗ = p−t−a
2b is indeed a local maximum. The

optimal profit is then π∗ = π(x∗) = (p−t−a)2
4b .

(b) We want to prove that ∂π∗/∂p = x∗. Using the envelope theorem, we have

∂π∗

∂p
(p, t, a, b) =

∂π

∂p
(x∗, p, t, a, b) =

∂(px− tx− ax− bx2)

∂p
(x∗, p, t, a, b) = x∗.

We have thus that, whenever p is increasing, the optimal profit π∗ increases pro-

portionally to the amount of the good that is produced.


