OQE - PROBLEM SET 10 - SOLUTIONS

Exercise 1. Let f: U — R be a C?-function, where U is an open subset of R2.

Let moreover (xg,yo) be a critical point of f satisfying

0 1
det D2f(x0,y0) = det L 0] =-1<0.
Then (zg,yo) is a saddle point (see Theorem 2.11.2).

Exercise 2. We want to find and classify the critical points of the function
f :R? = R that is defined by
(z,y) = flz,y) = 2° +y° — 3uy.
To do so, we compute the gradient of f
Vf(z,y) = (32 — 3y, 3y* — 32)
and the points at each it is equal to (0,0). We solve
22 —y=0
yP—x=0
getting the points P = (0,0) and @ = (1,1). To determine the nature of the critical

points P and @) we compute the Hessian of f:
6 -3
D?f(x,y) = .
f(z,y) l_g Gy]
We then compute

0

_ N2 _
A=D(P)=|

-3 6

_03] and B =D?f(Q) = [6 _3].

In view of Proposition 2.11.4, the maxtrix B is positive definite and so, thanks to
Theorem 2.11.2, the point @ is a strict local minimum; @ is however not a global
minimum since, for example, one has f(0,—5) = —25 < —1 = f(Q). The point P
is a saddle point because A is indefinite: indeed one has
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[1 1} D2f(P)
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Exercise 3. Let f:R? — R be defined by (z,y) — f(z,y) = ze % (y? — 4y).

(a) We want to find and classify all critical points of f. To this end, we compute

Vi(z,y) = (e7"(1—x)(y* — dy), ze " (2y — 4)).

Since the image of the exponential function is R, the stationary points of f are

exacly the pairs (z,y) € R? that are solutions to the following system

(1-z)(y*—4y) =0
x(2y—4))=0

With not much work, one shows that the stationary points of f are (0,0), (0,4),

and (1,2). To decide the nature of the critical points, we compute

(2 — dy)e™(x —2) (2y —4)e (1 - x)}

D2f(e,y) = 2y —4)e *(1 — x) 2xe~ %

and thus we have

0 —4
-4 0 '
It follows from Proposition 2.11.4 and Theorem 2.11.2 that (0,0) and (0,4) are

saddle points, while (1,2) is a strict local minimum.
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D?£(0,0) =

| D2F(0,4) = LOL ﬂ and sz(172>—[

o IN

(b) We show that f has neither a global maximum nor a global minimum. From (a),
we know that there are no candidate points for local maxima (since the stationary

points are either saddle or local minima). Moreover, since
4
f(_5a5) = _2065 < _g = f(172)a

the local minimum (1,2) is not a global minimum and so f has no global minima
either.

(c) Let the subset S of R? be defined by S = [0,5] x [0,4]. We claim that fg has
a global maximum and a global minimum. Indeed, the subset S is compact by the
Heine-Borel theorem and so the claim follows from Weierstrass’s theorem.

(d) We compute the global extrema of fig. Thanks to (a) and (b), we know that
the global extrema of f|g belong to S U {(1,2)}. We compute

i. f(0,y) =05

ii. f(5,y) = F(y* — 4y);
iii. f(x,0) = 0;

w. f(x,4) =0;

v. f(1,2) = -4

One can check that, for each y € [0,4], one has y? — 4y < 0 with local minimum
equal to —4 for y = 2. Since f(5,2) = —2¢ > —2 = f(1,2), the global minimum
of fis corresponds to the point (1,2). On the other hand, the global maxima are
given by all points in the set {(0,y), (z,0), (x,4) € S}.
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Exercise 4. Let a,b,p,t € Ry be such that p > a +t. Let moreover x be
a variable standing for the number of units of a certain good. Let the functions
c,e,7,m: R>9 — R be defined by
i. c(x) = ax + bx?, the cost of production;

ii. e(x) = px, the amount earned;

it. 7(x) = tx, the tax;

. w(z) =e(x) — c(x) — 7(x), the profit.
(a) We want to find * € R>(¢ maximizing the profit. To do so, we first write

n(x) = px — tr — ax — bx?

and therefore compute

-
T(@)=p—t—a—2bx=0 < xz%.
Since 7”'(x) = —2b < 0, we have that z* = 2=~ is indeed a local maximum. The
optimal profit is then 7* = 7(z*) = W.

(b) We want to prove that On* /dp = z*. Using the envelope theorem, we have

or* _om, _ O(px —tx — ax — ba?)
Tp(p,tvchb)_aip(x ,pvtaa’vb)_ 8]?

We have thus that, whenever p is increasing, the optimal profit 7* increases pro-

(z*,p,t,a,b) = x*.

portionally to the amount of the good that is produced.



