
OQE - PROBLEM SET 11 - SOLUTIONS

Exercise 1. Let {Ui}i∈I be a collection of convex sets. We claim that the set

U =
⋂

i∈I Ui is convex. To prove so, let x, y ∈ U and let λ ∈ [0, 1]. For each i ∈ I,

the elements x, y belong to Ui and so, by the convexity of Ui, also λx + (1 − λ)y

belongs to Ui. As a consequence, λx + (1 − λ)y belongs to
⋂

i∈I Ui = U and, the

choice of x, y, λ being arbitrary, it follows that U is convex.

Exercise 2. We determine whether the following sets are convex:

(a) A = {(x1, x2, x3) ∈ R3 : x1 ≤ x2 ≤ x3};
(b) B = {(x1, x2, x3) ∈ R3 : x21 + x22 ≤ 1};
(c) C = {(x1, x2, x3) ∈ R3 : x21 + x22 ≤ 1 or x21 + x23 ≤ 1};
(d) D = {(xi)ni=1 ∈ Rn : |

∑n
i=1 xi| ≤ 1};

(e) E = {(xi)ni=1 ∈ Rn :
∑n

i=1 x
2
i = 1}.

(a) We claim that A is convex. Let indeed x = (x1, x2, x3) and y = (y1, y2, y3) in

A and let moreover λ ∈ [0, 1]. Since both λ and 1− λ are non-negative, we have

λx1 + (1− λ)y1 ≤ λx2 + (1− λ)y2 ≤ λx3 + (1− λ)y3

and thus λx+ (1− λ)y belongs to A.

(b) We claim that B is convex. To show this, we take the elements x = (x1, x2, x3)

and y = (y1, y2, y3) in B and λ ∈ [0, 1]. We claim that λx+ (1−λ)y lives in B. We

recall that, for each a, b ∈ R, one has (a − b)2 ≥ 0 and thus ab ≤ (a2 + b2)/2. In

view of this, we write µ = 1− λ and compute

(λx1 + µy1)2 + (λx2 + µy2)2 = λ2(x21 + x22) + 2λµ(x1y1 + x2y2) + µ2(y21 + y22)

≤ λ2 + 2λµ
(x21 + y21 + x22 + y22)

2
+ µ2

≤ λ2 + 2λµ+ µ2

= (λ+ µ)2 = 1.

(c) We claim that C is not convex. We define x = (0,−1, 5) and y = (0,−2,−1),

which are clearly elements of C. Set now λ = 1/2 and write z = (x + y)/2. Then

we have

z21 + z22 =
(−1− 2

2

)2
=

9

4
> 1

and also

z21 + z23 =
(5− 1

2

)2
= 4 > 1

1
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so C is not convex and the claim is proven.

(d) We claim that D is convex. Let indeed x = (xi)
n
i=1 and y = (yi)

n
i=1 be elemets

of D and let moreover λ ∈ [0, 1]. Set µ = 1− λ. Then one has∣∣∣ n∑
i=1

(λxi + µyi)
∣∣∣ ≤ ∣∣∣ n∑

i=1

λxi

∣∣∣+
∣∣∣ n∑
i=1

µyi

∣∣∣ = λ
∣∣∣ n∑
i=1

xi

∣∣∣+ µ
∣∣∣ n∑
i=1

yi

∣∣∣ ≤ λ+ µ = 1

and therefore λx + µy belongs to D. The choice of x, y, λ being abitrary, D is

convex.

(e) We claim that E is not convex. Indeed, for each x ∈ E also −x belongs to E,

but 1
2x+ 1

2 (−x) = 0 does not belong to E.

Exercise 3. For each f : Rn → R and for each x, y ∈ Rn, define φf,x,y : [0, 1]→ R
by

λ 7→ φf,x,y(λ) = f(λx+ (1− λ)y).

Fix now f : Rn → R. We claim that the following are equivalent:

(a) the function f is convex;

(b) for each x, y ∈ Rn, the function φf,x,y is convex.

Let λ1, λ2, δ ∈ [0, 1] and define µi = 1− λi and ε = 1− δ. Fix moreover x, y ∈ Rn

and, to light the notation, write φ = φf,x,y. Then we have

(1) φ(δλ1 + ελ2) = f(δ(λ1x+ µ1y) + ε(λ2x+ µ2y)); and

(2) δφ(λ1) + εφ(λ2) = δf(λ1x+ µ1y) + εf(λ2x+ µ2y).

The implication (a) ⇒ (b) is clear from (1) and (2). To prove (b) ⇒ (a), let

λ ∈ [0, 1]. Setting δ = λ and (λ1, λ2) = (1, 0), it follows from (1) and (2) that, if φ

is convex, then

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

All choices involved being arbitrary, the claim is proven. An analogue statement

involving concavity can be proven in a similar way.

Exercise 4. We prove that the Euclidean distance d : R2n → R, defined by

x = (xi)
2n
i=1 7→ d(x) = ‖(xi)ni=1 − (xi)

2n
i=n+1‖

is a convex function. To this end, let x = (xi)
2n
i=1 and y = (yi)

2n
i=1 be elements of

R2n and let λ ∈ [0, 1]. Set moreover µ = 1− λ. Then we have

d(λx+ µy) = ‖(λxi + µyi)
n
i=1 − (λxi + µyi)

2n
i=n+1‖

= ‖λ(xi − xi+n)ni=1 + µ(yi − yi+n)ni=1‖

≤ λ‖(xi − xi+n)ni=1‖+ µ‖(yi − yi+n)ni=1‖

= λd(x) + µd(y).

The choices of x, y, λ being arbitrary, the function d is convex.
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Exercise 5. Let f : Rn → R be a concave function satisfying f(0) = 0. We will

show that, for each x ∈ Rn, λ ∈ [0, 1], and k ∈ R≥1, one has

(a) f(λx) ≥ λf(x); and

(b) kf(x) ≥ f(kx).

Fix x ∈ Rn, λ ∈ [0, 1], and k ∈ R≥1. Since −f is convex, we have

−f(λx) = −f(λx+ (1− λ)0) ≤ −λf(x)− (1− λ)f(0) = −λf(x)

and so (a) is proven. To prove (b), we note that 1/k ∈ [0, 1] and so, applying (a),

we get

kf(x) = kf
(1

k
kx
)
≥ k 1

k
f(kx) = f(kx).

Exercise 6. Let U = {(x, y) ∈ R2 : y > 0} and let f : U → R be defined by

(x, y) 7→ f(x, y) =
x2

y
.

We claim that f is convex. In order to apply Theorem 3.1.4, we compute

D2f(x, y) =

[
2/y −2x/y2

−2x/y2 2x2/y3

]
and therefore we have

detD2f(x, y) =
4x2

y4
− 4x2

y4
= 0.

However, the elements 2/y and 2x2/y3 are both non-negative and so D2f is positive

semi-definite. It follows that f is convex.

Exercise 7. Let U = {(x, y) ∈ R2 : x, y > 0} and define f : U → R by

(x, y) 7→ f(x, y) =
1

2
e−(x+y) − e−x − ey.

We claim that f is concave. To show this, we compute

D2f(x, y) =

[
e−(x+y)/2− e−x e−(x+y)/2

e−(x+y)/2 e−(x+y)/2− ey

]
and therefore

detD2f(x, y) =
(e−(x+y)

2
− e−x

)(e−(x+y)

2
− ey

)
− e−2(x+y)

4

= −e
−x

2
− e−2xe−y

2
+ e−xey

=
e−x

2
(2ey − e−xe−y − 1).
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If we take (x, y) ∈ U , then both x and y are positive and therefore ey > 1 and

e−xe−y < 1 and thus detD2f(x, y) > 0. Moreover, we have

e−(x+y)

2
− e−x =

e−x

2
(e−y − 2) < 0

and therefore D2f is negative definite. It follows that f is concave.

Exercise 8. Let U = {(x, y) ∈ R2 : x, y > 1} and a, b be positive real numbers

satisfying a+ b < 1. Let moreover f : U → R be defined by

(x, y) 7→ f(x, y) = (log x)a(log y)b.

We claim that f is strictly concave. We will use the following fact (stronger version

of Lemma 3.3.1): If g : U → R is strictly concave and l : R → R is increasing and

concave, then l ◦ g is strictly concave. We define

(1) g : U → R by (x, y) 7→ g(x, y) = log(f(x, y));

(2) l1 : R→ R by x 7→ l1(x) = −e−x (concave increasing);

(3) l2 : R<0 → R by −1/x (concave increasing).

We observe that, for each (x, y) ∈ U , one has

l2l1g(x, y) = − 1

−e− log(f(x,y))
= elog(f(x,y)) = f(x, y)

and thus to prove that f(x, y) is concave, it suffices to prove that g is strictly

concave. For each (x, y) ∈ U , the element f(x, y) is positive (so g is well-defined)

and moreover we have

g(x, y) = log(f(x, y)) = log((log x)a(log y)b) = a log log x+ b log log y.

For each (x, y) ∈ U , we compute

∇g(x, y) =
( a

x log x
,

b

x log x

)
and therefore we have

D2g(x, y) =

[
−a(1 + log x)/(x log x)2 0

0 −b(1 + log y)/(y log y)2

]
.

The matrix D2g(x, y) being negative definite for any choice of (x, y) ∈ U , it follows

that g is strictly concave.

Exercise 9. Let U = {(x, y) ∈ R2 : x, y > 0} and let a, b, p ∈ R>0. Define

f : U → R by

(x, y) 7→ f(x, y) = (axp + byp)1/p.

We claim that

(a) f is convex for p ≥ 1;

(b) f is concave for p ≤ 1.
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We separate the two cases.

(a) Assume that p ≥ 1. We will use the following fact (which is very easy to prove):

Fact 1. Let V be a convex subset of Rn and let φ : V → R be a function. Let

moreover δ : V → V be a linear bijection (as defined in Section 1.10). Then φ is

convex if and only if φ ◦ δ is convex.

Define the map δ : U → U by (x, y) 7→ (a1/px, b1/py). Then f = ‖ · ‖p ◦ δ. Since

norms are convex functions and δ is a linear bijection, Fact 1 yields that f is convex.

(b) Assume now that p ≤ 1 and let g : U → R be defined, for each (x, y) ∈ U , by

g(x, y) = axp + byp. Then, for each (x, y) ∈ U , we have

D2g(x, y) =

[
p(p− 1)xp−2 0

0 p(p− 1)yp−2

]
and so D2g(x, y) is negative semi-definite for any choice of (x, y) ∈ U . It follows

that g is concave. Using the same trick from Exercise 8, we get, for any choice of

(x, y) ∈ U , that

− 1

−e− log(g(x,y))/p
=

1

e− log(g(x,y))/p
= elog(g(x,y))/p = elog(f(x,y)) = f(x, y)

and therefore f is concave.


