OQE - PROBLEM SET 11 - SOLUTIONS

Exercise 1. Let {U;};cr be a collection of convex sets. We claim that the set
U = (;c; Ui is convex. To prove so, let z,3 € U and let A € [0,1]. For each i € I,
the elements z,y belong to U; and so, by the convexity of U;, also Az + (1 — Ay

belongs to U;. As a consequence, Az + (1 — A)y belongs to [),.; U; = U and, the

el
choice of z,y, A being arbitrary, it follows that U is convex.

Exercise 2. We determine whether the following sets are convex:

(a) A= {(21,m2,23) ER3 : 17 <9 < 23};

(b) B = {(x1,m2,23) € R3 : 2% + 2% < 1};

(c) C={(z1,22,73) e R3: 22 + 23 <1ora?+2%<1};

(d) D ={(z:)imy € R : |7 il <1}

() BE={(z)je; € R™: 350 af =1}
(a) We claim that A is convex. Let indeed x = (z1,z2,23) and y = (y1, Y2, y3) in
A and let moreover A € [0,1]. Since both A and 1 — A are non-negative, we have

Ax1 + (1 — )\)y1 < Axg + (1 —ANys < Azg+ (1 — )\)y3

and thus Az + (1 — A)y belongs to A.

(b) We claim that B is convex. To show this, we take the elements x = (z1, z2, x3)
and y = (y1,¥2,y3) in B and A € [0,1]. We claim that Az + (1 — \)y lives in B. We
recall that, for each a,b € R, one has (a — b)?> > 0 and thus ab < (a® + b%)/2. In
view of this, we write 4 =1 — A and compute

(Azy + pn)? + Az + py2)® = N (2 + 23) + 2 pu(zrys + z2y2) + 12 (7 +43)

@it
B) 2

<A 20
<N 2+ p?
=\ +p?=1

(¢) We claim that C' is not convex. We define z = (0,—1,5) and y = (0, -2, —1),
which are clearly elements of C. Set now A = 1/2 and write z = (z + y)/2. Then

—-1-22 9
A+25=( ) =3>1

we have

and also
—1\2
%+z§:(75 ) =41
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so C is not convex and the claim is proven.
(d) We claim that D is convex. Let indeed x = (x;)"_; and y = (y;)_; be elemets
of D and let moreover A € [0,1]. Set p =1 — A. Then one has

< ‘ZAL +‘Zﬂyi ZA‘Z%‘ +M‘ZZJ¢
i=1 i=1 i=1 i=1

and therefore Az + py belongs to D. The choice of x,y, A being abitrary, D is

‘Z(Aerﬂyi) <A+p=1
i=1

convex.
(e) We claim that E is not convex. Indeed, for each 2 € E also —z belongs to E,
but 3z + 4 (—) = 0 does not belong to E.

Exercise 3. For each f : R” — R and for each z,y € R", define ¢, : [0,1] = R
by

A= Gfay(A) = fAz + (1= A)y).
Fix now f: R™ — R. We claim that the following are equivalent:

(a) the function f is convex;

(b) for each x,y € R™, the function ¢y, is convex.
Let A1, 2,6 € [0,1] and define u; =1 — \; and e =1 — §. Fix moreover z,y € R”
and, to light the notation, write ¢ = ¢ . Then we have

(1) 60N +eX2) = f(6(Mix + p1y) + €Az + p2y)); and

(2) 66(M) +€p(A2) = 0 f(Mz + py) + ef Aoz + p2y).
The implication (a) = (b) is clear from (1) and (2). To prove (b) = (a), let
A € ]0,1]. Setting 6 = X and (A1, A2) = (1,0), it follows from (1) and (2) that, if ¢
is convex, then

fOz 4+ (1 =XNy) <Af(z) + (1 =) f(y)

All choices involved being arbitrary, the claim is proven. An analogue statement

involving concavity can be proven in a similar way.

Exercise 4. We prove that the Euclidean distance d : R>® — R, defined by

o= (@) o d@) = |y — @2
is a convex function. To this end, let # = (z;)#%, and y = (y;)?", be elements of
R?" and let A € [0,1]. Set moreover =1 — X. Then we have
d(\z + py) = [|(Azi + pya)iey — i+ i) 24|
= MA@ = @itn)izy + 1 = Yitn )iz |
S AM(@i = ign )izl + wll (¥ = yirn)iza
= Md(x) + pd(y).

The choices of x,y, A being arbitrary, the function d is convex.
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Exercise 5. Let f: R™ — R be a concave function satisfying f(0) = 0. We will
show that, for each x € R”, A € [0,1], and k € R>1, one has

(a) f(Az) = Af(x); and
(b) kf(x) = f(kx).

Fix z € R, A € [0,1], and k € R>;. Since —f is convex, we have
—f(z) = —f(Az + (1 = A)0) < =Af(z) — (1 = A)f(0) = —=Af(x)

and so (a) is proven. To prove (b), we note that 1/k € [0,1] and so, applying (a),
we get

kf(x) = k:f(%ka:) > k%f(kx) — (k).

Exercise 6. Let U = {(z,y) € R?: y > 0} and let f : U — R be defined by
22

We claim that f is convex. In order to apply Theorem 3.1.4, we compute

2y —2z/y?
D*f(x,y) = )
and therefore we have
422 422

However, the elements 2/y and 222 /y? are both non-negative and so D?f is positive
semi-definite. It follows that f is convex.

Exercise 7. Let U = {(z,y) € R? : 2,y > 0} and define f : U — R by
1
(.’E,y) = f(xay) = 56_(x+y) —e " —el.

We claim that f is concave. To show this, we compute

D*f(z,y) =

e*(ery)/Q e E e*(w+y)/2
e~ (@tv) /2 e~ (@ty) /2 ey

and therefore

e—(@+y) . e—(@+y) ) e—2(z+y)
) (o) - S

det D*f(z,y) = (“— 5 .
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If we take (x,y) € U, then both x and y are positive and therefore ¢¥ > 1 and

e %e™¥ < 1 and thus det D?f(x,y) > 0. Moreover, we have
—(z+y) —z
¢ 5 —e*w:62 (e7v—-2)<0

and therefore D2 f is negative definite. It follows that f is concave.

Exercise 8. Let U = {(z,y) € R? : 2,y > 1} and a,b be positive real numbers
satisfying a + b < 1. Let moreover f : U — R be defined by

(z,y) = f(z,y) = (logz)*(log )"

We claim that f is strictly concave. We will use the following fact (stronger version
of Lemma 3.3.1): If g : U — R is strictly concave and | : R — R is increasing and
concave, then [ o g is strictly concave. We define

(1) g: U =R by (x,y) = g(z,y) =log(f(x,y));

(2) I1:R—> R by x+—Il1(z) = —e~* (concave increasing);

(3) ls : R.g = R by —1/z (concave increasing).
We observe that, for each (z,y) € U, one has

_ 1 _ Joa(f(aw)
lalig(w,y) = T o Tos(@w) ¢ = f(z,9)

and thus to prove that f(z,y) is concave, it suffices to prove that g is strictly
concave. For each (z,y) € U, the element f(z,y) is positive (so g is well-defined)

and moreover we have

g(z,y) = log(f(z,y)) = log((log z)*(log y)b) =aloglogz + bloglogy.

For each (z,y) € U, we compute

Vg(w,y):( . ’ )

zlogx’ zlogx

and therefore we have
—a(1 +logz)/(zlog z)? 0
0 —b(1+1logy)/(ylogy)?

The matrix D?g(z,y) being negative definite for any choice of (z,y) € U, it follows

D?g(x,y) = [

that g is strictly concave.

Exercise 9. Let U = {(z,y) € R? : 2,y > 0} and let a,b,p € R-g. Define
f:USRby

(2,9) = f(z,y) = (az® + by?)'/7.
We claim that

(a) f is convex for p > 1;
(b) f is concave for p < 1.
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We separate the two cases.
(a) Assume that p > 1. We will use the following fact (which is very easy to prove):

Fact 1. Let V be a convex subset of R™ and let ¢ : V — R be a function. Let
moreover 0 : V. — V be a linear bijection (as defined in Section 1.10). Then ¢ is
convex if and only if ¢ o 0 is convex.

Define the map 6 : U — U by (x,y) = (a'/Px,b'/Py). Then f = || - ||, o . Since
norms are convex functions and 0 is a linear bijection, Fact 1 yields that f is convex.
(b) Assume now that p < 1 and let g : U — R be defined, for each (z,y) € U, by
g(z,y) = ax? + byP. Then, for each (z,y) € U, we have

p(p—1)aP? 0
0 plp—1)yr2

and so D%g(z,vy) is negative semi-definite for any choice of (z,y) € U. It follows

D?g(z,y) =

that g is concave. Using the same trick from Exercise 8, we get, for any choice of
(z,y) € U, that

1 _ 1 — (loalo@n)/p — Jos(f@w) — (g y)

T e log(g(zy))/p ¢ log(g(z.y)/p

and therefore f is concave.



