OQE - PROBLEM SET 2 - SOLUTIONS

Exercise 1. We find infimum and supremum of the following sets
X = {nL.H}HGNQ
Y={a-b:aq,beR,1<a<2,3<b<4}.
We claim the following:
(a) infX = and sup X = 1.
(b) infY = -3 and supY = —1.
(a) We observe that, if n,m are elements of N, then o < mLH if and only if
n < m. It follows that, for each n € N, one has
1 1 < n

2 1+1-"n+1

Since % is an element of X, it follows that % = inf X. We now prove sup X = 1.

For each n € N, one has n < n+1, and therefore sup X < 1. Let now s be an upper
bound of X and assume by contradiction that s < 1. Then the set X is contained

_n_
n+1’

[0, s] which converges to 1 in R. However, 1 does not belong to [0, s], which is a

in [0, s]. It follows that the sequence (zy,),, defined by x,, = is a sequence in

contradiction to Theorem 1.3.8 from the notes.

(b) Tt is not difficult to show that —3 < infY < —2 < supY < —1. Let now
I =supY and assume, by contradiction, that { < —1. Define 6 = | — 1 — 1|, so that
0<d<1. Wedefinea=2- % and b =3+ %: it follows from their definitions that
1 <a<2and 3 <b< 4. However, 0necomputesa—b=—1—%> —-1-6=1,
giving a contradiction to the minimality of [. We have proven thus that supY = —1.

To prove that inf Y = —3, one uses a similar argument.

Exercise 2. We determine whether or not the following sequences
(a) @ = (((=1)"4, 3))nen
— nsinn (=1)"T!
(b) 7= (22, S —))nen

converge respectively in R? and R2.

(a) We claim that Z does not converge in R3. Assume by contradiction that
converges to a point & = (x1,22,23) in R3. Then, for each ¢ > 0, there exists
N, € N such that, for all n > N, one has
1
(21— (=1)")% + (22 — 4)° + (x5 — 5)2 <
Fix0<e< % and let n > N be odd. Then we have

(o1 + 1 (2~ 47 + (25— )7 = — (1)) o+ (w2 — 47 4 (25— )? < &

1
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and also
1 1
(z1 = 1)* + (32 — 4)* + (23 — 5)2 = (21— (=1)")? + (22 — 4)% + (23 — 5)2 < €.

However, one between x1 + 1 and 7 — 1 is larger than 1 and therefore € > 1, which
contradicts our choice of e.
(b) We prove that § converges to (0,0) in R?. We observe that, since sin is a
function R — [—1, 1], one has, for each n € N, that
-n nsinn n
n2+1 " n241" n2+1

and so, since both sequences (;777)» and (;7%7)» tend to 0 as n goes to infinity,
(*1)")
n

n

nsinn
n2+41
is convergent to 0 and therefore y — (0, 0).

also ( ) is convergent to 0. With a similar argument, one shows that (

Exercise 3. We compute interior, closure, and boundary of Q in R. We claim

e Q=0.

e Q=0Q=R.
To prove that the interior of Q is empty, we work by contradiction. Assume that
 is an element of Q and let € > 0 be such that B.(z) C Q. Since the sequence
(?)nw converges to 0, there exists n € N such that ? < e. Fix such n. Then the
element x + ? belongs to B.(z) \ Q. Contradiction. Hence Q = () and so Q = 0Q.
Use a similar trick to prove that, for every element x of R and for every € > 0, one

has Q N B(z) # 0.

Exercise 4. Let X be a non-empty set and let d be the discete metric on it. We
show that the convergent sequences in (X, d) are exactly the stationary sequences,
i.e. sequences (z,), such that there exists N € N and z € X such that, for all

n > N, one has x,, = x. Let indeed (z,,), be a sequence in X. Then

(25 )n converges to a point x € X

v

for each € > 0 there exists N € N such that, for all n > N, one has d(z,,z) < €

)

for each 1 > € > 0 there exists NV € N such that, for all n > N, one has

d(xp,z) <e<1

)

for each 1 > € > 0 there exists N € N such that, for all n > N, one has

d(xp,z) =0

)

there exists IV € N such that, for all n > N, one has z,, = .

Exercise 5. Let C]0,1] be the collection of continuous maps [0,1] — R and let

|| - || denote the max-norm on it, i.e. the norm associating to each f € C[0,1] the
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element || f| = max;ejo,1) [f(t)| of R.
(a) We first prove that, if g € C|0, 1], then the set
Ag ={f € Cl0,1] [Vt € [0,1] : f(t) < g(t)}

is open in C0,1]. Fix g and let f € A;. We prove that there exists € > 0 such
that B(f) is contained in Ay. Define € = J minye(o 1 |9(t) — f(t)|. Since f € Ay,
the number € is positive and so, for each ¢ € [0, 1], one has f(t) + € < g(t). Let
now h € B.(f). It follows that, for each t € [0, 1], one has h(t) < f(t) +€ < g(t)
and therefore h € A,. We have proven that B.(f) C A, and, the choice of f being
arbitrary, A4 is open.
(b) Let f and g be respectively defined by ¢t — f(t) = 2t and t — ¢(t) = 1 — ¢.
Then we compute

If = gll = max |£(t) = g(t)] = max |3t —1|
(c) We prove that the sequence f = (f,(t))n, defined by f,(t) = t" — 2" is not
convergent in C[0,1]. We will do so by contradiction. Assume that f has a limit f
in C[0,1]. Then, for each € > 0, there exists N, € N such that, for all n > N, one
has || f — fu| < €. Let now € = 55 and choose n > N. Then one has

| fn = fonll = max |(t" —3") — (2" — t*")| = max [t" — 22" + ¢4
te[0,1] t€[0,1]
1
V2

st () -+ ()| G-k

Then, as a consequence of the triangle inequality, one gets

and so, since 0 < <1, we get

1 1 1

—=——¢< — fall = IIf = <|If - =_—.

5= 16 =< fon = Fal = If = fnll SIS = full < €= 35
Contradiction.

Exercise 6. Let (X,| -]|) be a normed space. Define, for all z,y € X

(a) pr(z,y) = min{l, ||z —yl|};
(b) pa(z,y) = max{l, ||z — yl|}.
(a) We claim that p; defines a metric on X, while po does not. We start from p;.

Using the defining properties of a norm, one shows that
pr(@,) = min{1, [l — ]|} = min{1, 0]} = 0
and also that
p1(z,y) = min{1, [z —y[[} = min{l, ly — 2|} = p1(y, 2).

To prove the triangle inequality, one argues that, as a consequence of Lemma 1.1.7
from the notes, for all z,y, the following holds

p1(z, 2) = min{l, [lz — z[|} < min{1, [l —y|[ + [ly — z[|}
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< min{1, [lz =y} + min{1, |ly — 2[|} = p1(z, y) + p1(y, 2).
We have proven that p; satisfies all requirements for being a metric on X and
therefore so it is.

(b) To prove that py is not a metric in general we fix € X. Then
p2(z, ) = max{l, ||z — z||} = max{1, |0]} = 1,

which contradicts the identity axiom for metrics.



