
OQE - PROBLEM SET 8 - SOLUTIONS

Exercise 1. Let f : R2 → R be defined by

(x, y) 7→ f(x, y) =


(

3xy2

4x2+4y4

)2
if x 6= 0

0 otherwise
.

We claim that:

(a) if ` is a line through (0, 0), then f is continuous on `; and

(b) the function f is not continuous at (0, 0).

(a) If ` is a line through (0, 0), then there exists m ∈ R such that

` = {(x, y) ∈ R2 : y = mx}.

Fix m ∈ R and call ` the subset of R2 consisting of those elements (x, y) such that

y = mx. Then, restricting f to ` gives

f(x, y) =


(

3m2x3

4x2(1+m4x2)

)2
if (x, y) ∈ ` \ {(0, 0)}

0 if (x, y) = (0, 0)
.

We now have that

lim
(x,y)∈`

(x,y)→(0,0)

f(x, y) = lim
x→0

( 3m2x3

4x2(1 +m4x2)

)2
= lim

x→0

(3m2x3

4x2

)2
= 0

and therefore the function f is continuous on `.

(b) To show that f is not continuous at (0, 0), we construct a convergent sequence

(zn)n∈N in R2 such that limn→∞ zn = (0, 0), but limn→∞ f(zn) 6= 0. To this end,

let (yn)n∈N be a sequence in R such that, for each n ∈ N, the element yn 6= 0

but such that limn→∞ yn = 0. We define (zn)n∈N by setting, for each n ∈ N, the

element zn equal to (y2n, yn). As a consequence of the definition of (yn)n, the first

component of each zn is different from 0, but limn→∞ zn = (0, 0). However, when

we compute the images of zn under f , we get

lim
n→∞

f(zn) = lim
n→∞

f(y2n, yn) = lim
n→∞

(3y4n
8y4n

)2
=

9

64
.

We have proven that limn→∞ f(zn) 6= 0 and so, in view of Theorem 1.4.4, the

function f is not continuous at (0, 0).

Exercise 2. Let g, h : R2 → R be respectively defined by (x, y) 7→ x + y2 and

(x, y) 7→ x2y. Define moreover f : R2 → R by means of (a, b) 7→ ab2. We want
1
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to compute, using the chain rule, the gradient of the function F : R2 → R that is

defined by

(x, y) 7→ F (x, y) = f(g(x, y), h(x, y)).

To do so, we define an additional function φ : R2 → R2 by means of (x, y) 7→
(g(x, y), h(x, y)) and we note that F = f ◦ φ. By the chain rule, we then have that

DF (x, y) = Df(φ(x, y))Dφ(x, y) = Df(g(x, y), h(x, y))Dφ(x, y)

so we compute the gradient of f :

Df(a, b) = ∇f(a, b) = (b2, 2ab)

and also the Hessian of φ:

Dφ(x, y) =

[
1 2y

2xy x2

]
.

As a consequence we have

DF (x, y) = Df(g(x, y), h(x, y))Dφ(x, y)

=
[
h(x, y)2 2g(x, y)h(x, y)

]
Dφ(x, y)

=
[
x4y2 2x3y + 2x2y3

] [ 1 2y

2xy x2

]
= (5x4y2 + 4x3y4, 4x4y3 + 2x5y).

Exercise 3. Let x, a, p, w, t be real variables, each of which identifies:

x = demand of some good;

p = price of the good;

a = amount the producer spends on advertising the good;

w = weather (measured in some way);

t = tax rate.

The interaction between the variables is governed by the functions f, g : R2 → R
and h : R→ R in the following way:

(a) x = f(p, a) and, for all a, p ∈ R, one has ∂pf(p, a) < 0 and ∂af(p, a) > 0;

(b) p = g(w, t) and, for all w, t ∈ R, one has ∂wg(w, t) > 0 and ∂tg(w, t) < 0;

(c) a = h(t) and, for all t ∈ R, one has h′(t) > 0.

We claim that, if the tax rate (t) increases, then the demand for the good (x)

necessarily increases. To prove so, we will write x as a function F of w and t and

show that, for any choice of w and t, one has ∂tF (w, t) > 0. We define F : R2 → R
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by means of (w, t) 7→ F (w, t) = f(g(w, t), h(t)) and we note that F expresses x in

terms of w and t. To compute ∇F (w, t), we use the chain rule and get

∇F (w, t) = ∇f(g(w, t), h(t))D(g, h)(w, t)

=
[
∂pf(g(w, t), h(t)) ∂af(g(w, t), h(t))

] [∂wg(w, t) ∂tg(w, t)

0 h′(t)

]
.

It follows then that

∂tF (w, t) = ∂pf(g(w, t))∂tg(w, t) + ∂af(g(w, t), h(t))h′(t)

which is, thanks to (a− c), positive for any choice of w, t.

Exercise 4. Let U be the open subset of R2 that is defined by

U = {(x, y) ∈ R2 : x, y > 0}.

Let moreover a ∈ (0, 1) and define f : U → R by (x, y) 7→ f(x, y) = xay1−a.

We compute the second order Taylor polynomial of f at (1, 1). The gradient and

Hessian of f are ∇f(x, y) = (axa−1y1−a, (1− a)xay−a) and

D2f(x, y) =

[
a(a− 1)xa−2y1−a a(1− a)xa−1y−a

a(1− a)xa−1y−a a(a− 1)xay−1−a

]
.

Let now h = (h1, h2) be an element of R2. We compute

f((1, 1) + h) =f(1, 1) + ∂xf(1, 1)h1 + ∂yf(1, 1)h2 +
1

2
∂2xf(1, 1)h21+

∂x∂yf(1, 1)h1h2 +
1

2
∂2yf(1, 1)h22 + o(‖h‖2) =

1 + ah1 + (1− a)h2 +
a(a− 1)

2
(h21 − 2h1h2 + h22) + o(‖h‖2).

Exercise 5. We calculate the second order Taylor polynomial of the function

f : R3 → R that is defined by

(x, y, z) 7→ f(x, y, z) = xe−y + y + z + 1

at the point (1, 0, 0). To do so, we determine both gradient and Hessian of f , getting

∇f(x, y, z) = (e−y,−xe−y + 1, 1) and

D2f(x, y, z) =

 0 −e−y 0

−e−y xe−y 0

0 0 0

 .
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Pick now h = (h1, h2, h3) ∈ R3. Then we get

f((1, 0, 0) + h) =f(1, 0, 0) + ∂xf(1, 0, 0)h1 + ∂yf(1, 0, 0)h2 + ∂zf(1, 0, 0)h3+

∂x∂yf(1, 0, 0)h1h2 +
1

2
∂2yf(1, 0, 0)h22 + o(‖h‖2) =

2 + h1 + h3 − h1h2 +
1

2
h22 + o(‖h‖2).


