
OQE - PROBLEM SET 9 - SOLUTIONS

Exercise 1. Let F : R3 → R be defined by (x, y, z) 7→ F (x, y, z) = x2 − y2 + z3.

(a) We want to determine the triples (6, 3, z) for which F (6, 3, z) = 0. We impose

0 = F (6, 3, z) = 36− 9 + z3 = 27 + z3

and therefore F (6, 3, z) = 0 if and only if z3 = −27. It follows that the only element

(6, 3, z) of R3 satisfying F (6, 3, z) = 0 is (6, 3,−3).

(b) We claim that F induces an implicit function in the indeterminate z. Indeed,

the function g : R → R, defined by z 7→ z3, is a bijection and thus, for any choice

of (x, y) ∈ R2, there exists a unique z ∈ R such that z = g−1(−x2 + y2). In other

words, for each (x, y) ∈ R, there exists a unique z such that F (x, y, z) = 0, namely

z = g−1(−x2 + y2).

(c) We compute partial derivatives of z = z(x, y) at the point (6, 3). We recall that

z = z(x, y) = (−x2 + y2)1/3

and thus we have

∂z

∂x
(6, 3) =

(1

3
(−x2 + y2)−2/3(−2x)

)
(6, 3)

=
(
− 2x

3(−x2 + y2)2/3

)
(6, 3)

= − 12

3(−36 + 9)2/3

= − 4

(−27)2/3

= −4

9

and also

∂z

∂y
(6, 3) =

(1

3
(−x2 + y2)−2/3(2y)

)
(6, 3)

=
( 2y

3(−x2 + y2)2/3

)
(6, 3)

=
6

3(−36 + 9)2/3

=
2

(−27)2/3

=
2

9
.
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Exercise 2. Let F : R4 → R be defined, for each (x, y, z) ∈ R3, by

F (x, y, z) = x4 + 2x cos y + sin z.

We claim that F (x, y, z) = 0 defines z as an implicit function of x, y in a neigh-

bourhood of x = y = z = 0. Indeed, the gradient of F is equal to

∇F = (4x3 + 2 cos y,−2x sin y, cos z)

and, since ∂F
∂z (0, 0, 0) = 1 6= 0, Theorem 2.7.4 yields the existence of open neigh-

bourhoods U in R2 and V in R, respectively of (0, 0) and 0, and of a function

g : U → V of x and y such that, for all (x, y, z) ∈ U × V , if F (x, y, z) = 0, then

z = g(x, y). From Theorem 2.7.4 we know in addition that

∇g(0, 0) = −∂F
∂z

(0, 0, 0)−1
(∂F
∂x

(0, 0, 0),
∂F

∂y
(0, 0, 0)

)
= (−2, 0).

Exercise 3. Let F : R3 → R be defined by

(x, y, z) 7→ F (x, y, z) = x3 + 3y2 + 4xz2 − 3z2y − 1.

We want to determine, for given (x0, y0) ∈ R2, if the equation F (x, y, x) = 0

defines z as an implicit function of x, y in a neighbourhood of (x0, y0). We look at

the equation 0 = F (x0, y0, z) = x30+3y20 +4x0z
2−3z2y0−1, which can be rewritten

as

(4x0 − 3y0)z2 = 1− x30 − 3y20 .

As a consequence, a necessary condition for (x0, y0, z0) to be a zero of F is that

(4x0 − 3y0)(1− x30 − 3y20) ≥ 0.

We look at the following cases:

(a) (x0, y0) = (1, 1);

(b) (x0, y0) = (1, 0);

(c) (x0, y0) = (1/2, 0).

(a) In this case (4x0− 3y0)(1−x30− 3y20) = −3 < 0, so there is no z0 ∈ R such that

F (x0, y0, z0) = 0. In particular, z is not an implicit function of x and y.

(b) In this case, the unique element z0 ∈ R such that F (x0, y0, z0) = 0 is z0 = 0.

We claim that there is however no triple (U, V, g), with U an open neighbourhood

of (x0, y0) in R2, with V an open neighbourhood of z0 in R, and g : U → V a

function satisfying

(x, y, z) ∈ U × V with F (x, y, z) = 0 =⇒ z = g(x, y).

Assume by contradiction that such a triple (U, V, g) exists. Then, for each (x, y) ∈ U
and z ∈ V satisfying F (x, y, z) = 0, one has

z2 = g(x, y)2 =
1− x3 − 3y2

4x− 3y
.
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However, if (x, y) ∈ U is such that 1−x3−3y2

4x−3y 6= 0, the last equation gives rise to

z1, z2 ∈ R \ {0}, with z1 = −z2, such that 0 = F (x, y, z1) = F (x, y, z2). Contradic-

tion.

(c) Set z0 =
√

7/4. Then we have

F (x0, y0, z0) =
1

8
+

7

8
− 1 = 0.

In view of Theorem 2.7.4, we compute

∇F (x, y, z) = (3x2 + 4z2, 6y − 3z2, 8xz − 6zy)

and therefore, since ∂F
∂z (1/2, 0,

√
7/4) =

√
7 6= 0, there exist open neighbourhoods U

and V , respectively of (x0, y0) and z0, in R2 and R and a continuously differentiable

function g : U → V such that, if (x, y, z) ∈ U × V is such that F (x, y, z) = 0, then

z = g(x, y). To compute ∇g(1/2, 0) we rely on Theorem 2.7.4 and compute

∇g(1/2, 0) = −∂F
∂z

(1/2, 0,
√

7/4)−1
(∂F
∂x

(1/2, 0,
√

7/4),
∂F

∂y
(1/2, 0,

√
7/4
)

= −
√

7
(10

4
,−21

16

)
=
(
− 10

√
7

4
,

21
√

7

16

)
.

Exercise 4. Let x, y, u, v ∈ R and consider the systemu+ xey + v = e− 1

x+ eu+v2 − y = e−1
.

We prove that the given system defines u and v in terms of x, y around the point

(1, 1,−1, 0). To do so, we define additional functions F1, F2 : R4 → R by means of

(x, y, u, v) 7→ F1(x, y, u, v) = u+ xey + v − e+ 1

and also

(x, y, u, v) 7→ F2(x, y, u, v) = x+ eu+v2

− y − e−1.

We then write F = (F1, F2). As we want to apply Theorem 2.7.4, we compute

DF (x, y, u, v) =

[
ey xey 1 1

1 −1 eu+v2

2veu+v2

]
and so, if we restrict to partial derivatives with respect to u and v, we get

det
∂F

∂(u, v)
(1, 1,−1, 0) = det

[
1 1

e−1 0

]
= −e−1 6= 0.

Thanks to Theorem 2.7.4 there exist U and V open neighbourhoods in R2, respec-

tively of (1, 1) and (−1, 0), and a function g : U → V with the property that

(x, y, u, v) ∈ U × V with F (x, y, u, v) = 0 =⇒ (u, v) = g(x, y).
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Moreover, thanks to Theorem 2.7.4, we can also compute

∂g

∂(x, y)
(1, 1) = − ∂F

∂(u, v)
(1, 1,−1, 0)−1

∂F

∂(x, y)
(1, 1,−1, 0)

= −

[
1 1

e−1 0

]−1 [
e e

1 −1

]

= e

[
0 −1

−e−1 1

][
e e

1 −1

]

= e

[
−1 1

0 −2

]

Exercise 5. Let f : R2 → R2 be defined by (x, y) 7→ f(x, y) = (x+ ey, y + e−x).

We claim that f is everywhere locally invertible. In view of Theorem 2.8.1, it

suffices to show that, for any choice of (x, y) ∈ R2 the determinant of the matrix

Df(x, y) =

[
1 ey

−e−x 1

]
is different from 0. For each x, y ∈ R, we compute detDf(x, y) = 1 + e−xey and so,

since the image of the exponential is contained in R>0, we have detDf(x, y) > 0.

This proves the claim. Let now U and V be open neighbourhoods in R2, respectively

of (1,−1) and f(1,−1) = (1 + e−1,−1 + e−1), and let g : V → U be such that

g ◦ f|U = idU . Thanks to Theorem 2.8.1, we can compute

Dg(1 + e−1,−1 + e−1) = Df(1,−1)−1

=

[
1 e−1

−e−1 1

]−1

=
1

1 + e−2

[
1 −e−1

e−1 1

]
.

Exercise 6. Let f : R2 → R2 be defined by (x, y) 7→ f(x, y) = (ex cos y, ex sin y).

We claim that f is locally invertible everywhere, but it is not globally invertible.

We start by showing that f is not globally invertible. A necessary requirement

for f to be invertible is that f is injective: this is not the case as, for example

f(1, 0) = f(1, 2π). We now show that f is locally invertible everywhere. To do so,

for each (x, y) ∈ R2, we compute

detDf(x, y) = det

[
ex cos y −ex sin y

ex sin y ex cos y

]
= e2x(cos2 y + sin2 y) = e2x > 0

and so, thanks to Theorem 2.8.1, the function f is locally invertible everywhere. In

particular, there exist open neighbourhoods U and V in R2, respectively of (0, 0)
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and f(0, 0) = (1, 0), and g : V → U be such that g ◦ f|U = idU . Fix such a triple

(U, V, g). Theorem 2.8.1 yields

Dg(1, 0) = Df(0, 0)−1 =

[
1 0

0 1

]−1
=

[
1 0

0 1

]
.


