Random Substitutions

Dan Rust

CRC retreat 2018

Easy dynamics

A topological dynamical system is a topological space X together with a self-action $\sigma: X \rightarrow X$.

Isomorphism: $\left(X_{1}, \sigma_{1}\right) \cong\left(X_{2}, \sigma_{2}\right)$ if there is $h: X_{1} \rightarrow X_{2}$,

Simple examples

$$
\begin{array}{cc}
X=\{*\}, \sigma=\mathrm{id}_{X} & \text { too simple! } \\
X=\{1,2\}, \quad \sigma_{1}=\mathrm{id}_{X}, & \sigma_{2}: 1 \leftrightarrow 2
\end{array}
$$

not the same because they have a different number of orbits

Subshifts

$\mathcal{A}=\{0,1\}-$ Alphabet. $\mathcal{A}^{\mathbb{Z}}$ - full (two-sided) shift.
Metric d on $\mathcal{A}^{\mathbb{Z}}$:

$$
d\left(\cdots x_{-1} \cdot x_{0} x_{1} \cdots, \cdots y_{-1} \cdot y_{0} y_{1} \cdots\right)=\inf \left\{1 / 2^{|i|} \mid x_{i}=y_{i}\right\} \cup\{1\}
$$

"The more two sequences agree near their centers, the closer they are."

$$
\sigma: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathcal{A}^{\mathbb{Z}} \quad \text { shift map }
$$

A (two-sided) subshift X is a closed, shift invariant subspace of the full shift $\mathcal{A}^{\mathbb{Z}}$.

Subshifts

Generally define X in one of a few ways:

- Language $-X_{\mathcal{L}}=\left\{w \in \mathcal{A}^{\mathbb{Z}} \mid u \triangleleft w \Longrightarrow u \in \mathcal{L}\right\}$ Example: $\mathcal{L}=\{0,01,010,0101, \ldots\}$
- Orbit closure $-X_{x}=\overline{\left\{\sigma^{n}(x) \mid x \in \mathcal{A}^{\mathbb{Z}}, n \in \mathbb{Z}\right\}}$

Examples

$$
\begin{gathered}
\left(X_{\ldots 000.000 \ldots,}, \sigma\right) \cong(\{*\}, \text { id }) \\
\left(X_{\ldots 0101.0101 \ldots, \sigma)} \cong(\{1,2\}, 1 \leftrightarrow 2)\right.
\end{gathered}
$$

$(X \ldots 0000.1111 \ldots, \sigma) \cong$ homework

Invariants

- Cardinality and topology
- Number of closed invariant subspaces
- Number of n-periodic points (and the related zeta function)
- Topological entropy:

$$
h_{\text {top }}:=\lim _{n \rightarrow \infty} \frac{1}{n} \log \#\{\text { legal subwords of length } n\}
$$

- "Dynamical spectrum", "Čech cohomology", "Ellis semigroup",...

Invariants

- Cardinality and topology
- Number of closed invariant subspaces
- Number of n-periodic points (and the related zeta function)
- Topological entropy:

$$
h_{\text {top }}:=\lim _{n \rightarrow \infty} \frac{1}{n} \log \#\{\text { legal subwords of length } n\}
$$

- "Dynamical spectrum", "Čech cohomology", "Ellis semigroup", ...

Substitutions

Substitutions (deterministic)

$\phi: \mathcal{A} \rightarrow \mathcal{A}^{+}$- assign a word to the letters of \mathcal{A}.
Example: [Period doubling substitution]

$$
\phi: 0 \mapsto 01,1 \mapsto 00, \quad M_{\phi}=\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right]
$$

Iterate

$$
0 \mapsto 01 \mapsto 0100 \mapsto 01000101 \mapsto 0100010101000100 \mapsto \cdots
$$

$$
x=\cdots 01000101010001000100010101000101 \cdots
$$

$X_{\phi}=X_{X}$ or
$X_{\phi}=X_{\mathcal{L}}$ where $\mathcal{L}=\left\{u \mid u \triangleleft \phi^{n}(0), n \geq 1\right\}$.

Primitivity

Definition

A substitution ϕ is primitive if there exists a $k \geq 1$ such that for all $i, j \in \mathcal{A}$ the letter j appears in the word $\phi^{k}(j)$.

Equivalently, if there exists a $k \geq 1$ such that the matrix M_{ϕ}^{k} has positive entries.

Proposition

Let ϕ be a primitive substitution. Then:

- X_{ϕ} is non-empty
- Either every element of X_{ϕ} is periodic or every element is non-periodic
- X_{ϕ} is either finite or a Cantor set
- Every element of $\left(X_{\phi}, \sigma\right)$ has a dense orbit
- $h_{\text {top }}\left(X_{\phi}, \sigma\right)=0$

It would be nice to have a system which shares the nice hierarchical properties of substitutions, giving long range correlations, but also positive entropy!

Random substitutions

$\vartheta: \mathcal{A} \rightarrow \mathcal{P}\left(\mathcal{A}^{+}\right)$- assign a set of words to the letters of \mathcal{A}. For every $i \in \mathcal{A}, \boldsymbol{P}_{i}: \vartheta(i) \rightarrow[0,1]$ such that $\sum_{u \in \vartheta(i)} \boldsymbol{P}_{i}(u)=1$. Example: [Random period doubling substitution]

$$
\begin{gathered}
\vartheta: 0 \mapsto\{01,10\}, 1 \mapsto\{00\} \\
\boldsymbol{P}_{0}(01)=p, \quad \boldsymbol{P}_{0}(10)=1-p, \quad \boldsymbol{P}_{1}(00)=1 \\
M_{\vartheta}=\left[\begin{array}{ll}
p+(1-p) & 2 \\
p+(1-p) & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right]
\end{gathered}
$$

When the matrix is independent of the probabilities we call ϑ compatible.

$$
\vartheta: 0 \mapsto\{01,10\}, 1 \mapsto\{00\}
$$

$\mapsto\{\overbrace{01000101,01000110,01001001,10000101}^{0100}$, 01001010, 10000110, 10001001, 10001010, 1000
$\overbrace{00010101,00010110,00011001, ~ 00100101}$, 00011010, 00100110, 00101001, 00101010, $\overbrace{\cdots}^{0001}, \overbrace{\cdots}^{0010}$

Long range correlations

Long range order is measured as non-trivial Bragg peaks in the pure point component of the diffraction measure of an associated 1-dimensional point-set.

Theorem (Baake, Spindeler, Strungaru, '18)

For the random period doubling substitution, the associated diffraction measure $\hat{\gamma}$ is given by

$$
\hat{\gamma}=\hat{\gamma}_{p p}+\hat{\gamma}_{a c}=\sum_{k \in \mathbb{Z}\left[\frac{1}{2}\right]} I_{p}(k) \delta_{k}+\phi_{p} \lambda .
$$

Where I_{p} and ϕ_{p} have explicit formulae.
Further, $\phi_{p}=0$ if and only if $p=0$ or $p=1$. (This agrees with the deterministic setting)

The absolutely continuous component is measuring a kind of stochasticity (though it can be non-trivial even in the deterministic setting!).

Notation: If $u \triangleleft v \in \vartheta^{k}(i)$ for some $k \geq 1$, we write $u \triangleleft \vartheta^{k}(i)$. Example: [Random period doubling] $000100110 \in \vartheta^{3}(0)$ so 010011 ↔ $\vartheta^{3}(0)$.

Definition

A random substitution ϑ is primitive if $\exists k \geq 1$ such that for all $i, j \in \mathcal{A}$, $i \boldsymbol{\psi} \vartheta^{k}(j)$.

If ϑ is compatible, then ϑ is primitive if and only if M_{ϑ} is primitive.

Language of ϑ is given by

$$
\mathcal{L}_{\vartheta}=\left\{u \in \mathcal{A}^{+} \mid u \triangleleft \vartheta^{k}(i) \text { for some } k \geq 1, i \in \mathcal{A}\right\} .
$$

Subshift given by $X_{\vartheta}=X_{\mathcal{L}_{\theta}}$.

Example

$$
\vartheta: 0 \mapsto\{00,01,10,11\}, 1 \mapsto\{00,01,10,11\}
$$

Question:

What is X_{ϑ} ?

Answer:

$$
X_{\vartheta}=\mathcal{A}^{\mathbb{Z}}
$$

Example

$$
\begin{gathered}
\vartheta: 0 \mapsto\{010,0\}, 1 \mapsto\{01,1\} \\
X_{\vartheta}=X_{\mathcal{F}=\{11\}} \quad(\text { Golden mean shift })
\end{gathered}
$$

Example

$$
\vartheta: 0 \mapsto\{01,10\}, b \mapsto\{01,10\}
$$

$$
X_{\vartheta}=X_{\mathcal{G}} \quad(\text { Sofic shift })
$$

Results

Theorem (R., Spindeler, '18)

Let ϑ be primitive.
X_{ϑ} is empty if and only if for all $i \in \mathcal{A}$ and $u \in \vartheta(i),|u|=1$.
X_{ϑ} is either finite or a Cantor set.
$\left(X_{\vartheta}, \sigma\right)$ is topologically transitive (there exists an element with dense orbit).
Equivalently, there exists an element $x \in X_{\vartheta}$,

$$
X_{\vartheta}=X_{x}=\overline{\left\{\sigma^{n}(x) \mid n \in \mathbb{Z}\right\}}
$$

Either $\operatorname{Per}\left(X_{\vartheta}\right)=\varnothing$ or $\operatorname{Per}\left(X_{\vartheta}\right) \stackrel{\text { dense }}{\subseteq} X_{\vartheta}$.

Periodic points

Example

The random period doubling subshift has periodic points.

$$
\begin{aligned}
& 001 \mapsto \overbrace{10}^{0} \overbrace{01}^{0} \overbrace{00}^{1} \mapsto 001001001001 \\
& \mapsto 100100100100100100100100 \mapsto \cdots
\end{aligned}
$$

Definition

We say that ϑ has disjoint images if $\vartheta(i) \cap \vartheta(j)=\varnothing$ for all $i \neq j$.
The random period doubling substitution $0 \mapsto\{01,10\}, 1 \mapsto\{00\}$ has disjoint images.

Periodic Points

Franz Gähler computed some of the number of periodic points for the random period doubling susbtitution:

p	\mid Per $_{p} \mid$	\mid Orb $_{p} \mid$	p	\mid Per $_{p} \mid$	\mid Orb $_{p} \mid$
3	3	1	24	176,391	7,334
6	15	2	27	1,533	56
9	21	2	30	216,030	7,179
12	375	30	33	10,992	333
15	108	7	36	$19,375,935$	538,143
18	2,427	133	39	24,612	631
21	402	19	42	$13,106,514$	312,050

There are a few patterns but the data remains mostly mysterious.

Periodic Points

Question: What criteria ensure or exclude the existence of periodic points?

Theorem (R., '18)

If ϑ is primitive and $\operatorname{Per}\left(X_{\vartheta}\right) \neq \varnothing$ then the leading eigenvalue of M_{ϑ} is an integer.
Suppose ϑ is compatible with constant length ℓ and has disjoint images. If

$$
\mathcal{L}_{\ell} \backslash \vartheta(\mathcal{A}) \neq \varnothing,
$$

then $\operatorname{Per}\left(X_{\vartheta}\right)=\varnothing$.

Example

$$
\begin{aligned}
& \vartheta: 0 \mapsto\{00110,01010\}, 1 \mapsto\{00000\}, M_{\vartheta}=\left[\begin{array}{ll}
3 & 2 \\
5 & 0
\end{array}\right], \lambda=5 . \\
& v=00001 \in \mathcal{L}_{5} \backslash \vartheta(\mathcal{A}), \text { so } \operatorname{Per}\left(X_{\vartheta}\right)=\varnothing
\end{aligned}
$$

Entropy

Theorem (R., Spindeler, '18)

Let ϑ be primitive. Under mild conditions

$$
h_{\text {top }}\left(X_{\vartheta}\right)>0 .
$$

Theorem (Gohlke, '18)
Let ϑ be primitive and compatible. If $\operatorname{Per}\left(X_{\vartheta}\right) \neq \varnothing$, then

$$
\limsup _{p \rightarrow \infty} \frac{1}{p} \log \left(\# \operatorname{Per}_{p}\left(X_{\vartheta}\right)\right)=h_{\text {top }} .
$$

Entropy

Theorem (Gohlke, '18)

Let ϑ be primitive and compatible. If ϑ has disjoint images, then

$$
h_{\text {top }}=\frac{1}{\lambda-1}\left\langle\left[\begin{array}{l}
\log \# \vartheta(0) \\
\log \# \vartheta(1)
\end{array}\right], \mathbf{r}_{\lambda}\right\rangle .
$$

If $\vartheta(0)=\vartheta(1)$, then

$$
h_{\text {top }}=\frac{1}{\lambda}\left\langle\left[\begin{array}{l}
\log \# \vartheta(0) \\
\log \# \vartheta(1)
\end{array}\right], \mathbf{r}_{\lambda}\right\rangle .
$$

Otherwise, $h_{\text {top }}$ is somewhere inbetween.
This result can be applied iteratively to ϑ^{k} to get better approximations in the intermediate cases (and in many cases calculate exact values as limits). This is a big deal!

Entropy

Philipp's result turns the following results into 1 page calculations.
Theorem (Godrèche, Luck, '89. Nilsson, '10)
$\vartheta: 0 \mapsto\{01,10\}, 1 \mapsto\{0\}$ (random Fibonacci).

$$
h_{\mathrm{top}}=\sum_{i=2}^{\infty} \frac{\log i}{\tau^{i+2}} \approx 0.444399
$$

Theorem (Baake, Spindeler, Strungaru, '18)
$\vartheta: 0 \mapsto\{01,10\}, 1 \mapsto\{00\}$ (random period doubling). $h_{\text {top }}=\frac{2}{3} \log 2$.

Theorem (Nilsson, '13)
$\vartheta: 0 \mapsto\{100\}, 1 \mapsto\{01,10\}$ (random Fib ${ }^{2}$). $h_{\text {top }}=\frac{1}{\tau^{3}} \log 2$.

