Random Substitutions

Dan Rust

CRC retreat 2018

Easy dynamics

A topological dynamical system is a topological space X together with a self-action $\sigma \colon X \to X$.

Isomorphism: $(X_1, \sigma_1) \cong (X_2, \sigma_2)$ if there is $h: X_1 \to X_2$,

Simple examples

$$X = \{*\}, \sigma = \mathrm{id}_X$$
 too simple!

$$X = \{1, 2\}, \quad \sigma_1 = \mathrm{id}_X, \quad \sigma_2 \colon 1 \leftrightarrow 2$$

not the same because they have a different number of orbits

Random substitutions 27/09/2018 3 / 25

Subshifts

 $\mathcal{A}=\{0,1\}$ – Alphabet. $\mathcal{A}^{\mathbb{Z}}$ – full (two-sided) shift. Metric d on $\mathcal{A}^{\mathbb{Z}}$:

$$d(\cdots x_{-1}.x_0x_1\cdots,\cdots y_{-1}.y_0y_1\cdots) = \inf\{1/2^{|i|} \mid x_i = y_i\} \cup \{1\}$$

"The more two sequences agree near their centers, the closer they are."

$$\sigma \colon \mathcal{A}^{\mathbb{Z}} o \mathcal{A}^{\mathbb{Z}}$$
 shift map

A (two-sided) subshift X is a closed, shift invariant subspace of the full shift $\mathcal{A}^{\mathbb{Z}}$.

 Dan Rust
 Random substitutions
 27/09/2018
 4 / 25

Subshifts

Generally define X in one of a few ways:

- Language $X_{\mathcal{L}} = \{ w \in \mathcal{A}^{\mathbb{Z}} \mid u \triangleleft w \implies u \in \mathcal{L} \}$ Example: $\mathcal{L} = \{0, 01, 010, 0101, \ldots\}$
- Orbit closure $X_x = \overline{\{\sigma^n(x) \mid x \in \mathcal{A}^{\mathbb{Z}}, n \in \mathbb{Z}\}}$

$$(X_{\cdots 000.000\cdots},\sigma)\cong (\{*\},\mathrm{id})$$
 $(X_{\cdots 0101.0101\cdots},\sigma)\cong (\{1,2\},1\leftrightarrow 2)$ $(X_{\cdots 0000.1111\cdots},\sigma)\cong \mathrm{homework}$

Invariants

- Cardinality and topology
- Number of closed invariant subspaces
- Number of *n*-periodic points (and the related zeta function)
- Topological entropy:

$$h_{\text{top}} := \lim_{n \to \infty} \frac{1}{n} \log \# \{ \text{legal subwords of length } n \}$$

• "Dynamical spectrum", "Čech cohomology", "Ellis semigroup",...

 Dan Rust
 Random substitutions
 27/09/2018
 7 / 25

Invariants

- Cardinality and topology
- Number of closed invariant subspaces
- Number of *n*-periodic points (and the related zeta function)
- Topological entropy:

$$h_{\mathsf{top}} := \lim_{n \to \infty} \frac{1}{n} \log \#\{\mathsf{legal} \; \mathsf{subwords} \; \mathsf{of} \; \mathsf{length} \; n\}$$

• "Dynamical spectrum", "Čech cohomology", "Ellis semigroup",...

Dan Rust Random substitutions 27/09/2018 8 / 25

Substitutions

Dan Rust Random substitutions 27/09/2018

Substitutions (deterministic)

 $\phi \colon \mathcal{A} o \mathcal{A}^+$ – assign a word to the letters of \mathcal{A} .

Example: [Period doubling substitution]

$$\phi\colon 0\mapsto 0$$
1, $1\mapsto 0$ 0, $M_{\phi}=egin{bmatrix} 1 & 2 \ 1 & 0 \end{bmatrix}$

Iterate

$$0\mapsto 01\mapsto 0100\mapsto 01000101\mapsto 0100010101000100\mapsto\cdots$$

$$x = \cdots 01000101010001000101010101000101 \cdots$$

$$egin{aligned} X_\phi &= X_{\scriptscriptstyle X} \ ext{or} \ X_\phi &= X_{\scriptscriptstyle \mathcal{L}} \ ext{where} \ \mathcal{L} &= \{u \mid u \, {\triangleleft} \, \phi^n(0), \, n \geq 1\}. \end{aligned}$$

Primitivity

Definition

A substitution ϕ is *primitive* if there exists a $k \geq 1$ such that for all $i, j \in \mathcal{A}$ the letter j appears in the word $\phi^k(j)$.

Equivalently, if there exists a $k \geq 1$ such that the matrix M_ϕ^k has positive entries.

 Dan Rust
 Random substitutions
 27/09/2018
 11 / 25

Proposition

Let ϕ be a primitive substitution. Then:

- X_{ϕ} is non-empty
- ullet Either every element of X_ϕ is periodic or every element is non-periodic
- X_{ϕ} is either finite or a Cantor set
- Every element of (X_{ϕ}, σ) has a dense orbit
- $h_{top}(X_{\phi}, \sigma) = 0$

It would be nice to have a system which shares the nice hierarchical properties of substitutions, giving long range correlations, but also *positive entropy*!

Random substitutions

 $\vartheta\colon \mathcal{A} \to \mathcal{P}(\mathcal{A}^+)$ – assign a set of words to the letters of \mathcal{A} . For every $i\in \mathcal{A}$, $\boldsymbol{P}_i\colon \vartheta(i)\to [0,1]$ such that $\sum_{u\in \vartheta(i)}\boldsymbol{P}_i(u)=1$. Example: [Random period doubling substitution]

$$\vartheta \colon 0 \mapsto \{01, 10\}, 1 \mapsto \{00\}$$

$$m{P}_0(01) = m{p}, \quad m{P}_0(10) = 1 - m{p}, \quad m{P}_1(00) = 1$$
 $M_{ heta} = egin{bmatrix} m{p} + (1 - m{p}) & 2 \ m{p} + (1 - m{p}) & 0 \end{bmatrix} = egin{bmatrix} 1 & 2 \ 1 & 0 \end{bmatrix}$

When the matrix is independent of the probabilities we call ϑ compatible.

Dan Rust Random substitutions 27/09/2018 13 / 25

$$\vartheta\colon 0\mapsto \{01,10\}, 1\mapsto \{00\}$$

$$0\mapsto \{01,10\}\mapsto \{0100,1000,0001,0010\}$$

$$\mapsto \left\{\begin{array}{c} 0100\\ 01000101,01000110,01001001,10000101,\\ 01001010,10000110,10001001,10001010,\\ 1000\\ \hline 00010101,00010110,00011001,00100101,\\ 00011010,00100110,00101001,00101101,\\ \hline \end{array}\right.$$

Long range correlations

Long range order is measured as non-trivial Bragg peaks in the pure point component of the diffraction measure of an associated 1-dimensional point-set.

Theorem (Baake, Spindeler, Strungaru, '18)

For the random period doubling substitution, the associated diffraction measure $\hat{\gamma}$ is given by

$$\hat{\gamma} = \hat{\gamma}_{pp} + \hat{\gamma}_{ac} = \sum_{k \in \mathbb{Z}[rac{1}{2}]} I_p(k) \delta_k + \phi_p \lambda.$$

Where I_p and ϕ_p have explicit formulae.

Further, $\phi_p = 0$ if and only if p = 0 or p = 1. (This agrees with the deterministic setting)

The absolutely continuous component is measuring a kind of stochasticity (though it can be non-trivial even in the deterministic setting!).

Notation: If $u \triangleleft v \in \vartheta^k(i)$ for some $k \geq 1$, we write $u \blacktriangleleft \vartheta^k(i)$. Example: [Random period doubling] $000100110 \in \vartheta^3(0)$ so $010011 \blacktriangleleft \vartheta^3(0)$.

Definition

A random substitution ϑ is *primitive* if $\exists k \geq 1$ such that for all $i, j \in \mathcal{A}$, $i \blacktriangleleft \vartheta^k(j)$.

If ϑ is compatible, then ϑ is primitive if and only if M_{ϑ} is primitive.

Language of ϑ is given by

$$\mathcal{L}_{\vartheta} = \{ u \in \mathcal{A}^+ \mid u \blacktriangleleft \vartheta^k(i) \text{ for some } k \geq 1, i \in \mathcal{A} \}.$$

Subshift given by $X_{\vartheta} = X_{\mathcal{L}_{\vartheta}}$.

Example

$$\vartheta \colon 0 \mapsto \{00, 01, 10, 11\}, 1 \mapsto \{00, 01, 10, 11\}$$

Question:

What is X_{ϑ} ?

Answer:

$$X_{\theta} = \mathcal{A}^{\mathbb{Z}}$$

17 / 25

Example

$$\vartheta \colon 0 \mapsto \{010, 0\}, 1 \mapsto \{01, 1\}$$

$$X_{\vartheta} = X_{\mathcal{F} = \{11\}}$$
 (Golden mean shift)

Example

$$\vartheta \colon 0 \mapsto \{01, 10\}, b \mapsto \{01, 10\}$$

$$X_{\vartheta} = X_{\mathcal{G}}$$
 (Sofic shift)

Results

Theorem (R., Spindeler, '18)

Let ϑ be primitive.

 X_{ϑ} is empty if and only if for all $i \in \mathcal{A}$ and $u \in \vartheta(i)$, |u| = 1.

 X_{ϑ} is either finite or a Cantor set.

 (X_{ϑ}, σ) is topologically transitive (there exists an element with dense orbit).

Equivalently, there exists an element $x \in X_{\vartheta}$,

$$X_{\vartheta} = X_{x} = \overline{\{\sigma^{n}(x) \mid n \in \mathbb{Z}\}}.$$

 $\textit{Either} \ \mathsf{Per}(X_{\vartheta}) = \varnothing \ \textit{or} \ \mathsf{Per}(X_{\vartheta}) \overset{\textit{dense}}{\subseteq} X_{\vartheta}.$

Periodic points

Example

The random period doubling subshift has periodic points.

Definition

We say that ϑ has disjoint images if $\vartheta(i) \cap \vartheta(j) = \varnothing$ for all $i \neq j$.

The random period doubling substitution $0\mapsto\{01,10\},1\mapsto\{00\}$ has disjoint images.

Periodic Points

Franz Gähler computed some of the number of periodic points for the random period doubling susbtitution:

p	Per _p	$ \operatorname{Orb}_p $	р	Per _p	$ \operatorname{Orb}_p $
3	3	1	24	176,391	7,334
6	15	2	27	1,533	56
9	21	2	30	216,030	7,179
12	375	30	33	10,992	333
15	108	7	36	19,375,935	538,143
18	2,427	133	39	24,612	631
21	402	19	42	13,106,514	312,050

There are a few patterns but the data remains mostly mysterious.

Periodic Points

Question: What criteria ensure or exclude the existence of periodic points?

Theorem (R., '18)

If ϑ is primitive and $\operatorname{Per}(X_{\vartheta}) \neq \varnothing$ then the leading eigenvalue of M_{ϑ} is an integer.

Suppose ϑ is compatible with constant length ℓ and has disjoint images. If

$$\mathcal{L}_{\ell} \setminus \vartheta(\mathcal{A}) \neq \varnothing$$
,

then $\operatorname{Per}(X_{\vartheta}) = \varnothing$.

Example

$$\vartheta: 0 \mapsto \{00110, 01010\}, 1 \mapsto \{00000\}, M_{\vartheta} = \begin{bmatrix} 3 & 2 \\ 5 & 0 \end{bmatrix}, \lambda = 5.$$

$$v = 00001 \in \mathcal{L}_5 \setminus \vartheta(\mathcal{A}), \text{ so } \text{Per}(X_{\vartheta}) = \varnothing.$$

Entropy

Theorem (R., Spindeler, '18)

Let ϑ be primitive. Under mild conditions

$$h_{top}(X_{\vartheta}) > 0.$$

Theorem (Gohlke, '18)

Let ϑ be primitive and compatible. If $\operatorname{Per}(X_{\vartheta}) \neq \varnothing$, then

$$\limsup_{p\to\infty}\frac{1}{p}\log(\#\operatorname{Per}_p(X_{\vartheta}))=h_{\operatorname{top}}.$$

Entropy

Theorem (Gohlke, '18)

Let ϑ be primitive and compatible. If ϑ has disjoint images, then

$$h_{\mathsf{top}} = rac{1}{\lambda - 1} \left\langle egin{bmatrix} \log \# artheta(0) \\ \log \# artheta(1) \end{bmatrix}$$
 , $\mathbf{r}_{\lambda}
ight
angle$.

If $\vartheta(0) = \vartheta(1)$, then

$$h_{\mathsf{top}} = rac{1}{\lambda} \left\langle egin{bmatrix} \log \# artheta(0) \ \log \# artheta(1) \end{bmatrix}$$
 , $\mathbf{r}_{\lambda}
ight
angle$.

Otherwise, h_{top} is somewhere inbetween.

This result can be applied iteratively to ϑ^k to get better approximations in the intermediate cases (and in many cases calculate exact values as limits). This is a big deal!

Dan Rust Random substitutions 27/09/2018 24 / 25

Entropy

Philipp's result turns the following results into 1 page calculations.

Theorem (Godrèche, Luck, '89. Nilsson, '10)

 $\vartheta: 0 \mapsto \{01, 10\}, 1 \mapsto \{0\}$ (random Fibonacci).

$$h_{\text{top}} = \sum_{i=2}^{\infty} \frac{\log i}{\tau^{i+2}} \approx 0.444399.$$

Theorem (Baake, Spindeler, Strungaru, '18)

 $\vartheta: 0 \mapsto \{01, 10\}, 1 \mapsto \{00\}$ (random period doubling). $h_{top} = \frac{2}{3} \log 2$.

Theorem (Nilsson, '13)

 $\vartheta: 0 \mapsto \{100\}, 1 \mapsto \{01, 10\} \ (random \ Fib^2). \ h_{top} = \frac{1}{r^3} \log 2.$

Dan Rust Random substitutions