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Collaborators:

 Kun Zhou (who couldn’t come due to visa issues)
1. Linear PD bond model, Cauchy problem (ESIAM-M2AN 2011)

2. Initial-boundary value problems, finite element approximation,
error estimates and condition numbers (SINUM 2010)

« Max Gunzburger, Rich Lehoucq and Kun Zhou:
3. Nonlocal laws and nonlocal vector calculus (Sandia preprint)
4. Linear nonlocal BVPs with volumic constraints (almost done)
5. Variational formulation of PD state model (in progress)

e Lili Ju, Li Tian and Kun Zhou:

6. Finite element approximations to linear PD models, a posterior
error analysis (in progress), adaptive methods
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Linear bond-based PD:

u. displacement y =X + uXx,t?)

uy(x.t) = Lsu(x.t) + b(x.1)

Lsu(x) = n."ﬁ/ X —%)® (X —x) (u(x") — u(x))dx’
Ba[}{:ﬁ

o(]x" —x|)

model for a spring network -r*"'”“_"x.—’ >
X

c. kernel function, related to spring constants

O : PD horizon
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Linear Peridynamic State : Silling 2009
plxjua(x,t) = / Co(x.q)u(q, ) dVq — Po(x)u(x,t) + b(x.1)
B
where Cyp(x.q) = f;;; (ﬁ[:{] p—x,9—x)) — Klp]lix—p,q—p)
+K[ql{(x —q,p — q) dVy,

Py(x) = /Cu(:{, q) dVy
JB

K' =K if elastic

 Examples: bond-based, PD fluid, PD solid, ...
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Mathematical issues:

* Increasing popularity of PD based simulations demands
better mathematical and numerical analysis

e Rigorous mathematical framework

— Are all formulations used in practice well-posed?

— Are singularities appearing from models or numerics?

 Numerical analysis
— Stability (CFL, log dependence on mesh?)
— Conditioning (independent of mesh?)
— Error (uniform in §7?)

on discretization and model parameters
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Existing studies motivated our works:

™

« Silling 2000, 2009

« Silling/Epton/Weckner/Xu/Askari 2007 — . Modeling
« Silling/Lehoucg 2005, 2007

« Weckner/Brunk/Epton/Silling/Askari 2009 —
 Emmrich/Weckner, 2006 2007 )

 Alali/Lipton 2009 > .« Analysis
 Gunzburger/Lehoucq 2009 D

« Bobaru/Yang/Alves/Silling/Askari/Xu 2009 —

o Aksoylu/Parks 2009

e Chen/Gunzburger 2009 ~ « Numerics
« Seleson/Parks/Gunzburger/Lehoucq 2009 D

+ others discussed in the workshop
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Nonlocal PD & PDEs: how different/similar are they

Consider an Initial Boundary Value Problem of PD:
U (x.t) = Lyu(x,t) + b(x,1)
together with initial and boundary conditions.

The linear bond-based PD operator

Lsu(x) = c; / ('~ %) ® (x' — x) (u(x") — u(x))dx’
Bs(x) o(|x" —x|)

« PD horizon parameter 6, spherical neighborhood B ;(x)

« Kernel function o= o(|x —x|)

e C; anormalization constant
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Nonlocal PD: boundary conditions

A simple 1-d example: equation defined on [0, 7]

Zhou-D. SINUM 2010 -0 0 o -8 m T+
a0 =0 O O—

uw is odd in (—9,0) and (7 — o, ™ + 0)

Practical application: none, but it allows Fourier analysis
(O. Weckner), offers much insight and is one of the natural
extensions of its local limit: homogeneous Dirichlet BC

0 O = af? ) ;
—Liu(x) = —c;s (u(x') —ul(x))dx

e (" —)m T
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Linear bond-based PD: assumptions/symbols
e Assumptions

o(x) > 0, ¥x € B;(0)

5 s

2

|Y‘”\ > p(y) € L'(Bs(0)) P non-negative
o(yl)

(can be relaxed to include negative part, see for example
D-G-L-Z 2011 for an illustration of sign-changing kernels)

/ x|
T := C§ ——dxX < o
B;(0) o(|x|)

(necessary for well-defined elastic modulus)
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Linear bond-based PD: symbols

e Fourier symbol: consider u(x) = Zuiﬁ sin(kx)
m k
2 [

up = — f w(w)sin(ka)de

TJo
—L3u(r) = Z-:r;g, (k)uy, sin( k)
k

0 4l 2
ns (k) —£T5/ (1 — cos(ky)) ] dy

-5 5(\'3!\)

e |n comparison .

- -L{H(-J;) — Z ’Zﬂz .u‘i: Sil]_(rzﬂ;{f)

k
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Nonlocal BVP for Linear bond-based PD

e Natural spaces for PD operator L;: for any s

h

M3% =S u: flullfee =) ni(k)ug’ < ooy
\ k J

are generalized energy spaces, In particular, s=1

1/2
2 ! 2 Ei o
H'u'Hﬂl'jrg —_ [—:(ﬁ:};liﬁ-ﬂ-)] é p— { ?}5(-I'~)HJEL2 }

il
k

Mz - the dual space of M 3°
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Nonlocal BVP for Linear bond-based PD

e L, is an self-adjoint operator: M) to M_°

And an isometry: by the Riemann Lemma

5
lim / p(lyl) cos(ky)dy =0

k— o0 -8

)
ns (k) > inf r::,g/ (1 — cos(ky))p(y)dy > 0

k>l

k2527
12

—>H§ s ﬂf; s Lg
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Nonlocal BVP for Linear bond-based PD

2
Vi<
| ‘_ c LY(B;s(0))
o(]y])

e |f In addition

2

=

o
0 < inf ns(k) < ns(k) < ilc[g/ v dy

k=1 o o(y)

—_— iy 20 __ 7 qJo 2
Mz? = M7 = Lz
L2 theory: Emmrich/Weckner, Alali/Lipton

the corresponding linear bond-based PD
models no longer have smoothing effect
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Linear bond-based PD:

e Other kernels:

o(lyl) = nlyl™™ — 0 < ps(k) < C2(a)2k°

o E (0,2) H{J.:/Q s MO

o(lyl) < valylP ™o ps(k) > C3(3)2k"

0 <2
' Mg — HJ?
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Linear bond-based PD:

 Elliptic regularity:

—L5u = f

Theorem: (Zhou-D. SINUM 2010) For a=p,
Co(3)? kP < m,m <C?(B)*k°  B<(0,2)
For fEH]", m > —a, wehave u€H}"*F

which implies “smoothing effect” of the PD model

The dependence on horizon is explicitly estimated.
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Connection to DE and standard Sobolev spaces

ODE ~-u'=f 0 :
* °
u(0)=u(m)=20
PD —£§Ef=f -0 0 o m—0 T T+0
u is odd in (—6,6) and (7w — &, 7 + 0)
: - 2 ¢ Lﬁiéﬁ?frﬁ
Notice that 0 =< 75k™ — 2u5(k) = —

g

When 75 =2 wehave wu§—u— 0 in M;°

Convergence in conventional norms follows from space equivalence
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Are these effects due to the special 1-d BC?
u is odd in (—9.9) and (7 — &, 7 + J)

No, the results are similar when using other (more
conventional) nonlocal BCs

For example,

 for scalar equation, same results were shown in any dim
with general nonlocal volumic constraints (D-G-L-Z [4]);

Null kernel + compactness, similar to works of Rossi

o similar results can be shown in higher dim for linear PD
bond system (Zhou-D. SINUM 2010) and state (D-G-L-Z [5])
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Linear bond-based PD: I(nonloca)BVP

.

uy(x.t) = Lyu(x,t) + b(x.t), t € (0,7T)

u(x,0) =g(x), {t=0}
w(x,0) = h(x), {ft=0}

.

\

u(x) = c (X —x)® (X' —X) u(x’) — u(x))dx’
cue) =es [ PR ) — ux))

The operator has a non-diagonal tensor kernel

T

gy sin(kry ) cos(lr

A nonlocal BC for a square: u = Z ('E‘ijfﬂ‘iix{;ﬂ“lj Qm{"h.ﬂ%
] COSIRT ) S £

kel=1
Alternatingly odd in one direction, even in the other
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Linear bond-based PD: I(nonloca)BVP

Alternatingly odd and even in variables: a strange BC?

Not totally. Again, it is a natural nonlocal analog of the
Navier equation with the well-known greased wall BC
and allows a block diagonalization via Fourier

uy = pAsu+2uVV -u+b

u(0,x) =g(x), w(0,x)=h(x),
< Uy (X)) = %ug(}{) =0, x9€{0,7}
L u2(X) %ul(}{) =0, =, €1{0,7}
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Linear bond-based PD:
= [y sin(kzy ) cos(lxg)
Eor L Z (uu‘.am. ! )

v cos(kxy ) sin(laxo)

k=1
1 —cos(h&y +16) [ €2 £&
Let ﬂir(‘}.ﬁcf p— Cé‘]/ {;OH( >l T ij) (flﬁ)i “'3;.;2) d& .
B (0) o(€]) S182 €2
 x— (sin(kay) cos(lry) 0 : Uk
—Lou = kgl ( 0 cos( k) sin(lao) Mo e Ukl
T [ (2p+ N E2 + pl? (p0+ Akl
Local limit Mo = ( (10 + ANkl 1h? + (200 + A1~
Cs 5‘1‘252 T
= A = lim — > d¢ = lim —
=27 5502 S0 (\g\) = 55016
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Linear bond-based PD:

The matrix symbols commute (!) and

. 1 —cos(k& +182)
Ms i < c &)1
W ’ (]Bg(m o (|€]) < (5)
1 — cos(k&y) cos(1€s)
=c 1
5 ([w AED “)

('IL + 1?) 4 Ts5 |
< e o — M 1
: 5([;35(0) 2] g) O

The difference between the two symbols is

& (k&1 + 1&)2
24 Bs(0) 0(‘5‘)

| Z11| < —45 (k% +1%)°1

€@ Ecos(B)dE

Leads to order of convergence for small 6
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Linear bond-based PD:

Define energy spaces accordingly A7 soe

Theorem: (Zhou-D. SINUM 2010)

Well-posedness of IBVP In
C([0,T]. M2)N H*0,T; L)

and convergence to local limit

For system, the PD bond operator is not of a
diagonal form, one can utilize the symmetry Iin the
tensor and variables to achieve diagonalization,
which helps establishing the analytical framework
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Finite dimensional approximation

Internal approximations: dense subspace

e Truncated Fourier spaces

« Conforming finite element of piecewise
polynomials of degree m

o | | |
Galerkin-Ritz tn = argmin, ey, { Sllvallize — (vn. f)r2}

Theorem: (zhou-D. SINUM 2010) For fe M

best |t — || are < min |ju—wv,||lae — 0
apprOXimatiOn tnE Vn

+ A priori error estimates for nonlocal BVP/IBVP
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One-d nonlocal BVP: error estimates

For smooth solutions (Zhou-D 2010 SINUM)

Theorem: cd(3)248 < ns(k) < CP(3)%k"

Fourier spectral withn modes f < H" , m > —p3
2t — |0 < CHB) 2™ fl, a <m0

Theorem: C9(3)%k° < ns(k) <C{(a)’k™, 0<B<ae(0.2)

FEM with conforming elements of degree m (continuity not
required for a<i1), if fe H" =, 0<m' <m+1,s<[0,3/2]

‘|” “HH < ¢ (H(rql+H(ﬂa(f) 3—.;rn—41”+ J—a/2

! —

o(y) = |yl [ —wnlo < O(hm'—a/25=1+a/2)

: . Numerics: Chen-Gunzburger 2010
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Finite Element Stiffness Matrix  A° = ((¢;, ¢;) ae)

Theorem : (zhou-D. 2010 SINUM) Finite element with
conforming elements of degree m, quasi-uniform mesh

0 < ('Cr‘!_-f('d)gh E "’\l i *’\u i: (’(”1“_(“)2/}1—{1

cond( A7) < p((_'.“f (v)/ (_‘?Ef-’" (3)) 2,—0

Eg  o(y) = |y|* cond(A°) < cmin{o™% h™?}
Estimates/numerical observation E{I}Ild(ﬂﬂ) Efff5_2 Aksoylu-Parks 2009
Eg  o(|ly]) = |y|° cond(A?) < emin{h~*5* "2, h™?%}

Estimates/numerical observation Seleson-Parks-Gunzburger-Lehoucq 2009

Same type estimates hold for more general scalar diffusion equation
with volumic constraints, but dependence not so precise (D-G-L-Z [4])
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Linear peridynamic model

* The discussion so far Is for linear problems with a
special, but nonlocal, type of BC.

o Still, similar results holds for Cauchy problems
(D.-Zhou ESIAM-M2AN)

o Similar results for other nonlocal BVPs (see D-G-
L-Z [4])

* For systems: fewer results, but they set PD apart
from existing studies of other nonlocal/integral
equations; simultaneous diagonalization may not
be valid in general, but can still be a helpful tool
(well-posedness for state models of PD solid, D-
G-L-Z, [5])
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PD state of solids via nonlocal calculus

 Notation: « Kronecker (tensor) product
« Frobenius (scalar) product
Q c RY agiven material domain

D-G-L-Z [3]: nonlocal vector calculs
e Point functions u: 2 — R’

nner product; (v, uz) = [ up(x) - uz(x)dx
J L2

 Two-point (bond) functions v: Q xQ — R™

Inner product: < vy.ve }://vi(x.yj+vz(x.yfmxdy
£2J82
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PD state solid via nonlocal calculus

 Nonlocal point gradient and its adjoint
G)(x) =~ [ (nx.y)+i(y. x)alx.y) dy
G*(v)(x.y) = (v(y)—v(x)) a(x,y)

* Weighted gradient and adjoint
G (u)(x) = G(w(x,y)u(x))(x)

G (v)(x) = / G ¥)wlxy) dy
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Linear state-based PD solid
dilatation 6 = G () Volumic strain

isotropic part of the i — G*(u)ly — x|/d
extension scalar state

deviatoric part ¥ = G*(u) — G (u) |y — x|/d

« Energy: FE(u)

k(x) 62 - .
/ (}f) dx + / / ”(‘—X)g(x, y)(e?)? dydx — / u- bdx
o 2 oo 2 Q

|U|2 [J (€2): Energy space with bounded |u|
Z=A{u: u| =0}
Up(2): v € U (€2) with homogenous volumic constraint
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Linear state-based PD solid

Well-posedness:. (D-G-L-Z[5])

For a Hilbert space U({)) with a Poincare
on Uy(€2), the nonlocal BVP for the linear
state-based peridynamic solids is well-posed
provided that n(x) > ny > 0 and k(x) > ko > 0
for x € (L.

An example: when @ Is square integrable and we have a
uniformly positive definite acoustic tensor P, the energy
space is L2, thus the linear PD state model is well-posed
with a L? well-defined homogeneous volumic constraint .
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Summary: linear peridynamic model

* Linear problems provide foundation to nonlinear
problems, and for linear PD setting, there are many
open guestions.

* Results are dependent on micromodulus functions,
we may see “smoothing” vs “no-smoothing”. Even
for the latter case, interests might be on the horizon
dependence of the regularity

e Ongoing works: for nonlinear PD, studying steady
states; for linear PD, speed of propagation, material
stablility; for fem, characterizing mesh dependence,
a posterior estimates/adaptivity; for nonlocal
calculus, application to shape analysis/geometry; ...
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