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Collaborators: 
• Kun Zhou (who couldn’t come due to visa issues)

1. Linear PD bond model, Cauchy problem  (ESIAM-M2AN 2011) 
2. Initial-boundary value problems, finite element approximation,  

error estimates and condition numbers (SINUM 2010)

• Max Gunzburger, Rich Lehoucq and Kun Zhou:  
3. Nonlocal laws and nonlocal vector calculus (Sandia preprint)
4. Linear nonlocal BVPs with volumic constraints (almost done)
5. Variational formulation of PD state model (in progress)

• Lili Ju, Li Tian and Kun Zhou: 
6.    Finite element approximations to linear PD models, a posterior 

error analysis (in progress), adaptive methods
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Linear bond-based PD:

 δ
 

: PD horizon

u: displacement       y = x + u(x,t )

model for a spring network

σ: kernel function,  related to spring constants
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Linear Peridynamic State : Silling 2009

where

• Examples: bond-based, PD fluid, PD solid, …

if elastic

x
p q

δ
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Mathematical issues:

• Increasing popularity of PD based simulations demands 
better mathematical and numerical analysis 

• Rigorous mathematical framework
– Are all formulations used in practice well-posed? 

– Are singularities appearing from models or numerics?

• Numerical analysis
– Stability  (CFL,  log dependence on mesh?)

– Conditioning   (independent of mesh?)

– Error  (uniform in δ?)

on discretization and model parameters 
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Existing studies motivated our works: 
• Silling 2000, 2009
• Silling/Epton/Weckner/Xu/Askari 2007
• Silling/Lehoucq 2005, 2007
• Weckner/Brunk/Epton/Silling/Askari 2009 

• Emmrich/Weckner, 2006 2007
• Alali/Lipton 2009
• Gunzburger/Lehoucq 2009

• Bobaru/Yang/Alves/Silling/Askari/Xu 2009
• Aksoylu/Parks 2009
• Chen/Gunzburger 2009
• Seleson/Parks/Gunzburger/Lehoucq 2009 

• Modeling

• Analysis

• Numerics

+ others discussed  in the workshop
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Nonlocal PD & PDEs: how different/similar are they 

together with initial and boundary conditions.

The linear bond-based  PD operator

• PD horizon parameter δ ,  spherical neighborhood  Bδ

 

(x)
• Kernel function
• cδ

 

a normalization constant

Consider an Initial Boundary Value Problem of PD:
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Nonlocal PD:  boundary conditions

−δ    0    δ                  π−δ
 

π   π+δ

A simple 1-d example:  equation defined on [0, π ]

Zhou-D.  SINUM 2010

Practical application:  none, but it allows Fourier analysis
(O. Weckner), offers much insight and is one of the natural  
extensions of its local limit: homogeneous Dirichlet BC
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Linear bond-based PD: assumptions/symbols
• Assumptions

ρ
 

non-negative

(can be relaxed to include negative part, see for example
D-G-L-Z 2011 for an illustration of sign-changing kernels)

(necessary for well-defined elastic modulus)
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Linear bond-based PD:  symbols

• Fourier symbol:  consider

• In comparison
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Nonlocal BVP for Linear bond-based PD

• Natural spaces for PD operator Lδ

 

:  for any s

are generalized energy spaces,  in particular, s=1

: the dual space of 
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Nonlocal BVP for Linear bond-based PD

• Lδ

 

is an self-adjoint operator:

And an isometry:  by the Riemann Lemma



Peridynamics

Nonlocal BVP for Linear bond-based PD

• If in addition

Emmrich/Weckner,  Alali/Lipton L2 theory:

the corresponding linear bond-based PD
models no longer have smoothing effect
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Linear bond-based PD:
• Other kernels:    
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Linear bond-based PD:
• Elliptic regularity:

Theorem: (Zhou-D. SINUM 2010) For α=β,

For              ,                ,   we have               ,

which implies “smoothing effect” of the PD model

The dependence on horizon is explicitly estimated.
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Connection to DE and standard Sobolev spaces

−δ    0    δ                  π−δ
 

π   π+δ

ODE

PD

Notice that

When                      we have   

Convergence in conventional norms follows from space equivalence
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Are these effects due to the special 1-d BC?

For example,
• for scalar equation, same results were shown in any dim 

with general nonlocal volumic constraints (D-G-L-Z [4]);
Null kernel + compactness, similar to works of Rossi 

• similar results can be shown in higher dim for linear PD 
bond system (Zhou-D. SINUM 2010) and state (D-G-L-Z [5])

No, the results are similar when using other (more 
conventional) nonlocal BCs
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Linear bond-based PD:   I(nonlocal)BVP

The operator has a non-diagonal tensor kernel

A nonlocal BC for a square:

Alternatingly odd in one direction, even in the other 
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Linear bond-based PD:   I(nonlocal)BVP

Alternatingly odd and even in variables:  a strange BC?   

Not totally. Again, it is a natural nonlocal analog of the 
Navier equation with the well-known greased wall  BC
and allows a block diagonalization via Fourier
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Linear bond-based PD:

For

Let

Local limit
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Linear bond-based PD:

The matrix symbols commute (!)  and 

The difference between the two symbols is 

Leads to order of convergence for small δ
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Linear bond-based PD:

Theorem:  (Zhou-D. SINUM 2010)

Well-posedness of IBVP in 

and convergence to local limit

Define energy spaces accordingly

For system, the PD bond operator is not of a 
diagonal form, one can utilize the symmetry in the 
tensor and variables to achieve diagonalization, 
which helps establishing the analytical framework
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Finite dimensional approximation

Internal approximations: dense subspace
• Truncated Fourier spaces
• Conforming finite element of piecewise  

polynomials of degree m

Galerkin-Ritz

Theorem: (Zhou-D. SINUM 2010)          For                      

best 
approximation

+  A priori error estimates for nonlocal BVP/IBVP
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One-d nonlocal BVP: error estimates
For smooth solutions

Theorem:  

Fourier spectral with n modes                  ,

Theorem: ,

FEM with conforming elements of degree m (continuity not 
required for  α<1),  if                 ,                             

Numerics: Chen-Gunzburger 2010

(Zhou-D 2010 SINUM)  
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Finite Element Stiffness Matrix

Theorem : (Zhou-D. 2010 SINUM)  Finite element with 
conforming elements of degree m, quasi-uniform mesh

Estimates/numerical observation Aksoylu-Parks 2009

Same type estimates hold for more general scalar diffusion equation  
with volumic constraints, but dependence not so precise (D-G-L-Z  [4]) 

Eg

Eg

Seleson-Parks-Gunzburger-Lehoucq 2009Estimates/numerical observation



Peridynamics

Linear peridynamic model
• The discussion so far is for linear problems with a 

special, but nonlocal, type of BC.
• Still, similar results holds for Cauchy problems  

(D.-Zhou  ESIAM-M2AN)
• Similar results for other nonlocal BVPs (see D-G- 

L-Z  [4]) 
• For systems: fewer results, but they set PD apart 

from existing studies of other nonlocal/integral 
equations; simultaneous diagonalization may not 
be valid in general, but can still be a helpful tool  
(well-posedness for state models of PD solid, D- 
G-L-Z, [5])
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PD state of solids via nonlocal calculus
• Notation:       Kronecker (tensor) product 

Frobenius (scalar) product
a given material domain

D-G-L-Z  [3]: nonlocal vector calculs

• Point functions

Inner product:

• Two-point (bond) functions

Inner product:

x y

Bond

Points



Peridynamics

PD state solid via nonlocal calculus

• Nonlocal point gradient and its adjoint

• Weighted gradient and adjoint

x y

Bond

Points
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Linear state-based PD solid

• Energy:       

isotropic part of the
extension scalar state

: Energy space with bounded |u|

dilatation Volumic strain

deviatoric part

|u|2

:                           with homogenous volumic constraint
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Linear state-based PD solid

Well-posedness: (D-G-L-Z [5] )

An example:  when ω is square integrable and we have a 
uniformly positive definite acoustic tensor P0 , the energy 
space is L2, thus the linear PD state model is well-posed 
with a L2 well-defined homogeneous volumic constraint .



Peridynamics

Summary: linear peridynamic model
• Linear problems provide foundation to nonlinear 

problems, and for linear PD setting, there are many 
open questions.

• Results are dependent on micromodulus functions, 
we may see “smoothing” vs “no-smoothing”. Even 
for the latter case, interests might be on the horizon 
dependence of the regularity

• Ongoing works: for nonlinear PD, studying steady 
states; for linear PD, speed of propagation, material 
stability; for fem, characterizing mesh dependence, 
a posterior estimates/adaptivity; for nonlocal 
calculus, application to shape analysis/geometry;  …
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