The Cauchy Problem for a One Dimensional Nonlinear Peridynamic Model

Albert Erkip
(Sabanci Univ.)

In collaboration with

Husnu A. Erbay (Isik Univ.) and Gulcin M. Muslu (Istanbul Technical Univ.)
The Peridynamic Equation

\[u_{tt} = \int f(u(y, t) - u(x, t), y - x)dy \]
The Peridynamic Equation

\[u_{tt} = \int f(u(y, t) - u(x, t), y - x) dy \]

Simplifications

- Dimension = 1
- \(f(\eta, \zeta) = \alpha(\zeta)w(\eta) \) with \(\alpha \) even, \(w \) odd, \(w(0) = 0 \).
The Peridynamic Equation

\[u_{tt} = \int f(u(y, t) - u(x, t), y - x)dy \]

Simplifications

- Dimension = 1
- \(f(\eta, \zeta) = \alpha(\zeta)w(\eta) \) with \(\alpha \) even, \(w \) odd, \(w(0) = 0 \).

Cauchy Problem

\[u_{tt} = \int_{\mathbb{R}} \alpha(y - x)w(u(y, t) - u(x, t))dy, \quad x \in \mathbb{R}, \quad t > 0 \]

\[u(x, 0) = \varphi(x), \quad u_t(x, 0) = \psi(x), \quad x \in \mathbb{R}. \]
Questions

- Local well-posedness of the Cauchy problem,
- Existence of a global solution
- Conditions for finite-time blow-up of the solution.
Local well-posedness:

Theorem

Assume that $\alpha \in L^1(\mathbb{R})$, $w \in C^1(\mathbb{R})$ (or w is locally Lipschitz). Then there is some $T > 0$ such that the Cauchy problem is well posed with solution in $C^2([0, T], X)$ for initial data $\varphi, \psi \in X$ with

$$
X = C_b(\mathbb{R})
$$

$$
X = L^p(\mathbb{R}) \cap L^\infty(\mathbb{R}).
$$
Local well-posedness:

Theorem
Assume that $\alpha \in L^1(\mathbb{R})$, $w \in C^1(\mathbb{R})$ (or w is locally Lipschitz). Then there is some $T > 0$ such that the Cauchy problem is well posed with solution in $C^2([0, T], X)$ for initial data $\varphi, \psi \in X$ with

\[X = C_b(\mathbb{R}) \]
\[X = L^p(\mathbb{R}) \cap L^\infty(\mathbb{R}). \]

Theorem
Assume that $\alpha \in L^1(\mathbb{R})$, $w \in C^2(\mathbb{R})$ (or w' is locally Lipschitz). Then there is some $T > 0$ such that the Cauchy problem is well posed with solution in $C^2([0, T], X)$ for initial data $\varphi, \psi \in X$ with

\[X = C^1_b(\mathbb{R}) \]
\[X = W^{1,p}(\mathbb{R}). \]
Solution satisfies

\[u(x, t) = \varphi(x) + t\psi(x) \]
\[+ \int_0^t (t - \tau) \int_\mathbb{R} \alpha(y - x)w(u(y, \tau) - u(x, \tau)) dy d\tau \]

Let

\[(Ku)(x, t) = \int_\mathbb{R} \alpha(y - x)w(u(y, t) - u(x, t)) dy. \]

Show that \(K : X \to X \) is locally Lipschitz.
Theorem: The general peridynamic problem

Assume that \(f(0, \eta) = 0 \) and \(f(\zeta, \eta) \) is continuously differentiable in \(\eta \) for almost all \(\zeta \). Moreover, suppose that for each \(R > 0 \), there are integrable functions \(\Lambda_1^R, \Lambda_2^R \) satisfying

\[
|f(\zeta, \eta)| \leq \Lambda_1^R(\zeta), \quad |f_\eta(\zeta, \eta)| \leq \Lambda_2^R(\zeta)
\]

for almost all \(\zeta \) and for all \(|\eta| \leq 2R \). Then there is some \(T > 0 \) such that the Cauchy problem is well posed with solution in \(C^2([0, T], C_b(\mathbb{R})) \) for initial data \(\varphi, \psi \in C_b(\mathbb{R}) \).
Assume that $\alpha \in L^1(\mathbb{R})$, $w(\zeta) = \zeta^k$. Then there is some $T > 0$ such that the Cauchy problem is well posed with solution in $C^2([0, T], H^s(\mathbb{R}) \cap L^\infty(\mathbb{R}))$ for initial data $\varphi, \psi \in H^s(\mathbb{R}) \cap L^\infty(\mathbb{R})$, $s > 0$.
Theorem

Blow up occurs only if \(\limsup_{t \to T_{\text{max}}} \| u(t) \|_{\infty} = \infty. \)
Theorem
Blow up occurs only if $\limsup_{t \to T_{\text{max}}} \| u(t) \|_\infty = \infty$.

Theorem: Sub-linear Case
If the nonlinear term w satisfies $|w(\eta)| \leq a |\eta| + b$ for all $\eta \in \mathbb{R}$, then there is a global solution.
Assume that $\alpha \in L^1(\mathbb{R})$ and $w \in C^1(\mathbb{R})$. If u satisfies the Cauchy problem on $[0, T)$ with initial data $\varphi, \psi \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})$, then the energy

$$E(t) = \frac{1}{2} \| u_t(t) \|_2^2 + \frac{1}{2} \int_{\mathbb{R}^2} \alpha(y-x) \ W(u(y,t)-u(x,t)) \, dy \, dx,$$

is constant for $t \in [0, T)$, where $W(\eta) = \int_0^\eta w(\rho) \, d\rho$.
Global Existence

Theorem

Assume that $\alpha \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})$ with $\alpha \geq 0$ a.e.; $w \in C^1(\mathbb{R})$ and $W \geq 0$. If there is some $q \geq \frac{4}{3}$ and $C > 0$ so that

$$|w(\eta)|^q \leq CW(\eta) \quad (*)$$

for all $\eta \in \mathbb{R}$, then there is a global solution for initial data $\varphi, \psi \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})$.

For $w(\eta) = |\eta|^{\nu-1}\eta$, $\quad (*)$ is satisfied if and only if $\nu \leq 3$.

Idea of proof: Energy density function $e(x,t) = \frac{1}{2}u_t(x,t)^2 + \int_{\mathbb{R}} \alpha(y-x)W(u(y,t) - u(x,t)) dy$.

January 17-21, 2011, Oberwolfach
Global Existence

Theorem

Assume that $\alpha \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})$ with $\alpha \geq 0$ a.e.; $w \in C^1(\mathbb{R})$ and $W \geq 0$. If there is some $q \geq \frac{4}{3}$ and $C > 0$ so that

$$|w(\eta)|^q \leq CW(\eta) \quad (\star)$$

for all $\eta \in \mathbb{R}$, then there is a global solution for initial data $\varphi, \psi \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})$.

For $w(\eta) = |\eta|^{\nu-1}\eta$, (\star) is satisfied if and only if $\nu \leq 3$.

Idea of proof: Energy density function

$$e(x, t) = \frac{1}{2}(u_t(x, t))^2 + \int_\mathbb{R} \alpha(y - x) W(u(y, t) - u(x, t)) \, dy.$$
Theorem
Let $\alpha \geq 0$ a.e. If there is some $\nu > 0$ such that
\[\eta w(\eta) \leq 2(1 + 2\nu) W(\eta) \quad \text{for all} \quad \eta \in \mathbb{R}, \]
and $E(0) < 0$ then the solution u blows up in finite time.
Theorem

Let \(\alpha \geq 0 \) a.e. If there is some \(\nu > 0 \) such that

\[
\eta w(\eta) \leq 2 (1 + 2\nu) W(\eta) \quad \text{for all} \quad \eta \in \mathbb{R},
\]

and \(E(0) < 0 \) then the solution \(u \) blows up in finite time.

Lemma (Levine 1974)

Suppose \(H(t), t \geq 0 \) is a positive, \(C^2 \) function satisfying

\[
H''(t)H(t) - (1 + \nu)(H'(t))^2 \geq 0 \quad \text{for some} \quad \nu > 0.
\]

If \(H(0) > 0 \) and \(H'(0) > 0 \), then \(H(t) \to \infty \) as \(t \to t_1 \) for some \(t_1 \leq H(0)/\nu H'(0) \).