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Background & Formulation:

Bond based Peridynamics, S. Silling JMPS 2000

S

N+g Ul
T c
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X — X
u—u

X

P 551{.(;1?,!':} = [

JH, (z)N$2

for (z,t) € 2 x (0,T), \
Traction free boundary conditions
H (X
Robert Lipton LSU 7( )

flu(z,t) —u(z,t), 2 —x,x)dr + b(u, x,t)

=
o



pe(z)0Fus (z,t) = L - flong (u™ (2, 1) — u”(z,t), &) d

+ [ fhe(@@ ) —u @) Eapae  NHACOnditions
Heatmns u*(2,0) = ub(x)

+b° (z,t), for z in £2. Ou”(z,0) = vo(z).
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The Bond Force & Density Fluctuations

1, v is in the inclusion phase,
0, otherwise,

xi(y) = {

and ym is given by
Xm(y) =1—x¢(y).

P(y} — }Cf{y}pf + Xm(y)ﬂm-

Local density fluctuation p, (x) = p(x/&)

Local bond force strength for short range bond forces

( C4, if y and ) are in the same inclusion and |y — 7| < §
. Cm, if y and ¢ are in the matrix phase and |y — 9| < ¢
as(y,9) = ~ - . - T
C;, if y and g are separated by an interface and |y — y| <

\
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The Bond Forces

Mathematically we can express the local bond strengths
as(y.9) = xs(y — 9)a(y, 9), (1.5)
where x5(z) = 1 for |z| < 0 and x5(2) =0 for |z| > 4 and « is given by

a(y,y) = Cr xe(y)xt(7) + Cm xm (¥)xm(9) +Ci (xt(y)xm(¥) + xm(y)xi(7)) . (1.6)

The short-range peridynamic force defined on (2 is given by

1 (f $—|—£) 5@5_

f:hort('nagv I) - E =T s’ c |£|3
N Linearized
Bond stretch model

The long range peridynamicjorce/

\E0E
flongwe){ e <

0, otherwise.
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A well posed initial boundary
value problem LSU

pe(z)0Fus (z,t) = / flong (u™ (2,t) — u®(z,t), &) d
JH., (z)ne

n [ Fhor (U (2,) — u® (2,1)), €, ) di
JH_5(x)N 02

+b° (z,t), for z in £2.

Traction free boundary conditions
Initial Conditions

u™(z,0) = ug(x)
Opu™(x,0) = vg(x).

For initial data uniformly bounded in L°(Q)°

and body forces uniformly bounded in  C([0,T]; L°(Q2)°)

An application of the theory of semigroups
shows that the solution exists and lies in  C?([0,T]; L°(2)°)

. for p greater than or equal to 1.
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Louisiana State University

Strong Approximations LSU

We now introduce strong approximations to

u®(x,t) eC?([0, T]; L°(Q)°),p=3/2

Here the lower bound 3/2 arises from the cubic nature
of the bond force.

For body forces and initial conditions are continuous
at the coarse length scale but possess discontinuous
oscillations over the finer length scales

The strong approximations are of the form U(X, X/ &,1)
Where the function U(X, Y,1)

IS unit periodic in the y variable and
lu®(x,t)—u(x,x/e&,t)|
For O<t<T as €-20.

Lp(g)3—>0
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Initial data and body forces associated s
with this strong approximation LSU

The strong approximations are of the form

u(x, x/&,t) e C*([0,T]; L°(Q)°)

When the initial data is of the form
u®(x,0) =u,(x,x/ &)
o.u’(x,0)=v,(x,x/¢)

b (X,t) =b(x,x/&,t)

Where the functions  u,(X,y) V,(X,Y)
are periodic in the y variable with period Y and are in the space

LP., (Y;C(Q)®) given by functions (X, Y)

LP integrable with respect to y, with values in C(Q)°

and b(x,y,t) e C*([0, T];L". (Y;C(Q)%))

per
Robert Lipton LSU
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Strong approximation from two-scale limits

2-scale convergence: Weak convergence over a special space of test functions
Y e CX(R? xY), ¥(x,y) is Y-periodic in y}.

Y e Cr (]R xY x R+}= Y(x,y,t) is Y-periodic in y},

w € C([0,T]; Lier (Y C(12)*)},

= {
= {
= {
= {w € C*([0,T); L5e:(Y;C(2)°)}.

"t.‘l

Definition 3 (Two-scale convergence [21,1]) A sequence (v°) of functions in
LFP((2), is said to two-scale converge to a limit v € L¥(2 xY) if, ase — 0

f v° () (:rf) dz — o(z, y)(z, y) dedy (3.2)
2 £ 2xY

for all i € LPF(J?; Cper(Y')). We will often use v° % v to denote that (v%) two-
scale converges to v.

Definition 4 A bounded sequence (v°) of functions in L¥ ({2 x (0,T)), is said to
two-scale converge to a limit v € LY(f2 xY x (0,T)) if, ase — 0

[ v (z, ) (I'Et) dedt — w(z,y, )0 (z,y,t) dedydt  (3.3)
2%(0,T) € 2xY %(0,T)

for all+ € J. Robert Lipton LSU
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Two-scale convergence & compactness

Theorem 5 Let (v°) be a bounded sequence in L¥({2). Then there exists a subse-
quence and a function v € LP({2xY') such that the subsequence two-scale converges
to v.

A similar two-scale compactness holds for time dependent problems and is
stated in the following theorem.

Theorem 6 Let (v°) be a bounded sequence in LP(£2 x (0,T))>. Then there exists
a subsequence and a function v € LP(2 x Y x (0,T))? such that the subsequence
two-scale converges to v.

Robert Lipton LSU



Properties of two-scale convergence
for the class of test functions

Proposition 9 If ¢(x,y) belongs to K or L. (Y; C(ﬁ)g) then (x, T) two-scale
converges to V¥ (x,y) and

tim ([ Dy = [ Wyl dzdy, (3.4)

Similarly if ¢ (z,y,t) belongs to J or Ly, then ¥ (x, Z,t) two-scale converges to
U(x,y,t) and

l [, 2.0, = | o,y ) dedyds. (3.6
= ' 2xY x(0,T)

Robert Lipton LSU



Two-scale conver gence IHMMSIM " J'

and relation to strong & weak convergence

Proposition 7 Let (v°) be a bounded sequence in LP(£2 x (0,T))* that two-scale
converges to v € LP(2 xY x (0,T))®. Then as ¢ — 0

v° %f v(z,y,t)dy weakly in L (2 x (0,T))3.
Y

Proposition 8 If v°(z) converges to v(z) in LP(£2)* then its two-scale limit is v.

Robert Lipton LSU



Two-scale limit equation for dynamics ISI ]
on product space

Weak form of peridynamics using suitable test functions in J

) dzdt — / Oru”(x,0) - (3:, Ez[]) ,O{E:]'d:ﬂ
O £ £

I
——
T =

= -

t"' -

+

3

0

-

o~
—

~
M| =

) u(m =3 t) dedt

Kr=Kri1-KraandKz;=Kgz;—Kzq

Where
Kol = [ B ) ds, 35)
H [ Z}ydd — &I
F—T)@(T—2) ,. . .
.Ffj..!'tl[i!]:-f; ) Fl[ |:..'-=—:|I::|“ d¥ v{T), (3.9)
: 1 i\ (F-r)@(E-x)
ki = [ Sa33) ST e, @
Heg( it E E E | — =
) 1 fr&\(F-T)@(F-2) . |
Ksam() =-’er PR :':-E_EI::(EIEJ |'-'E'—-'-"'|j' 0z wz)- (&-10)
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Fine scale limit LSU

The following sequences two scale converge to
u®(x,t) > u(x,y,t)
Where the initial data and body forces two scale converge to
u®(x,0) > uy,(x,y)
o0.u® (x,0) - v, (x,y)
b (x,t) > b(x,Vy,t)

Robert Lipton LSU



Two-scale dynamics

[ u(ewt) (e Oply) dudydt — [ w(en) - V.. 0)ply) dady
NxY xR+

=Y

+ [ uole,y) - 0oy, 0)p(y) dody
[Py ed

~ [ (BBl
2xY xR+

Where

t)+b(x,y,t)) - Y(x,y,t)dedydt (3.15)

(#—z)® (& — z)

Brw(z,y) = / A
H_ (x)n$2

Bsw(z,y) = / oy, )
Hs(y)

Robert Lipton LSU

Z — z[° (/Y w(z,y')dy’ — w(z, "y]) di,
U—y)@ (@Y —y)
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Two-scale dynamics

Theorem 11 Let (u®) be the sequence of solutions of (1.9)-(1.11) with initial
data ug = uo(x, T), vo = vo(x, T) and body force b*(z, Z,t) with wo and vo in
LE..(Y;C(2)%) and b € Ly. Then

u® 2 u and the periodic extension of u(x,y,t) in the y variable from Y to R also
denoted by w belongs to Qp, with % < p < oo, and is the unique solution of

p(y)02u(z, y, 1) :/ ZE—2) (@ —7) (/Y w(@,y', 1) dy’ — u(m,y,t}) di

H_ (z)n & — 3

&, ! - ® ! - el &,
+/ &(y,'y)(y 1{) (1‘; y) (u(z, 9, t) —ulz,y,1)) dy
Hs(y) U — vl

+b(z,y,1),
(3.19)
supplemented with initial conditions
u(z,y,0) = uo(z,y), 3.20)
atu(‘rr yJD) — UD{I:y)' 3 21)

Robert Lipton LSU
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Strong approximation

Theorem 12 Let u(x,y,t) be the solution of the two-scale problem given in The-
orem 11 then

lim ||u® (z, 1) — w(z, =, ¢)|| o293 = O, (3.67)

e—0 £

for every t in [0,T] and % < p < .

Robert Lipton LSU
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Summary

Compute the two-scale dynamics to get strong approximation

p(y)OFu(z, y,t) = [ =)@ (j;_ %) ([ u(d,y' t)dy’ — u(m,y,t)) di
JH_ (z)n02 |z — x| JY

+ f a(, )TN CU=Y) (0 5 1) u(z,y,1) df
v Hs(y)

y—yp
+b(z,y,1),
(3.19)
supplemented with initial conditions
u(z,y,0) = uo(z,y), (3.20)
dru(x,y,0) = vo(x,y). 3.21)
lim [u® (a, t) — u(a, Z. 0| Lo2ys =0, (3.67)

for every t in [0,T] and % < p < o0.

Future work — get convergence rates Robert Lipton LSU
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Macroscopic Dynamics - Homogenization

The strong approximation u(x, £, t) admits a natural decomposition into a contin-
uous macroscopic component and a possibly discontinuous fluctuating component.
The macroscopic component ul! (z,t) is obtained by projecting out the spatial
fluctuations and the corrector r(zx, =, t) containing the possibly discontinuous fluc-
tuations is given by the remainder, i.e.,

u(z, =, t) = u” (z,1) + r(a, ;t), (4.1)
where
uf(z.t) = (u) = wlx,y,t)d .
(@0 = @) = [ ule.v.0)dy (42)
and
r(z, Szt} — u(z, g,t} —ul(z,1). (4.3)

Robert Lipton LSU



Macroscopic Dynamics - Homogenization LSU

The weak limit uf tracks the average

dynamics
lim i u (z,t)de = 11111 — e, 2 t)dx = 1 / u (z,t)dz, (4.4)
=—0 |Tr | |Tr | 5‘1 |1;| Jv : : )
and
1 T -
11111 — / r(xz,—.,t)dx = 0. (4.5)
=0 |V] Jy £

We now develop an explicit evolution equation for u"
and (following convention) we call u"

the Homogenized deformation

Robert Lipton LSU



Louisiana State University

Coupled Macroscopic & Microscopic Dynamics ILSU

We use the two-scale equation to write the coupled
evolution equation for ut andr

Theorem 14
i (t) = (p~ " )Kpu' (t) + (p~ ' Bsr)(t) — K(p~'r)(t) + (p 'b)(t),  (4.7)
i(t) = (p" = (07") Keu" (1) + (o7 " Bsr(t) — (07" Bsr)(1))
— K (p7'r(®) = (0'1)®) + (p7"0(t) — (p7'D)(1)) (4.8)

with initial conditions v (0) = (uo), @™ (0) = (vo), r(0) = uo — (uo), and 7(0) =
vp — (Vg).

ERE
K=\ d
‘/H,_Y(u) €13 :

Robert Lipton LSU
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Coupled Macroscopic & Microscopic Dynamics ISU

We obtain the evolution equation for uf by
eliminating r from the coupled dynamical system

Let:  Cr(t) = p~ 'Bsr(t) — {p ' Bsr)(t) — K (p_l-r(t) - qp—l-r)(t))

and  #(t) =Cr(t)+ (p" = (o)) Kpu (1) + p~'b(t) — (p~"B)(2)

Since this equation is linear we write r=w+v where
i(t) = Co(t) + (p_l - <p—1>) K1« (t). with homogenious IC'’s
() = Cw(t) + p~'b(t) — (p~'b)(1),

with  w(0) = @0 = uo — (uo) and w(0) = 9o = vo — (vo)

Robert Lipton LSU
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Towards a Homogenized Dynamics ISU

We use semi-groups to get the explicit representations for v and w

o(t) = (JE)_l Absinh ((t=7VE) (p7' = (")) K (r)dr (4.14)
w(t) = coshtv/Ciig + (x/f)_l sinh tv/Ctg

t

+ (\/E)_l /D sinh ((t — T)\/E) (p_lb(’r} — (ﬁ_ib>(’r}) dr.  (4.15)

We obtain the evolution equation for uf by
eliminating v and w from the coupled dynamical
system

Robert Lipton LSU
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Homogenized Dynamics with Memory

The evolution equation for u" is given by

Theorem 15 The homogenized deformation u* (t) is the solution of the integro-
differential equation in space and time given by

()i (0) = Kol (0 + ()7 (VE) T [D “sinh (6= )VE) (5! = (07)) Kiu () dr
+ (77 (Kw() + (7 0)(1)). (4.17)

with the initial conditions u™ (0) = (uo) and @™ (0) = (vo). The force generated by
the homogenized deformation f(t) = fH(.,t) is given by the history dependent
constitutive law

F(0) = Kpu® () + (077 (VE) f; sinh (¢ = 7)VC) (p7' = (p7")) K" (r) dr.
(4.18)

Here K= (p 'Bsr)(t)— K{p~'b)(t)

.
&

Robert Lipton LSU



Summary - Overview

||||||

1. The solution sequence two scale converges to

u®(x,t) > u(x,vy,t)

Where u(x,y,t) is the solution of a two scale dynamical
system in the spatial variables (x,y)

2. Compute using the two scale dynamics to obtain
u(x,y,t)

3. The strong approximation to y* (X, t)
IS given by the rescaling u(x,x/g,t)

Robert Lipton LSU
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Summary — Overview Continued ISU

1. Write

u(x,y,t)=u" (x,t) +r(x,y,t)

Where uf is used to characterize the dynamics
of volume averages
1

lim — u (z,t)de = 11111 — u.(;r,

e—0 |Tr | |Tr |

n |5

1) de = ”—1'/ o (z,1) dz, (4.4)
7/,

and

,t) dr = 0. (4,5]

11111 —

|1|

") |H

2. The average dynamics is history dependent due to microscopic
density fluctuations

Robert Lipton LSU
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Follow up and future work

1. Compute dynamics for layered and periodic media

X3,

?

What gets

Transmitted?

d

2. Adjust bond strength-scaling relations,
investigate/ identify limit equations comparisons
to heterogeneous materials modeled by

classical linear elasticity
Robert Lipton LSU
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