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Background & Formulation:

Bond based Peridynamics, S. Silling JMPS 2000
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Heterogeneous media

Initial Conditions
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The Bond Force & Density Fluctuations

)/()( ερρε xx =Local density fluctuation

Local bond force strength for short range bond forces
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The Bond Forces

Mathematically we can express the local bond strengths

Linearized
Bond stretch model

The long range peridynamic force
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A well posed initial boundary 
value problem

Initial Conditions
Traction free boundary conditions

For  initial data  uniformly bounded in 

and body forces uniformly bounded in 

An application of the theory of semigroups
shows that the solution exists and lies in
for p  greater than or equal to 1.
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Strong Approximations

We now introduce strong approximations to

Here the lower bound 3/2 arises from the cubic nature
of the bond force.

For body forces and initial conditions are continuous
at the coarse length scale but possess discontinuous
oscillations over the finer length scales

2/3),)(];,0([),( 32 ≥Ω∈ pLTCtxu pε

The strong approximations are of the form ),/,( txxu ε
Where the function ),,( tyxu
is unit periodic in the y variable and

0||),/,(),(|| 3)( →−
ΩpLtxxutxu εε

For 0<t<T as ε0.
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Initial data and body forces associated 
with this strong approximation

)/,()0,( 0 εε xxuxu =

The strong approximations are of the form
))(];,0([),/,( 32 Ω∈ pLTCtxxu ε

Where the functions ),(0 yxu
are periodic in the y variable with period Y and are in the space

)/,()0,( 0 εε xxvxut =∂
),/,(),( txxbtxb εε =

When the initial data is of the form 

),(0 yxv

)))(;(];,0([),,( 31 Ω∈ CYLTCtyxb p
per

))(;( 3ΩCYLp
per given by functions

integrable with respect to y, with values in 
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Strong approximation from two-scale limits

2-scale convergence: Weak convergence over a special space of test functions
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Two-scale convergence & compactness
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Properties of two-scale convergence 
for the class of test functions
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Two-scale convergence 
and relation to strong & weak convergence
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Two-scale limit equation for dynamics
on product space

Weak form of peridynamics using suitable test functions in J

Where
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Fine scale limit 

The following sequences two scale converge to

),()0,( 0 yxuxu →ε

),,(),( tyxutxu →ε

),()0,( 0 yxvxut →∂ ε

),,(),( tyxbtxb →ε

Where the initial data and body forces two scale converge to 
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Two-scale dynamics

Where
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Two-scale dynamics
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Strong approximation
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Summary

Future work – get convergence rates

Compute the two-scale dynamics to get strong approximation
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Macroscopic Dynamics - Homogenization
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Macroscopic Dynamics - Homogenization

The weak limit uH tracks the average
dynamics

We now develop an explicit evolution equation for uH

and (following convention) we call uH

the Homogenized deformation
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Coupled Macroscopic & Microscopic  Dynamics

We use the two-scale equation to write the coupled 
evolution equation for uH and r 
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Coupled Macroscopic & Microscopic  Dynamics

We obtain the evolution equation for uH by 
eliminating r from the coupled dynamical system  

Let:

and  

Since this equation is linear we write r=w+v where

with homogenious IC’s

with
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Towards a Homogenized  Dynamics

We obtain the evolution equation for uH by 
eliminating v and w  from the coupled dynamical 

system  

We use semi-groups to get the explicit representations for v and w
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Homogenized  Dynamics with Memory

The evolution equation for uH is given by 

Here
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Summary - Overview

1. The solution sequence two scale converges to

),,(),( tyxutxu →ε

2. Compute using the two scale dynamics to obtain

),,( tyxu

Where u(x,y,t) is the solution of a two scale dynamical 
system in the spatial variables (x,y) 

3. The strong approximation to 
is given by the rescaling u(x,x/ε,t)

),( txuε
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Summary – Overview Continued

1. Write 

),,(),(),,( tyxrtxutyxu H +=

2. The average dynamics is history dependent due to microscopic
density fluctuations

Where uH is used to characterize the dynamics
of volume averages 
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Follow up and future work

1. Compute dynamics for layered and periodic media 

2. Adjust bond strength-scaling relations, 
investigate/ identify limit equations comparisons
to heterogeneous materials modeled by 
classical linear elasticity
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