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The steady state peridynamic model

Consider the “elliptic’ nonlocal model:

L(u)(x) = b(x), xeQ
(PD) {u(x) =g(x), xeT,

where
£ =2 [ (ul) = )l ) .

e (2 is an open bounded subset of R”

e [ C R™\Q denotes a “collar” domain surrounding € which
has nonzero volume

o u(x,x’) is nonegative, u(x,x’) = u(x’, x).

Remark: The integral operator is defined on the boundary I as
well.



Notation

a: QU xQUI >R, u:QUI =R f:QUI x QUI - R"
(i) Generalized nonlocal gradient

S(u)(x,x') :== (u(x') — u(x))a(x,x'), x,x €Q,

(ii) Generalized nonlocal divergence

D(f)(x) := /Qur(f(x,xl)oz(x,x') — (X', x)a(X,x))dx', xe€Q,

(iii) Generalized nonlocal normal component
N(f)(x) := —/ (f(x, x"Na(x,x") — (X', x)a(xX', x))dx', xe€T.
Qur

Note: For the given peridynamic model we will use ;i = o/



Useful nonlocal calculus identities

Gunzburger & Lehoucq:
e Lu=D(9(v))
e For u,v € [2(QUT)

/QVD(S(U))dx+/QUF Qur9(u)9(v)dx’c/x:/m(g(u))o/x.

r

e Foru,v € [2(QUT), v=0overl

/Q(Lu)vdx— —/M QUr9(v)-9(u)c/x'dx.



Nonlocal boundary conditions

Dirichlet Problem:

Lu=b, xeQ
u=g, xel

Neumann Problem:
Lu=b, x€Q
/(u’ —u)u(x,xYdx' =g, xeT,
r

where ' = u(x"), u= u(x).



Set up for the Dirichlet’s principle. Spaces

Introduce the inner product

= [ [ ) = a0 ) = vl X
2 Jaur Jaur
+ (4, v)12(qury;
The space
W= {w € [*(Q)] (w,w), < co,w=0onT},
endowed with the norm
lwllv = (w, w)}/.

is a Banach space whenever p is nonnegative and symmetric.



The energy functional

The energy functional associated with the peridynamic problem
(PD) is given by:

1

] = / / (u(x') — u(x)2pa(x, ') + / b(x)u(x)dx,
2 Jaur Jaur Q

for u in the class of admissible functions
A={w e L*(Q) |u= g+ u, for some ug € W},

Convention: A will also be denoted by g +'W.



The Nonlocal Dirichlet's Principle

Theorem
Let u(x,x") be nonnegative and symmetric.

(i) Assume u solves the nonlocal peridynamics problem

PD) {L(u)( x) ;,( x), x€Q

xerl.

(x) = &(
Then
Flu] < vl
for every v € A.

(i) Conversely, if u € A satisfies F[u] < F[v] for every v € A,
then u solves the above nonlocal peridynamics problem.



Proof:
(i) If w € A, then u — w = 0 over I'. Integration by parts yields:

0 = /Lu—b)(u—w)dx

= / G(u 9(u—w)dx’dx—/ b(u — w)dx
Qur JQur Q

By Cauchy-Schwarz we obtain:

1
= S
2/Qul' Qur ()

Ydx’ dx—l—/ budx

“G(u

1

/ G(w 9(W)dxldx+/ bwdx
2 aur Jaur Q



(ii) Fix v € W and write
i(7) == Flu+ 7v],
where 7 € R. Since u+ 7v € A for each 7, the scalar function i(-)

has a minimum at zero. Thus i(0) =0, (' = &), provided the
derivative exists. Now we have

Hence, after integration by parts we obtain:

:/ S(U)-S(v)dx'dx—i—/ vbdx:/(Lu—b)vdx
our Jaur Q Q



A particular kernel

Assumption A. For every x’ € H,, there exists a constant Cy > 0
such that u(x,x") > Cp. In other words, for all x € QUT we have:

C()Xg(X, X/) < M(X’ X,)’

1, |x—=xX|<é
0, |x—x|>0.
Remark: The prototype kernel

where x;5(x,x") =

(x.x') 7|x—1x’|ﬁ for [x — x'| <&
x,x') =
: 0 for |[x — x| > 9,

satisfies this assumption for all 3 > 0.



Prototype kernel:

1 — !
p(x, x') = XT° for [x—x| 2 ¢
0 for |x — x| < 4,

where 3 > 0.

e (3 > n = strong singularity; work in the framework of
Nikolskii spaces H(#="/2(Q)

e 3 < n == weak singularity; work with L2 spaces (with
weights?)



More “elliptic” properties of L

Proposition
The operator L admits the following properties:
(a) If u = constant then Lu = 0.

(b) Let x € QUT. For any maximal point xo that satisfies
u(xo) > u(x), we have —Lu(xg) > 0. Similarly, if x; is a
minimal point such that u(x1) < u(x), then —Lu(x1) <O0.

(c) Lu is a positive semidefinite operator, i.e. (—Lu, u) > 0.

(d) /Qur —Lu(x)dx = 0.



(e) Weak mean-value inequality.
If u satisfies (A) and u is a nonnegative solution of Lu(x) =0

then:
1

70 /g{ u(y)dy

(f) Maximum and minimum principle (Rossi)
Assume that u € C(Q) solves (PD) with f = 0. If

u(x) >

u(oe) = 1, v

then xp € . Similarly, if

() = s o)

then xg € T.



Lemma

(Nonlocal Poincaré’s Inequality - Rossi, Aksoylu &Parks) If
uelP(Q),p>1 m>1, and G is as defined in (3), then there
exist Apper = Apper(2, 1,9, m) > 0 and Cg > 0 such that the
following inequality holds:

AenerllUllr@) < I15(0)l| o (@urxaury + Ce-



Wellposedness of the system (PD)

Theorem
With F[u] defined as before and 1 satisfying assumption (A) we
have that

inf{F[u] : u e A}

attains its minimum, and furthermore this minimizer is unique.
Hence, there exists a unique solution to (PD) in A for every f,g in
A.



Existence of solutions

Follows from convexity of ¥ and coercivity of F.
First note that since F[u] > 0 for u € L?(Q), we have that

inf{Flu] :ue A} =m>0.

Let {u, } be a minimizing sequence so that F[u,] — m. Thus there
exists M > 0 such that F[u,] < M. We will show that the
sequence u, is bounded in L2 (coercivity.).

M > /Qur /Qur u,)]?dx’ dx+/ b(x)uy, (x)dx

> 2”9 UV)HLZ(QUrXQUr 2||bH %HUVH%%Q)’



Existence contd.
By the nonlocal Poincaré’s inequality we have:

M > Gllu |72y + CllgllZry — GliblIZ2(q)
Thus, we can find v > 0 such that

w2 < -

Therefore, we may extract a subsequence {u,} and find & € L2(Q)
such that u, — @ in L?(Q). By Mazur's Lemma we can find a
sequence of convex combinations of u,, denoted by u, — @ in
L2(£2), hence

lim F[o,] < m.

V—00
By Fatou's lemma

Flo] < lim Fn,],
V—00

hence, from the above inequalities we have that u is a minimizer

since
Fla] < m.



Uniqueness of solutions
Let &, v € L2(Q) be minimizers of F with & # v. Set
0+ v

5 € L2(Q).

W=
By the strict convexity of the integrand, we have
_ 1. 1_._
Hence w is a minimizer of F. This implies that
1.1 . _
EF[U] + 53"[v] — F[w] = 0.

Thus

—12 —12
/ S ST grmpavan = 0.
aur Jaur 2 2

Again, by strict convexity, the integrand is strictly positive —
contradiction!!



Fick diffusion in peridynamics models

Consider the nonlocal flux that satisfies a nonlocal Fourier’s law:
Qu](x, x') = —aS[u](x, x),
The nonlocal conservation law:
ur = —D(Q).
We obtain the nonlocal peridynamic diffusion law

ur = D(aS(u)) = alu.



Hyperbolic diffusion in peridynamics

Assum that the flux Q is given by the Cattaneo-Vernotte equation
Q4+ a9 = —G(uv).

Differentiate the conservation law u; = —D(Q) with respect to
time:
U = —D(Qt)

Substituted into the above equation yields:
ugr = —D(—=9G(u) — aQ) = D(9(v)) + D(aQ) = Lu — auy.

or
Uit — Lu+ auy = 0.



Importance of hyperbolic diffusion (classical case)

Consider the classical heat and damped wave equations:

vi —Av =0in R” gy — Au+ up =0 in R”
V|t=o = v in R". (u, ut)|t=0 = uo + ug in R".

e hyperbolic diffusion is important in unsteady heat conduction
(the second sound of helium)

e the long time behavior of u with initial conditions (ug, u1) can

be very well approximated by the long time behavior of v with
initial condition vy = ug + vy (Abstract Diffusion Phenomenon

- JDE)



Questions and future directions

1. physical interpretation of the exponent 3 in u;

. what if 4 depends on time? OR the horizon changes with
space (different phases of the material)

3. weakly singular kernels (0 < s < n): Harnack’s inequality

4. obtain regularity results via Calculus of Variations techniques

5. wellposedness and regularity for time dependent models

(diffusion, elasticity,..)

. nonlinear local problems: very difficult since there is no gain in
“smoothness” (higher integrability or more derivatives for the
solution)

. wellposedness in weighted spaces



