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The steady state peridynamic model

Consider the “elliptic” nonlocal model:

(PD)

{
L(u)(x) = b(x), x ∈ Ω

u(x) = g(x), x ∈ Γ,

where

L(u)(x) := 2

∫
Ω∪Γ

(u(x ′)− u(x))µ(x , x ′) dx ′,

• Ω is an open bounded subset of Rn

• Γ ⊂ Rn\Ω denotes a “collar” domain surrounding Ω which
has nonzero volume

• µ(x , x ′) is nonegative, µ(x , x ′) = µ(x ′, x).

Remark: The integral operator is defined on the boundary Γ as
well.



Notation

α : Ω ∪ Γ× Ω ∪ Γ→ Rn, u : Ω ∪ Γ→ Rn, f : Ω ∪ Γ× Ω ∪ Γ→ Rn

(i) Generalized nonlocal gradient

G(u)(x , x ′) := (u(x ′)− u(x))α(x , x ′), x , x ′ ∈ Ω,

(ii) Generalized nonlocal divergence

D(f )(x) :=

∫
Ω∪Γ

(f (x , x ′)α(x , x ′)− f (x ′, x)α(x ′, x))dx ′, x ∈ Ω,

(iii) Generalized nonlocal normal component

N(f )(x) := −
∫

Ω∪Γ
(f (x , x ′)α(x , x ′)− f (x ′, x)α(x ′, x))dx ′, x ∈ Γ.

Note: For the given peridynamic model we will use µ = α2



Useful nonlocal calculus identities

Gunzburger & Lehoucq:

• Lu = D(G(u))

• For u, v ∈ L2(Ω ∪ Γ)∫
Ω

vD(G(u))dx+

∫
Ω∪Γ

∫
Ω∪Γ

G(u)G(v)dx ′dx =

∫
Γ

vN(G(u))dx .

• For u, v ∈ L2(Ω ∪ Γ), v = 0 over Γ∫
Ω

(Lu)v dx = −
∫

Ω∪Γ

∫
Ω∪Γ

G(v) · G(u)dx ′dx .



Nonlocal boundary conditions

Dirichlet Problem: {
Lu = b, x ∈ Ω

u = g , x ∈ Γ

Neumann Problem:Lu = b, x ∈ Ω∫
Γ
(u′ − u)µ(x , x ′)dx ′ = g , x ∈ Γ,

where u′ = u(x ′), u = u(x).



Set up for the Dirichlet’s principle. Spaces

Introduce the inner product

〈u, v〉µ =
1

2

∫
Ω∪Γ

∫
Ω∪Γ

(u(x ′)− u(x))(v(x ′)− v(x))µ(x , x ′)dx ′dx

+ (u, v)L2(Ω∪Γ),

The space

W := {w ∈ L2(Ω)| 〈w ,w〉µ <∞,w = 0 on Γ},

endowed with the norm

‖w‖W = 〈w ,w〉1/2
µ .

is a Banach space whenever µ is nonnegative and symmetric.



The energy functional

The energy functional associated with the peridynamic problem
(PD) is given by:

F[u] =
1

2

∫
Ω∪Γ

∫
Ω∪Γ

(u(x ′)− u(x))2µ(x , x ′)dx ′dx +

∫
Ω

b(x)u(x)dx ,

for u in the class of admissible functions

A = {w ∈ L2(Ω) |u = g + u0, for some u0 ∈W},

Convention: A will also be denoted by g + W.



The Nonlocal Dirichlet’s Principle

Theorem
Let µ(x , x ′) be nonnegative and symmetric.

(i) Assume u solves the nonlocal peridynamics problem

(PD)

{
L(u)(x) = b(x), x ∈ Ω

u(x) = g(x), x ∈ Γ.

Then
F[u] ≤ F[v ]

for every v ∈ A.

(ii) Conversely, if u ∈ A satisfies F[u] ≤ F[v ] for every v ∈ A,
then u solves the above nonlocal peridynamics problem.



Proof:
(i) If w ∈ A, then u − w = 0 over Γ. Integration by parts yields:

0 =

∫
Ω

(Lu − b)(u − w)dx

= −
∫

Ω∪Γ

∫
Ω∪Γ

G(u) · G(u − w)dx ′dx −
∫

Ω
b(u − w)dx

By Cauchy-Schwarz we obtain:

1

2

∫
Ω∪Γ

∫
Ω∪Γ

G(u) · G(u)dx ′dx +

∫
Ω

budx

≤ 1

2

∫
Ω∪Γ

∫
Ω∪Γ

G(w) · G(w)dx ′dx +

∫
Ω

bwdx



(ii) Fix v ∈W and write

i(τ) := F[u + τv ],

where τ ∈ R. Since u + τv ∈ A for each τ , the scalar function i(·)
has a minimum at zero. Thus i ′(0) = 0,

(′ = d
dτ

)
, provided the

derivative exists. Now we have

i(τ) =

∫
Ω∪Γ

∫
Ω∪Γ

1

2
G(u)·G(u)+τG(u)·G(v)+

τ2

2
G(v)·G(v)dx ′dx

+

∫
Ω

b(u + τv)dx

Hence, after integration by parts we obtain:

0 = i ′(0) =

∫
Ω∪Γ

∫
Ω∪Γ

G(u)·G(v)dx ′dx +

∫
Ω

vbdx =

∫
Ω

(Lu−b)vdx



A particular kernel

Assumption A. For every x ′ ∈ Hx , there exists a constant C0 > 0
such that µ(x , x ′) ≥ C0. In other words, for all x ∈ Ω ∪ Γ we have:

C0χδ(x , x ′) ≤ µ(x , x ′),

where χδ(x , x ′) =

{
1, |x − x ′| ≤ δ
0, |x − x ′| > δ.

Remark: The prototype kernel

µ(x , x ′) =

{
1

|x−x ′|β for |x − x ′| ≤ δ
0 for |x − x ′| > δ,

satisfies this assumption for all β > 0.



Prototype kernel:

µ(x , x ′) =

{
1

|x−x ′|β for |x − x ′| ≥ δ
0 for |x − x ′| < δ,

where β ≥ 0.

• β ≥ n =⇒ strong singularity; work in the framework of
Nikolskii spaces H(β−n)/2(Ω)

• β < n =⇒ weak singularity; work with L2 spaces (with
weights?)



More “elliptic” properties of L

Proposition

The operator L admits the following properties:

(a) If u ≡ constant then Lu = 0.

(b) Let x ∈ Ω ∪ Γ. For any maximal point x0 that satisfies
u(x0) ≥ u(x), we have −Lu(x0) ≥ 0. Similarly, if x1 is a
minimal point such that u(x1) ≤ u(x), then −Lu(x1) ≤ 0.

(c) Lu is a positive semidefinite operator, i.e. 〈−Lu, u〉 ≥ 0.

(d)

∫
Ω∪Γ
−Lu(x)dx = 0.



(e) Weak mean-value inequality.
If µ satisfies (A) and u is a nonnegative solution of Lu(x) = 0
then:

u(x) ≥ 1

|Hx |

∫
Hx

u(y)dy

(f) Maximum and minimum principle (Rossi)
Assume that u ∈ C (Ω) solves (PD) with f = 0. If

u(x0) = max
x∈Ω∪Γ

u(x)

then x0 ∈ Γ. Similarly, if

u(x0) = max
x∈Ω∪Γ

u(x)

then x0 ∈ Γ.



Lemma
(Nonlocal Poincaré’s Inequality - Rossi, Aksoylu &Parks) If
u ∈ Lp(Ω), p > 1, m ≥ 1, and G is as defined in (3), then there
exist λPncr = λPncr (Ω, Γ, δ,m) > 0 and Cg > 0 such that the
following inequality holds:

λPncr‖u‖Lp(Ω) ≤ ‖G(u)‖Lp(Ω∪Γ×Ω∪Γ) + Cg .



Wellposedness of the system (PD)

Theorem
With F[u] defined as before and µ satisfying assumption (A) we
have that

inf {F[u] : u ∈ A}

attains its minimum, and furthermore this minimizer is unique.
Hence, there exists a unique solution to (PD) in A for every f , g in
A.



Existence of solutions

Follows from convexity of F and coercivity of F.
First note that since F[u] ≥ 0 for u ∈ L2(Ω), we have that

inf {F[u] : u ∈ A} = m ≥ 0.

Let {uν} be a minimizing sequence so that F[uν ]→ m. Thus there
exists M > 0 such that F[uν ] < M. We will show that the
sequence uν is bounded in L2 (coercivity.).

M >
1

2

∫
Ω∪Γ

∫
Ω∪Γ

[G(uν)]2dx ′dx +

∫
Ω

b(x)uν(x)dx

≥ 1
2‖G(uν)‖2

L2(Ω∪Γ×Ω∪Γ) −
ε
2‖b‖

2
L2(Ω) −

1
2ε‖uν‖

2
L2(Ω),



Existence contd.
By the nonlocal Poincaré’s inequality we have:

M > C1‖uν‖2
L2(Ω) + C2‖g‖2

L2(Γ) − C3‖b‖2
L2(Ω)

Thus, we can find γ > 0 such that

‖uν‖L2(Ω) ≤ γ.

Therefore, we may extract a subsequence {uν} and find ū ∈ L2(Ω)
such that uν → ū in L2(Ω). By Mazur’s Lemma we can find a
sequence of convex combinations of uν , denoted by ūν → ū in
L2(Ω), hence

lim
ν→∞

F[ūν ] ≤ m.

By Fatou’s lemma
F[ū] ≤ lim

ν→∞
F[ūν ],

hence, from the above inequalities we have that ū is a minimizer
since

F[ū] ≤ m.



Uniqueness of solutions
Let ū, v̄ ∈ L2(Ω) be minimizers of F with ū 6= v̄ . Set

w̄ =
ū + v̄

2
∈ L2(Ω).

By the strict convexity of the integrand, we have

m ≤ F[w̄ ] ≤ 1

2
F[ū] +

1

2
F[v̄ ] = m.

Hence w̄ is a minimizer of F. This implies that

1

2
F[ū] +

1

2
F[v̄ ]− F[w̄ ] = 0.

Thus ∫
Ω∪Γ

∫
Ω∪Γ

G[ū]2

2
+

G[v̄ ]2

2
− G[w̄ ]dx ′dx = 0.

Again, by strict convexity, the integrand is strictly positive –
contradiction!!



Fick diffusion in peridynamics models

Consider the nonlocal flux that satisfies a nonlocal Fourier’s law:

Q[u](x , x ′) = −aG[u](x , x ′),

The nonlocal conservation law:

ut = −D(Q).

We obtain the nonlocal peridynamic diffusion law

ut = D(aG(u)) = aLu.



Hyperbolic diffusion in peridynamics

Assum that the flux Q is given by the Cattaneo-Vernotte equation

Qt + aQ = −G(u).

Differentiate the conservation law ut = −D(Q) with respect to
time:

utt = −D(Qt).

Substituted into the above equation yields:

utt = −D(−G(u)− aQ) = D(G(u)) + D(aQ) = Lu − aut .

or
utt − Lu + aut = 0.



Importance of hyperbolic diffusion (classical case)

Consider the classical heat and damped wave equations:{
vt −∆v = 0 in Rn

v |t=0 = v0 in Rn.

{
utt −∆u + ut = 0 in Rn

(u, ut)|t=0 = u0 + u1 in Rn.

• hyperbolic diffusion is important in unsteady heat conduction
(the second sound of helium)

• the long time behavior of u with initial conditions (u0, u1) can
be very well approximated by the long time behavior of v with
initial condition v0 = u0 + u1 (Abstract Diffusion Phenomenon
- JDE)



Questions and future directions

1. physical interpretation of the exponent β in µ;

2. what if µ depends on time? OR the horizon changes with
space (different phases of the material)

3. weakly singular kernels (0 < s < n): Harnack’s inequality

4. obtain regularity results via Calculus of Variations techniques

5. wellposedness and regularity for time dependent models
(diffusion, elasticity,..)

6. nonlinear local problems: very difficult since there is no gain in
“smoothness” (higher integrability or more derivatives for the
solution)

7. wellposedness in weighted spaces


