Finite Elemente: Definition und Eigenschaften

Bezeichnung der Freiheitsgrade Σ_T

- Funktionswerte
- Funktionswerte und erste Ableitungen
- Funktionswerte, erste und zweite Ableitungen
- Funktionswerte, erste und gemischte zweite Ableitungen
- Normalableitung

Polynomräume

$\mathcal{P}^k(\mathbb{R}^d) = \{ p : \mathbb{R}^d \to \mathbb{R} : p(x_1, x_2, \ldots, x_d) = \sum_{a_1 + \ldots + a_d = k}^{d} a_{a_1a_2\ldots a_d} x_1^{a_1} x_2^{a_2} \ldots x_d^{a_d} \}$

$\dim \mathcal{P}^k(\mathbb{R}^d) = \binom{d+k}{k}$,

$\mathcal{P}^2(\mathbb{R}^2) = \text{span}\{1, x, y, xy, x^2, y^2\}$

$\mathcal{Q}^k(\mathbb{R}^d) = \{ p : \mathbb{R}^d \to \mathbb{R} : p(x_1, x_2, \ldots, x_d) = p_1(x_1)p_2(x_2)\ldots p_d(x_d) , p_i \in \mathcal{P}^k(\mathbb{R}) \}$

$\dim \mathcal{Q}^k(\mathbb{R}^d) = (k+1)^d$, $\mathcal{Q}^2(\mathbb{R}^2) = \text{span}\{1, x, y, xy, x^2y, xy^2, x^2y^2\}$

$\mathcal{P}^k \subset \mathcal{Q}^k \subset \mathcal{P}^{dk}$

Baryzentrische Koordinaten

Sei T ein d-Simplex mit den Ecken $a_1, \ldots, a_{d+1} \in \mathbb{R}^d$. Unter den baryzentrischen Koordinaten eines Punktes $x \in \mathbb{R}^d$ versteht man die eindeutige Lösung $\ell_1, \ldots, \ell_{d+1}$ des linearen Gleichungssystems

$$
\sum_{i=1}^{d+1} a_{ij} \ell_i = x_j \quad (j = 1, \ldots, d), \quad \sum_{i=1}^{d+1} \ell_i = 1.
$$

Ist \hat{T} das Einheitsdreieck, so gilt $\ell_1 = 1 - \hat{x} - \hat{y}$, $\ell_2 = \hat{x}$, $\ell_3 = \hat{y}$. Baryzentrische Koordinaten sind gegenüber affin-linearen Transformationen invariant.

Konforme Dreieckelemente: Lagrange

$\mathcal{P}_T = \mathcal{P}^1$, $\dim \mathcal{P}_T = 3$, $S_h \subset C^0(\overline{\Omega}) \cap H^1(\Omega)$

$\Sigma_T = \{ p(a_i) \}$

Basis: ℓ_1, ℓ_2, ℓ_3

$\| v - \Pi_T v \|_{m,T} = O \left(h_T^{2-m} \right)$ für $v \in H^2(\hat{T})$
Erweitertes quadratisches Element
\[P_T = \mathcal{P}^2, \operatorname{dim} P_T = 7, S_h \subset C^0(\overline{\Omega}) \cap H^1(\Omega) \]
\[\Sigma_T = \{p(a_i), p(a_{ij})\} \]
Basis: \(\ell_i(2\ell_i - 1) (i = 1, 2, 3), 4\ell_i\ell_j (i, j = 1, 2, 3, i < j) \)
\[\|v - \Pi_T v\|_{m,T} = O \left(h_T^{3-m} \right) \text{ für } v \in H^3(\bar{T}) \]

Reduziertes kubisches Element
\[P_T = \mathcal{P}^2, \operatorname{dim} P_T = 9, S_h \subset C^0(\overline{\Omega}) \cap H^1(\Omega) \]
\[\Sigma_T = \{p(a_i), p(a_{iiij})\} \]
Basis: \(\frac{1}{2}\ell_i(3\ell_i - 1)(3\ell_i - 2) - \frac{9}{2}\ell_i\ell_2\ell_3 (i = 1, 2, 3), \frac{3}{2}\ell_i(3\ell_i - 1) - \ell_j + \frac{27}{4}\ell_i\ell_2\ell_3 (i, j = 1, 2, 3, i \neq j) \)
\[\|v - \Pi_T v\|_{m,T} = O \left(h_T^{3-m} \right) \text{ für } v \in H^3(\bar{T}) \]

Kubisches Element
\[P_T = \mathcal{P}^3, \operatorname{dim} P_T = 10, S_h \subset C^0(\overline{\Omega}) \cap H^1(\Omega) \]
\[\Sigma_T = \{p(a_i), p(a_{iiij}), p(a_{ijk})\} \]
Basis: \(\frac{1}{2}\ell_i(3\ell_i - 1)(3\ell_i - 2) (i = 1, 2, 3), \frac{9}{2}\ell_i(3\ell_i - 1) - \ell_j (i, j = 1, 2, 3, i \neq j), 27\ell_i\ell_2\ell_3 \)
\[\|v - \Pi_T v\|_{m,T} = O \left(h_T^{4-m} \right) \text{ für } v \in H^4(\bar{T}) \]

Konforme Dreieckelemente: Hermite
Kubisches Hermite-Element

\[P_T = \mathcal{P}^3, \dim P_T = 10, S_h \subset C^0(\Omega) \cap H^1(\Omega), \]
\[\Sigma_T = \{ p(a_i), p(a_{ijk}), \partial_k p(a_i) \}, \Sigma_T' = \{ p(a_i), p(a_{ijk}), \nabla p(a_i) (a_j - a_i) \} \]
\[\| v - \Pi_T v \|_{m,T} = \mathcal{O} \left(h_T^{4-m} \right) \text{ für } v \in H^4(\hat{T}) \]

Bell-Element

\[\mathcal{P}^4 \subset P_T \subset \mathcal{P}^5, \dim P_T = 18, S_h \subset C^1(\Omega) \cap H^2(\Omega) \]
\[\Sigma_T = \{ p(a_i), \nabla p(a_i) (a_j - a_i), \nabla^2 p(a_i) (a_j - a_i) (a_k - a_i) \} \]
\[\| v - \Pi_T v \|_{m,T} = \mathcal{O} \left(h_T^{5-m} \right) \text{ für } v \in H^5(\hat{T}) \]

Argyris-Element

\[P_T = \mathcal{P}^5, \dim P_T = 21, S_h \subset C^1(\Omega) \cap H^2(\Omega) \]
\[\| v - \Pi_T v \|_{m,T} = \mathcal{O} \left(h_T^{6-m} \right) \text{ für } v \in H^6(\hat{T}) \]

Hsieh-Clough-Tocher-Element

\[P_T = P_3 \subset P_T = \{ p \in C^1(T) : p|_T, p \in \mathcal{P}^3 \}, \dim P_T = 12, S_h \subset C^1(\Omega) \cap H^2(\Omega) \]
\[\| v - \Pi_T v \|_{m,T} = \mathcal{O} \left(h_T^{4-m} \right) \text{ für } v \in H^4(\hat{T}) \]

Nichtkonforme Dreieckelemente

\[P_T = \mathcal{P}^0, \dim P_T = 1, S_h \not\subset C^0(\Omega) \]

Crouzeix-Raviart-Element

\[P_T = \mathcal{P}^1, \dim P_T = 3, S_h \not\subset C^0(\Omega) \]
Konforme Rechteckelemente: Lagrange

Bilineares Element

\[P_T = Q^1, \text{ dim } P_T = 4, S_h \subset C^0(\overline{\Omega}) \cap H^1(\Omega), \]

Basis auf dem Einheitsquadrat: \((1 - x)(1 - y), x(1 - y), xy, (1 - x)y\)

\[\|v - \Pi_T v\|_{m,T} = O(h_T^{2-m}) \text{ für } v \in H^2(\hat{T}) \]

Reduziertes biquadratisches (Serendipity-) Element

\[P^2 \subset P_T \subset Q^2, \text{ dim } P_T = 8, S_h \subset C^0(\overline{\Omega}) \cap H^1(\Omega), \]

\[\|v - \Pi_T v\|_{m,T} = O(h_T^{3-m}) \text{ für } v \in H^3(\hat{T}) \]

Biquadratisches Element

\[P_T = Q^2, \text{ dim } P_T = 9, S_h \subset C^0(\overline{\Omega}) \cap H^1(\Omega), \]

\[\|v - \Pi_T v\|_{m,T} = O(h_T^{3-m}) \text{ für } v \in H^3(\hat{T}) \]

Reduziertes bikubisches (Serendipity-) Element

\[P^3 \subset P_T \subset Q^3, \text{ dim } P_T = 12, S_h \subset C^0(\overline{\Omega}) \cap H^1(\Omega) \]

\[\|v - \Pi_T v\|_{m,T} = O(h_T^{4-m}) \text{ für } v \in H^4(\hat{T}) \]

Bikubisches Element

\[P_T = Q^3, \text{ dim } P_T = 16, S_h \subset C^1(\overline{\Omega}) \cap H^2(\Omega) \]

\[\|v - \Pi_T v\|_{m,T} = O(h_T^{4-m}) \text{ für } v \in H^4(\hat{T}) \]

Konforme Rechteckelemente: Hermite