UNIVERSITÄT BIELEFELD FAKULTÄT FÜR MATHEMATIK Prof. Dr. Etienne Emmrich Dipl.-Math. Jens Kemper

Numerik II

5. Übungsblatt

Abgabe bis 24.11.09 um 12 Uhr in Postfach 34 in V3-128

Aufgabe 1: 3 Punkte

Programmiere die Mittelpunktregel (One-leg-Variante des Crank-Nicolson-Verfahrens) zur numerischen Lösung eines skalaren Anfangswertproblems. Verwende dabei eine Newton-Iteration zur Lösung der in jedem Zeitschritt auftretenden nichtlinearen Gleichungen (wähle als Startwert den Wert der Näherungslösung aus dem vorhergehenden Zeitschritt). Teste das Programm für das Anfangswertproblem

$$u'(t) = -u(t)^3, \quad t \in [0, 10], \quad u(0) = 2,$$

und vergleiche die exakte Lösung mit den zu verschiedenen äquidistanten Zeitgittern berechneten numerischen Lösungen. Ist quadratische Konvergenz zu beobachten?

Zusatzaufgabe mit 6 Zusatzpunkten!

Seien T > 0 und $u_0 \in \mathbb{R}^d$ $(d \in \mathbb{N})$. Vorgelegt sei das Anfangswertproblem

$$u'(t) = f(t, u(t)), t \in [0, T], u(0) = u_0,$$

wobei $f: [0,T] \times \mathbb{R}^d \to \mathbb{R}^d$ dissipativ sei.

Betrachte die One-leg-Variante des ϑ -Verfahrens ($\vartheta \in [0,1]$) auf einer äquidistanten Zerlegung von [0,T] mit $t_n = n\tau$ ($\tau = T/N, N \in \mathbb{N}$) zur näherungsweisen Berechnung von $u^n \approx u(t_n)$ (n = 1, 2, ..., N) bei gegebenem $u^0 \approx u_0$.

Zeige unter geeignet gewählten Voraussetzungen

- a) die Wohldefiniertheit des Verfahrens,
- b) die von der Wahl der Schrittweite unabhängige Beschränktheit der zeitdiskreten Lösung und gegebenenfalls ihrer diskreten Ableitung,
- c) die stetige Abhängigkeit der zeitdiskreten Lösung vom Anfangswert,
- d) eine Fehlerabschätzung erster Ordnung für den Fall $\vartheta \neq 1/2$,
- e) eine Fehlerabschätzung zweiter Ordnung für den Fall $\vartheta = 1/2$.