UNIVERSITÄT BIELEFELD FAKULTÄT FÜR MATHEMATIK Prof. Dr. Etienne Emmrich Dipl.-Math. Jens Kemper

Numerik II

6. Übungsblatt

Abgabe bis 01.12.09 um 12 Uhr in Postfach 34 in V3-128

Aufgabe 1: 3 Punkte

Das Intervall [a,b] sei äquidistant in $N \in \mathbb{N}$ Teilintervalle der Länge h zerlegt. Es seien $X = \mathcal{C}([a,b])$ und $X_h = \mathbb{R}^{N+1}$, jeweils versehen mit der Maximumnorm. Ferner seien $r_h: X \to X_h$ die punktweise Restriktion und $p_h: X_h \to X$ die stückweise lineare Interpolation wie in der Vorlesung beschrieben. Zeige Stabilität und Kompatibilität des Approximationsschemas $(X_h, p_h, r_h)_{h \in \mathcal{H}}$ (wobei die Indexmenge \mathcal{H} zu einer Folge von feiner werdenden Zerlegungen gehöre).

Aufgabe 2: 3 Punkte

Sei $X=c_0$ der mit der Maximumnorm versehene Raum der Nullfolgen reeller Zahlen. Für eine gegen ∞ konvergierende Folge natürlicher Zahlen N sei $X_h=\mathbb{R}^N$ (h=1/N), ebenfalls mit der Maximumnorm versehen. Ferner seien $r_h:X\to X_h$ die Restriktion, die sich durch Weglassen der letzten Folgenglieder ergibt, und $p_h:X_h\to X$ die Prolongation, die sich durch Fortsetzung mit Null ergibt. Zeige Stabilität und Kompatibilität des Approximationsschemas $(X_h,p_h,r_h)_{h\in\mathcal{H}}$, wobei \mathcal{H} die Folge der Zahlen 1/h ist. Wie verhält es sich, wenn $X=\ell^\infty$ der mit der Maximumnorm versehene Raum der beschränkten Folgen reeller Zahlen ist?