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Abstract

Existence and uniqueness of solutions to initial value problems for a class of abstract
differential-algebraic equations (DAEs) is shown. The class of equations cover, in partic-
ular, the spatially semi-discretized Stokes and Oseen problem describing the motion of
an incompressible or nearly incompressible Newtonian fluid. Moreover, we derive explicit
solution formulas.
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1 Introduction

In this paper we study the solvability of operator equations of the form[
M 0
0 0

]
d

dt

[
v
p

]
+

[
A B
−DT C

] [
v
p

]
=

[
f
g

]
, (1.1)

on a time interval [0, T ] with linear operators M,A,B,C,D defined on appropriate Hilbert
spaces and with appropriate right-hand side functions f, g. Here, the time derivative is usually
understood in the distributional sense.

We are interested in solutions to initial value problems with initial condition[
v(0)
p(0)

]
=

[
v0
p0

]
(1.2)

where, if the solution does not exist in the classical sense at t = 0 then the initial condition
is viewed in a generalized sense, see [15, 19].
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Since the coefficient matrix of the time derivative is singular, (1.1) is called operator
differential-algebraic equation (DAE) or abstract DAE [26].

Operator DAEs of the form (1.1) (with M = I,B = D,C = 0) arise in the functional
analytic formulation of the initial value problem for the Stokes as well as for the linearized
Navier-Stokes or Oseen equations [3, 24, 25] in which v and p, denoting velocity and pressure,
respectively, then are abstract functions mapping the time interval into appropriate spatial
function spaces.

The linearized Navier-Stokes equations, describing the motion of an incompressible or
nearly incompressible Newtonian fluid, have the form

∂tv − ν∆v + (v∞ · ∇)v + (v · ∇)v∞ +∇p = f in Ω× (0, T )

∇T v = 0 in Ω× (0, T ). (1.3)

They arise from a linearization of the Navier-Stokes equations

∂tv − ν∆v + (v · ∇)v +∇p = f in Ω× (0, T )

∇T v = 0 in Ω× (0, T )

around a prescribed vector field v∞. In what follows, we restrict to the case that v∞ is
independent of time. Note that if v∞ is also independent of space then the term (v · ∇)v∞
does not appear, and the equations are then called Oseen equations (see [23]). The equations
have to be supplemented by suitable initial and boundary conditions.

Operator DAEs of the form (1.1) also arise when the Oseen system is semi-discretized in
space via the method of lines [1, 21] using e.g. a finite element discretization in space [16, 21]
and a fixed point iteration to resolve the nonlinearity. Due to the convection term, in general,
in the fixed point iteration the resulting coefficient matrix A is nonsymmetric. Furthermore,
if the corresponding finite element spaces do not fulfill the discrete Babuška-Brezzi condition
[3, 10, 21, 22], a stabilization is needed which then leads to an additional term in (1.3). Also
quasi-compressible fluid flow [18] can be described by an additional term in (1.3).

Differential-algebraic (operator) equations are currently the standard modeling concept
in many applications such as circuit simulation, multibody dynamics, and chemical process
engineering, see [1, 2, 8, 11, 12, 13, 15, 20] and the references therein. They have a particular
advantage for the treatment of multi-physics models arising from modern automatic modeling
tools such as [7, 17] and as we have described, they arise in computational fluid dynamics in
the special form of the linear operator DAE (1.1).

In this paper we carry out the analysis for the finite dimensional case. In particular, we
study existence and uniqueness of (1.1). We review the classical theory for linear DAEs and
apply this theory to the specially structured system given by (1.1). Moreover, we present
explicit solution formulas.

2 A review of differential-algebraic equations

In this section, as a basis for the operator case, we recall some well-known results on the
solvability of the initial value problem for a system of DAEs. Moreover, we provide an
explicit representation of the solution, which is a generalization of Duhamel’s principle, and
discuss the relation between the consistency (compatibility) of the data and the index of the
DAE. We follow [15] in style and notation.
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For initial value problems associated with linear ordinary differential equations

ẋ+Ax = f, x(0) = x0,

with A ∈ Rn,n and f ∈ C([0, T ];Rn) (where C([0, T ];Rn) denotes the space of continuous
functions from [0, T ] to Rn) one has the well-known solution formula (Duhamel’s principle)
[6]

x(t) = e−tAx0 +

∫ t

0
e−(t−s)Af(s) ds (2.1)

obtained by variation of constants. The extension of this formula to initial value problems
for DAEs of the form

E ẋ+Ax = f, (2.2)

with E ,A ∈ Rn,n, sufficiently smooth right-hand side f , and initial conditions

x(0) = x0 ∈ Rn (2.3)

is also well-known, see e.g. [4, 15].
To describe this, we need the following results.

Theorem 1 (Weierstraß canonical form) [9]. Let E ,A ∈ Rn,n and suppose that the pair
(E ,A) is regular, i.e., det(λE+A) does not vanish identically for all λ ∈ C. Then, there exist
nonsingular matrices P,Q ∈ Rn,n such that

(PEQ,PAQ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (2.4)

where J is a matrix in real Jordan canonical form, N is a nilpotent matrix also in Jordan
canonical form and I denotes an identity matrix of appropriate size. Moreover, it is allowed
that one or the other block is not present.

If in Theorem 1 the index of nilpotency of N is ν, then we say that the pair (E ,A) has
(differentiation) index ν and denote this by ν = ind(E ,A). For a matrix E ∈ Rn,n we set
ind E = ind(E , I). We have ind E = 0 if and only if E is nonsingular.

The explicit solution formulas require the Drazin inverse of a matrix.

Definition 2 Let E ∈ Rn,n have ind E = ν. A matrix X ∈ Rn,n satisfying

(a) EX = XE ,
(b) XEX = X,
(c) XEν+1 = Eν

(2.5)

is called a Drazin inverse of E.

We recall some well-known facts about the Drazin inverse, see [5].

Theorem 3 Let E ,A ∈ Rn,n.

1. E has one and only one Drazin inverse ED.

2. If E is nonsingular then ED = E−1.
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3. If EA = AE then
(a) EAD = ADE ,
(b) EDA = AED,
(c) EDAD = ADED.

(2.6)

To present the explicit solution representations, we first assume that in (2.2) the coefficient
matrices E and A commute, i.e., that

EA = AE . (2.7)

Then we have the following solution formula, see [4, 15].

Theorem 4 Let E ,A ∈ Rn,n form a regular pair satisfying (2.7). Furthermore, let f ∈
Cν([0, T ];Rn) with ν = ind(E ,A). Then every solution x ∈ C1([0, T ];Rn) of (2.2) has the
form

x(t) = e−tE
DAEDEq +

∫ t

0
e−(t−s)E

DAEDf(s) ds

+
(
I − EDE

) ν−1∑
i=0

(−EAD)iADf (i)(t)
(2.8)

for some q ∈ Rn.

Evaluating the solution formula at t = 0 one immediately gets consistency conditions for
initial values.

Corollary 5 Let the assumptions of Theorem 4 hold. The initial value problem consisting of
(2.2) and (2.3) has a solution x ∈ C1([0, T ];Rn) if and only if there exists a vector q ∈ Rn
with

x0 = EDEq + (I − EDE)
ν−1∑
i=0

(−EAD)iADf (i)(0). (2.9)

If this is the case, then for every such q the solution is unique.

Remark 6 Corollary 5 gives consistency conditions for classical continuously differentiable
solutions. By going over to weaker smoothness requirements for the solutions, also these
consistency conditions may be partially weakened, see [15, 19].

The commutativity requirement (2.7) is not really a restriction, since if (E ,A) is regular
and λ̂ ∈ R is chosen such that λ̂E +A is nonsingular, then

Ê = (λ̂E +A)−1E , Â = (λ̂E +A)−1A (2.10)

commute. Since the factor (λ̂E +A)−1 represent a simple scaling of (2.2) from the left by a
nonsingular matrix, results analogous to Theorem 4 and Corollary 5 hold for the general case
by setting

E ← (λ̂E +A)−1E , A ← (λ̂E +A)−1A, f ← (λ̂E +A)−1f (2.11)

in (2.8) and (2.9). It should also be noted that none of the solution formulas depends on the
choice of the value λ̂, see [15].
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3 Well-posedness and explicit solution for DAEs of type (1.1)

In this section we specialize the results of the previous section to the specially structured
finite dimensional version of the operator DAE (1.1). The associated matrix pair is then

(E ,A) =

([
M 0
0 0

]
,

[
A B
−DT C

])
. (3.1)

We assume that the pair arises from a reasonable discretization that leads to a regular pair
with the mass matrix M and the matrix A being invertible. The latter condition, which
will be satisfied in practice, is not really necessary for the analysis, but if this is not the
case, then the presentation becomes rather technical. Since A is nonsingular it follows that
ind(E) = ind(E ,A) as well.

Typically, the matrix C in (3.1) is singular or even 0 depending on the discretization.
If C were invertible then we would immediately have that ind(E ,A) = 1, see e.g. [15]. We
also assume that B and D have full column rank. For the latter condition it is usually
necessary to remove the freedom in the pressure by an extra condition or a factorization
of the underlying function space [10, 14]. For C singular, let P1 and P2 be matrices, such
that their columns span the nullspace of C and CT , respectively. It is another reasonable
assumption that P T2 D

TBP1 is square and nonsingular, [27]. Under this assumption we have
that ind(E ,A) = 2, see e.g. [15]. This holds for example in the particular case that D = B has
full column rank and C = 0, that we will study below. We thus restrict our considerations to
the case ind(E) = ind(E ,A) ∈ {1, 2}.

To apply the explicit solution formula to (1.1), we first need to pick a value λ̂ such that
λ̂E + A is invertible. Under the given assumptions, it is sufficient to pick λ̂ ∈ R such that
λ̂M +A is nonsingular, which means that λ̂ is not an eigenvalue of the (discretized Laplace)
operator A.

Introducing the Schur complement S := C +DT (λ̂M +A)−1B, we obtain

Ê =

[
E11 0
E21 0

]
:=

[
λ̂M +A B
−DT C

]−1 [
M 0
0 0

]
(3.2)

and

Â =

[
A11 0
A21 I

]
:=

[
λ̂M +A B
−DT C

]−1 [
A B
−DT C

]
, (3.3)

with the following formula for the block inverse

(λ̂E +A)−1 =

[
λ̂M +A B
−DT C

]−1
=

[
(λ̂M +A)−1 − (λ̂M +A)−1BS−1DT (λ̂M +A)−1 −(λ̂M +A)−1BS−1

S−1DT (λ̂M +A)−1 S−1

]
,

and thus

E11 = (λ̂M +A)−1M − (λ̂M +A)−1BS−1DT (λ̂M +A)−1M

= [I − (λ̂M +A)−1BS−1DT ](λ̂M +A)−1M,

E21 = S−1DT (λ̂M +A)−1M,

A11 = (λ̂M +A)−1
(
A+BS−1DT [I − (λ̂M +A)−1A]

)
,

A21 = −S−1DT [I − (λ̂M +A)−1A].
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Note that since both E ,A are block lower triangular and commute, also the blocks E11 and A11

commute. Note further that the state vector [vT , pT ]T remains unchanged by this operation,
while the inhomogeneity transforms to[

f̂
ĝ

]
:= (λ̂E +A)−1

[
f
g

]
=

[
λ̂M +A B
−DT C

]−1 [
f
g

]
=

[
E11M

−1 V1
E21M

−1 V2

] [
f
g

]
(3.4)

with V1 = −(λ̂M +A)−1BS−1 and V2 = S−1.
We will now determine the Drazin inverse

ÊD = X =

[
X11 X12

X21 X22

]
,

of Ê and assume that it is partitioned analogous to Ê .
Since we have assumed that M is invertible, we automatically have that rank Ê = rank E =

rankM . By (2.5)(a), we have that [
E11

E21

]
X12 = 0,

which thus implies X12 = 0. From (2.5)(b) we then obtain immediately that X22 = 0 and
thus X11E11X11 = X11. We now make use of (2.5)(c) and use the fact that for j ≥ 1 we have[

E11 0
E21 0

]j
=

[
Ej11 0

E21E
j−1
11 0

]
.

Therefore, since ν = ind Ê ≥ 1 (E and thus Ê is singular) we have the following equations for
X11 and X21.

(a) E11X11 = X11E11,

(b) X11 = X11E11X11,

(c) X11E
ν+1
11 = Eν11,

(d) X21E
ν+1
11 = E21E

ν−1
11 ,

(e) E21X11 = X21E11,

(f) X21E11X11 = X21. (3.5)

From (3.5) (e)–(f), we have immediately that X21 = E21X
2
11 and thus it is sufficient to

determine X11. For this we need information on the index of E11, which is given by the
following lemma.

Lemma 7 Consider the pair (3.1) and the transformed pair (Ê , Â) of (3.2)–(3.3).
Then either

ind(Ê) = ind(Ê , Â) = ind(E11, A11)

or
ind(Ê) = ind(Ê , Â) = ind(E11, A11) + 1.
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Proof. Since Â and hence also A11 is invertible, we have that ind Ê = ind(Ê , Â) and indE11 =
ind(E11, A11). Using that

(Ê , Â) =

([
E11 0
E21 0

]
,

[
A11 0
A21 I

])
,

and that the Weierstrass canonical form (see Theorem 1) of the regular pair (E11, A11) is
given by ([

I 0
0 N

]
,

[
J 0
0 I

])
with a nilpotent matrix N of nilpotency index indE11, by simple algebraic manipulations we
obtain that ([

E11 0
E21 0

]
,

[
A11 0
A21 I

])
is equivalent to  I 0 0

0 N 0

0 Ẽ32 0

 ,
 J 0 0

0 I 0
0 0 I

 .

Since [
N 0

Ẽ32 0

]j
=

[
N j 0

Ẽ32N
j−1 0

]
,

the nilpotency index of [
N 0

Ẽ32 0

]
and hence the index of the pair (E11, A11) can increase at most by 1.

Since for a reasonable discretization ind(E) = ind(E ,A) ∈ {1, 2}, we can assume that
ind(E11) ≤ 2 and typically it will be 1 or 2.

We obtain the following explicit formulas for ED in terms of ED11.

Lemma 8 Consider the pair (3.1) with ind(E ,A) ≤ 2 and the transformed pair (Ê , Â) of
(3.2–3.3).

Then we have the following formulas:

(i) ÊD =

[
E11 0
E21 0

]D
=

[
ED11 0

E21(E
D
11)

2 0

]
,

(ii) ÂD =

[
A11 0
A21 I

]−1
=

[
A−111 0

−A21A
−1
11 I

]
,

(iii) ÊDÂ =

[
ED11A11 0

E21(E
D
11)

2A11 0

]
,

(iv) ÊDÊ =

[
ED11E11 0
E21E

D
11 0

]
,

(v) I − ÊDÊ =

[
I − ED11E11 0
−E21E

D
11 I

]
(vi) ÊÂD =

[
E11A

−1
11 0

E21A
−1
11 0

]
. (3.6)
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Proof. (i) Let α = ind(E11), then by Lemma 7 we have that α = ν or α = ν − 1. If α = ν
then by (3.5) (a)–(c) it follows that X11 = ED11 and then X21 = E21X

2
11 = E21(E

D
11)

2.
If α = ν − 1 then choosing X11 = ED11 and X21 = E21(E

D
11)

2 the relations (3.5) (a)–(b)
hold automatically and from X11E

α+1
11 = Eα11, then (3.5) (c) follows by multiplying with E11

from the right.
Equations (3.5) (d)–(f) read as

E21(E
D
11)

2Eν+1
11 = E21E

ν−1
11

E21E
D
11 = E21(E

D
11)

2E11

E21(E
D
11)

2E11E
D
11 = E21(E

D
11)

2.

Since 1 ≤ ν = ind(Ê) ≤ 2, and since ED11 and E11 commute, these equations are satisfied.
The assertion then follows by the uniqueness of the Drazin inverse. The other parts follow

trivially.

Note that whenever ν = ind(E ,A) ≤ 2 it follows from (3.5) (d) that

E21E
D
11E

ν
11 = E21E

ν−1
11 , (3.7)

i.e., in the range of E21, the matrix E11 behaves like it is of index ν − 1.
An immediate consequence is the following result on the well-posedness and explicit rep-

resentation of the solution.

Theorem 9 Consider the differential-algebraic equation corresponding to (3.1) with an in-
vertible mass matrix M , an invertible matrix A and sufficiently smooth inhomogeneities f̂ , ĝ
as in (3.4). Let ν = ind(E ,A) ∈ {1, 2}.

Then for any consistent initial condition

[
v(0)
p(0)

]
=

[
v0
p0

]
, there exists a unique classical

solution to the initial value problem (1.1)–(1.2) given by[
v(t)
p(t)

]
=

[
exp(−tED11A11)q̃

E21E
D
11 exp(−tED11A11)q̃

]
+

∫ t

0

[
exp(−(t− s)ED11A11)E

D
11f̂(s)

E21E
D
11 exp(−(t− s)ED11A11)E

D
11f̂(s)

]
ds

+

[
(I − ED11E11)A

−1
11 f̂(t)

(−E21E
D
11A

−1
11 −A21A

−1
11 )f̂(t) + ĝ(t)

]
(3.8)

+
ν−1∑
i=1

(−1)i
[

(I − ED11E11)(E11A
−1
11 )iA−111 f̂

(i)(t)(
−E21E

D
11(E11A

−1
11 )iA−111 + E21A

−1
11 (E11A

−1
11 )i−1A−111

)
f̂ (i)(t)

]
,

where q̃ is a constant vector. An initial condition is consistent if the linear system[
I

E21E
D
11

]
q̃ =

[
v0
p0

]
−
[
I − E11E

D
11 0

−E21E
D
11 I

] ν−1∑
i=0

(−1)i
[
E11A

−1
11 0

E21A
−1
11 0

]i [
A−111 0

−A21A
−1
11 I

] [
f̂ (i)(0)

ĝ(i)(0)

]
(3.9)

has a solution.
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Proof. According to (2.9) let [
q̃
r̃

]
:= ÊDÊq.

Applying Theorem 4, we obtain the following explicit solution of (1.1):[
v(t)
p(t)

]
= exp

(
−t
[

ED11A11 0
E21(E

D
11)

2A11 0

])[
q̃
r̃

]
+

∫ t

0
exp

(
−(t− s)

[
ED11A11 0

E21(E
D
11)

2A11 0

])[
ED11 0

E21(E
D
11)

2 0

] [
f̂(s)
ĝ(s)

]
ds

+

([
I 0
0 I

]
−
[
ED11E11 0
E21E

D
11 0

]) ν−1∑
i=0

(
−
[
E11 0
E21 0

] [
A−111 0

−A21A
−1
11 I

])i
×[

A−111 0

−A21A
−1
11 I

] [
f̂ (i)(t)

ĝ(i)(t)

]
= exp

(
−t
[

ED11A11 0
E21(E

D
11)

2A11 0

])[
q̃
r̃

]
(3.10)

+

∫ t

0
exp

(
−(t− s)

[
ED11A11 0

E21(E
D
11)

2A11 0

])[
ED11f̂(s)

E21(E
D
11)

2f̂(s)

]
ds

+

[
(I − ED11E11)A

−1
11 f̂(t)

(−E21E
D
11A

−1
11 −A21A

−1
11 )f̂(t) + ĝ(t)

]

+
ν−1∑
i=1

(−1)i
[

(I − ED11E11)(E11A
−1
11 )iA−111 f̂

(i)(t)(
−E21E

D
11(E11A

−1
11 )iA−111 + E21A

−1
11 (E11A

−1
11 )i−1A−111

)
f̂ (i)(t)

]
.

Since with Z = −ED11A11, Y = E21E
D
11, we have

exp

(
t

[
Z 0
Y Z 0

])
=

∞∑
i=0

1

i!

(
t

[
Z 0
Y Z 0

])i
=

∞∑
i=0

ti

i!

[
Zi 0
Y Zi 0

]
=

[
exp(tZ) 0
Y exp(tZ) 0

]
,

we can simplify the exponential functions and since we have from the commutativity of Ê and
Â that also ED11, E11, and A11 commute, the result follows. The consistency condition follows
by inserting t = 0.

We will present more details about these consistency conditions in the special cases below.

4 Some special cases

In the explicit solution formula we may consider several simplifying cases.
If E11 is invertible, which by Lemma 7 can only happen if ν = 1, then I − ED11E11 = 0,
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and we obtain [
v(t)
p(t)

]
=

[
exp(−tE−111 A11)q̃

E21E
−1
11 exp(−tE−111 A11)q̃

]
+

∫ t

0

[
exp(−(t− s)E−111 A11)E

−1
11 f̂(s)

E21E
−1
11 exp(−(t− s)E−111 A11)E

−1
11 f̂(s)

]
ds

+

[
0

(−E21E
−1
11 A

−1
11 −A21A

−1
11 )f̂(t) + ĝ(t)

]
. (4.1)

In this case from the first equation we obtain q̃ = v0 and thus the consistency condition

p0 = E21E
−1
11 v

0 + (−E21E
−1
11 A

−1
11 −A21A

−1
11 )f̂(0) + ĝ(0),

thus for a given v0 then p0 is fixed in an easy way, but we could also fix p0 and then both
equations together give a consistency condition for v0.

If we have (as will typically be the case) that ν = 2 and ind(E11) = 1, then by (2.5)(c) we
have that ED11E

2
11 = E11 and hence the formulas simplify to[

v(t)
p(t)

]
=

[
exp(−tED11A11)q̃

E21E
D
11 exp(−tED11A11)q̃

]
+

∫ t

0

[
exp(−(t− s)ED11A11)E

D
11f̂(s)

E21E
D
11 exp(−(t− s)ED11A11)E

D
11f̂(s)

]
ds

+

[
(I − ED11E11)A

−1
11 f̂(t)

(−E21E
D
11A

−1
11 −A21A

−1
11 )f̂(t) + ĝ(t)

]
(4.2)

−

[
0(

−E21E
D
11E11A

−2
11 + E21A

−2
11

) ˙̂
f(t)

]
.

This again gives an algebraic relationship between v0 and p0 and again by choosing v0 we
obtain

q̃ = v0 − (I − ED11E11)A
−1
11 f̂(0)

and this then fixes p0 uniquely. We could also again fix p0 and then both equations together
give a consistency condition for v0.

Looking in detail at the last term and using (3.4), which implies that

˙̂
f = E11M

−1ḟ + V1ġ,

we see by (2.5)(c) that the factor of ḟ in (4.2) vanishes, while the factor of ġ may not be zero
if E11 is not invertible.

If, however, there is no inhomogeneity g then it follows that whenever E11 is of index 1,
then the last term vanishes, thus despite the fact that ν = 2, no derivative of f occurs, i.e.,
the system behaves somewhat like a system with ν = 1.

Note that the same argument holds also for systems of this form with ν > 2 and ind(E11) =
ν − 1, because also then the coefficient of the highest derivative f (ν−1) is zero.

Let us now consider the even more special case that M = I, A is invertible, B = D has
full column rank and C = 0 and that we choose λ̂ = 0. In this case the Schur complement
is given by S = BTA−1B, and we have E11 = A−1 − A−1BS−1BTA−1, E21 = S−1BTA−1,
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A11 = I, A21 = 0. Then it is well known that ν = 2, and we obtain for indE11 = 1 the
solution [

v(t)
p(t)

]
=

[
exp(−tED11)q̃

E21E
D
11 exp(−tED11)q̃

]
+

∫ t

0

[
exp(−(t− s)ED11)ED11(E11f(s)−A−1BS−1g(s))

E21E
D
11 exp(−(t− s)ED11)ED11(E11f(s)−A−1BS−1g(s))

]
ds

+

[
−(I − ED11E11)A

−1BS−1g(t)
E21(I − ED11E11)f(t) + (I + E21E

D
11A

−1B)S−1g(t))

]
+

[
0

E21(I − ED11E11)A
−1BS−1ġ(t)

]
, (4.3)

where we have used again that (ED11)
2E11 = ED11, E

D
11E

3
11 = E2

11, as well as E21E
D
11E

2
11 =

E21E11. In this case it is very easy to determine consistent initial conditions. Rather than
going through the solution formula, the second equation of (1.1) immediately gives the con-
sistency condition

0 = BT v0 + g(0) . (4.4)

This is exactly the consistency condition that will also appear in the infinite dimensional
case, while directly in the system no consistency condition for p0 arises. However, a differ-
entiation with respect to t of the second equation of (1.1) and insertion of the first equation
gives

BTBp(t) = −BTAv(t) +BT f(t) + ġ(t), (4.5)

which corresponds to the Poisson problem for the pressure that is typically used to solve for
the pressure or to do pressure correction.

Evaluating (4.5) at t = 0 we get the consistency system for the initial values[
BTA BTB
−BT 0

] [
v0

p0

]
=

[
BT f(0) + ġ(0)

g(0)

]
. (4.6)

Note that the invertibility of BTB allows to solve for p0 in terms of v0.
The initial condition is indeed consistent (see Theorem 9) if we can find a vector q̃ such

that (4.3) is satisfied at t = 0. By taking

q̃ = v0 + (I − ED11E11)A
−1BS−1g(0) , (4.7)

the first equation of (4.3) at t = 0 is automatically satisfied. Inserting (4.7) into the second
equation of (4.3) at t = 0 and employing (4.4) as well as (4.5) at t = 0, a straightforward
calculation shows that also this second equation is fulfilled.

This, finally, proves that (4.6) is a sufficient as well as necessary condition for the solv-
ability, in the classical sense, of the initial value problem under consideration.

As already noted, in general we do not know the index of E11, however, if the discretization
is such that M,A,C are symmetric and D = B, then we have the following Lemma.

Lemma 10 Consider the coefficient matrices in (1.1) and the transformed coefficients in
(3.2) and (3.3). If A,C,M are symmetric, if D = B, and if λ̂ is chosen so that W = λ̂M +A
is positive (or negative) definite, then ind(E11) ≤ 1.

11



Proof. Under the given assumptions we have that

E11 = W−1 −W−1BS−1BTW−1

If W is positive definite then let Z = W−1/2W−1/2, where W−1/2 denotes the positive definite
square root of W−1. Then it follows that

E11 = W−1/2Z−1/2[Z − Z1/2W−1/2BS−1BTW−1/2Z1/2]Z1/2W 1/2,

i.e. E11 is similar to a symmetric matrix, which has index less than or equal to 1 and hence
ind(E11) ≤ 1. If W is negative definite then the same proof follows by replacing W by −W .

We can directly apply Lemma 10 if A is definite and if we choose λ̂ = 0. Then we obtain
the simplified formulas

A11 = I, A21 = 0,

E11 = I −A−1BS−1BTA−1M, (4.8)

E21 = S−1BTA−1M.

Let us assume that A is positive definite, the same result follows if A is negative definite
by replacing A with −A.

Let A = LLT be the Cholesky decomposition (we could also take the positive square root
L = A1/2), let B̃ = L−1B and let [

R1

0

]
= QT B̃

be a QR decomposition, with Q orthogonal and R1 upper triangular. By the assumption that
B has full column rank it follows that R1 is invertible. We then have

E11 = L−TQ

(
I −

[
R1

0

] (
C +RT1R1

)−1 [
RT1 0

])
QTL−1M

= L−TQ

[
Z1 0
0 I

]
QTL−1M, (4.9)

with Z1 = I − R1(C + RT1R1)
−1RT1 . (In the special case that C = 0, we then have Z1 = 0).

In the same way it follows that

E21 = R−11

[
I − Z1 0

]
QTL−1M. (4.10)

Checking the conditions for ED11, we immediately have that

ED11 = M−1LQ

[
ZD1 0
0 I

]
QTLT ,

E11E
D
11 = L−TQ

[
Z1Z

D
1 0

0 I

]
QTLT ,

E21E
D
11 = R−11

[
(I − Z1)Z

D
1 0

]
QTLT ,
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and we can insert this in (4.2) and obtain with q̃ = v0 that[
v(t)
p(t)

]
=

[
exp(−tED11)q̃

E21E
D
11 exp(−tED11)q̃

]
+

∫ t

0

[
exp(−(t− s)ED11)ED11(E11M

−1f(s)−A−1BS−1g(s)) ds
E21E

D
11 exp(−(t− s)ED11)ED11(E11M

−1f(s)−A−1BS−1g(s))

]
ds

+

[
(I − ED11E11)(E11M

−1f(t)−A−1BS−1g(t))
E21(I − ED11E11)M

−1f(t) + (S−1 + E21E
D
11A

−1BS−1)g(t)

]
+

[
0

E21

(
I − ED11E11

)
A−1BS−1ġ(t)

]
. (4.11)

A further special case arises when C = 0. In this case the formulas become even more
simple, since then we have

E11 = L−TQ

[
0 0
0 I

]
QTL−1M,

ED11 = M−1LQ

[
0 0
0 I

]
QTLT ,

E21 = R−11

[
I 0
0 0

]
QTL−1M,

and from this we see immediately that E21E
D
11 = 0 and hence[

v(t)
p(t)

]
=

[
exp(−tED11)q̃

0

]
+

∫ t

0

[
exp(−(t− s)ED11)ED11(E11M

−1f(s)−A−1BS−1g(s))
0

]
ds

+

[
(I − ED11E11)(E11M

−1f(t)−A−1BS−1g(t))
E21M

−1f(t) + S−1g(t) + E21A
−1BS−1ġ(t)

]
. (4.12)

In particular we have an explicit formula for the pressure as

p(t) = S−1BTA−1f(t) + S−1g(t) + S−1BTA−1MA−1BS−1ġ(t). (4.13)

As a summary of the findings, we see that derivatives of the inhomogeneity f do not occur,
whenever we have ind(E ,A) ≤ 2 but an inhomogeneity g will have to be at least differentiable.

5 Conclusion

We have presented the analysis as well as explicit solution formulas for differential-algebraic
equations arising from the semi-discretization of linearized Navier-Stokes and Oseen equations.
The infinite dimensional case will be studied in the forthcoming Part II.
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