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Abstmct

The incompressible Navier-Stokes problem is discretised in time by means of the two-step backward
differentiation formula with constant step sizEs. Existence and stability ofa time discrete solution are proved
as well as the conve.gence of a piecewise polynomial prolongation towards a weak solution. The results
presented cover both the two- and three-dimensional cäse. Furthermore, a linearisation that is based upon a
modification ofthe convective term using a second-order extrapolation is considered.
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I Introduction

Wh€reas the spatial approximation of the
incompressible Navier-Stokes problem seems to
be rather well-understood, only a comparably
small number of articles focus on a strict
mathematical analysis of time discretisation
methods. Methods with constant time steps havc
been considered e.g. in Temam [4], Girault &
Ravian [4], Baker et al. [1], Heyvood &
Rannacher [7], Müller-Urbaniak [1 l], Prohl [12],
and Hill & Süli [8]. For an overview and the
state-of-the-art, we refer to Rannacher [l3] and
Marion & Temam I l0].

Especially, the question of "realistic"

higher-order error estimates has become topical
since Heyryood & Rannacher [7] have proven
optimal second-order estimates for the
Crank-Nicolson scheme. Higher regularity of the
exact solution is equivalent to compatibility
conditions on the problem's data, which
lead due to the divergence-free conslrainl- to a
virtually uncheckable and often violated
over-determined Neumann problem for the initial
pressure (ci Heywood [6], Temam [5]). So
higher-order estimates should rely upon
parabolic smoothing properties. The method

under consideration. therefore. needs to be A- or
G-stable.

Although efficient time integration r€quires
adaptive methods, there is, to the best knowledge
ofthe author, no analysis of time discretisations
of the Navier-Stokes equations on non-uniform
grids available. Only in Prohl [12],
discretisations on structured time grids have been
considered in order to overcome the
incompatibility of fl uid fl ows.

The backward differentiation formulae (BDF),
even with variable time steps, have been used by
many authors for the integration of (nonlinear)
ordinary and panial differential equations. The
two-step BDF with constant time steps is known
to be formally of second order and zero- as well
as A- and G-stable (cf. Hairer & Wanner [5]).

In the context of the incompressible
Navier-Stokes problem, the two-step BDF has
been firstly studied by Girault & Raviarr [4].
They have considered a linearised variant and
replaced the convective term (a' V)a', where

a' denotes the approximate velocity at time ,,,

by ((2u'-t - u'-'z).V) r/ Unfortunately, the
optimal error estimate given there relies upon
inappropriate higher regularity assumptions. In
Baker et al. ul, the three-step BDF has been
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analysed, and a second-order error estimate has
been postulated for the linearised variant of the
two-step BDF under higher regularity
assumptions as well as restrictions on the time
step size in dependence of the mesh size of an
underlying spatial discretisation. Recently, Hill
& Süli [8] have proven sub-optimal eror
estimates of order l/4 under feasible regularity
assumptions. Their result applies to the
two-dimensional case with autonomous
right-hand side.

Yet, the original nonlinear approximation has
not been considered in the literature so far.
Moreover, stability of the discrete problem and
convergence of a time continuous approximate
solution obtained by piecewise polynomial
prolongation has not been dealt with.
Convergence of time continuous approximate
solutions is, beside error estimates, of intercst in
its own since it does not follow directly from and
might be proven under weaker assumptions than
error estimates. Furthermore, it answers the
question of how to compute approximate values
between the discrete time points.

Smoothing eror estimat€s under suitable
regularity assumptions that avoid global
compatibility conditions are provided in
Emmrich [3] for the two- and three-dimensional
case: The time-weighted velocity error, measured
in the /"(l)- and /t(aj;-norm, is shown to be
of second order for the nonlinear approximation
and of order 3/2 for the linearised variant. After
reintroducing the pressure, its time-weishted
enor is shown to be of order I and l/2 i; the
/-(l/lR) -norm, respectively, for the nonlinear
and linearised approximation, respectively.

ln this paper, we consider the two-ster BDF
wilh con$ant time steps for the t*o_ and
three-dimensional Navier-Stokes problem in its
pr€ssure-free variational formulatibn. Beside the
original nonlinear approximation, we also
consider the above-mentioned linearised variant.
We firstly study solvability. Afterwaros, we
prove /'(l) - and i,(ä;) -stability for the
discrete solution as well as estimates for the
discrete time derivative. We then consruct
precewise polynomial time continuous solutions
lrom the discrete values. Finally, we show under
suitable assumptions on the problem's data that

these approximate solutions converge towards a
weak solution whenever the time steps tend to
zero, The convergence is strong in Lq (I:\ for
ge [ ,o ) ,  weak in  E(HD,  and weak*  in
t  (L ' )  .

2 Continuous and time discr€te problem

We consider the Navier-Stokes equations
describi[g the non-stationary flow of an
incompressible, homogeneous, viscous fluid at
constant lemperature,

u, - v\u + (u.V)u + Vp = f,
V . z = 0 i n e x ( 0 , I ) ,

a = 0 on äQ x(0,I), 4,0) = ro in O,

where  ocRr ,  d  =d imO e  {2 ,3 } ,  i s  a  bounded
domain with locally Lipschitz continuous
boundary öQ, (0,f) is the time inrerval under
consideration, y > 0 denotes the inverse of the
Reynolds number, u=u(x,t) is the
d -dimensional yelocity vector with prescribed
init ial velocity uo=uo(x) , p= p(x,t) is the
pressure, and "f = f(x,t) is an outer force per
unit mass.

We introduce the solenoidal function spaces

/ := {v e lt i(O)d : V.v = 0},

H t= lv e L'z (!t)d : V. v = 0, f "v = 01,

where t, denotes the trace operator in normal
direction (cf. Temam [14] for more details). As
usual, the subspace of FIr(e) _functions
vanishing at the boundary is denoted by Hj(O).
Herc, by I! and W*.1' (W,, = H'), we denote
the usual Lebesgue and Sobolev spaces with the
natural norms ll .ll., and ll .ll. ,, respeclivety. We
will not distinguish b€tween the scalar and vector
case. With
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d  '  ^ . . ,  - \  4 , ,  - r

((r ,v)) := t' " 
fr'h e, Axt

llull:= ((u,u\)tt'? , u,r ev,
-!- t

(r,v):= ) l u,(x\v.(x)dt,. 
; JCl ,

lul.= (u,u)tt2 , u,v e H,

the spaces V and H zre Hilbert spaces. The
space I/ is dense and compactly embedded in
FI . Note that V , H , and the dual ,/' form a
C€lfand triple. The dual pairing between Z and
,/' is denoted ly (,), tne dual norm by ll.ll.,
whrch rs dlllerent lrom tne ft (lr)- -norm.

We then consider the weak formulation of the
Navier-Stokes problem:

Probfem (P) For given uoeH and

f eL'(o,Ttv'), fnd ue L2(0,T;Y) such that

for all v eV

d€rivative of the abstract function a in the
distributional sense. As then z is almost
eve4/wher€ equal to a continuous function with
values in Z' , u eC(l0,Tli,V") , the initial
condition makes sense. In the two-dimensional
case, the solutioD is unique and in C([o,f];H)

nith u'el'z(o,Tiq') (cf. Temam [l4]). For

more regular data (uoev , f eL'(o,T',H),

aO€Cz ), a so-called strong solution. i.e. a
unique solution ueC(I0,Tl:,V), exists in the
two-dimensional case for arbitrary Z, but in the
three-dimensional case only locally up to a
(possibly rather small) time I (cf. Temam [6]).

The trilinear form öC,.,.) satisfies th€
following well-known properties that will be
needed in the sequel (cf Temam [6]).

Lemms l. Let u,v,u, eV be arbitary. Then
b(u,r',re') = -b(u,w,v) andfor some p>0

lö(r,",rrFe{

ll,ll"..ll"ll".ll,ll,
l,l"' ll,ll"'ll"llll,ll,
ll,lll"f " ll"lf "ll,ll,

ll,llll'llll,ll
Moreove\ ih the two-dimensional case, there

holdsfor some p>0

lb(u,v,w)l< itlul"'llulf" ll,lll,f 
" 
ll"lf 

".

We now come to the time discrete problem.
Let the time interval [0,I] for given lt€N be
equidistantly partitioned with the time step ̂ l
^nd t.t=n&t (n=0,...,1r'). For a grid function

{a'},.u, we denote by D, and D, the backward
divided differences:

D),U .= -' ^ r

j ,u"  ,= |  [ ! r "  -2u*,  * ! , " - . \'  A r f 2  2  )
=1s,u^ -Lp,u,-'.

2 2

( l )

holds in (0,T\ in lhe dislributional sense,,eith
lr(0) = ü0.

Here,
b(u,v,w) := ((u .v)v,w)

incorporates the nonlinearity. By U(0,7;X)
with some Banach space X , we denote the usual
space of Bochner integrable abstract functions
u:[O,T]) X . The discrete count€rpart for
functions defined on a time grid is denoted by
/2(0,?";X). The space of ta -times continuously
differentiable abstract functions will be denoted
by C-([0,r]X), where X is omined if X = IR .
The natural norm ofa function space f will be
sometimes denoted by ll ll, .

It is known that Problem (P) has ar least one
sofution üe L'z(o,TiV).\f (O,TiH) with
u'e I: ' '(o,T;V'\, where u' denotes the time

*@(t),v) 
+ v ((u(t),v))

+ b(u(t\,u(r),v) = \f (t),v)
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For a Bochner inkgable function /, we also
consider the natural restrictions

Ri/:=

Furthermore, we use the formally second-order
extrapolation

Eu^ := 2f -t - u"-2 .

Note that Riu' = Dqu(t,) = u'(t") + O((Ar)r)

(qelr,2\) and Er(,) = r(r,)+ O((Är)z) for a
smooth function I = ü(r) .

The time discretisation ofProblem (P) by the
two-step BDF for computing a" approximating
,(t, ) reads as

Problem ( Po, ) For given uo , ut e H and

f  e  L 'z(o,T iV ' )  ,  fnd u 'ev (  n=2,3, . . . ,N )
such that lor all v eV

(Dzu' ,v) + v((u' ,y)) + b(u' ,u' ,v)
=(ryr,') (2)

We also consider the linearised variant:

Probfem ( LPo, ) For given u0 , ut el/ and

f  e  L 'z(o, r ;v ' )  ,  fnd x '  eV (  n=2,3, . . . ,N )
such thqt for all y eV

(D)u' ,v) + v((u' ,e)) + b(Eu' ,u^ ,v)
= (n:r'')

In opposite to the original method, the
convective term b(u',u',v) has been replaced
by the formally second-order modification
b(Eu" ,u' ,v\ .

In both problems, the starting values can be
obtained by taking a0:= r.ro and computing ar
from ru using the implicit Euler method. The use

of Rlir' instead of än arbitrary approximation

/' is only for simplicity and avoids to consider
an exha error /' - R;/ . By standard arguments,
it can be shown that

Ni,llR.rll'. < 4 I llt ql?.

Theorem 1. Therc ß at least one solutioh to
Problen (PN) dttd there is a unique solution to
Problen (LP6,).

Proof. We start with Problem ( PÄ, ) and wish to
apply Brdzis' main theorem on pseudomonotone
operators (cf. Zeidler ll7l). lf u'-2, u"-1 arc
known, the problem of det€rmining u, eV can
be written in operator form,

A"1u')= g' :=Rif t ! lz,L" -!, -1.v.,
a / (  2  l

where
1Au(v)i= AL'{vl+ B(v), Ai'lv)= 

frv. 
vAv.

Herc, AiY )V' , defined by \Au,v):= ((u,v)),
is the energetic extension of the classical Stokes
operator. Furthermore, Bty +V' , defined by
(r(v),t1,):=ö(v,r,l ') , is the nontineariry.
Obviousfy, A<)):V --> V' is linear, bounded, and
strongly monotone since I/ is conrtnuousty
embedded in l/ .

It follows from Hölder,s inequality and
embedding arguments that B:y +V. is
bounded. Furthermore, ,R is strongly continuous:
I*t lvr| cV be weakly convergentwith limit y .
Since I/ is compactly embedded in I.(O),,
{vr} is strongly convergent and bounded in
Z'(O)' . Wc have for arbihary w eV with
Hölder's inequality (see l,emma l)

(8(v,)- B(v),w)
= b(v, - v,v,w) + b(v r,v, - v ,w)
s cllv, - vllo..1,11vllo.. + llv,llo.. Jll'1,11,

*l,,rr, '
l n l r - 1 n l ' r .
2  ' "  2  "

(4)

(3)
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8nd thus {A(vr)} converges strongly to t(v) in

Hence, A& is pseudomonotone since the sum
of a linear monotone and a strongly continuous
operator is pseudomonotone, Because of
(B(v),v)=ä(v,v'v)=0, it also follows that ,4&

is coercive. Finally, the boundedness of,{, is
clear. Since I/ is a separable, refleive Banach
space, Brdzis'lheorem ensures the existence ofa
solution to Problem ( Pa, ).

For Problem ( LP& ), the assertion follows
from the Lax-Milgram lemma.

Remark A solution to Problem (P") is unique
for small data:

r . r )  l , t 2  l "  - " 2  ^ t .  \ t 2
lu"l + lt,'l + -ll/ll;,0,.,., < c(v'ar) (s)

Uniqueness can be also obtained for more regular
solutions. Furthermore, in the two-dimensional
case, uniqueness can tre ensured by a small data
condition more refined than (5) that is
independent on & and relies upon higher
regularity of the discrete solution.

Here and in the following, C denotes a
generic constant that may depend on the domain
C) and its dimension, on emb€dding constants,
the constant p or p from l,€mma l, etc,, but
not on the Reynolds number, the exact solution,
or the initial data or righr-hand side. Moreover,
let c be a gen€ric constant lhat does not dep€nd
on problem parameters at all.

3 Stability

In the following, l€t

l . .  -  t '  \ r / ' ?
u :=lluol' +lu'l' +.!- f ll nttll' at l

v t E  
' F  

)

We may also use the abbreviation D, for the

second divided difference:

D2u' '.= (^0'

Note that Dz4r,)=r'(r,)+O(^0'?) for smooth
functions r .

"Ileorem 2. Any solurion to Problem (PLr) or

(LP&) is stable in I'(0,7;H) and l'(0,7;V)
utith

l,"l' * <ary.! lo,,,l', t f11,, 11', " u'.
r-t j-2

n =2,3, . . . ,N.

Proof. Set v=u' in (2) or (3). Since
b(u' ,u' ,u') = b(Eu' ,u", a' ) = 0 and

2a-b ) ' 1 -b '1

,  a ,ä , c  e  R ,

(6)
+(^DrlD'1u-'l'?,

the assertion follows with

+(n17,,') < +lln;7ll.ll,.ll

u.+t _2ür +f- l

4(D,,,,,,) = D, [1,,]'+lE,*,1']

q ( 4 - z t * 9 ) o = o ' * t
\  2  2 )

- (2b-c ) ' z+(a-2b+c) '1

so that

= ||ln:rlll, z,ll,.ll'

and (4) after summation.

We shall remark that higher regularity (i.e. a
priori estimates in I'(0,7;V) and
l'z(0,7; H'z(a)r ̂ V\ ) can be proved in the
two-dimensional case for small data. This relies
upon a discrete Gronwall-type lemma for
resolving a difference inequality with a quadratic
term. However, in the three-dimensional case, a
cubic term would arise that cannot be handted
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similarly. This situation is in accordance with the
time continuous case regarding the existence of
strong solutions only up to a possibly small time
f (ci Temam U6l).

We now provide some estimates for the
discrete time derivative Dru', These results will
again reflect the same situation as it app€ars in
the continuous case: Let a be a weak solution to
Problem (P). Then tl '€l(0,I;t/ ') in the

two-dimensional case,b]ur o\ly u' e I:t3 (0,7;V')
in the three-dimensional case.

Theorem 3. Let lu"\ be a solution to Problen
(Po,). Then

6tY 19'41' a\JL(Y'> 114'?1
j-z '

if dimcl=2,
N  , . -  - r  r z t '

^,tJD)',1"'< :1' (trv'u' l" - u,)

/d im0 = 3.

If lü'l is the solution to Problen (LP^t) then

arilo,r' ' < !4-l u' - u' + rullu"l' +lr' ')l
; ' - v \ ( r r r t l

if dim0=2,

l rF lo,a'  
"  '  < '" '  kTr '74, s ' '  ,  ' ,. , \

+uarIr" i l '+lr ' l ' ))
\ r  I  r r l . /

t /d imO = 3 .

Proof. We commence with Problem ( PÄ, ). From
(2), it immediately follows that

llr,,'ll <llqrll.+'ll,'ll+lla<,'11..(1)

If dimO = 2 , we thus find from (7) with
Theorem 2 and (4)

t ' -o,f ;o,,,;1."f f tr (ql'dt+n^ttlu,l'

*.a' to lr ' l 'ari lr ' l ' l' 1 . 2 . ' ' ' . N | | f r ' ' )

(  b ,M, \
<d1 vM'z + t-!L | '

t  " J

which is the assertion.
Because of

ari lo.l"' < r'" 1^ri lo l' I
l t ' ' ? )

we find in the three-dimensional case that

N  . . .  (  r  , u  . . \ : '
arl  lo,z, l ' ' "<clrr" l  ar l lnt  r f l ' ' '  I

i-z I r. -' .)

I  x  - \ 2 t 1
+rt'llv'zullu'l'l

l r - 2 )
rv -)

+ / ' ' l  max lr ,  
'  
I  ar l l r , l '1,

\ /= 'z  ,vr  )  - - t  '  
)

and the assertion follows again with Theorem 2
and (4).

For Problem ( LP6., ), we may use, inst€ad of
(8), the estimates

Flw l"' lr'r l"' l"t"' 1"1"' 11"X
later', r', u rl < fo rd imO=2,

n!rll"'l*1,'tr'"11,11
fo rd inO=3

that follow from Lemma l. Remembering
Eu" = 2u'-' - u'-z , the rest of the proof is nearly
the same as for Problem ( Po, ). However, we
have

Due to Lemma 1, we have
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A '^') lE'l/ltE,'ll,'1iltl'I

< "arl ile,'l'le,'1' *1,',f h',f l
; l '  

r r  '  r r !  r r

<" 'nu* lr'l'arf lr,l'
t.,o,E | | -t I

(  r t >  ^ , \

<cM,l '" + ttlluol' +lu'l'll
l v

in the two-dimensional case and

+ . , - . r v r ,  . , , , r , . , z a^t Llhu' lu'1 nu'l

< ctrl llr,u'n' +lu,l' ll"'l'"
j-2 '

<" tut' l"l"'lf l,';'t-2.& | | ;1"
(  u2  . , , 1

<cM,,r)L + Nlluol- +fiut l- |
l v

in the three-dimensional case.

The fotlowing result will be needed in order tl
justifo assumptions that are necessary for our
convergence result below.

Proposition l. Zer lu'\ be a solaion to Problem
( Po, ) or ( LP6, ) with the dditional assumptioh

that ua,utel/ and f el(0,7;H). Then lor
n  =2 ,3 , , . , ,N

u,t=(^0,ilD,url'
( .  . ,

+ varllu,l' + rar

can be estimated by

u. <c(e + M)Nllu"l'

(^t)"' u, < clv@t)'" [F.[. la l']
r M' '(^r )"[,,"r' * lr,' 

']' '

+1tr1' , \111,,, , ,  
, , ,  + 4_)

, " )

y' dimo = 3.

Proof. With v = Dzu^ in (2) and the
Cauchy-Schwarz as well as Young's inequality,
it follows

l ,  , )

,lD,u^l 
+ vuD,u' ,u'tl

r ,  I  r  ,  - . " 1<  : lR i  |  
-  - :b l  u^ .2uh |  - '  u ' - t .-  

2 t "z t  '  A ' " [ -  
' "  

2 "  
' "  

I

If dimo = 2 , we thus find with an identity
analogous to (6) for the term ((Drr',r')) after
summing up

U,  <uNl lu ' '  *  Eu" l ,2 (^ , ) ' i  lR  1  i  l '
t  t  ' - ' ' 2 ' |

_t t t l  t lu ,  . zu ,  '  !u , - , .u ,1 .
t = 2 \ L l

With standard arguments, it can be shown that

(^/):IrR,/f . I ar! n;7] | .qA',,.", ,,.
\ F , J

Furthermore, we have with Lemma I and
Theorem 2

at tY  6 [u '  ,2u ' '  -1  u , ' . r ' )

< t Iü/I lu'l utll2urt - | ur,l
; " N  2  |

=, E, A?ö',, l^,ä1,"" .lr*, - I,,,')

l"i1o','1']

.1,'l')
*lltll'r,.".,,,,*y-\

if dima = 2,
.eEA n i, u t ll," \' *1,' l,),
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and the assertion follows.

For dimO=3 , we firstly observe
analogously to the foregoing case that Va,()=

(N ),', u ̂  < v (^t)5'' ll"' l' + ln"'l')
r8(^4"'ll/ll;("r/l)

- t1tr'1'' ' l t( u',21!'' ' - ]r'-',u' 1.
- / - 2 \ t )

Wilh lemma l, Young's inequality, and
Theorem 2, we find

qt to'^flt[ u, .zu,'' - !,'-'.,' ll
./-, | \ z )l

< + p 1 tt y ̂ flu l"' lul'''12",' - ),' 
"l

<Zß ma*lrll"' ,'  
F z . t l  I

" f- .. . ,  |  ,  , l ' , ' lx (^tfA>llutl' - +lzu'-, _;"'- | |
, n (  |  .  |  )

< c p++c p M,,,(Ny{p"f " r F f"),

and the assertion follows. In the last step, we
made use of

tr)" 'I l , '1"'< larl lu' l ' l
r r \ . / r )

With obvious modifications, the proof for
Problem ( LPÄ/ ) is the same.

4 Convergence

From the discrete values z'(z=0,t,..., lr '),
computed by solving Problem ( p, ) or ( Lpa ),
we now construct a piecewise constant function
U" and a piecewise linear function V" defined
on [0,I] :

)(,' 
,uu')ro,r'{t -t,)

if, € [0,r,],

:V 
+Eu'-')+D,u'(t-t,)

i f  I e(r,-t,t, l  (n =2,3,...,N).

There are othcr possible prolongations we will
not consider here (but se€ the remarks at the end
of this section). The construction of t/& reflects
the choice ofthe method: The value ,r isthought
to be computed by the implicit Euler method. The
slope of ,/Är in (t"_,,t,j is Dra. for
n=2,3,.,,,N , and the function is continuous.
However, /, does not interpolate.

ln the followin& we shall assume
uo,ut eV and

lr"l' + lrl'l' + y&l','l'+ arlo,a'N"r < coasr, 1ey

where consl is independent of A, and N . This
is true if, for instance, ar is computed by the
implicit Euler method. (The prooffollows similar
arguments as employed in the foregoing section.)

Proposition 2. Let l(Lt)rl be some sequence of
time steps. If (9) holds true then llJe4t\ and

lVrrr,l are bounded in L'(O,T;H) and

L'(o,TiV) Moreover, the sequence of
derivatives lV,qu1,\ is bounded in L,,'(O,T;V',.

Proof. The first assertion follows directly from
the definition of Ua, and /r, and from Theorem
2. The second assenion follows again from the
construction of I/Ä, , its continuity, and from
Theorem 3 because of

I llv' "ll'.'' a' = ulo,,' l"' * ar i [o,,, l"'.

At this point, it is worth to mention that qr,#
possesses derivatives offractional order less than
l/4 that are uniformly bounded in L,(O,TiH\ if

u^.r, t=lu '  i f '  e [0 ' , , ] ,
-  

[ r '  i f r € ( r " . , , t , 1 ( n = 2 , 3 , . . . , N ) l
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@)'YlD'u'1,<const. ( 10)

To b€ more precise, {U,r,,} is bounded in

Hl(o,TtV,H) for 7 e (0,1/4), where

H/ (0,T;V , H) := \v e L1(O,T ,V ) :

t.-iiltY nQ)e I: (WiH)|

and i is the Fourier transform of v . However,
due to the nonlinearity, we do not have any proof
ofthe hypothesis (10) at hand.

Corollary l. Le, l(Lt)Ll be some sequence of
time steps and assune (9). Then therc is a
subseqrence l(Lt\r,\ such that lU<L4L.l is

weawya coütergent in I: (0,7;H) and weakly

convef gent in L1 (o,Tlv). Fwthermore, lvr"r,.l

is weawy* com'ergenl in f (0,7;H), v)eakly

convergent in I:(0,7;V) , and strongly

cowergeht in Lq (0,7',Hl lot q e[l,a)

Proof, The existence ofa weakly* in f (0,f;H)

and weakly in L7 (0,7;V) convergent

subsequenc€ of {Ur"r, } and {(r,,} follows

from standard compactness arguments because of
Proposition 2 (ct Bntzis [2]). The strong
converg€nce of a subsequence of {(",,} in

,'?(0,I;t/) follows from a compactness theorem
by Aubin and Lions (ct Lions [9]) since {(",, }

is bounded in L'1(o,T;v) and {2,(&)*} is

bounded in L''|(o,T;V') (see Proposition 2).

The boundedness in L'(o,T|H) then implies

convergence m
with q < o.

any E(o,Tl'H)

I
Let us remark that, under the hypothesis (10),

there is also a strongly in L'z(o,T;H) convergent
subsequence of {Ur"r,} since the compact

embedding of V in ff implies that
Ht(O,T;V,H) is compactly embedded in
,C10, f;t/; . However, we do not need to assume

(10) since {q&), } and l\6a,1 must have the

same lirnit in L2(0,7;H) under an assumption
that follows directly from Proposition I

Propositiotr 3. Let {(Lt)L\ be a null sequence
ard qssume (9) as well a.t

)'/^ '
(& ) i I lD } t l i ' l ' - +04s I - - ' co  ( l l )

fol the solutions lui|,\ to Ptoblen ( Pia,;, ) o"

( LP64r ) with N. =r(AD^ . If one of the

sequences 1U64,\ ot lVG4,\ cowerges

stongly in L'z(o,TiH) then the other one does so
with the ssrne littit U .

Proof. For brevity, we omit the subscript &.

With D,a" = D,a'-4lD'ztr'-r, we find
2

. ,  ^ r ,
f lu "o - v "r,,t1' a, < #V' -,'t'

+(^r ,  t lD. ! , f  + (4. ,  i lO' r , l ' .
6 4 t , t  8 f i '  I

The assertion follows from (9), (ll), and
Theorem 2.

Remark. Assumption (l l) indeed follows from
Proposition I if f e I(0,f ;H)^L'z(o,TtV')
and uo,uteV . Since ,,(o,I;I1) is a dense

subser of f(o,f;Z') and t(0,f;ä), also atl
the weak limits in Corollary I then coincide with
U .

Theorem 4. Let uu =uoeV and u' be
compüted by the nonlineat or lineaised implicil
Euler method v'ith right-hand side Rlf , i.e. for
a l l  ve l

(D,u',v) + v((ar, r)) + ä(l,, ' , rr, r) = (Ri/, v),

( t 2 )
or b(ut,ut,v) being replaced by b(ua,ut,v) ,
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such that (9) is lu|illed. Assume further (1 l) and
t ,  ̂

, luir+uir,)-+ a weakly in H as l( -+@ (l3l

fu a null sequence {(Lt)t\. The common limit
U of the convergent subsequences lU@4,.\ erd

{Vr"r.}, which *ists in eiew of Corcllary I qad

Proposilion 3, lhen is a weak solurion to Problem
(P). The whole sequences lU6,s,l and lVpa,\
converge if Problem (P) admits a unique
solution.

Proof. For brevity, we omit the subscript f'
indicating the subsequence. Because of (2) and
(13) (for the starting phas€), we have for
t e(0,T) and all y eI/

;(t/ ^,(t),vl + v t(U a,Ul,v)l

+ b(u a,(),u a!(b)) = \f a,(),v) ,

where t ( / )=R!/  for  /€(r , , , r ,1
(n=2,3,...,N )and .f"(t) = P.l,-f for r € [0,^r].
Testing with a function O = 0()e Ct (to,fD ,
/(I) = 0, and integration by parts give, because
of VL,(o) = (uo + ut)t2 ,

- 
tr V'G)'v)Ö'Q\d' + v I l(u "(t)'v))Ött)dt

+ I b(u ̂,Ut.u a,Ur,v)Att)dt
. t  (  , ,o  , , , '  \= L\f"(t t ' ' )0l tdt+l : ' "  Ic(o)

\ z l
With (13), we have for all v e H =V

( u o  + u '  \
l - .  , ,  l - - r  ( ro ,y ) .

l

Since U ",V" -->IJ weakly in L2(O,T;V) and
t E v,'Q\ eC(lD,Tli,V) as wetr as
ti AvA() ec(t0,Tl;t/ '), i t folows

r / , - -  - .  ,  r l  ,

\ \Y 6,\t t, v 19 U ldr --, I \U(t\,vlö'(üdt
and, because of (.,,4 ) = ((.,)),

Furthermore, we find with Lemma I
f e c(l0,rl)

and since

<c ( lb@N@-u(t) ,uN@,v)

+ b(u(t),U ^,(t) -u(t),v)ldt

< 2 Bc ( lu,@ - u (Dl"' llu,o - u(')ll'" "

| (@,<0,,1)o<,ta, - | 11u1ty,"116aa,.

lf {u lu -to,u "<,t,') - b (u (t),u (t),v))o(idrl

x (llu"(I)ll + llu(,)ll)llvlld,
< 2 p4lu " - ull':,'<".,,,11u, -ull,l;",,,, "

" (1u"1,,,",,,,, * llull,,,",,, ,)ll,ll,
and in view of U e l(0,f;Z), the boundedness
of {U&} in L'zQ,T:V) , and the strong
convergence U^, )U in 110,I;Hl,weendup
with

f 4u "1t'1, u " 1t1, v;61ty t

-+ 
f 4u 1t 1.u1t1,,y6qt pt.

It remains to show

( \f *{'\,u1 ot v, - I \f <,1,") o<'tl,,
for which

fa,--' f ft L,(o,T:v.) (  t 4 )
is sufficient. The mapping f ä f6, is obviously
linear and bounded in t(0,f;/ ') since

I llÄtr jljar = arllnlr]l ar * rrl llnl rl,7-  
, . - u  

*  t '

."ll/1;,".,,,_,
Furthermore, (14) holds true for all functions of
the dense subset C, (tl,rl;V') c I:(O,T:V') ,
and so it is true for all f e I:(o,T:y').

The limit U , Ftnally, satisfies for all
0eCt(tl,rD with d(r) = 0

rl- 
L \u(t), vl 0' e)dt + v | ((u r tt.vl)pupt

+ | r (u g1,u 1t1,v) p1t1at

= | \f<tl,,lai{,)a, *(,0,,,)/(o),
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which shows that U is a rteak solution to
Problem (P).

The oroof for the linearised variant follows
the same argumonts. The second assertion,
regarding the unique solvability, is shown by
standard arguments.
Remark lf a0 = ao and z' is computed by the

imDlicit Euler method then, under suitable
regularity assumptions, (13) can be proved. The
proof relies upon the pointwise convergence

la((Ä"r),) 
- al,,l+ 0 that follows from a

(possibly sub-optimal) error estimate and upon
the demicontinuity in H ofthe exact solution lr
(i.e. ,D(s(r),v)€c([0,T]) for all vell and

thus r((At)r) + llo weakly in 11).

Finally, we remark that there are other
possible prolongations leading to sequences of
approximate solulions that converge towards a
weak solution: We may, for instance, consider
the interpolating linear spline or the
discontinuous interpolating piecewise linear
function whose sfope in (t,-t,t, l  (n=2,3," ,N )

is Dra', or a continuous piecewise quadratic

interpolation.
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