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Abstract

The incompressible Navier-Stokes problem is discretised in time by means of the two-step backward
differentiation formula with constant step sizes. Existence and stability of a time discrete solution are proved
as well as the convergence of a piecewise polynomial prolongation towards a weak solution. The results
presented cover both the two- and three-dimensional case. Furthermore, a linearisation that is based upon a
modification of the convective term using a second-order extrapolation is considered.
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1 Introduction

Whereas the spatial approximation of the
incompressible Navier-Stokes problem seems to
be rather well-understood, only a comparably
small number of articles focus on a strict
mathematical analysis of time discretisation
methods. Methods with constant time steps have
been considered ¢.g. in Temam [14], Girault &
Raviart [4], Baker et al. [1]), Heywood &
Rannacher {7], Miiller-Urbaniak [11], Prohl [12],
and Hill & Siili [8]. For an overview and the
state-of-the-art, we refer to Rannacher [13] and
Marion & Temam [10].

Especially, the question of “realistic”
higher-order error estimates has become topical
since Heywood & Rannacher [7] have proven
optimal second-order estimates for the
Crank-Nicolson scheme. Higher regularity of the
exact solution is equivalent to compatibility
conditions on the problem’s data, which
lead —due to the divergence-free constraint—to a
virtually uncheckable and often violated
over-determined Neumann problem for the initial
pressure (cf. Heywood [6], Temam [15]). So
higher-order estimates should rely upon
parabolic smoothing properties. The method

under consideration, therefore, needs to be A- or
G-stable.

Although efficient time integration requires
adaptive methods, there is, to the best knowledge
of the author, no analysis of time discretisations
of the Navier-Stokes equations on non-uniform
grids  available. Only in  Prohl[12],
discretisations on structured time grids have been
considered in order to overcome the
incompatibility of fluid flows.

The backward differentiation formulae (BDF),
even with variable time steps, have been used by
many authors for the integration of {nonlinear)
ordinary and partial differential equations. The
two-step BDF with constant time steps is known
to be formally of second order and zero- as well
as A- and G-stable (cf. Hairer & Wanner [5]).

In the context of the incompressible
Navier-Stokes problem, the two-step BDF has
been firstly studied by Girault & Raviart [4].
They have considered a linearised variant and

replaced the convective term (¢"-V)u", where
u" denotes the approximate velocity at time ¢,
by (2" —u"?)-V)u" . Unfortunately, the
optimal error estimate given there relies upon

inappropriate higher regularity assumptions. In
Baker et al. [1], the three-step BDF has been
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analysed, and a second-order error estimate has
been postulated for the linearised variant of the
two-step BDF under higher regularity
assumptions as well as restrictions on the time
step size in dependence of the mesh size of an
underlying spatial discretisation. Recently, Hill
& Siili[8] have proven sub-optimal error
estimates of order 1/4 under feasible regularity
assumptions. Their result applies to the
two-dimensional case with  autonomous
right-hand side.

Yet, the original nonlinear approximation has
not been considered in the literature so far.
Moreover, stability of the discrete probiem and
convergence of a time continuous approximate
solution obtained by piecewise polynomial
prolongation has not been dealt with.
Convergence of time continuous approximate
solutions is, beside error estimates, of interest in
its own since it does not follow directly from and
might be proven under weaker assumptions than
error estimates. Furthermore, it answers the
question of how to compute approximate values
between the discrete time points.

Smoothing error estimates under suitable
regularity ~assumptions that avoid global
compatibility conditions are provided in
Emmrich [3] for the two- and three-dimensional
case: The time-weighted velocity error, measured
in the /”(I*)- and /*(H,)-norm, is shown to be
of second order for the nonlinear approximation
and of order 3/2 for the linearised variant. After
reintroducing the pressure, its time-weighted
error is shown to be of order 1 and 1/2 in the

I”(L*/R) -norm, respectively, for the nonlinear

and linearised approximation, respectively.

In this paper, we consider the two-step BDF
with constant time steps for the two- and
three-dimensional Navier-Stokes problem in its
pressure-free variational formulation. Beside the
original nonlinear approximation, we also
consider the above-mentioned linearised variant.
We firstly study solvability. Afterwards, we
prove I”(L') - and I*(H)) -stability for the
discrete solution as well as estimates for the
discrete time derivative. We then construct
piecewise polynomial time continuous solutions
from the discrete values. Finally, we show under
suitable assumptions on the problem’s data that

these approximate solutions converge towards a
weak solution whenever the time steps tend to

zero. The convergence is strong in I°(Z*) for
ge€[l,©) , weak in I’(H,), and weak* in
).

2 Continuous and time discrete problem

We consider the Navier-Stokes equations
describing the non-stationary flow of an
incompressible, homogeneous, viscous fluid at
constant temperature,

U —VAuU+{u-Viu+Vp=f,
V.u=0inQx(0,7),
u=00n0Qx(0,T), u(-,0)=u, in Q,

where Qc R, d =dimQ e {2,3}, is a bounded

domain with locally Lipschitz continuous
boundary 92, (0,7) is the time interval under

consideration, v > 0 denotes the inverse of the
Reynolds  number, wu=u(x,r) is the
d -dimensional velocity vector with prescribed
initial velocity u, =1, (x) , p= p(x,t) is the
pressure, and f = f(x,?) is an outer force per
unit mass.

We introduce the solenoidal function spaces

Vi={ve H(Q): Vv =0},
H={ve}(Q):V.v=0,yv=0},

where y, denotes the trace operator in normal
direction (cf. Temam [14] for more details). As
usual, the subspace of H'(Q) -functions
vanishing at the boundary is denoted by H(Q).
Here, by L and W™ (W™ = H™), we denote
the usual Lebesgue and Sobolev spaces with the
natural norms ||-||0‘p and ||-||M‘P, respectively. We

will not distinguish between the scalar and vector
case. With
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=3 [ ZOT D

i, j=1

luf:= (), w,v eV,

=3 [ uem s,

=]
lu:= ()", u,ve H,

the spaces ¥ and H are Hilbert spaces. The
space V' is dense and compactly embedded in

H . Note that ¥, H, and the dual V" form a
Gelfand triple. The dual pairing between ¥ and

V" is denoted by (-,->, the dual norm by ||||.,

which is different from the H™'(Q)‘ -norm.

We then consider the weak formulation of the
Navier-Stokes problem:

Problem (P) For given w,eH and
fel’}(0,T;V"y, find ue I}(0,T;V) such that
forall veV

%(u(r), v+ v (), v)
+ b)), v) = (£ (1))

(1

holds in (0, T) in the distributional sense with
u(0) = u,.

Here,

b(u,v,w):= ((u Vv, w)

incorporates the nonlinearity. By I7(0,7;X)
with some Banach space X, we denote the usual
space of Bochner integrable abstract functions
u:[0,T] > X . The discrete counterpart for

functions defined on a time grid is denoted by
17(0,T; X). The space of m -times continuously
differentiable abstract functions will be denoted

by C"([0,T]; X), where X is omitted if X =R .

The natural norm of a function space ¥ will be
sometimes denoted by |- ||, .

It is known that Problem (P) has at least one
solution  ue I2(0,T;V)NL(0,T;H)  with
e l'(0,T;V"), where «' denotes the time

derivative of the abstract function u in the
distributional sense. As then =z is almost
everywhere equal to a continuous function with

values in V°, ueC([0,T};V”) , the initial
condition makes sense. In the two-dimensional
case, the solution is unique and in C([0,T]; H)
with &' e ’(0,T;V") (cf. Temam [14]). For
more regular data (u, eV , fel’(0,T;H),
0QeC?), a so-called strong solution, ie. a
unique solution ue C{[0,T];¥V), exists in the

two-dimensional case for arbitrary 7', but in the
three-dimensional case only locally up to a
(possibly rather small) time T (cf. Temam [16]).

The trilinear form b(-,-,-) satisfies the

following well-known properties that will be
needed in the sequel (cf. Temam [16]).

Lemma 1. Let u,v,weV be arbitrary. Then
b(u,v,w) = —b(u,w,v) and for some 3>0

’ ||u"0.4"v"o,4"w"’

b v, wyls gl II;II”ZIILIIIIWI!,
el ™ e
sl

Moreover, in the two-dimensional case, there
holds for some >0

LCAADIEY:IV i v T

We now come to the time discrete problem.
Let the time interval [0,7] for given N €N be

equidistantly partitioned with the time step At
and ¢, :=nAt (n=0,---,N). For a grid function

{t:"} e » we denote by D, and D, the backward
divided differences:

Dlu" _-ll —-u ’
At
1(3 1
n.__~ _un 2 n-1+_ n-
a2 2"
—éDun_lDlu\nl
2 2



202 E. Emmrich, Stability and convergence of the two-step BDF for the incompressible Navier-Stokes problem

For a Bochner integrable function f, we also
consider the natural restrictions

Rif = [ foa

3

n L 1 "—
sz:=5R1f_5R1 'f.

Furthermore, we use the formally second-order
extrapolation

Eu" :=2u"" -y,

Note that Riu'=D_u(z,)=u'(,)+O((A1))

(g€{1,2}) and Eu(1,)=u(t )+ O((A1)*) for a
smooth function u = u(r) .

The time discretisation of Problem (P) by the
two-step BDF for computing #” approximating
u(t,) reads as

Problem ( P,, ) For given °, W' € H and

fe(0,T, V"), find "€V (n=23,N)
such that for all veV

(D" V) + v((u",v)) + b(u" ,u",v)

2
=(R3f,v). @

We also consider the linearised variant:

Problem ( LP,, ) For given u°, u'eV and

SelOT,VY, find weV (n=23,N)
such that for all veV

(D" Y+ v((u",v)) + b(Ed” ,u" V)

~(R270). &
In opposite to the original method, the
convective term b(u",u",v) has been replaced
by the formally second-order modification
b(Eu",u",v) .
In both problems, the starting values can be
obtained by taking «°:=u, and computing #'

from «° using the implicit Euler method. The use

of R}f instead of an arbitrary approximation
S is only for simplicity and avoids to consider

an extra error f" — R f . By standard arguments,
it can be shown that

2dt. (4)

sy IR s4 [ ro

Theorem 1. There is at least one solution to
Problem (P,,) and there is a unique solution to

Problem (LP,, ).

Proof. We start with Problem (P, ) and wish to
apply Brézis’ main theorem on pseudomonotone
operators (cf. Zeidler [17]). If «"2, 4™ are

known, the problem of determining #" € ¥ can
be written in operator form,

1 1
A W)=g" =R} f+— 2u""1——u"'2]e V®,
(@) =g of As >

where

Ay (v):= AQ () + B(v), A (v):= %H VAv.

Here, 4:V > V", defined by (Au,v):=((u,v),
is the energetic extension of the classical Stokes
operator. Furthermore, B:¥V — V", defined by
(B(v), w) =b(v,v,w) , is the nonlinearity,
Obviously, 45 :¥ — V" is linear, bounded, and

strongly monotone since V is continuously
embedded in .
It follows from Hélder’s inequality and

embedding arguments that B:¥V >V s
bounded. Furthermore, B is strongly continuous:
Let {v,} c¥ be weakly convergent with limit v .

Since ¥ is compactly embedded in L'(Q),

{v.} is strongly convergent and bounded in

L'(Q)’ . We have for arbitrary welV with

Hélder’s inequality (see Lemma 1)
(B(vt)"B(V),W>

=b(v, ~v,v,w)+ b(v,,v, - v,w)

s c"v& - v"o.-a(“v"o,at + "v* "0.4 ]“w"’
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and thus {B(v,)} converges strongly to B(v} in
V.

Hence, 4,, is pseudomonotone since the sum
of a linear monotone and a strongly continuous
operator is pseudomonotone, Because of
(B(v),v) = b(v,v,v)=0, it also follows that 4,,
- is coercive. Finally, the boundedness of A4, is
clear. Since V' is a separable, reflexive Banach
space, Brézis’ theorem ensures the existence of a
solution to Problem (P,,).

For Problem ( LP,, ), the assertion follows

from the Lax-Milgram lemma.
#

Remark. A solution to Problem (P,, ) is unique
for small data:

12

W+ + S Froryy sC 80 )

Uniqueness can be also obtained for more regular
solutions. Furthermore, in the two-dimensional
case, uniqueness can be ensured by a small data
condition more refined than (5) that is
independent on At and relies upon higher

regularity of the discrete solution,
#

Here and in the following, C denotes a
generic constant that may depend on the domain
Q and its dimension, on embedding constants,

the constant S or fi' from Lemma 1, etc., but

not on the Reynolds number, the exact solution,
or the initial data or right-hand side. Moreover,
let ¢ be a generic constant that does not depend
on problem parameters at all.

3 Stability

In the following, let

2 2 X 112
=W +fuf oL lsoka) .

We may also use the abbreviation D? for the

second divided difference:

Zun . un+l _ zun + un-l
(Ary

Note that D*u(z,) = u"(¢,) + O((At)?) for smooth
functions u.

Theorem 2. Any solution to Problem (P,,) or
(LP,,) is stable in I*(0,T;H) and I*(0,T;V)
with

n

4

g (AJ:‘)"”Z-I |D2u**'|2 + vA:i ||u:’ "2 <cM?,
] f=2
J n=23,---N.

Proof. Set v=2" in (2) or (3)
b(u",u" . u")= B(Eu", 4", 4") =0 and

Since

4(%’«-2b+§]a =a’+(2a-b) - b

—(2b-cY +(a-2b+c), a,bceR,
so that
4D ", u")=D, [

2
u'| + IEu’”'

] (©)

+(At)’[D2u"”'

the assertion follows with

4R} fu) <4 u"

Raf]

RS

8 2
s—|
v

2
| +2v|[x"

and (4) after summation.
#

We shall remark that higher regularity (i.c. a
priori estimates in  I*(0,T;¥) and
I*(0,T; H*(Q)* ~V) ) can be proved in the
two-dimensional case for small data. This relies
upon a discrete Gronwall-type lemma for
resolving a difference inequality with a quadratic
term. However, in the three-dimensional case, a
cubic term would arise that cannot be handled
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similarly. This situation is in accordance with the
time continuous case regarding the existence of
strong solutions only up to a possibly small time
T (cf. Temam [16]).

We now provide some estimates for the

discrete time derivative D,u” . These results will

again reflect the same situation as it appears in
the continuous case: Let # be a weak solution to

Problem (P). Then #' eI’(0,T;V’) in the
two-dimensional case, but only #' € I**(0,T; V")
in the three-dimensional case.

Theorem 3. Let {u"} be a solution to Problem
(Py,) Then

AIZHD u 5 < [u2+M2]
- if dimQ =2,
AzZ[D ﬂ < LM [(TV’MZ)'” +M?)
- if dim€2 = 3.

If ("} is the solution to Problem (LP,, ) then

M aet et +Juf)
v

AS D] <
i=2

if dimQ =2,
NZP "< M7 @n%ﬁW+M2
J=2
+ VAt[uuoﬂz + ﬂu' ﬂ)
if dimQ =3.

Proof. We commence with Problem (P,, ). From
(2), it immediately follows that

D], <

+ V[

M

Due to Lemma 1, we have

"| for dimQ=2,

2721 a2 ) (3)
u Iu | for dimQQ=3.

If dmQ=2, we thus find from (7) with
Theorem 2 and (4)

&y [pf < ‘{ [Vofavagpwf
=2

J=2
V7 max frmiiufr]
f=2

J=1,

2. o4
S{VM2 +ﬂ—] ,
Vv

which is the assertion.
Because of

N N 243
a3l <7 A% |aj.|2]
J=2 =2

we find in the three-dimensional case that

AtZlD u’r sc

7153 [Afz lRJme]

=2

+TU3

, N " 273
v ArZIu‘l

=2

143 N
+57 [ji‘l;"fliiJuJ r] At; “u" Iz] )

and the assertion follows again with Theorem 2
and (4).

For Problem (LP,, ), we may use, instead of
(8), the estimates

ﬂrEu 1/2 IEu ];2 |f2 » ”z"v"
|b(Eu",u",v)| < fordimQ =2,
" 172 " 1/2
o]
for dimQ =3
that follow from Lemma 1. Remembering

Eu" =2u"" —u", the rest of the proof is nearly
the same as for Problem ( P4, ). However, we
have
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a3 e e

smiﬂgwrwg’+|uf|2 Jf]
<c max
SCMz[.’E‘;+Ar[|uﬂ| +|u'|2]]

in the two-dimensional case and

Ati IEuJ.Hm|uj‘2r3 HHJ |233
=2
< cAti [lEu" uz + |u"iz]|u"'|y3
<cjr_1;ax i AIZlufl
< 2’3{M7+At[ﬂu°i +pul\r]}

in the three-dimensional case.

uJ’

#
The following result will be needed in order to
justify assumptions that are necessary for our
convergence result below.

Proposition 1. Let {u"} be a solution to Problem
(Py,) or (LP,,) with the additional assumption

that u’\u' eV and feL'(0,T;H). Then for
n=23,..,N
U, = (A:)zi;DZufr
=2
+ VAL |u"i2 +(A:)“E|jnzufg"]
el

can be estimated by
U,<C ((v + M)m“u"l2 + |u' r]

M’
+||f"i'(o.r;m+ v J
if dimQ =2,

(AU, <C

V(A" [lu“l2 + Hu‘ Nz]
e paop (el ')
M3
+(Ar)”‘|1f||f,-w.r;m+w}
if dimQ =3,
Proof. With v=D,»" in (2) and the

Cauchy-Schwarz as well as Young’s inequality,
it follows

n n

1
2

——-b

1 ¥
W', 2u" — -3 ""‘,u"].

If dimQ =2, we thus find with an identity
analogous to (6) for the term ((D,u",u")) after
summing up

U, <vae( o'+ B3| |+ 20807 3[R 1
=2

—4Ati b
Jj=2

uw zu.f—l __!_u;-l u.;‘]'
b 2 b
With standard arguments, it can be shown that
n 2 n 2
@y RS s[ArZ\Rs‘f\] <A s
f= j=2

Furthermore, we have with Lemma 1 and
Theorem 2

b[u’,2u"" —%u"z,u“]

u;‘-l —_yy!

o3

jl = .;—

<28 maxl |AIZ

Jw+p

SEL+CBMAI[|IJOH2 + !u' Iz] .
v
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and the assertion follows,

For dimQ=3 , we firstly observe

analogously to the foregoing case that
(A" U, < V(A [|u'|2 N |Eu’|2]
2
+8(A0N flsorm,

—4(A0** Y b[u",ZuH —%uf"z,uf}.

=2

With Lemma 1, Young’s inequality, and
Theorem 2, we find

"

aAy"y.

=2

< 4ﬁ(A!)5“ i [uj-riz |uj IJ!Z
j=2

b[u’,Zu’"' —-%u""z,uj]

2u —-l—u"‘2
2

5!2]

3 5/2 5/2
seplore M”Z(A:)”‘“u"I ol ]

172
<2/ max lqu X
J=2

26 - lu" 2
2

x (At)’"i [Iu‘ rn +

1=

and the assertion follows. In the last step, we
made use of

@ S s
=2

Jj=2

n 5/4
A:z|uf\r] .

With obvious modifications, the proof for
Problem (LP,, ) is the same.

4 Convergence

From the discrete values u" (n=0,1,---,N),
computed by solving Problem ( Py, )or (LP,,),

we now construct a piecewise constant function
U, and a piecewise linear function ¥, defined
on [0,T]:

Uu(t)z{u ifte[O,t,],
u ifte(r, ,t,] (n=2,3,--,N);

%[u' +Eu’)+D,u' (t-1)

V. (1) =1 if 1 €{0,¢,],

%[u” +Eu™ )+ D" (t-1,)

ifte(t, 2,1 (n=2,3,-,N).

There are other possible prolongations we will
not consider here (but see the remarks at the end
of this section). The construction of ¥, reflects

the choice of the method: The vatue &' is thought
to be computed by the implicit Euler method. The
slope of V, in (f,_,t,] is D" for
n=2.3,--- N, and the function is continuous.
However, V,, does not interpolate.

In the following, we shall
u’,u' eV and

assume

'u"r + |ul |2 + VAIiuI |2 + AIID,u‘E” <const, (9)

where const is independent of Ar and N . This

is true if, for instance, 4' is computed by the
implicit Euler method. {The proof follows similar
arguments as employed in the foregoing section.)

Proposition 2. Let {(Ar),} be some sequence of
time steps. If (9) holds true then Uy, } and

Via,} are bounded in L[*(0,T;H) and
Z0,T;¥) the sequence of
derivatives {y' y,} is bounded in ['*(0,T;V").

Moreover,

Proof. The first assertion follows directly from
the definition of U,, and V,,, and from Theorem
2. The second assertion follows again from the
construction of V, , its continuity, and from
Theorem 3 because of

LT Ia]” dr = atjD,u! Mf” + A i uDzu’I:H.
=2
#

At this point, it is worth to mention that U, &,

possesses derivatives of fractional order less than
1/4 that are uniformly bounded in I2(0,T; H) if
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(A:)zﬁ ID’u*‘ |_ < const.

f=2

(10)

To be more precise, {U,,} is bounded in
H(0,T;V,H) for y €(0,1/4), where
H(0,T;V,H):={ve I}(0,T;V):
o ) e LR H)}
and ¢ is the Fourier transform of v. However,

due to the nonlinearity, we do not have any proof
of the hypothesis (10) at hand.

Corollary 1. Let {(At),} be some sequence of

time steps and assume (9). Then there is a
subsequence {(At),} such that {Uy, } is

weakly* convergent in L°(0,T;H) and weakly
convergent in [}(0,T;V). Furthermore, Va3
is weakly* convergemt in L°(0,T;H), weakly
in LX0,T;V) , and strongly
convergent in I'(0,T; H) for g e(l,»).

convergent

Proof. The existence of a weakly* in L7(0,7; H)
}{(0,T;V) convergent
subsequence of {U,,} and {V/,,} follows

and weakly in

from standard compactness arguments because of
Proposition 2 (cf. Brézis[2]). The strong
convergence of a subsequence of {¥,,} in
I}(0,T; H) follows from a compactness theorem
by Aubin and Lions (cf. Lions [9]) since {V,, }
is bounded in L0,T;V) and {',} is
bounded in IY*(0,T;F") (see Proposition 2).
The boundedness in L°(0,7;H) then implies
convergence in any L0, T H)
with ¢ <o,

#
Let us remark that, under the hypothesis (10),

there is also a strongly in 2(0,T; H) convergent
subsequence of {U,,} since the compact
embedding of V in H
H'(0,T,V,H)

L} (0,T; H) . However, we do not need to assume

implies  that
is compactly embedded in

(10) since {U,, } and {/{,,} must have the
same limit in Z*(0,T;H) under an assumption

that follows directly from Proposition 1:

Proposition 3. Let {(A?),} be a null sequence
amd assume (9) as well as

(A i“ ID,f|” 0 as k — oo

ju2

(1)

for the solutions {u;,} to Problem (P( a0, ) or
(LP(N)k ) with N, =T(At), . If one of the
Wt or Fy}

strongly in I*(0,T; H) then the other one does so
with the same limit U .

sequences converges

Proof. For brevity, we omit the subscript & .

With D" =D,u" *%Dzu"" , we find

2

f Uy @ -V, 0 dt < f—;|u' P

+%i‘D;u‘*r + %E'Dzw |2.
j=2 j=l

The assertion follows from (9), (11), and
Theorem 2.

#

Remark. Assumption (11) indeed follows from
Proposition 1 if feI'(0,T;HYNI*(0,T:V")
and «°,u' eV . Since I*(0,T;H) is a dense
subset of I2(0,T;V") and L'(0,T;H), also all
the weak limits in Corollary 1 then coincide with
U.

#
Theorem 4. Let u’=ueV and u' be
computed by the nonlinear or linearised implicit
Euler method with right-hand side R\ f , i.e. for
all veV

(D', v)+ v, v))+ bu u',v) = (R} £,v),

(12)
or b(u',u',v) being replaced by b’ u',v),



208 E. Emmrich, Stability and convergence of the two-step BDF for the incompressible Navier-Stokes problem

such that (9) is fulfilled. Assume further (11) and
%[u(oh +u{'“J—> u, weakly in H as k > o (13)
Jor a null sequence {(At),}. The common limit
U of the convergent subsequences (U, } and

Vi, }» which exists in view of Corollary I and

Proposition 3, then is a weak solution to Problem
(P). The whole sequences {U,,, } and Vi, }
converge if Problem (P) admits a unique
solution.

Proof. For brevity, we omit the subscript k'
indicating the subsequence. Because of (2) and
(13) (for the starting phase), we have for
te(0,T] andall veV

A ACHRICAGE)
+UL DU (V) = { £ (O),¥),
where f, (f)=R}f for te(t, ,t ]
(n=2,3,--,N)and f, (t)=R!f for t[0,Ar].
Testing with a function ¢ =#(¢) e C'([0,T]),

#(T) =0, and integration by parts give, because
of V,(0)=(° +u')/2,

_ L?' (Vm (f), V)¢'(f)d[ + v LT ((Um (t), V))¢(I)df
* I: UL, ), v)(1)dt

uO

= f(f,,,(:),v);ﬂ(r)dw[ - ,v]¢(0).
With (13), we have forall ve H oV

[u ;-ul ,V} g (uo:v)-

Since U,,,V, > U weakly in I*(0,T;¥) and
t=vg'(1ye C([0,TLV) as well as
Lt Avg() e C([0, TV, it follows

[ wow)pwa [ o)
and, because of {-, 4} = ((-,-),

LT (U 0),v)) (1)t - _[: (UG, v))p(ar.

Furthermore, we find with Lemma ! and since
e C([0,T])

I f (B(Un(0,Uy(0),v) = b(U),U(®), v))g)(t)dt‘
<ec f [B(U ) - U6, U, (1))

+b(U@LU (0 -U(0),v)|dt
<2fc [ [Uy() -V [Uu - U] * x

* ([Ua@l+ o)l ar
rarmlUs ~U

20,584}

172

2oy

X ('Umlf,=(o,;r';v) + ”U"f?(o.:r';l-'])llv"'
and in view of U € I*(0,T;V), the boundedness
of {U,} in L}(0,T;¥V) , and the strong

convergence U,, - U in I*(0,T; H), we end up
with

bl

<2pc|u,, -U

[} UL U0 g0

> [ .U, 0.
It remains to show

[ (s [ (7v)pa,
for which
fu = f W LOTV*) (14)
is sufficient. The mapping £ f£,, is obviously
linear and bounded in Z*(0,7;¥") since

f futoldt = ARy 7 + Ati [R1s e
=2

Sc"f Ii‘(o,r';r‘}‘
Furthermore, (14) holds true for all functions of
the dense subset C*([0,T}V")c I*(0,T;V") ,
and so it is true for all f e (0, T;1").
The limit U |, finally, satisfies for all
¢ C'([0,T]) with ¢(T)=0

__[:I U@, v)P'(t)dt + v LT ((U(:), V));ﬂ(l)dt
+I:’3'(U(f),U(»'),v)qzi(:)dz
= _[: (f(f), V>¢(l)dt + (uu’p)¢(0)!
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which shows that U is a weak solution to
Problem (P).

The proof for the linearised variant follows
the same arguments. The second assertion,
regarding the unique solvability, is shown by
standard arguments.

Remark. If #° =u, and «' is computed by the

implicit Euler method then, under suitable
regularity assumptions, (13) can be proved. The
proof relies upon the pointwise convergence

|u((AI)*)—u('*)|—>0 that follows from a

(possibly sub-optimal) error estimate and upon
the demicontinuity in A of the exact solution u
(ie. 1> (u(1),v)e C([0,T]) for all ve H and

thus w((At),) - u, weakly in H).

Finally, we remark that there are other
possible prolongations leading to sequences of
approximate solutions that converge towards a
weak solution: We may, for instance, consider
the interpolating linear spline or the
discontinuous interpolating piecewise linear
function whose slope in (¢,_,,¢,] (#=2,3,---,N)

is D,u", or a continuous piecewise quadratic
interpolation.
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