
External approximation of nonlinear operator equations

Etienne Emmricha

aTU Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin

(January 4, 2009)

Based upon an external approximation scheme for the underlying Banach space, a nonlinear
operator equation is approximated by a sequence of coercive problems. The equation is sup-
posed to be governed by the sum of two nonlinear operators acting between a reflexive Banach
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shown. This also proves existence of solutions to the original equation.
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1. Introduction

Let V be a real reflexive Banach space with its dual V ∗. We are concerned with
the approximate solution of the following problem: For f ∈ V ∗ find u ∈ V such
that

Au+Bu = f in V ∗ . (1)

Here, A : V → V ∗ and B : V → V ∗ are given operators. A standard situation is A
being monotone and hemicontinuous, B being a strongly continuous perturbation
of A and A+B being coercive.

Many boundary value problems for quasilinear partial differential equations aris-
ing in physics, fluid mechanics and other areas of application can be formulated as
(1) (see, e.g., the monographs [6, 8, 19] and the references therein). For their ap-
proximate solution, often Galerkin-type or finite difference methods are employed.
The study of all these methods can be unified by considering so-called external
approximation schemes. This concept covers in particular finite differences, non-
conforming finite elements as well as fully discrete finite element methods with
quadrature (see [15, 16] for several examples).

External approximation schemes have been studied in [13] in the context of the
convergence of finite difference approximations for quasilinear partial differential
equations and A-proper operators (see [16], [19, Ch. 35] for introductions into the
concept of external approximation schemes). Later on, extensions of the results
obtained in [13] have been studied in [17, 18], the focus being on the equivalence
of unique solvability of the original and approximate problem.

External approximations have also been studied for eigenvalue problems and the
phenomenon of superconvergence (see [10–12]) and, more recently, for the approx-
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imation of variational problems in spaces of piecewise constant functions (see [5]).
The concept of external approximation has further been employed in [15] for study-
ing different numerical methods for solving the Navier-Stokes problem that is, in
the stationary case, indeed of the type (1) with A being linear and strongly positive,
B being strongly continuous and A+B being coercive.

The assumptions on the approximating operators studied so far in [13, 17, 18]
(in particular, an inverse stability that would follow from stronger uniform mono-
tonicity assumptions) are, however, different from the assumptions on which our
studies are based. Indeed, we try to apply the concept of external approximation in
order to generalise the often found standard situation for (1) with A being mono-
tone and hemicontinuous, B being strongly continuous and A+B being coercive.
It is well-known that in this situation Brézis’ theorem on pseudomonotone opera-
tors provides existence of solutions to (1). So, our approach is not based upon the
concept of A-properness (see [9] and the references cited therein for a discussion
of this concept) but on weaker assumptions yielding then only convergence of a
subsequence in a weak sense. In particular, we do not assume well-posedness of the
approximate problems but only solvability and, in general, we do not have a con-
tinuous inverse of the approximate operator (for this case, see also the exhaustive
work [3]).

Another approach for studying approximations of monotone operator equations
employs projection methods as in [1, 2, 6], which can be interpreted as internal ap-
proximation schemes. The essential advantage of external approximation schemes,
however, is that the function spaces approximating V need not to be subspaces of
V . This allows much more flexibility in the choice of the numerical method and
often simplifies the numerical analysis.

We should mention that, besides the concept of external approximation, also the
concept of discrete convergence and discrete approximation as introduced in [14],
which goes without prolongation and restriction operators, provides a frame for
considering rather different numerical methods in a unifying way. This concept has
been applied in [7] to the study of nonlinear operator equations based upon the no-
tion of approximation-regular operators, which is a generalisation of A-properness.
The results in [7] also cover quasilinear elliptic problems (leading to a coercive and
strictly monotone operator equation of the type (1)) under perturbation of the
domain or coefficients.

The main result in this paper will be a general convergence result for the case
that there is a stable and admissible external approximation scheme and that
A,B, f in (1) can be approximated in a consistent way. The required assumption
on the sequence of approximations of A can be seen as a discrete analogue of the
property (M). Moreover, our convergence result is based upon an a priori estimate
for the sequence of approximate solutions which follows from uniform coercivity.
The Galerkin method in the standard situation as described above is shown to be
a special case of our approximation scheme.

The paper is organised as follows: In Section 2, we describe the external ap-
proximation scheme, present the necessary notation, and prove some results on the
consistency and solvability of the approximation. The main result is stated and
proven in Section 3. Section 4 provides an example.

2. The external approximation scheme

For a normed space X, we always denote its norm by ‖ · ‖X , its dual space by X∗

with standard norm ‖ · ‖X∗ and the dual pairing by 〈·, ·〉.
Let V be a given real reflexive Banach space. Let H be a countable infinite
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sequence of indices and let {(Vh, ph, rh)}h∈H be a sequence of real normed spaces
Vh, prolongation operators ph : Vh → F and restriction operators rh : V → Vh.
The prolongation operators are assumed to be linear and bounded. Here, F is a
suitably chosen real reflexive Banach space such that there is a so-called synchro-
nisation operator ω : V → F that is linear, bounded and injective. The family
{(Vh, ph, rh)}h∈H then is said to be an external approximation scheme for V . In
some situations, the restriction operators are only defined on a dense subset of V
but can be extended on V (see [15, Prop. 3.1 on p. 30], [16, Prop. 4 on p. 28]).

Definition 2.1: An external approximation scheme {(Vh, ph, rh)}h∈H for V is
said to be stable iff there is a constant c > 0 such that for all h ∈ H

‖phvh‖F ≤ c‖vh‖Vh
∀vh ∈ Vh .

It is said to be admissible iff it fulfills
(i) the compatibility condition:

phrhv → ωv in F (h ∈ H ) ∀v ∈ V ,

(ii) the synchronisation condition: for any subsequence H ′ ⊆ H of indices and
{vh}h∈H ′ ∈ {Vh}h∈H ′ , g ∈ F with phvh ⇀ g in F (h ∈ H ′) there is an element
v ∈ V such that ωv = g.

Note that the use of the foregoing notions is not consistent in the literature. We
now consider the sequence of approximate problems: For fh ∈ V ∗

h find uh ∈ Vh

such that

Ahuh +Bhuh = fh in V ∗
h . (2)

Here, {Ah}h∈H , {Bh}h∈H and {fh}h∈H are sequences of operators and functionals
approximating A, B and f , respectively.

Definition 2.2: Let {(Vh, ph, rh)}h∈H be a stable and admissible external ap-
proximation scheme for V . A sequence {(Ah, Bh, fh)}h∈H of operators Ah : Vh →
V ∗

h , Bh : Vh → V ∗
h and functionals fh ∈ V ∗

h is said to be a consistent approxima-
tion of (A,B, f) iff for any subsequence H ′ ⊆ H and any {vh}h∈H ′ ∈ {Vh}h∈H ′ ,
v ∈ V with phvh ⇀ ωv in F (h ∈ H ′) there holds

(i) if there is an element g ∈ F such that

〈Ahvh, rhw〉 → 〈g, w〉 ∀w ∈ V , lim sup
h∈H ′

〈Ahvh, vh〉 ≤ 〈g, v〉

then Av = g in V ∗;

(ii) 〈Bhvh, rhw〉 → 〈Bv,w〉 ∀w ∈ V , lim inf
h∈H ′

〈Bhvh, vh〉 ≥ 〈Bv, v〉 ;

(iii) 〈fh, rhw〉 → 〈f, w〉 ∀w ∈ V , lim sup
h∈H ′

〈fh, vh〉 ≤ 〈f, v〉 .

We remark that condition (i) in the foregoing definition is a discrete counterpart
of the property (M) (see [8, p. 173]). A standard example is given by

Proposition 2.3: Let {Vh}h∈H be a Galerkin scheme for V , ph : Vh → V be
the identity and rh : V → Vh such that rhv is a best approximation of v ∈ V
in Vh. Then {(Vh, ph, rh)}h∈H is a stable and admissible external approximation
scheme with F = V . Let Ah = p∗hAph (with p∗h : V ∗ → V ∗

h denoting the dual
operator of ph), Bh = p∗hBph and fh = p∗hf . If A : V → V ∗ is monotone and
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hemicontinuous and B : V → V ∗ is strongly continuous then (Ah, Bh, fh)h∈H is a
consistent approximation of (A,B, f).

Proof : Stability and admissibility of the external approximation scheme built by a
Galerkin scheme is evident. For proving consistency, let H ′ ⊆ H and {vh}h∈H ′ ∈
{Vh}h∈H ′ , v ∈ V with phvh ⇀ ωv = v in F = V (h ∈ H ′) be given. In what
follows, all convergence is meant for h ∈ H ′.

(i) With Ah = p∗hAph, we find from the definition of the dual operator

〈Ahvh, wh〉 = 〈Aphvh, phwh〉 ∀wh ∈ Vh .

Let w ∈ V be arbitrary. The monotonicity of A : V → V ∗ then provides

〈Ahvh, vh〉 = 〈Aphvh, phvh〉

≥ 〈Aphvh, phvh〉 − 〈Aphvh −Aw, phvh − w〉

= 〈Aw, phvh − w〉+ 〈Aphvh, phrhw〉+ 〈Aphvh, w − phrhw〉 .

(3)

The first term on the right-hand side of (3) converges towards 〈Aw, v − w〉 since
phvh ⇀ v in V . The second term 〈Aphvh, phrhw〉 = 〈Ahvh, rhw〉 converges towards
〈g, w〉 by the assumption in Definition 2.2 (i). For the third term, we observe that
{Aphvh}h∈H ′ is bounded in V ∗, which follows (see, e.g., [6, Folg. 1.2 on p. 65]) from
the boundedness of {〈Aphvh, phvh〉}h∈H ′ (by the assumption in Definition 2.2 (i)),
the boundedness of {phvh}h∈H ′ in V (the sequence is weakly convergent) and the
monotonicity of A : V → V ∗. The third term thus vanishes in the limit since
phrhw → w in V (compatibility). In the limit, we finally obtain from (3) together
with the assumption in Definition 2.2 (i)

〈g, v〉 ≥ lim sup
h∈H ′

〈Ahvh, vh〉

≥ lim
h∈H ′

(
〈Aw, phvh − w〉+ 〈Aphvh, phrhw〉+ 〈Aphvh, w − phrhw〉

)
= 〈Aw, v − w〉+ 〈g, w〉 .

(4)

Taking w = v ± sz for arbitrary z ∈ V and s ∈ (0, 1] yields

〈A(v + sz), z〉 ≥ 〈g, z〉 and 〈A(v − sz), z〉 ≤ 〈g, z〉 ,

and with s → 0+, the hemicontinuity of A : V → V ∗ shows 〈Av, z〉 = 〈g, z〉 and
hence Av = g.

(ii) With Bh = p∗hBph, we find for all w ∈ V

〈Bhvh, rhw〉 = 〈Bphvh, phrhw〉 .

Since B : V → V ∗ is strongly continuous and phvh ⇀ v in V , it follows Bphvh → Bv
in V ∗. Because of phrhw → w in V , we come up with

〈Bhvh, rhw〉 → 〈Bv,w〉 .

Moreover, we have

〈Bhvh, vh〉 = 〈Bphvh, phvh〉 → 〈Bv, v〉 .



External approximation of nonlinear operator equations 5

(iii) With respect to the approximation of f ∈ V ∗, we observe for all w ∈ V

〈fh, rhw〉 = 〈f, phrhw〉 → 〈f, w〉

as well as (remember phvh ⇀ v in V )

〈fh, vh〉 = 〈f, phvh〉 → 〈f, v〉 .

�

Note that a best approximation rhv of v ∈ V in Vh always exists if dimVh <∞
but rh might be nonlinear. Instead of the best approximation, one may also take
a suitable projection. In [16, p. 28], the restriction operator on V is constructed
from its definition on the dense subset

⋃
h∈H Vh.

It arises the question, from which assumptions one can derive condition (i) in
Definition 2.2. An answer is given by

Proposition 2.4: Let {(Vh, ph, rh)}h∈H be a stable and admissible external ap-
proximation scheme for V and let A : V → V ∗ be hemicontinuous. Assume that all
Ah : Vh → V ∗

h (h ∈ H ) are monotone and that for any subsequence H ′ ⊆ H and
any {vh}h∈H ′ ∈ {Vh}h∈H ′, v ∈ V with phvh ⇀ ωv in F (h ∈ H ′)

lim sup
h∈H ′

〈Ahrhw, vh〉 ≥ 〈Aw, v〉 ∀w ∈ V . (5)

Then condition (i) in Definition 2.2 is fulfilled.

Proof : The monotonicity of Ah (h ∈ H ′) yields for arbitrary w ∈ V

〈Ahvh, vh〉 ≥ 〈Ahvh, vh〉 − 〈Ahvh −Ahrhw, vh − rhw〉

= 〈Ahrhw, vh − rhw〉+ 〈Ahvh, rhw〉 .

In the limit, we thus obtain by the assumption in Definition 2.2 (i) and with (5)

〈g, v〉 ≥ lim sup
h∈H ′

〈Ahvh, vh〉

≥ lim sup
h∈H ′

〈Ahrhw, vh − rhw〉+ lim
h∈H ′

〈Ahvh, rhw〉

≥ 〈Aw, v − w〉+ 〈g, w〉 .

Here, we have employed that phvh ⇀ ωv, phrhw → ωw in F (h ∈ H ′). The
hemicontinuity of A implies Av = g in V ∗ as in (4). �

We will also make use of the following notion.

Definition 2.5: Let {Vh}h∈H be a sequence of normed spaces. A sequence
{Th}h∈H of operators Th : Vh → V ∗

h is said to be coercive uniformly in h iff
there is a function γ : R+

0 → R with γ(z) →∞ as z →∞ such that for all h ∈ H

〈Thvh, vh〉 ≥ γ(‖vh‖Vh
)‖vh‖Vh

∀vh ∈ Vh .

We end this section by presenting a criterion for the existence of solutions to the
approximate problem.
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Lemma 2.6: Let Φ : RN → R
N be continuous. If there is R > 0 such that

Φ(v) · v ≥ 0 for all v ∈ R
N with ‖v‖RN = R then there exists u ∈ R

N with
‖u‖RN ≤ R and Φ(u) = 0.

Proof : The proof follows by contradiction from Brouwer’s fixed point theorem
(see, e.g., [6, Lemma 2.1 on p. 74]). �

Theorem 2.7 : Let Vh be a normed space with dimVh = N <∞ and let Ah, Bh :
Vh → V ∗

h be continuous operators such that Ah +Bh is coercive. For any fh ∈ V ∗
h ,

equation (2) then possesses a solution.

Proof : Let {ei}N
i=1 be a basis in Vh. Then there is a bijective mapping between

Vh and RN given by the representation

vh =
N∑

i=1

viei ∈ Vh , v = [v1, . . . , vN ] ∈ RN .

On RN , we define the norm ‖v‖RN := ‖vh‖Vh
and the mapping Φ(v) = [Φ1, . . . ,ΦN ]

with

Φi(v) := 〈Ahvh +Bhvh − fh, ei〉 (i = 1, . . . , N) .

Obviously, Φ : RN → R
N is continuous if Ah, Bh : Vh → Vh are continuous.

Because of the coercivity of Ah +Bh, we find (with a function γ : R+
0 → R with

γ(z) →∞ as z →∞)

Φ(v) · v = 〈Ahvh +Bhvh − fh, vh〉 ≥ γ(‖vh‖Vh
)‖vh‖Vh

− ‖fh‖V ∗
h
‖vh‖Vh

≥ 0

if ‖vh‖Vh
= ‖v‖RN is sufficiently large.

Lemma 2.6 now yields the existence of u ∈ R
N and thus of uh ∈ Vh such that

Φ(u) = 0. But then uh solves (2). �

In applications, the continuity of the approximate operators in a finite dimen-
sional space often follows already from the hemicontinuity of the operators A, B.

3. Convergence

The main result can be formulated as follows.

Theorem 3.1 : Suppose there is a consistent approximation of (A,B, f). Assume
further that (2) possesses a solution uh ∈ Vh for any h ∈ H , that the operators
Ah + Bh : Vh → V ∗

h (h ∈ H ) are coercive uniformly in h and that the sequence
{‖fh‖V ∗

h
}h∈H is bounded. Then there is a subsequence H ′ ⊆ H and an element

u ∈ V such that

phuh ⇀ ωu in F (h ∈ H ′) ;

the limit u satisfies (1).

Proof : With the coercivity assumption, we immediately find

γ(‖uh‖Vh
)‖uh‖Vh

≤ 〈Ahuh +Bhuh, uh〉 = 〈fh, uh〉 ≤ ‖fh‖V ∗
h
‖uh‖Vh

.
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Since γ(z) → z as z →∞ and since {‖fh‖V ∗
h
}h∈H is bounded, this shows also the

boundedness of {‖uh‖Vh
}h∈H .

Because of the stability of the external approximation scheme, then also the
sequence {phuh}h∈H ⊆ F is bounded. In view of the reflexivity of F , there is a
subsequence H ′ ⊆ H such that {phuh}h∈H ′ is weakly convergent in F (see, e.g.,
[4, Thm. III.27]). Together with the synchronisation condition in Definition 2.1 (ii),
there is an element u ∈ V such that

phuh ⇀ ωu in F (h ∈ H ′) .

With Definition 2.2 (ii), (iii), we now find for all w ∈ V

〈fh −Bhuh, rhw〉 → 〈f −Bu,w〉 , lim sup
h∈H ′

〈fh −Bhuh, uh〉 ≤ 〈f −Bu, u〉 .

With (2), it follows for all w ∈ V

〈Ahuh, rhw〉 = 〈fh −Bhuh, rhw〉 → 〈f −Bu,w〉

as well as

lim sup
h∈H ′

〈Ahuh, uh〉 = lim sup
h∈H ′

〈fh −Bhuh, uh〉 ≤ 〈f −Bu, u〉 .

Definition 2.2 (i) now provides Au = f −Bu in V ∗. �

4. Example

In order to keep the presentation short, we only consider a somewhat simple exam-
ple: a linear finite element method with quadrature for a one-dimensional quasilin-
ear Dirichlet problem without perturbation such that B = Bh ≡ 0.

Let ψ = ψ(x, t) : [0, 1] × R
+
0 → R be a given continuous function. We suppose

that t 7→ ψ(x, t)t is monotonically increasing for all x ∈ [0, 1] and that there is a
number p ∈ (1,∞) and constants µ, c > 0 such that

ψ(x, t)t2 ≥ µtp , |ψ(x, t)| ≤ c(1 + tp−2) ∀(x, t) ∈ [0, 1]× R+
0 .

This setting covers, e.g., the one-dimensional p-Laplacian.
For a given right-hand side f ∈ Lp∗(0, 1) (1/p + 1/p∗ = 1), then consider the

problem

−
(
ψ(x, |u′(x)|)u′(x)

)′
= f(x) (x ∈ (0, 1)) , u(0) = u(1) = 0 . (6)

The weak formulation of (6) leads to the operator equation (1) with the stan-

dard Sobolev space V = W 1,p
0 (0, 1) with norm ‖v‖V :=

(∫ 1
0 |v

′(x)|pdx
)1/p

and an
operator A : V → V ∗, defined for v, w ∈ V via

〈Av,w〉 :=
∫ 1

0
ψ(x, |v′(x)|)v′(x)w′(x)dx .
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The growth condition for ψ ensures that A maps V into V ∗. The hemicontinuity
of A is a direct consequence of the continuity of ψ. The right-hand side in (1) is
the functional v 7→

∫ 1
0 f(x)v(x)dx.

We partition [0, 1] equidistantly intoM ∈ N subintervals [xi, xi+1] (xi = i/M , i =
0, . . . ,M) of length h = 1/M and employ linear finite elements. When also applying
a simple rectangular rule (taking the right value) for the numerical evaluation of
the appearing integrals, we end up with a fully discrete approximation of (6) that
can be written in the form (2). This finite element method with quadrature is
equivalent to a finite difference scheme.

We take Vh as the space of grid functions vh = [vh,0, . . . , vh,M ]T ∈ RM+1, vh,0 =
vh,M = 0, and endow it with the norm

‖vh‖Vh
:=

(
h

M∑
i=1

|D−
i vh|p

)1/p

,

where D−
i vh := (vi − vi−1)/h. The dual V ∗

h can be identified with the (M − 1)-
dimensional space of grid functions gh = [gh,1, . . . , gh,M−1]T ∈ R

M−1 such that
gi = −D+

i wh := −(wh,i+1 −wh,i)/h (i = 1, . . . ,M − 1) for some wh ∈ Vh, the dual
pairing is given by

〈gh, vh〉 = h

M−1∑
i=1

gh,ivh,i = h

M−1∑
i=1

wh,iD
−
i vh .

The prolongation phvh of vh ∈ Vh is the piecewise linear interpolation of the
points (x0, vh,0), . . . , (xM , vh,M ). The restriction is defined via (rhv)i := v(xi)
(i = 0, . . . ,M) which is well-defined since W 1,p

0 (0, 1) is continuously embedded in
C ([0, 1]). It is easy to show that the sequence {(Vh, ph, rh)}M=1/h∈N builds a stable
and admissible external approximation scheme for V with F = V . In particular,
we find for all vh ∈ Vh

‖phvh‖V = ‖vh‖Vh
,

and the compatibility condition, i.e. phrhv → v in V , is easily shown by density.
If we would take a simpler prolongation such as the piecewise constant interpo-

lation of the values of vh as well as of their divided differences then we would come
up with ωv = (v, v′) ∈ F = Lp(0, 1)× Lp(0, 1).

A simple calculation shows for vh, wh ∈ Vh

〈Ahvh, wh〉 = h
M∑
i=1

ψ(xi, |D−
i vh|)D−

i vhD
−
i wh ,

and, loosely written, we have (Ahvh)i = −D+
i

(
ψ(xi, |D−

i vh|)D−
i vh

)
for i =

1, . . . ,M − 1. The assumptions on ψ allow to prove in particular that Ah maps
Vh into V ∗

h and is monotone.
In view of Theorem 2.7, the discrete problem is solvable: The continuity of Ah :

Vh → V ∗
h is a direct consequence of the continuity of ψ. The coercivity (uniform
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in h) follows from

〈Ahvh, vh〉 = h
M∑
i=1

ψ(xi, |D−
i vh|)(D−

i vh)2 ≥ µh
M∑
i=1

|D−
i vh|p = µ‖vh‖p

Vh
, vh ∈ Vh .

We now prove condition (5). Let phvh ⇀ v in V (for an arbitrary null sequence
of mesh sizes h with 1/h = M ∈ N) and let w ∈ V be arbitrary. We set D−

i w :=
(w(xi) − w(xi−1))/h (i = 1, . . . ,M) (remember w ∈ V = W 1,p

0 (0, 1) ↪→ C ([0, 1])).
A straightforward calculation shows

〈Ahrhw, vh〉 − 〈Aw, v〉 =

M∑
i=1

∫ xi

xi−1

(
ψ(xi, |D−

i w|)D
−
i w − ψ(x, |w′(x)|)w′(x)

)
dxD−

i vh

+
∫ 1

0
ψ(x, |w′(x)|)w′(x)

(
(phvh)′(x)− v′(x)

)
dx =: a1,h + a2,h .

(7)

Denoting by ψh the w.r.t. the first argument piecewise constant approximation of
ψ such that ψh(x, t) = ψ(xi, t) for x ∈ (xi−1, xi] (i = 1, . . . ,M) and t ∈ R

+
0 and

upon noting that (phrhw)′(x) = D−
i w for x ∈ (xi−1, xi) (i = 1, . . . ,M), we find for

the first term a1,h by applying Hölder’s inequality with 1/p+ 1/p∗ = 1

|a1,h|

≤

(
h

M∑
i=1

∣∣∣∣1h
∫ xi

xi−1

(
ψ(xi, |D−

i w|)D
−
i w − ψ(x, |w′(x)|)w′(x)

)
dx

∣∣∣∣p∗
)1/p∗

‖vh‖Vh

≤

(
M∑
i=1

∫ xi

xi−1

∣∣∣ψ(xi, |D−
i w|)D

−
i w − ψ(x, |w′(x)|)w′(x)

∣∣∣p∗dx)1/p∗

‖vh‖Vh

=
(∫ 1

0

∣∣∣ψh(x, |(phrhw)′(x)|)(phrhw)′(x)− ψ(x, |w′(x)|)w′(x)
∣∣∣p∗dx)1/p∗

‖vh‖Vh
.

Since the sequence {phvh} is weakly convergent in V it is also bounded in V such
that ‖vh‖Vh

= ‖phvh‖V ≤ c for some c > 0. It remains to analyse the integral on the
right-hand side of the foregoing estimate. This integral, however, converges towards
zero, which follows from the continuity of ψ, the continuity of the Nemyzkii operator
corresponding to ψ as a mapping from Lp(0, 1) into Lp∗(0, 1) (see [19, Prop. 26.6
on p. 561] and remember the growth condition for ψ) as well as phrhw → w in
V = W 1,p

0 (0, 1), i.e. (phrhw)′ → w′ in Lp(0, 1).
For the second term a2,h in (7), we immediately have (in view of phvh ⇀ v in V )

a2,h = 〈Aw, phvh − v〉 → 0 .

With respect to the right-hand side, we have to be somewhat careful as f ∈
Lp∗(0, 1) does not allow to take point values. Instead, we may take

fh,i =
1
h

∫ xi+1

xi

f(x)dx , i = 1, . . . ,M − 1 .
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One can easily prove that fh is in V ∗
h . Moreover, for arbitrary vh ∈ Vh, we have

〈fh, vh〉 =
M−1∑
i=1

∫ xi+1

xi

f(x)dx vh,i = h

M∑
i=1

∫ 1

xi

f(x)dxD−
i vh

and thus (with 1/p+ 1/p∗ = 1)

‖fh‖V ∗
h

= sup
vh∈Vh\{0}

〈fh, vh〉
‖vh‖Vh

≤

(
h

M∑
i=1

∣∣∣∣∫ 1

xi

f(x)dx
∣∣∣∣p∗
)1/p∗

≤ ‖f‖Lp∗ (0,1) ,

which shows the boundedness of the sequence {‖fh‖Vh
} as required in Theorem 3.1.

It remains to prove condition (iii) in Definition 2.2. Let phvh ⇀ v in V , which
implies that the sequence {phvh} is bounded in V . Since

〈fh, vh〉 − 〈f, phvh〉 =
M−1∑
i=1

∫ xi

xi−1

f(x)(vh,i − (phvh)(x))dx

=
M−1∑
i=1

∫ xi

xi−1

f(x)(phvh)′(x)(xi − x)dx

and thus

|〈fh, vh〉 − 〈f, phvh〉| ≤ h

∫ 1

0
|f(x)(phvh)′(x)|dx ≤ h‖f‖Lp∗ (0,1)‖phvh‖V → 0 ,

we obtain

〈fh, vh〉 − 〈f, v〉 = 〈fh, vh〉 − 〈f, phvh〉+ 〈f, phvh − v〉 → 0 .

After all, Proposition 2.4 and Theorem 3.1 can be applied. This shows the ex-
istence of a weak solution u ∈ V = W 1,p

0 (0, 1) to (6) and a subsequence, denoted
by h′, such that the piecewise linear interpolations of the discrete solutions uh′

converge weakly in V towards u.
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