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STABILITY AND ERROR OF THE VARIABLE TWO-STEP
BDF FOR SEMILINEAR PARABOLIC PROBLEMS

ETIENNE EMMRICH

Abstract. The temporal discretisation of a moderate semilinear parabolic
problem in an abstract setting by the two-step backward differentiation
formula with variable step sizes is analysed. Stability as well as optimal
smooth data error estimates are derived if the ratios of adjacent step sizes
are bounded from above by 1.91.
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1. Introduction

Whereas multistep methods with variable step sizes are widely used in numeri-
cal computations, their analysis is still not complete. Because of the non-uniform
grid, non-constant coefficients appear in the resulting scheme. Theoretical tools
developed for difference equations with constant coefficients are therefore not
applicable. Among the abundance of methods, the backward differentiation for-
mulae (BDF) seem to be of particular interest. Especially the two-step BDF,
which is strongly A-stable for constant time steps and of second order, plays an
important rôle in the integration of non-stationary problems.

Stability and convergence of the variable two-step BDF has been studied by
Grigorieff in a series of papers [8, 9, 10]. In particular, zero-stability has been
shown for step size ratios less than 1 +

√
2 ≈ 2.414. For ratios bounded from

above by (1 +
√

3)/2 ≈ 1.366, A0-stability as well as optimal error estimates
in the case of a linear parabolic problem in a Hilbert space setting with a self-
adjoint, strongly positive operator have been proven. Becker [1] could improve
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the bound up to (2 +
√

13)/3 ≈ 1.868. However, the stability and error con-
stant may then depend on the sequence of step size ratios. The problem under
consideration in [1] is again a linear parabolic one with a second order elliptic
differential operator that might be time-dependent. A(θ)-stability type results
with θ ≤ π/3 have been provided in Grigorieff [9]. From these results, smooth
as well as non-smooth data error estimates of optimal order could be derived
for a linear homogeneous evolution equation in a Banach space setting with
an operator that is the infinitesimal generator of a holomorphic semigroup. A
smooth data error estimate in a similar situation, but with quite more restric-
tive assumptions on the partition of the time interval, has been obtained in
Le Roux [11]. Stability estimates for rational multistep methods on uniform and
quasi-uniform time grids approximating again a holomorphic semigroup can be
also found in Palencia/Garćıa-Archilla [17]. So far, the time discretisation of
nonlinear problems by means of the two-step BDF with variable time steps has
not been considered, except the zero-stability result by Grigorieff [8] that also
applies to Lipschitz-continuous nonlinear perturbations.

Other time discretisation schemes, single- as well as multistep methods with
constant and sometimes with variable time steps, have been studied for linear
problems by many authors. For an overview, we refer to Thomée [20], Fu-
jita/Suzuki [6], and the references cited therein. Single-step methods applied to
semilinear problems have been considered for instance in Crouzeix/Thomée [2],
Slodička [18, 19], Lubich/Ostermann [13, 14], Ostermann/Thalhammer [16], and
González et al. [7]. In Estep/Larsson [5], the discontinuous Galerkin method has
been used for the time discretisation of semilinear problems. The two-step BDF
with constant step sizes applied to a nonlinear problem has been considered in
Zlámal [22]. Recently, we have analysed its application to the incompressible
Navier-Stokes problem (cf. [3, 4]).

In this paper, we are concerned with the time discretisation of the abstract
semilinear parabolic problem

u′ +Au+ g(u) = f , u(0) = u0 ,

where A : V → V ∗ is defined via 〈Au, v〉 = a(u, v) by a continuous, strongly
positive bilinear form a(·, ·) : V ×V → R on a real Hilbert space V with its dual
V ∗, and g : V → V ∗ is some moderate nonlinearity specified below. Relying on
Hilbert space methods, we shall derive stability and optimal smooth data error
estimates for the second order variable two-step BDF in natural norms. For this,
let the time interval [0, T ] for given N ∈ N be partitioned via

0 = t0 < t1 < · · · < tN = T , τn := tn − tn−1, rn := τn/τn−1 .

Throughout this paper, we assume that rn < R with 1 < R < 1 +
√

2. For
suitably given values u0, u1 and approximations fn ∼ f(tn), we consider the
nonlinear time-discrete problem

D2u
n +Aun + g(un) = fn , n = 2, . . . , N ,
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to compute approximations un ∼ u(tn) with the backward divided difference

D2u
n :=

(
1 +

rn
1 + rn

)
D1u

n − rn
1 + rn

D1u
n−1 , D1u

n :=
un − un−1

τn
.

Note that

D2u
n =

1
τn

(
1 + 2rn
1 + rn

un − (1 + rn)un−1 +
r2n

1 + rn
un−2

)
,

and for an equidistant partition with τn ≡ τ , we have the well-known formula

D2u
n =

1
τ

(
3
2
un − 2un−1 +

1
2
un−2

)
.

If rn = 0 then, formally, D2 degenerates to D1, which corresponds to an occa-
sional Euler-step in the computation.

Our stability and error estimates can be obtained for step size ratios less than
R̄ ≈ 1.910, where R̄ is a root of

ψ(R) := (R+ 1)4 − 9R(R− 1)2
(
R+ 1

3

)2
. (1.1)

This also improves slightly Becker’s bound. As in Becker [1], the appearing
stability and error constant may depend, besides the usual exponential depen-
dence on the time T and problem parameters, on the sequence of step size ratios
through exp(cΓN ) with some c > 0 independent on problem parameters and

ΓN :=
N−2∑

j=2

[rj+2 − rj ]− , [a]− := (|a| − a)/2 .

Note that ΓN = 0 if {rn} is monotonically increasing. Regarding the upper
bound on the ratio of adjacent step sizes, we remark that the method of proof
relies, more or less, upon considering each time step separately. We believe that
the restriction on the step size ratios is only sufficient. A necessary condition
for stability and error estimates to hold should rely upon a suitable combination
of all ratios rather than on each ratio separately, as is observed in Grigorieff [8]
with respect to the zero-stability.

As usual, we have to require some regularity of the exact solution for proving
smooth data error estimates. In any case, such regularity leads to higher com-
patibility conditions on the data (cf. Temam [15]). Even for linear problems,
such conditions can be hard to fulfil depending on the concrete space V , as is for
instance the case for the Stokes problem because of the incompressibility condi-
tion that is contained in V . However, the only non-smooth data error estimate
for a general grid we know of is due to Grigorieff [9] in the linear homogeneous
case. Becker [1] has also derived non-smooth data error estimates for a special
grid. It remains open to find a path to take advantage of the parabolic smoothing
property in the non-homogeneous and semilinear case.

We do not consider a fully discrete problem as the results are independent of
a possible spatial approximation.
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The paper is organised as follows: In Section 2, we give a precise description
of the problem and its discretisation. In Section 3, we derive stability and error
estimates for the linear case. The nonlinear case is studied in Section 4. A
discrete Gronwall lemma is provided in Appendix A. Solvability of the original
and time-discrete problem is proved in Apendix B.

2. The semilinear problem and its time discretisation

Let V ⊆ H ⊆ V ∗ be a Gelfand triple, where (V, ‖ · ‖) is a real Hilbert space
that is dense and continuously embedded in the Hilbert space (H, (·, ·), | · |). The
dual V ∗ of V is equipped with the usual norm ‖f‖∗ := supv∈V \{0}〈f, v〉/‖v‖,
where 〈·, ·〉 denotes the dual pairing. In particular, there is some α > 0 such
that

|v| ≤ α ‖v‖ ∀v ∈ V , ‖f‖∗ ≤ α |f | ∀f ∈ H . (2.1)
Due to the properties of a(·, ·), there are constants β ≥ µ > 0 with

|a(u, v)| ≤ β ‖u‖ ‖v‖ , a(v, v) ≥ µ ‖v‖2 (2.2)

for all u, v ∈ V . For the skew-symmetric part of a(·, ·), we assume

|a(u, v) − a(v, u)| ≤ γ ‖u‖ |v| (2.3)

for all u, v ∈ V with some γ ≥ 0. If a(·, ·) is symmetric then γ = 0. The
foregoing properties of the underlying spaces and bilinear form will be assumed
tacitly.

Let BM := {v ∈ V : |v| ≤ M} for given M > 0 and let g : V → V ∗ be a
(possibly nonlinear) function that satisfies the following structural assumptions
we will recall explicitly when needed:

(H1) There exist some s1 ∈ (0, 1] and a constant L1 ≥ 0 such that for all
u ∈ V ,

‖g(u)‖∗ ≤ L1 (1 + |u|)s1 ‖u‖1−s1 .

(H2) There exists some s2 ∈ (0, 1] such that for every M > 0 there is a
constant L2 = L2(M) ≥ 0 and for all u, v ∈ BM ,

‖g(u) − g(v)‖∗ ≤ L2 |u− v|s2 ‖u− v‖1−s2 .

(H3) The function g is weakly sequentially continuous from V into V ∗, i.e.,
um ⇀ u in V implies g(um) ⇀ g(u) in V ∗ as m→ ∞.

We remark that (H1) includes (with s1 = 1) the case ‖g(u)‖∗ ≤ const. Note
that the constant L2 in the Lipschitz-like condition (H2) may increase with the
radius M . Furthermore, if the embedding V ↪→ H is compact then (H2) implies
strong continuity of g : V → V ∗ and hence (H3). Instead of (H1), (H2), and
(H3), we may, alternatively, assume g(V ) ⊆ H and the following:



Stability and error of the variable two-step BDF 37

(̃H1) There exists a constant L̃1 ≥ 0 such that for all u ∈ V ,

|g(u)| ≤ L̃1 (1 + ‖u‖) .

(̃H2) For every M > 0 there is a constant L̃2 = L̃2(M) ≥ 0 such that for all
u, v ∈ BM ,

|g(u) − g(v)| ≤ L̃2 ‖u− v‖ .

(̃H3) In addition to (H3), there holds: um ⇀ u in L2(0, T ;V ) and um → u in
L2(0, T ;H) implies g(um) ⇀ g(u) in L2(0, T ;H) as m→ ∞.

Note again that L̃2 may depend on the radius M .
For a Banach space X and a time interval S ⊆ R, let Lp(S;X) (p ∈ [1,∞])
be the usual spaces of Bochner integrable functions. The discrete counterparts
for functions defined on a time grid are denoted by lp(0, T ;X). Note that u ∈
L2(0, T ;V ), u′ ∈ L2(0, T ;V ∗) implies u ∈ C([0, T ];H) in the sense that u is
almost everywhere in S equal to an abstract function that is continuous on
[0, T ] with respect to the strong convergence in H . With u′, the derivative in
the distributional sense is meant.

The problem we are concerned with then reads as

Problem (P ) For given u0 ∈ H and f ∈ L2(0, T ;V ∗), find u ∈ L2(0, T ;V )
with u′ ∈ L2(0, T ;V ∗) such that for all v ∈ V and almost everywhere in (0, T )

d

dt
(u(t), v) + a(u(t), v) + 〈g(u(t)), v〉 = 〈f(t), v〉 (2.4)

holds with u(0) = u0.

Note that 〈u′(t), v〉 = d
dt (u(t), v) holds for all u ∈ L2(0, T ;V ) with u′ ∈

L2(0, T ;V ∗) and all v ∈ V in the distributional sense on (0, T ).
For what we have in mind, we give the following

Standard example (Dirichlet problem for a second order PDE).

Let V = H1
0 (Ω) and H = L2(Ω) be the usual Sobolev and Lebesgue space,

respectively, for some bounded domain Ω ⊂ Rd (d ∈ N) with sufficiently smooth
boundary. The bilinear form a(·, ·) is defined by

a(u, v) :=
∫

Ω




d∑

i,j=1

aij
∂u

∂xi

∂v

∂xj
+

d∑

i=1

bi
∂u

∂xi
v + cuv


 dx ,

where aij , bi, c are sufficiently smooth functions in x ∈ Ω with (aij) being
symmetric and uniformly positive definite and with

ess sup
x∈Ω

(
c(x) − 1

2

d∑

i=1

∂bi(x)
∂xi

)
≥ 0 . (2.5)
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The nonlinearity might be given by a Lipschitz-continuous real function g = g(s)
with at most linear growth,

|g(s)| ≤ c (1 + |s|) , s ∈ R ,

for some constant c, although more complicated nonlinearities are allowed. In
virtue of the Poincaré-Friedrichs inequality, the structural assumptions (̃H1)
and (̃H2) are fulfilled. Because of the compact embedding of V into H and the
Lipschitz continuity, g becomes a strongly continuous mapping from V into H
and is continuous from L2(0, T ;H) into L2(0, T ;H). Thus (̃H3) is fulfilled. �

We shall remark that a bilinear form that only satisfies a G̊arding inequality
can be also treated by collecting the disturbing linear terms into g, and so
condition (2.5) is not important. Let us finally note that V and H can be finite
dimensional as is the case when first discretising in space and afterwards in
time. For the spatial approximation, a conforming finite element method might
be used. For more details, we refer to Thomée [20] and the references cited
therein.

With respect to the solvability of Problem (P ), we have

Theorem 1. Problem (P ) admits a unique solution u ∈ L2
(
0, T ;V

)⋂
C
(
[0, T ];

H
)

with u′ ∈ L2(0, T ;V ∗) if (H1), (H2), and (H3) or, alternatively, (̃H1), (̃H2),

and (̃H3) hold true.

A proof will be given in Appendix B. The time discretisation of Problem (P )
reads as

Problem (Pτ ). For given u0, u1 ∈ H and {fn} ∈ l2(0, T ;V ∗), find un ∈ V
(n = 2, 3, . . . , N ) such that for all v ∈ V ,

(D2u
n, v) + a(un, v) + 〈g(un), v〉 = 〈fn, v〉 . (2.6)

We may suppose u0 = u0 and compute u1 by the implicit Euler method, although
our results do not require a particular method for the first step. With respect
to the solvability of Problem (Pτ ), we have

Theorem 2. Assume (H1), (H2) or, alternatively, (̃H1), (̃H2), and (H3). Prob-
lem (Pτ ) admits a unique solution if τmax := max

n=1,...,N
τn is sufficiently small.

In the linear case, there is no restriction on τmax. A proof is provided in
Appendix B.
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3. Stability and error in the linear case

In the following, let c > 0 be a generic constant that does not depend on prob-
lem parameters (except R̄) whereas C > 0 may depend on T , R, the sequence of
step size ratios as well as on constants that appear in the assumptions on a(·, ·)
and g(·). Note the conventions

n∑
j=m

xj := 0 and
n∏

j=m

xj := 1 if m > n.

Theorem 3. If R < R̄, the solution to Problem (Pτ ) with g(u) ≡ 0 is stable in
l∞(0, T ;H) and l2(0, T ;V ). The following estimate holds for n = 2, 3, . . . , N :

|un|2 +
n∑

j=2

τj ‖uj‖2 ≤ C


|u0|2 + |u1|2 + τ2 ‖u1‖2 +

n∑

j=2

τj
1 + rj

‖f j‖2
∗


 . (3.1)

Proof. The proof follows mainly the ideas of Becker [1]. We test (2.6) with

un
δ := un + δτnD1u

n = (1 + δ)un − δun−1

for some δ > 0 specified later and multiply by 2τn/(1 + rn). The proof then
consists of three steps:

i) estimation of 2τn (D2u
n, un

δ ) /(1 + rn),
ii) estimation of 2τna(un, un

δ )/(1 + rn) and 2τn〈fn, un
δ 〉/(1 + rn), and

iii) final derivation of the assertion.

ad i). We firstly observe by simple calculations and Young’s inequality that

2τn
1 + rn

(D2u
n, un

δ )

=
τn

1 + rn
D2|un|2 + (1 + 2δ)

1 + 2rn
(1 + rn)2

|τnD1u
n|2

− r2n
(1 + rn)2

∣∣∣τn−1D1u
n−1
∣∣∣
2

− 2(1 + δ)
r2n

(1 + rn)2
(
τnD1u

n, τn−1D1u
n−1
)

≥ τn
1 + rn

D2|un|2 +Aδ(rn) |τnD1u
n|2 −Bδ(rn)

∣∣∣τn−1D1u
n−1
∣∣∣
2

,

where

Aδ(rn) :=
1 + 2rn − r2n + δ

(
2 + 4rn − r2n

)

(1 + rn)2
, Bδ(rn) := (2 + δ)

r2n
(1 + rn)2

.
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Summation gives

2
n∑

j=2

τj
1 + rj

(
D2u

j , uj
δ

)
≥

n∑

j=2

τj
1 + rj

D2|uj |2 +Aδ(rn) |τnD1u
n|2

+
n−1∑

j=2

(Aδ(rj) −Bδ(rj+1)) |τjD1u
j |2 −Bδ(r2) |τ1D1u

1|2 . (3.2)

Since r 7→ Aδ(r) is decreasing whereas r 7→ Bδ(r) is increasing, we find

Aδ(rj) −Bδ(rj+1) ≥ Aδ(R) −Bδ(R) =
1 + 2R− 3R2 + 2δ(1 + 2R−R2)

(1 +R)2
.

For Aδ(rj) −Bδ(rj+1) ≥ 0 to hold, δ is taken as

δ̂ = δ̂(R) = −
1
2

1 + 2R− 3R2

1 + 2R−R2
= −

3(R− 1)
(
R+ 1

3

)

2(R− 1 −
√

2)(R − 1 +
√

2)
,

taking into account that 1 < R < 1 +
√

2. We then have for 1 < R < R̄ that

1
2
< Aδ̂(R) = Bδ̂(R) =

R2(R− 3− 2
√

3)(R− 3 + 2
√

3)
2(1 +R)2(R − 1 −

√
2)(R − 1 +

√
2)
< 2 .

For the first term of the right-hand side of (3.2), we have
n∑

j=2

τj
1 + rj

D2|uj |2 =
n∑

j=2

(
1 + 2rj

(1 + rj)2
|uj |2 − |uj−1|2 +

r2j
(1 + rj)2

|uj−2|2
)

=
1 + 2rn

(1 + rn)2
|un|2 −

r2n−1

(1 + rn−1)2
|un−1|2

+
n−2∑

j=2

(
1 + 2rj

(1 + rj)2
− 1 +

r2j+2

(1 + rj+2)2

)
|uj |2

− 1 + 2r3
(1 + r3)2

|u1|2 +
r22

(1 + r2)2
|u0|2 . (3.3)

Furthermore, there holds for some r̄ between rj and rj+2

1 + 2rj
(1 + rj)2

− 1 +
r2j+2

(1 + rj+2)2
=

r2j+2

(1 + rj+2)2
−

r2j
(1 + rj)2

=
d

dr

((
r

1 + r

)2
)

|r=r̄

(rj+2 − rj) ≥ −
8
27

[rj+2 − rj ]− . (3.4)

This lower bound follows since the nonnegative function r 7→ d
dr

(
r2/(1 + r)2

)

takes its maximum value 8/27 at r = 1/2. Using monotonicity arguments, we
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finally obtain from (3.2), (3.3), and (3.4)

2
n∑

j=2

τj
1 + rj

(
D2u

j , uj

δ̂

)
≥ 1 + 2R

(1 +R)2
|un|2 − R2

(1 +R)2
|un−1|2 +

1
2
|un − un−1|2

−


|u1|2 + 2 |u1 − u0|2 +

8
27

n−2∑

j=2

[rj+2 − rj ]−|uj |2

 , (3.5)

which makes sense since 1 + 2R > R2 as 1 < R < 1 +
√

2.

ad ii). We may prove the identity

2a(un, un
δ̂
) =

1

1 + δ̂
a
(
un

δ̂
, un

δ̂

)
+ (1 + δ̂) a(un, un) −

δ̂2

1 + δ̂
a
(
un−1, un−1

)

− δ̂

1 + δ̂

(
a(un

δ̂
, un−1) − a(un−1, un

δ̂
)
)
. (3.6)

With (2.3), (2.2), and Young’s inequality, we find

δ̂
∣∣∣a(un

δ̂
, un−1) − a(un−1, un

δ̂
)
∣∣∣ ≤ δ̂γ ‖un

δ̂
‖ |un−1| ≤ 1

2
a(un

δ̂
, un

δ̂
) +

δ̂2γ2

2µ
|un−1|2 .

So it follows from (3.6) that

2a(un, un
δ̂
) ≥ 1

2(1 + δ̂)
a
(
un

δ̂
, un

δ̂

)
+ (1 + δ̂) a(un, un) − δ̂2

1 + δ̂
a
(
un−1, un−1

)

− δ̂2γ2

2µ(1 + δ̂)
|un−1|2 . (3.7)

Furthermore, we have with (2.2) and Young’s inequality

2〈fn, un
δ̂
〉 ≤ 2‖fn‖∗‖un

δ̂
‖ ≤ 2(1 + δ̂)

µ
‖fn‖2

∗ +
1

2(1 + δ̂)
a(un

δ̂
, un

δ̂
) ; (3.8)

the term a
(
un

δ̂
, un

δ̂

)
/(2(1 + δ̂)) will be absorbed within (3.7).

With (3.5), (3.7), and (3.8), we now obtain

1 + 2R
(1 +R)2

|un|2 − R2

(1 +R)2
|un−1|2 +

1
2
|un − un−1|2 +

τn(1 + δ̂)
1 + rn

a(un, un)

+
n−1∑

j=2

τj
1 + rj

(
1 + δ̂ − δ̂2

1 + δ̂

rj+1(1 + rj)
1 + rj+1

)
a(uj , uj)

≤ |u1|2 + 2 |u1 − u0|2 +
δ̂2

1 + δ̂

τ2
1 + r2

a
(
u1, u1

)
+

8
27

n−2∑

j=2

[
rj+2 − rj

]
−
|uj |2
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+
δ̂2γ2

2µ(1 + δ̂)

n∑

j=2

τj
1 + rj

|uj−1|2 +
2(1 + δ̂)

µ

n∑

j=2

τj
1 + rj

‖f j‖2
∗ . (3.9)

ad iii). Since rj+1(1 + rj)/(1 + rj+1) ≤ R, we need that 1 + δ̂ > Rδ̂2/(1 + δ̂),
i.e.,

R <

(
1 + δ̂

δ̂

)2

=
(R+ 1)4

9(R− 1)2
(
R+ 1

3

)2 , (3.10)

in order to prove the stability result. Unfortunately, relation (3.10), which is
equivalent to ψ(R) > 0 (see (1.1)), is only satisfied for R < R̄. With

σ(R) :=
1

1 +R

(
1 + δ̂ −R

δ̂2

1 + δ̂

)
=

ψ(R)
2(1 +R)3(1 + 2R−R2)

> 0 ,

using 1 < R < R̄, and in virtue of (3.9), we come up with

1 + 2R
(1 +R)2

|un|2 +
1
2
|un − un−1|2 +

1 + δ̂

1 +R
µ τn ‖un‖2 + µσ(R)

n−1∑

j=2

τj ‖uj‖2

≤
R2

(1 +R)2
|un−1|2 +Kn , (3.11)

where

Kn := c




n−2∑

j=2

[
rj+2 − rj

]
−
|uj |2 +

γ2

µ

n−1∑

j=2

τj+1 |uj |2

+ |u0|2 + |u1|2 + βτ2 ‖u1‖2 +
1
µ

n∑

j=2

τj
1 + rj

‖f j‖2
∗


 .

Let m∗ = m∗(m) be such that |um∗ | = max
l=1,...,m

|ul| for m = 2, 3, . . . , N . If

m∗ ≥ 2, it follows from (3.11) with n = m∗ and because of Km∗ ≤ Km the
estimate

1 + 2R
(1 +R)2

|um∗
|2 ≤ R2

(1 +R)2
|um∗−1|2 +Km∗ ≤ R2

(1 +R)2
|um∗

|2 +Km

that leads for R < 1 +
√

2 to

|um∗
|2 ≤ (1 +R)2

1 + 2R−R2
Km .

This last estimate holds also true if m∗ = 1. With n = m in (3.11) and |um−1| ≤
|um∗ |, we thus have (changing m, n again) for n = 2, 3, . . . , N

1 + 2R
(1 +R)2

|un|2 +
1
2
|un − un−1|2 +

1 + δ̂

1 +R
µ τn ‖un‖2 + µσ(R)

n−1∑

j=2

τj ‖uj‖2
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≤
(

R2

1 + 2R−R2
+ 1
)
Kn =

1 + 2R
1 + 2R−R2

Kn .

Taking into account that 1 < R < R̄ ≈ 1.91 yields

|un|2 + |un − un−1|2 + µ τn ‖un‖2 + µψ(R)
n−1∑

j=2

τj ‖uj‖2 ≤ cKn . (3.12)

It follows from Lemma 1 in Appendix A that

|un|2 + |un − un−1|2 + µ τn ‖un‖2 + µψ(R)
n−1∑

j=2

τj ‖uj‖2

≤ cΛn


|u0|2 + |u1|2 + βτ2‖u1‖2 +

1
µ

n∑

j=2

τj
1 + rj

‖f j‖2


 , (3.13)

where

Λn =
(

1 +
cγ2τn
µ

) n−2∏

j=2

(
1 + c

[
rj+2 − rj

]
−

+
cγ2τj+1

µ

)
≤ exp

(
cΓn +

cγ2tn
µ

)

(3.14)

with Γn =
n−2∑

j=2

[
rj+2 − rj

]
−

(n = 2, . . . , N). This proves the assertion. �

We shall remark that Becker’s proof (cf. [1]) relies upon the identity

2a(un, un
δ̂
) = δ̂ a

(
un − un−1, un − un−1

)
+ (2 + δ̂) a(un, un) − δ̂ a(un−1, un−1)

−δ̂
(
a(un, un−1) − a(un−1, un)

)

instead of (3.6), which finally leads to the condition 2+ δ̂ > Rδ̂ instead of (3.10).
This condition is fulfilled if R < (2 +

√
13)/2 ≈ 1.868 < R̄ ≈ 1.910.

Remark 1. With the natural restriction

Rj
2f :=

(
1 +

rj
1 + rj

)
Rj

1f − rj
1 + rj

Rj−1
1 f , Rj

1f :=
1
τj

∫ tj

tj−1

f(t)dt ,

we obtain for f j = Rj
2f by standard arguments that

n∑

j=2

τj
1 + rj

‖f j‖2
∗ ≤ c

∫ tn

0

‖f(t)‖2
∗ dt , n = 2, . . . , N .

Note that Rj
1u

′ = D1u(tj) and Rj
2u

′ = D2u(tj) for sufficiently smooth u.
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The constant C in (3.1) is quantified through (3.13) and (3.14).

Theorem 4. Let fn = Rn
2f and f ′ − u′′, f ′′ − u′′′ ∈ L2(0, T ;V ∗). If R < R̄

then the error en = u(tn) − un (n = 2, 3, . . . , N) to Problem (Pτ ) with g(u) ≡ 0
satisfies

|en|2 +
n∑

j=2

τj ‖ej‖2 ≤ C

(
|e0|2 + |e1|2 + τ2 ‖e1‖2

+
n∑

j=2

(
sgn(rj)

(
τ4
j

∫ tj

tj−1

‖f ′′(t) − u′′′(t)‖2
∗ dt+ τ4

j−1

∫ tj−1

tj−2

‖f ′′(t) − u′′′(t)‖2
∗ dt

)

+ (1 − sgn(rj)) τ2
j

∫ tj

tj−1

‖f ′(t) − u′′(t)‖2
∗ dt

) )
. (3.15)

Proof. We commence with the corresponding error equation

(D2e
n, v) + a(en, v) = 〈ρn, v〉 ∀v ∈ V

that follows from (2.4) and (2.6) with the consistency error

ρn = D2u(tn) − u′(tn) + f(tn) − Rn
2f = In2 (f ′′ − u′′′) , (3.16)

where

In2w :=
1

2(1 + rn)

( 1
τn

∫ tn

tn−1

(tn − t)
(
(1 + 2rn)(t− tn−1) + τn

)
w(t) dt

+
rn
τn−1

∫ tn−1

tn−2

(t− tn−2)2 w(t) dt

)
.

If rn = 0 (occasional Euler step), then D2 and R2 degenerate to D1 and R1

respectively, and we come up with

ρn = D1u(tn) − u′(tn) + f(tn) − Rn
1f = In1 (f ′ − u′′) , (3.17)

where

In1w :=
1
τn

∫ tn

tn−1

(t− tn−1)w(t) dt .

The assertion follows from Theorem 3 because of
τj

1 + rj
‖Ij2w‖2

∗ ≤ c τ4
j

∫ tj

tj−1

‖w(t)‖2
∗ dt+ c τ4

j−1

∫ tj−1

tj−2

‖w(t)‖2
∗ dt

and
τj

1 + rj
‖Ij1w‖2

∗ ≤ c τ2
j

∫ tj

tj−1

‖w(t)‖2
∗ dt .

�
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Remark 2. As one can see from estimate (3.15), it suffices to start with any
first order scheme, and even during the computation, an occasional change to
the implicit Euler scheme (rn = 0) of at most a fixed number of times does not
affect the second order convergence. Those changes might be useful as they give
some stabilisation. Estimate (3.15) also reflects the lower order of the implicit
Euler method.

A more precise estimate is again given by (3.13) and (3.14), replacing un by
en and fn by ρn. This shows the dependence of the error constant on problem
parameters. The use of the natural restriction is only for simplicity. Other-
wise, there appears the additional error term

∑
j τj‖f j −Rj

2f‖2
∗. The regularity

assumptions f ′ − u′′, f ′′ − u′′′ ∈ L2(0, T ;V ∗) are fulfilled if e. g. A2u0 ∈ H
and Af, f ′ ∈ L2(0, T ;V ) or if f, f ′, f ′′ ∈ L2(0, T ;V ∗) and u0, f(0) − Au0 ∈ V ,
f ′(0) +Af(0) +A2u0 ∈ H .

4. Stability and error in the nonlinear case

Theorem 5. Under the assumption (H1) (or, alternatively, (̃H1)), the solution
to Problem (Pτ ) is stable in l∞(0, T ;H) and l2(0, T ;V ) if R < R̄ and τmax is
sufficiently small. The following estimate holds for n = 2, 3, . . . , N :

|un|2 +
n∑

j=2

τj ‖uj‖2 ≤ C


|u0|2 + |u1|2 + τ2 ‖u1‖2 +

n∑

j=2

τj
1 + rj

‖f j‖2
∗ + tn


 .

(4.1)

Proof. We reconsider the proof of Theorem 3. For the term 〈g(un), un
δ̂
〉, which

describes the nonlinearity, we obtain from (H1) for arbitrary ε ∈ (0, 1) with the
Cauchy-Schwarz and Young inequality

2 |〈g(un), un
δ̂
〉| ≤ 2 ‖g(un)‖∗ ‖un

δ̂
‖ ≤ 2L1(1 + |un|)s1 ‖un‖1−s1 ‖un

δ̂
‖

≤ C1

(
1 + |un|2

)
+ ε a(un, un) +

ε

2(1 + δ̂)
a(un

δ̂
, un

δ̂
) ,

where

C1 =





2εµs1
1 − s1

(
2(1− s1)(1 + δ̂)L2

1

ε2µ2

)1/s1

if s1 6= 1 ,

4(1 + δ̂)L2
1

εµ
if s1 = 1 .

(4.2)

Changing the coefficients in the right-hand side of (3.8) appropriately such that

2〈fn, un
δ̂
〉 ≤ 2(1 + δ̂)

(1 − ε)µ
‖fn‖2

∗ +
1 − ε

2(1 + δ̂)
a(un

δ̂
, un

δ̂
) ,
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the terms with a(un
δ̂
, un

δ̂
) can be absorbed in view of (3.7). The additional term

ε a(un, un) (which does not appear if s1 = 1) requires, however, to modify the
crucial condition (3.10) that came from (3.9). Here, we need that 1 + δ̂ − ε >

Rδ̂2/(1 + δ̂). For any R < R̄, this can be fulfilled by taking ε sufficiently small.
The remaining term C1

(
1 + |un|2

)
leads to a change of the right-hand sides in

(3.11) and the following estimates: We take

Kn = c




n−2∑

j=2

[
rj+2 − rj

]
−
|uj |2 +

n−1∑

j=2

(
C1τj +

γ2τj+1

µ

)
|uj |2 + C1τmax |un|2

+C1tn + |u0|2 + |u1|2 + βτ2 ‖u1‖2 +
1

(1 − ε)µ

n∑

j=2

τj
1 + rj

‖f j‖2
∗


 ,

which makes the application of Corollary 1 in Apendix A and thus sufficiently
small τmax necessary. It follows (3.13) with the additional term cΛnC1tn on the
right-hand side and, instead of (3.14), with

Λn ≤ 1
1 − cC1τmax

exp
(
c

Γn + C1tn + γ2tn/µ

1 − cC1τmax

)
.

Suppose now that g satisfies (̃H1). We then have for arbitrary ε > 0

2 |〈g(un), un
δ̂
〉| ≤ 2 |g(un)| |un

δ̂
| ≤ 2L̃1

(
1 + ‖un‖

)
|un

δ̂
| ≤ ε a(un, un) + 1 + C̃1|un

δ̂
|2,

where C̃1 = L̃2
1(1 + 4/(εµ)), and we do not need to change (3.8). Since

|un
δ̂
|2 ≤ 2 max

(
1, δ̂2

)(
|un|2 + |un − un−1|2

)
≤ c
(
|un|2 + |un − un−1|2

)

for 1 < R < R̄, we may take

Kn = c




n−2∑

j=2

[
rj+2 − rj

]
−

(
|uj |2 + |uj − uj−1|2

)

+
n−1∑

j=2

(
C̃1τj +

γ2τj+1

µ

)(
|uj |2 + |uj − uj−1|2

)
+ C̃1τmax

(
|un|2 + |un − un−1|2

)

+ tn + |u0|2 + |u1|2 + βτ2 ‖u1‖2 +
1
µ

n∑

j=2

τj
1 + rj

‖f j‖2
∗


 ,

and in virtue of (3.12), we can apply Corollary 1 in Appendix A if τmax is
sufficiently small. We then find (3.13) with the additional term cΛntn on the
right-hand side and with Λn as above changing C1 to C̃1. �

The dependence of the stability constant on problem parameters can be seen
from the proof.
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Theorem 6. Let fn = Rn
2f , {un} ∈ l∞(0, T ;H), u ∈ C([0, T ];H), f ′ − u′′, and

f ′′ − u′′′ ∈ L2(0, T ;V ∗). Assume (H2) ( or, alternatively, (̃H2) ). If R < R̄ and
τmax is sufficiently small, then the error en to Problem (Pτ ) satisfies (3.15).

Proof. We again commence with the error equation that reads now as

(D2e
n, v) + a(en, v) +

〈
g(u(tn)) − g(un), v

〉
= 〈ρn, v〉 ∀v ∈ V . (4.3)

The consistency error ρn to the associated linear problem is given by (3.16)
or (3.17). Since {un} ∈ l∞(0, T ;H) and u ∈ C([0, T ];H), there is some M >
0, depending on problem data, such that u(tn) , un ∈ BM (n = 2, 3, . . . , N).
Because of (H2), we have for arbitrary ε ∈ (0, 1),

2
∣∣∣
〈
g(u(tn)) − g(un), en

δ̂

〉∣∣∣ ≤ 2L2(M) |en|s2 ‖en‖1−s2 ‖en
δ̂
‖

≤ C2 |en|2 + ε a(en, en) +
ε

2(1 + δ̂)
a(en

δ̂
, en

δ̂
) ,

with some C2 > 0 depending on s2, L2(M), and εµ. Alternatively, we have with
(̃H2) and some C̃2 > 0 depending on L̃2(M) and εµ that

2
∣∣∣
〈
g(u(tn)) − g(un), en

δ̂

〉∣∣∣ ≤ 2L̃2(M) ‖en‖ |en
δ̂
| ≤ ε a(en, en) + C̃2 |en

δ̂
|2 .

We now follow the arguments in the proof of Theorem 5 and Theorem 4. �

The error constant is essentially of the same structure as the stability constant
(changing the subscript 1 to 2). The assumptions u ∈ C([0, T ];H) and {un} ∈
l∞(0, T ;H) follow from Theorem 1 and Theorem 5 respectively if in particular
(H1) (or (̃H1)) holds true. These assumptions are only needed to ensure the
existence of some M > 0 independent of {τn} such that un, u(tn) ∈ BM (n =
2, . . . , N), which enables to apply (H2) (or (̃H2)). The regularity assumptions
can be only fulfilled under additional conditions on g.

Appendix A: A discrete Gronwall lemma

Lemma 1. Let an, bn, cn, λn ≥ 0 with {cn} being monotonically increasing.
Then

an + bn ≤
n−1∑
j=2

λjaj + cn , n = 2, 3, . . . (A.1)

implies for n = 2, 3, . . .

an + bn ≤ cn
n−1∏
j=2

(1 + λj) ≤ cn exp

(
n−1∑
j=2

λj

)
.
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Proof. With

ãm := ωm−1

m−1∑
j=2

λjaj , ωm−1 :=
m−1∏
j=2

(1 + λj)−1 ,

for m = 2, 3, . . . , we have

ãm+1 − ãm = λmωm

(
am −

m−1∑
j=2

λjaj

)
≤ cmλmωm .

Summation gives (because of ã2 = 0)

ãn ≤
n−1∑
m=2

cmλmωm ≤ cn
n−1∑
m=2

λmωm .

We thus have from (A.1)

an + bn ≤ ãnω
−1
n−1 + cn ≤ cnω

−1
n−1

(
n−1∑
m=2

λmωm + ωn−1

)
,

and the assertion follows with the identity

n−1∑
m=2

λmωm + ωn−1 = 1 .

�

Corollary 1. Let, in addition to the assumptions of Lemma 1, 0 ≤ λ < 1. Then

an + bn ≤
n−1∑
j=2

λjaj + λ an + cn , n = 2, 3, . . . (A.2)

implies for n = 2, 3, . . .

an + bn ≤ cn
1 − λ

n−1∏

j=2

(
1 +

λj

1 − λ

)
≤ cn

1 − λ
exp


 1

1 − λ

n−1∑

j=2

λj


 .

Proof. It immediately follows from (A.2) that

an + bn ≤ an +
bn

1 − λ
≤

n−1∑

j=2

λj

1 − λ
aj +

cn
1 − λ

,

and we may apply Lemma 1 with λn := λn/(1− λ) and cn := cn/(1 − λ). �
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Appendix B: Solvability of the continuous and discrete problem

Before we are going to prove the solvability of both Problem (P ) and (Pτ ),
we provide the reader with some auxiliary results. We start with a well-known
consequence of the famous fixed-point theorem by Brouwer.

Lemma 2. Let h : Rm → Rm be continuous on KM := {x ∈ Rm : ‖x‖ ≤ M}
for some M > 0, where ‖ · ‖ denotes an arbitrary norm on Rm. If h(x) · x ≥ 0
for all x ∈ Rm with ‖x‖ = M , then there is some x̂ ∈ KM such that h(x̂) = 0.

For a proof, see for instance Zeidler [21, Prop. 2.8].

Proposition 1. For τ > 0, let Bτ : V → V ∗ be defined as

Bτ (v) :=
1
τ
v +Av + g(v) , v ∈ V . (B.1)

Assume (H1), (H2) (or, alternatively, (̃H1), (̃H2)), and (H3). If τ is sufficiently
small then Bτ is bijective.

Proof. We firstly observe that Bτ indeed maps V into V ∗ due to the properties
of A and g. Let b ∈ V ∗ be arbitrary. We show by construction that Bτ (u) = b
admits a unique solution u ∈ V . The existence of a solution will be proved by
means of a Galerkin approximation: Since V is separable, there is a Galerkin

basis {φj} ⊂ V such that
⋃

m∈N
Vm = V and lim

m→∞
dist(v, Vm) = 0 for all v ∈ V

with Vm := span{φ1, . . . , φm}. For given m ∈ N, we consider the continuous and
bijective mapping

vm := (vm,1, . . . , vm,m) ∈ Rm ↔ vm :=
m∑

j=1

vm,jφj ∈ Vm

and introduce on Rm the norm ‖vm‖ := ‖vm‖. The corresponding system of
Galerkin equations

〈Bτ (um), φj〉 = 〈b, φj〉 , j = 1, . . . ,m ,

is solvable if and only if there is a zero um ∈ Rm of the function h : Rm → Rm

with h = (h1, . . . hm) and

hj(vm) := 〈Bτ (vm) − b, φj〉 , j = 1, . . . ,m .

Because of (H2) (or (̃H2)) and (2.1), the function h is continuous on each KM :
In virtue of V ↪→ H , it follows from vm ∈ KM that vm ∈ BαM , and (H2) (or
(̃H2)) is applicable. We have furthermore

h(vm) · vm = 〈Bτ (vm) − b, vm〉 =
1
τ
|vm|2 + a(vm, vm) + 〈g(vm), vm〉 − 〈b, vm〉
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≥
1
τ
|vm|2 + µ ‖vm‖2 + 〈g(vm), vm〉 − ‖b‖∗‖vm‖ . (B.2)

With (H1) and Young’s inequality, we find

|〈g(vm), vm〉| ≤ ‖g(vm)‖∗‖vm‖

≤ L1(1 + |vm|)s1‖vm‖2−s1 ≤ C (1 + |vm|2) +
µ

2
‖vm‖2 , (B.3)

where C depends on L1, s1, and µ, and thus

h(vm) · vm ≥
(

1
τ
− C

)
|vm|2 +

µ

2
‖vm‖2 − ‖b‖∗‖vm‖ − C .

Taking τ ≤ 1/C and M ≥
(
‖b‖∗ +

√
‖b‖2

∗ + 2µC
)
/µ, we have h(vm) · vm ≥ 0

for all vm ∈ Rm with ‖vm‖ = M . With (̃H1) , we find alternatively

|〈g(vm), vm〉| ≤ |g(vm)| |vm|

≤ L̃1(1 + ‖vm‖)|vm| ≤ C |vm|2 +
µ

2
‖vm‖2 +

µ

2
, (B.4)

where C depends on L̃1 and µ. Taking M ≥
(
‖b‖∗ +

√
‖b‖2

∗ + µ2
)
/µ and

τ ≤ 1/C, we have again h(vm) · vm ≥ 0 for all vm ∈ Rm with ‖vm‖ = M .
Lemma 2 now ensures the solvability of the system of Galerkin equations.

Moreover, the sequence of Galerkin solutions {um} is bounded in V since ‖um‖ =
‖um‖ ≤M with M being independent of m. Since V is a reflexive Banach space,
there is a subsequence {um′} and some u ∈ V such that um′ ⇀ u in V . We have
to prove that u solves Bτ (u) = b. From the weak convergence, it follows that

(
1
τ
um′ , v

)
→
(

1
τ
u, v

)
, 〈Aum′ , v〉 → 〈Au, v〉

for all v ∈ V . Because of (H3), also

〈g(um′), v〉 → 〈g(u), v〉

holds true for all v ∈ V . The assertion follows with the usual density argument.
It remains to prove the uniqueness: Let u1, u2 ∈ V be two solutions. We find

0 =
〈
Bτ (u1) −Bτ (u2), u1 − u2

〉

≥ 1
τ
|u1 − u2|2 + µ ‖u1 − u2‖2 + 〈g(u1) − g(u2), u1 − u2〉 .

Taking M := α max(‖u1‖, ‖u2‖), we have with (H2) and Young’s inequality
∣∣∣
〈
g(u1) − g(u2), u1 − u2

〉∣∣∣ ≤ ‖g(u1) − g(u2)‖∗‖u1 − u2‖

≤ L2 |u1 − u2|s2‖u1 − u2‖2−s2

≤ C |u1 − u2|2 +
µ

2
‖u1 − u2‖2 ,
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where C depends on L2 = L2(M), s2, and µ. With (̃H2), we obtain analogously
∣∣∣
〈
g(u1) − g(u2), u1 − u2

〉∣∣∣ ≤ |g(u1) − g(u2)| |u1 − u2|

≤ L̃2 |u1 − u2| ‖u1 − u2‖

≤ C |u1 − u2|2 +
µ

2
‖u1 − u2‖2 ,

where C depends on L̃2 = L̃2(M) and µ. It follows u1 = u2 in V for sufficiently
small τ ≤ 1/C. �

Remark 3. As one infers from (B.2), Proposition 1 remains true, and indeed
without a time step restriction, if instead of (H1) or (̃H1) the function g is
positive on V such that for all v ∈ V

〈g(v), v〉 ≥ 0 .

We are now prepared to present the postponed proofs of Theorem 1 and 2.

Proof of Theorem 1. We firstly observe that A maps the space L2(0, T ;V ) into
its dual L2(0, T ;V ∗). Because of (H1) or (̃H1), also g maps L2(0, T ;V ) into
L2(0, T ;V ∗). Let u ∈ L2(0, T ;V ) be a solution to Problem (P). It then follows
u′ = f − Au − g(u) ∈ L2(0, T ;V ∗) and thus u ∈ C([0, T ];H). In the following,
we construct a solution and prove afterwards its uniqueness.

For given N ∈ N, let τ = T/N and tn = nτ (n = 0, . . . , N). We compute
approximations {un} by means of the implicit Euler method with constant step
size, starting with u0 = u0 ∈ H :

un − un−1

τ
+Aun + g(un) = fn :=

1
τ

∫ tn

tn−1

f(t)dt , n = 1, . . . , N . (B.5)

For sufficiently small τ > 0, Proposition 1 implies existence and uniqueness of a
solution {un} to (B.5). Testing by un, we find because of

(
un − un−1, un

)
=

1
2

(
|un|2 − |un−1|2 + |un − un−1|2

)

with (2.2) that

|un|2 − |un−1|2 + |un − un−1|2 + 2µτ ‖un‖2 ≤ 2τ ‖fn‖∗‖un‖ − 2τ〈g(un), un〉 .
Estimates similar to (B.3) and (B.4) together with Young’s inequality yield after
summation

|un|2 +
n∑

j=1

|uj − uj−1|2 + µτ
n∑

j=1

‖uj‖2

≤ |u0|2 +
2τ
µ

n∑

j=1

‖f j‖2
∗ + CT + Cτ

n∑

j=1

|uj |2 .
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With

τ

N∑

j=1

‖f j‖2
∗ ≤ c

∫ T

0

‖f(t)‖2
∗ dt , (B.6)

Corollary 1 in Appendix A leads for sufficiently small τ to

|un|2 +
n∑

j=1

|uj −uj−1|2 + τ

n∑

j=1

‖uj‖2 ≤ C

(
|u0|2 +

∫ T

0

‖f(t)‖2
∗ dt+ T

)
. (B.7)

Therefore, we have that {un} is stable in l2(0, T ;V ) and l∞(0, T ;H). In addition,
we obtain from (B.5) with (H1) or (̃H1) and with (2.1)

1
τ

∥∥un − un−1
∥∥
∗ ≤ ‖fn‖∗ + β ‖un‖ + ‖g(un)‖∗ ≤ ‖fn‖∗ + C ‖un‖ + C .

Because of (B.6) and (B.7), it follows after summation

1
τ

N∑

j=1

‖uj − uj−1‖2
∗ ≤ C

(
|u0|2 +

∫ T

0

‖f(t)‖2
∗ dt+ T

)
, (B.8)

which shows that {(un − un−1)/τ} is in l2(0, T ;V ∗). We now define for t ∈
(tn−1, tn] (n = 1, . . . , N)

Uτ (t) := un , Vτ (t) :=
un − un−1

τ
(t− tn−1) + un−1

with Uτ (0) := u1, Vτ (0) = u0. Let {τ} be a null sequence. Due to the stability
of the discrete solution to (B.5), {Uτ} and {Vτ} are bounded in L2(0, T ;V ) and
L∞(0, T ;H). However for the boundedness of {Vτ} in L2(0, T ;V ), we need that
u0 ∈ V . We can now extract a subsequence {τ ′} such that {Uτ ′} and {Vτ ′}
are weakly convergent in L2(0, T ;V ) and weakly* convergent in L∞(0, T ;H).
Moreover, the sequence of derivatives {V ′

τ} is bounded in L2(0, T ;V ∗) because
of (B.8). We, therefore, have due to the theorem by Lions and Aubin (see for
instance Lions [12, Thm. 5.1 in Ch. 1.5.2]) the strong convergence of {Vτ ′} in
L2(0, T ;H) and thus in any Lp(0, T ;H) with p ∈ [1,∞). Since

∫ T

0

|Uτ (t) − Vτ (t)|2dt =
τ

3

N∑

j=1

|uj − uj−1|2 ,

we then have from (B.7) that also {Uτ ′} converges strongly in L2(0, T ;H) to-
wards the same limit. We denote the limit by u and have, finally, to prove that
u is a solution to the original problem. For this, we rewrite the scheme (B.5) as

V ′
τ (t) +AUτ (t) + g(Uτ (t)) = Fτ (t)

for almost all t ∈ (0, T ) with Fτ (t) = fn for t ∈ (tn−1, tn] (n = 1, . . . , N). For
simplicity, we write τ instead of τ ′. Testing by v ∈ V , multiplying by a test
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function φ = φ(t) ∈ C1([0, T ]) with φ(T ) = 0, and integration leads to

−
∫ T

0

(Vτ (t), v)φ′(t)dt +
∫ T

0

a
(
Uτ (t), v

)
φ(t)dt+

∫ T

0

〈
g(Uτ (t)), v

〉
φ(t)dt

=
∫ T

0

〈Fτ (t), v〉φ(t)dt + (u0, v)φ(0) .

Due to the strong convergence of {Vτ} in L2(0, T ;H) and the weak convergence
of {Uτ} in L2(0, T ;V ), we have that

∫ T

0

(
Vτ (t), v

)
φ′(t)dt →

∫ T

0

(
u(t), v

)
φ′(t)dt ,

∫ T

0

a
(
Uτ (t), v

)
φ(t)dt →

∫ T

0

a
(
u(t), v

)
φ(t)dt .

Since Uτ , u ∈ L∞(0, T ;H), there is some M > 0 such that Uτ (t), u(t) ∈ BM for
almost all t ∈ (0, T ). With (H2) and Hölder’s inequality, it then follows because
of the strong convergence in L2(0, T ;H) and the boundedness in L2(0, T ;V ) that

∫ T

0

|〈g(Uτ (t)) − g(u(t)), v〉φ(t)| dt

≤ L2 max
t∈[0,T ]

|φ(t)| ‖v‖
∫ T

0

|Uτ (t) − u(t)|s2‖Uτ (t) − u(t)‖1−s2dt

≤ L2 max
t∈[0,T ]

|φ(t)| ‖v‖
∫ T

0

|Uτ (t) − u(t)| dt
∫ T

0

‖Uτ(t) − u(t)‖ dt→ 0 .

Unfortunately, (̃H2) is not enough to conclude the desired convergence. However,
we have alternatively (̃H3) at hand. With standard arguments, we may prove
Fτ → f in L2(0, T ;V ∗), and so it follows that u is a weak solution to (2.4).
Regarding the restriction to initial conditions u0 ∈ V , we note that if only
u0 ∈ H , then we only have the boundedness of {Vτ} in L2(ε, T ;V ) for any
ε ≥ τ . It follows strong convergence of {Vτ} in L2(ε, T ;H). Since {Vτ} remains
bounded in L∞(0, T ;H), it also follows strong convergence in L2(0, T ;H).

It remains to prove the uniqueness. Let u1, u2 be two solutions. Then w :=
u1 − u2 ∈ L2(0, T ;V ) ∩ C([0, T ];H) with w′ ∈ L2(0, T ;V ∗), and

〈w′(t), v〉 + a(w(t), v) = −
〈
g(u1(t)) − g(u2(t)), v

〉

holds for all v ∈ V and almost everywhere in (0, T ). Taking v = w(t), we find
with (H2) and Young’s inequality

1
2
d

dt
|w(t)|2 + µ ‖w(t)‖2 ≤ ‖g(u1(t)) − g(u2(t))‖∗‖w(t)‖

≤ L2 |w(t)|s2‖w(t)‖2−s2 ≤ C

2
|w(t)|2 +

µ

2
‖w(t)‖2 ,
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where C depends on L2 = L2(M), s2, and µ with

M := max
(

max
t∈[0,T ]

|u1(t)|, max
t∈[0,T ]

|u2(t)|
)
.

Alternatively, we obtain from (̃H2)
1
2
d

dt
|w(t)|2 + µ ‖w(t)‖2 ≤ |g(u1(t)) − g(u2(t))| |w(t)|

≤ L̃2 |w(t)| ‖w(t)‖ ≤ C

2
|w(t)|2 +

µ

2
‖w(t)‖2 ,

where C depends on L̃2 = L̃2(M) and µ. In both cases, we come up with
d

dt

(
e−Ct|w(t)|2

)
+ µe−Ct‖w(t)‖2 ≤ 0 ,

which proves, after integration, the uniqueness since w(0) = 0. �

Proof of Theorem 2. Let un−2, un−1 ∈ V ∗ and fn ∈ V ∗ be given. We rewrite
the n-th step (n = 2, . . . , N) of the BDF in the form Bτ (un) = b , where Bτ is
given by (B.1) with

τ :=
τn(1 + rn)
1 + 2rn

, b := fn +
1
τn

(
(1 + rn)un−1 − r2n

1 + rn
un−2

)
.

From Proposition 1, we conclude existence and uniqueness of un ∈ V ⊂ V ∗ if
τn is sufficiently small. This proves the unique solvability of Problem (Pτ ) for
given u0, u1 ∈ H ⊂ V ∗, {fn} ⊂ V ∗ if τmax is sufficiently small. �
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