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Abstract The approximate solution of the problem of controlling an initial value

problem for a linear system of autonomous ordinary differential equations is con-

sidered. The corresponding homogeneous solution to the differential equation is

assumed to be non-expansive and the inhomogeneity is a linear function of the

control variable that is constant along a priori given sub-intervals. The optimal

control minimises a convex functional that depends, possibly in a nonlinear way,

on the solution of the differential equation. Infinite time horizons are allowed.

In view of the piecewise constant control, the corresponding Lagrangian can

be split into the sum of Lagrangians acting on sub-intervals. The two algorithms

suggested are based upon an iterative process that takes advantage of this splitting

as well as of the explicit solution to the differential constraints.

Convergence results are provided under suitable assumptions on the problem’s

data. Finally, numerical tests for a model of global warming demonstrate the per-

formance of the algorithms.

Keywords Optimal control, ordinary differential equation, iteration, conver-

gence, global warming

MSC (2000) 65K05, 91B76, 34H05, 49M05

1 Introduction

Time continuous discounted control problems with infinite time horizon of
the form

min
u∈U

∫ ∞

0

e−rtf(x(t), u(t)) dt such that ẋ = g(x, u) , x(0) = x0 , (1.1)

are usually considered with respect to the space U of measurable or piece-
wise continuous control functions u :

�+
0 → Ω ⊆

�
. However, the control

function might also be vector-valued (cf. [7] for more details). Here, f and
g are given functions, x = x(t) is the time-dependent state with prescribed
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initial state x0, and r > 0 is the discount rate. Reducing U to the linear
space of piecewise constant functions u = u(t) with u(t) ≡ ui ∈ Ω ⊆

�

on a priori given time intervals [ti, ti+1) (i = 0, . . . , N) leads to discrete
problems of the type

min
ui∈Ω

N∑

i=0

fi(xi, ui) such that xi+1 = g̃i(xi, ui) (i = 0, . . . , N − 1)

(1.2)

with fi, g̃i, x0 given, where N ∈ �∪ {∞} might be finite or infinite.
Such problems arise in particular when solving the continuous problem (1.1)
numerically by discretisation in time (cf. [2], [3]).

On the other hand, in many applications, a discrete model seems a priori
to be more appropriate than a time continuous one: As for economical
problems in general prices, which are normally constant along some time
intervals, have to be controlled, it is natural to assume the control variable
to be piecewise constant. So economic decisions as for instance price fixing
or dividend distribution are taken at fixed discrete points in time (daily,
weekly, yearly . . . ). Furthermore, an infinite time horizon seems to be
typical.

A typical example for such a problem is the Nordhaus model of global
warming as proposed in [10], which will be considered in Section 5. The
aim is, loosely spoken, to minimise the additional costs arising from the
greenhouse effect by controlling the energy prices. The dynamics of the
greenhouse effect is described by an initial-value problem for a system of
ordinary differential equations, and the objective function incorporates the
discounted welfare function and costs.

Solving problems of the type (1.1) or (1.2) numerically can be based
upon the corresponding discrete Hamilton-Jacobi-Bellman equation (cf. [5])

Vτ (x) = sup
u∈U

{(1 − rτ)Vτ (φτ (x, u)) − τf(x, u)} ,

where τ denotes the constant time step size, Vτ (x) is the optimal value of the
functional depending on the initial state x0 = x, 1−rτ is an approximation
for e−rτ with the discount rate r, φτ (x, u) is the state at point t = τ with the
initial state x after controlling the system by u, and f is the cost function.

However, this equation is not discrete in the state variable and solving it
requires appropriate (adaptive) grid schemes. The complexity thus increases
considerably with the dimension of x. Furthermore, non-autonomous prob-
lems or non-equidistant time partitions need additional considerations.
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In this paper, we develop an iterative numerical scheme to construct
approximate solutions using piecewise constant control functions. The al-
gorithms presented are successfully tested for the above-mentioned model
of global warming.

Let a finite partition of the (finite or infinite) time interval [0, tN+1)
(tN+1 ∈

�
∪ {∞}, N ∈�) be given via

0 = t0 < t1 < · · · < tN < tN+1 , τi := ti+1 − ti , τmax := max
i=0,...,N

τi .

The space U of control functions then is assumed to consist of functions that
are constant on each sub-interval [ti, ti+1) (i = 0, . . . , N). This setup leads
to a control problem of the type (1.2) with finite N and might be considered
as a particular nonlinear optimisation problem (cf. [9]). The states are
assumed to be time-dependent with values in

�d (d ∈�). Throughout this
paper, elements of

�
d will be always column vectors and typed boldfaced.

We consider

Problem 1.1 For given α, r > 0, a convex and twice continuously differ-
entiable function z :

�d →
�

, and the initial state x0 ∈
�d, find control

variables u∗
i ∈
�

(i = 0 , . . . , N) minimising the functional

J(u0, . . . , uN) :=
N∑

i=0

∫ ti+1

ti

e−rt
(α

2
u2

i + z (φ(t; ti, xi, ui))
)

dt , (1.3)

where

xi+1 = φ(ti+1; ti, xi, ui) , i = 0 , . . . , N − 1 . (1.4)

Here, φ(·; s, y, v) : [s,∞) →
�d denotes, for given s ∈ [0,∞), y ∈

�d,
and v ∈

�
, the solution to the linear, non-homogeneous, autonomous initial

value problem

φ̇(t) = Aφ(t) + av + b (t > s) , φ(s) = y , (1.5)

where A ∈
�d×d, a, b ∈

�d. With Duhamel’s principle, we have

φ(t; s, y, v) = e(t−s)Ay +

∫ t

s

e(t−σ)Adσ (av + b) .

Obviously, φ(·; s, y, v) is a smooth function in all its arguments. Moreover,
it holds

Dyφ(t; s, y, v) = e(t−s)A , Dvφ(t; s, y, v) =

∫ t

s

e(t−σ)Adσ a , (1.6)

Dvvφ(t; s, y, v) = 0 , Dyvφ(t; s, y, v) = 0 ,
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where Dv denotes the first derivative with respect to v, Dy denotes the
gradient (which is always thought to be a row vector) with respect to y, and
thus Dyφ is the Jacobian. Furthermore, it is Dvv ≡ DvDv, Dyv ≡ DyDv.

It immediately follows from (1.3) and the properties of φ that the Hes-
sian of J is a diagonal matrix with the diagonal entries

Dukuk
J(u0, . . . , uN ) =

∫ tk+1

tk

e−rt (α +

+ Duk
φ(t; tk, xk, uk)TDφφz (φ(t; tk, xk, uk))Duk

φ(t; tk, xk, uk)
)
dt .

As the smooth function z is assumed to be convex, its Hessian matrix Dφφz
is positive semi-definite. Since α > 0, this shows that J is strongly convex.

We shall make the following structural assumptions:

(A1) There are constants c ≥ 1, λ ≥ 0 such that

‖etA‖ ≤ c e−λt ∀t ≥ 0 .

(A2) For every R > 0 there is a constant κ(R) > 0 such that

‖Dφφz(φ)‖ ≤ κ(R) ∀φ ∈
�d , ‖φ‖ ≤ R .

(A3) If λ = 0 in (A1) then tN+1 < ∞.

Here, ‖ · ‖ denotes the Euclidian and spectral norm, respectively.
Note that (A1) is fulfilled if all eigenvalues of A have non-positive real

part and if purely imaginary eigenvalues are simple. The constant c is given
by c = ‖P‖ ‖P−1‖ where P transforms A into Jordan’s normal form. If the
matrix A is normal (ATA = AAT) then c = 1 (cf. [1]).

The restriction to a finite time interval in the case λ = 0 (Assumption
(A3)) is not necessary but simplifies the analysis. However, the case λ = 0
and infinite time tN+1 requires a more intrusive assumption than (A2) that
may lead to additional restrictions on the problem’s data. We consider this
case in more detail in Section 4, where we replace (A2) and (A3) by

(A4) There is some K > 0 such that for i = 0, . . . , N and arbitrary y ∈
�d

and v ∈
�

∫ ti+1

ti

(t − ti)
qe−rt ‖Dφφz (φ(t; ti, y, v))‖ dt ≤ K , q ∈ {1, 2} , (1.7)

∫ ti+1

ti

te−rt ‖Dφφz (φ(t; ti, y, v))‖ dt ≤ K . (1.8)
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Optimal control problems of that type often arise in economics. As
examples, we may consider the taxation of carbon dioxide emissions in the
context of the greenhouse effect (cf. [10] and Section 5) and the optimisation
of the health care expenditure in the last months of life (cf. [4]).

With the multipliers pi ∈
�d (i = 0, . . . , N), where pN := 0, the La-

grangian corresponding to Problem 1.1 reads as

L(u0, . . . , uN , x0, . . . , xN , p0, . . . , pN) :=

N∑

i=0

Li(ui, xi, xi+1, pi) (1.9a)

where

Li(ui, xi, xi+1, pi) :=

∫ ti+1

ti

e−rt
(α

2
u2

i + z (φ(t; ti, xi, ui))
)

dt

+ pT

i (φ(ti+1; ti, xi, ui) − xi+1) , i = 0, . . . , N − 1 , (1.9b)

LN (uN , xN) :=

∫ tN+1

tN

e−rt
(α

2
u2

i + z (φ(t; ti, xi, ui))
)

dt . (1.9c)

For brevity, we omit the arguments of L in the following. In view of the
strong convexity of J , Problem 1.1 is equivalent to the system of first order
conditions

Duk
L = 0 , Dxk

L = 0 , Dpk
L = 0 (k = 0, . . . , N) .

With (1.9) and (1.6), we have

Duk
L = Duk

Lk(uk, xk, xk+1, pk) =
α

r
e−rtk

(
1 − e−rτk

)
uk

+

∫ tk+1

tk

e−rtDφz (φ(t; tk, xk, uk))

∫ t

tk

e(t−σ)Adσdt a

+ pT

k

∫ tk+1

tk

e(tk+1−σ)Adσ a , (1.10)

Dxk
L = Dxk

Lk−1(uk−1, xk−1, xk, pk−1) + Dxk
Lk(uk, xk, xk+1, pk)

= −pT

k−1 +

∫ tk+1

tk

e−rtDφz (φ(t; tk, xk, uk)) e(t−tk)Adt + pT

k eτkA ,

(1.11)

Dpk
L = Dpk

Lk(uk, xk, xk+1, pk) = (φ(tk+1; tk, xk, uk) − xk+1)
T

. (1.12)
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Note that Lk(uk, xk, xk+1, pk) depends on xk+1 but Duk
Lk(uk, xk, xk+1, pk)

does not. So we can omit the argument xk+1 in Duk
Lk. Moreover, it is

DpN
L ≡ 0.

We suggest the following iterative process for constructing an approxi-
mate solution to Problem 1.1:

Algorithm 1.1

step 0) Let u
(0)
0 , . . . , u

(0)
N be arbitrarily given.

step `) (` = 1, 2, . . . ) For k = 0, 1, . . . , N , solve

Duk
Lk(u

(`)
k , xk, pk) = 0 . (1.13)

Here, xk, pk are to be computed by

xj+1 = φ(tj+1; tj , xj, u
(`−1)
j ) , j = 0, . . . , N − 1 , (1.14)

x0 being the initial state of Problem 1.1,

pT

j−1 =

∫ tj+1

tj

e−rtDφz
(
φ(t; tj , xj , u

(`−1)
j )

)
e(t−tj)Adt + pT

j eτjA ,

j = N, . . . , k + 1 , (1.15)

and pN = 0.

Note that (1.14) corresponds to (1.12) whereas (1.15) comes from (1.11).
The derivative in (1.13) is given by (1.10). For solving (1.13), we only need
the state xk, but for computing this state, we also need x0, . . . , xk−1. More-
over, we have to compute pk, which makes it necessary to have pN , . . . , pk+1.
Therefore, we need the states xk+1, . . . , xN , too.

Besides, we consider a slightly changed version:

Algorithm 1.2

step 0) Let u
(0)
0 , . . . , u

(0)
N be arbitrarily given.

step `) (` = 1, 2, . . . ) For k = 0, 1, . . . , N , solve (1.13), where xk, pk

are to be computed by

xj+1 = φ(tj+1; tj, xj , u
(`)
j ) , j = 0, . . . , k − 1 , (1.16a)

xj+1 = φ(tj+1; tj, xj , u
(`−1)
j ) , j = k, . . . , N − 1 , (1.16b)
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x0 being the initial state of Problem 1.1,

pT

j−1 =

∫ tj+1

tj

e−rtDφz
(
φ(t; tj , xj, u

(`−1)
j )

)
e(t−tj)Adt + pT

j eτjA ,

j = N, . . . , k + 1 , (1.17)

and pN = 0.

The difference between Algorithm 1.1 and Algorithm 1.2 lies in using –as
far as possible– the new control values in the computation of xk in (1.16a)
instead of (1.14). However, in the computation of pk, we cannot use the
new values.

2 Justification of (A2) and well-definiteness of the algorithms

In order to be able to apply Assumption (A2), it has to be proved whether
the arguments of z(·) appearing in the algorithms are uniformly bounded.

We firstly remark that both Algorithm 1.1 and Algorithm 1.2 can be

extended in such a way that the control variables u
(`)
k (k = 0, . . . , N) are

uniformly bounded. This is natural since, in practice, the control can only
range in a given interval.

Proposition 2.1 Let |u
(`)
k | ≤ M (k = 0, . . . , N , ` = 0, 1, . . . ) with some

M > 0 given. Then there is a constant R > 0, depending on the partition of
the time interval and the data of the problem, such that for all t ∈ [tk, tk+1)
and k = 0, . . . , N , ` = 0, 1, . . .

‖φ(t; tk, xk, u
(`)
k )‖ ≤ R .

Here, xk is to be determined by (1.14) or (1.16).

Proof For simplicity, we omit the superscript indicating the iteration. By
Assumption (A1), we immediately have for k = 0, . . . , N , ` = 0, 1, . . .

‖φ(t; tk, xk, u
(`)
k )‖ ≤ ce−λ(t−tk)‖xk‖ + cM̃

∫ t

tk

e−λ(t−σ)dσ ,

where M̃ := M‖a‖ + ‖b‖.
Let λ > 0. It then follows

‖φ(t; tk, xk, u
(`)
k )‖ ≤ c ‖xk‖ +

cM̃

λ
min (1, λ(t − tk)) .
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From (1.14) and (1.16), respectively, we find for j = 0, . . . , k − 1

‖xj+1‖ ≤ c ‖xj‖ +
cM̃

λ
min (1, λτj)

that leads (with the convention (ck − 1)/(c − 1) = k for c = 1) to

‖xk‖ ≤ ck‖x0‖ +
ck − 1

c − 1

cM̃

λ
min (1, λτmax) .

We thus obtain

‖φ(t; tk, xk, u
(`)
k )‖ ≤ ck+1‖x0‖ +

ck+1 − 1

c − 1

cM̃

λ
min (1, λτmax)

≤ cN+1‖x0‖ +
cN+1 − 1

c − 1

cM̃

λ
min (1, λτmax) =: R . (2.1)

In the case of an infinite time horizon, where τmax = ∞, we may use the
convention

min (1, λτmax) = 1 .

In the case λ = 0, we have for k = 0, . . . , N

‖φ(t; tk, xk, u
(`)
k )‖ ≤ c ‖xk‖ + cM̃(t − tk)

as well as for j = 0, . . . , k − 1

‖xj+1‖ ≤ c ‖xj‖ + cM̃τj .

So we come to
‖xk‖ ≤ ck‖x0‖ + ckM̃ tk ,

and thus it follows

‖φ(t; tk, xk, u
(`)
k )‖ ≤ ck+1

(
‖x0‖ + M̃ tk

)

≤ cN+1
(
‖x0‖ + M̃ tN+1

)
=: R . (2.2)

Note that the last step requires Assumption (A3). #

From Algorithm 1.1, we see that u
(`)
k depends, for fixed k ∈ {0, . . . , N},

on u
(`−1)
0 , . . . , u

(`−1)
N . In order to determine u

(`)
k , we have to resolve

Fk

(
u

(`−1)
0 , . . . , u

(`−1)
N , u

(`)
k

)
:= Duk

Lk

(
u

(`)
k , xk(u

(`−1)
0 , . . . , u

(`−1)
k−1 ),

pk(u
(`−1)
0 , . . . , u

(`−1)
N )

)
= 0 . (2.3)
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However, Algorithm 1.2 requires the solution of

Gk

(
u

(`−1)
0 , . . . , u

(`−1)
N , u

(`)
k

)
:= Duk

Lk

(
u

(`)
k , xk(u

(`)
0 , . . . , u

(`)
k−1),

pk(u
(`)
0 , . . . , u

(`)
k−1, u

(`−1)
k , . . . , u

(`−1)
N )

)
= 0 . (2.4)

Theorem 2.1 Algorithms 1.1 and 1.2 are well-defined.

Proof In order to show the unique solvability of (2.3), we shall apply the
implicit function theorem. Consider for v0, . . . , vN fixed

Fk = Fk (v0, . . . , vN , uk) .

We then have with (1.10) and (1.6)

Duk
Fk (v0, . . . , vN , uk) =

α

r
e−rtk

(
1 − e−rτk

)
+

∫ tk+1

tk

e−rtaT ×

×

∫ t

tk

e(t−σ)AT

dσ Dφφz (φ(t; tk, xk, uk))

∫ t

tk

e(t−σ)Adσa dt . (2.5)

The first term of the right-hand side is obviously positive. By virtue of the
convexity of z = z(φ), the second term is nonnegative. Thus we have

Duk
Fk (v0, . . . , vN , uk) 6= 0 .

It remains to show that Duk
Fk (v0, . . . , vN , uk) is finite: Under Assump-

tion (A2), it follows from (2.5) and Proposition 2.1 with some κ = κ(R)

Duk
Fk (v0, . . . , vN , uk) ≤

α

r
e−rtk

(
1 − e−rτk

)

+ κc2‖a‖2

∫ tk+1

tk

e−rt

(∫ t

tk

e−λ(t−σ)dσ

)2

dt < ∞ . (2.6)

The proof for Algorithm 1.2 follows the same arguments. #

Let us remark that the well-definiteness relies upon Duk
Fk = Dukuk

L > 0,
which is equivalent to the strict convexity of J . Moreover, since J is strongly
convex, Problem (1.1) possesses a unique solution.

3 Convergence

Theorem 3.1 Let (u∗
0, . . . , u∗

N ) be the solution to Problem 1.1 and let{(
u

(`)
0 , . . . , u

(`)
N

)}

`∈�
be generated by Algorithm 1.1. It then holds, un-

der Assumptions (A1), (A2), and (A3),

max
i=0,...,N

∣∣∣u(`+1)
i − u∗

i

∣∣∣ ≤ ρ max
i=0,...,N

∣∣∣u(`)
i − u∗

i

∣∣∣ , ` = 0, 1, 2, . . . (3.1)
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with

ρ :=
c3κ‖a‖2 tN

αr

(
1 −

rτmax

erτmax − 1

)
+

cN+2κ‖a‖2

αr2
(1 + rtN+1)

(
1 − e−rtN+1

)

(3.2)

in the case λ = 0 and

ρ :=
c3κ‖a‖2

4αλ2

(
1 − e−λtN

)
+

cN+2κ‖a‖2

αrλ

(
1 − e−rtN+1

)
(3.3)

in the case λ > 0.

Proof Due to Theorem 2.1, there exist functions fk :
�N+1 →

�
(k =

0 . . . , N) with

uk = fk(v0, . . . , vN ) ⇔ Fk(v0, . . . , vN , uk) = 0 ,

and these are continuously differentiable as we can infer from the proof of
Theorem 2.1. We will show that

max
k=0,...,N

N∑

j=0

∣∣Dvj
fk(v0, . . . , vN )

∣∣ ≤ ρ

holds true for all v0, . . . , vN ∈
�

. The assertion then follows because of
∣∣∣u(`+1)

k − u∗
k

∣∣∣ =
∣∣∣fk(u

(`)
0 , . . . , u

(`)
N ) − fk(u∗

0, . . . , u
∗
N)

∣∣∣

=

∣∣∣∣∣∣

N∑

j=0

Duj
fk(ū0, . . . , ūN) (u

(`)
j − u∗

j )

∣∣∣∣∣∣

≤

N∑

j=0

∣∣Duj
fk(ū0, . . . , ūN)

∣∣ max
i=0,...,N

∣∣∣u(`)
i − u∗

i

∣∣∣ ,

where (ū0, . . . , ūN) is a point lying on the line connecting (u
(`)
0 , . . . , u

(`)
N )

and (u∗
0, . . . , u

∗
N ).

It is

Dvj
fk(v0, . . . , vN ) = −

Dvj
Fk(v0, . . . , vN , uk)

Duk
Fk(v0, . . . , vN , uk)

, j, k = 0, . . . , N . (3.4)

Because of (2.3), we find

Dvj
Fk(v0, . . . , vN , uk) = Dxkuk

LkDvj
xk + Dpkuk

LkDvj
pk , (3.5)
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where Lk = Lk(uk, xk, xk+1, pk) (but Duk
Lk = Duk

Lk(uk, xk, pk)), xk =
xk(v0, . . . , vk−1), and pk = pk(v0, . . . , vN ). Together with (2.5), we obtain

N∑

j=0

∣∣Dvj
fk(v0, . . . , vN )

∣∣ ≤ r

α

(
e−rtk − e−rtk+1

)−1
×

×


‖Dxkuk

Lk‖

N∑

j=0

∥∥Dvj
xk

∥∥ + ‖Dpkuk
Lk‖

N∑

j=0

∥∥Dvj
pk

∥∥

 . (3.6)

With (1.10) and (1.6), we observe that

Dxkuk
Lk =

∫ tk+1

tk

e−rtaT

∫ t

tk

e(t−σ)AT

dσ Dφφz(φ(t; tk, xk, uk))e(t−tk)Adt ,

(3.7)

Dpkuk
Lk = aT

∫ tk+1

tk

e(tk+1−σ)AT

dσ . (3.8)

From (1.14), we immediately have Dvj
xk = 0 if j ≥ k as well as

Dvj
xj+1 =

∫ tj+1

tj

e(tj+1−σ)Adσ a .

Moreover, it is for j < k − 1

Dvj
xk = Dxk−1

φ(tk; tk−1, xk−1, vk−1) × . . .

. . . × Dxj+1
φ(tj+2; tj+1, xj+1, vj+1)Dvj

xj+1 ,

and so we come up with

Dvj
xk =






∫ tj+1

tj

e(tk−σ)Adσ a for j < k ,

0 for j ≥ k .

(3.9)

From (1.15), we see that for l = N, . . . , k + 1 with pN = 0

Dvj
pl−1 =

∫ tl+1

tl

e−rte(t−tl)A
T (

Dvjφz (φ(t; tl, xl, vl))
)T

dt + eτlA
T

Dvj
pl .

(3.10)

11



Furthermore, we have
(
Dvjφz (φ(t; tl, xl, vl))

)T

= Dφφz (φ(t; tl, xl, vl))Dvj
φ(t; tl, xl, vl) (3.11)

as well as (by (1.6) and (3.9))

Dvj
φ(t; tl, xl, vl) = Dxl

φ(t; tl, xl, vl)Dvj
xl + Dvl

φ(t; tl, xl, vl)Dvj
vl

=





∫ tj+1

tj

e(t−σ)Adσ a for j < l ,

∫ t

tj

e(t−σ)Adσ a for j = l ,

0 for j > l .

(3.12)

Under Assumption (A1) and (A2), it follows from (3.7)

‖Dxkuk
Lk‖ ≤ c2κ‖a‖

∫ tk+1

tk

e−rt

∫ t

tk

e−λ(t−σ)dσ e−λ(t−tk)dt ,

and from (3.9)

N∑

j=0

∥∥Dvj
xk

∥∥ ≤ c‖a‖

∫ tk

0

e−λ(tk−σ)dσ .

Hence, we have for λ = 0

‖Dxkuk
Lk‖

N∑

j=0

∥∥Dvj
xk

∥∥ ≤ c3κ‖a‖2 tk

∫ tk+1

tk

e−rt(t − tk)dt

= c3κ‖a‖2 tk
r2

(
e−rtk − e−rtk+1 − rτke−rtk+1

)
. (3.13)

For λ > 0, we find

‖Dxkuk
Lk‖

N∑

j=0

∥∥Dvj
xk

∥∥

≤
c3κ‖a‖2

λ2

∫ tk+1

tk

e−rt
(
1 − e−λ(t−tk)

)
e−λ(t−tk)dt

(
1 − e−λtk

)
.

Since the function t 7→
(
1 − e−λ(t−tk)

)
e−λ(t−tk) takes its maximum value

1/4 at t = tk + (ln 2)/λ, we have

‖Dxkuk
Lk‖

N∑

j=0

∥∥Dvj
xk

∥∥ ≤
c3κ‖a‖2

4rλ2

(
e−rtk − e−rtk+1

) (
1 − e−λtN

)
.

(3.14)

12



Because of (3.8), we have for k = 0, . . . , N

‖Dpkuk
Lk‖ ≤ c‖a‖





τk for λ = 0 ,

1
λ

(
1 − e−λτk

)
for λ > 0 .

(3.15)

From (3.10) and (3.12), we see that for l = N, . . . , 1

N∑

j=0

∥∥Dvj
pl−1

∥∥ ≤ c2κ‖a‖

∫ tl+1

tl

e−rt−λ(t−tl)

∫ t

0

e−λ(t−σ)dσ dt

+ ce−λτl

N∑

j=0

∥∥Dvj
pl

∥∥ . (3.16)

For λ = 0, it follows

N∑

j=0

∥∥Dvj
pl−1

∥∥ ≤ c2κ‖a‖

∫ tl+1

tl

te−rtdt + c

N∑

j=0

∥∥Dvj
pl

∥∥ ,

and so we obtain for k = 0, . . . , N since pN = 0

N∑

j=0

∥∥Dvj
pk

∥∥ ≤ cN−k+1κ‖a‖

∫ tN+1

tk+1

te−rtdt

= cN−k+1κ‖a‖
1

r2

(
(1 + rtk+1)e

−rtk+1 − (1 + rtN+1)e
−rtN+1

)
.

We thus find

‖Dpkuk
Lk‖

N∑

j=0

∥∥Dvj
pk

∥∥

≤ cN+2κ‖a‖2 τk

r2

(
(1 + rtk+1)e

−rtk+1 − (1 + rtN+1)e
−rtN+1

)
. (3.17)

For λ > 0, we have

N∑

j=0

∥∥Dvj
pl−1

∥∥ ≤
c2κ‖a‖

λ

∫ tl+1

tl

e−rt−λ(t−tl)
(
1 − e−λt

)
dt

+ ce−λτl

N∑

j=0

∥∥Dvj
pl

∥∥

≤
c2κ‖a‖

λ

∫ tl+1

tl

e−rtdt + ce−λτl

N∑

j=0

∥∥Dvj
pl

∥∥ ,

13



and thus

N∑

j=0

∥∥Dvj
pl−1

∥∥ ≤
c2κ‖a‖

λ

(∫ tl+1

tl

e−rtdt+

+ ce−λ(tl+1−tl)

∫ tl+2

tl+1

e−rtdt + c2e−λ(tl+2−tl)

∫ tl+3

tl+2

e−rtdt+

+ · · · + cN−le−λ(tN−tl)

∫ tN+1

tN

e−rtdt

)
.

So we have

N∑

j=0

∥∥Dvj
pk

∥∥ ≤
cN+1κ‖a‖

λ

∫ tN+1

tk+1

e−rtdt

=
cN+1κ‖a‖

rλ

(
e−rtk+1 − e−rtN+1

)

and obtain for k = 0, . . . , N

‖Dpkuk
Lk‖

N∑

j=0

∥∥Dvj
pk

∥∥ ≤
cN+2κ‖a‖2

rλ2

(
1 − e−λτk

) (
e−rtk+1 − e−rtN+1

)
.

(3.18)

In the case λ = 0, (3.6) reads, together with (3.13) and (3.17), as

N∑

j=0

∣∣Dvj
fk(v0, . . . , vN )

∣∣ ≤ c3κ‖a‖2 tk
αr

(
1 −

rτk

erτk − 1

)
+

+ cN+2κ‖a‖2 τk

αr

1 + rtk+1 − (1 + rtN+1)e
−r(tN+1−tk+1)

erτk − 1
. (3.19)

Since

rτmax

erτmax − 1
≤

rτk

erτk − 1
< 1 , (3.20)

it follows

N∑

j=0

∣∣Dvj
fk(v0, . . . , vN )

∣∣ ≤ c3κ‖a‖2 tN
αr

(
1 −

rτmax

erτmax − 1

)
+

+ cN+2κ‖a‖2 1

αr2

(
1 + rtN+1 − (1 + rtN+1)e

−rtN+1
)
,

14



which leads to (3.2).
In the case λ > 0, (3.6) reads, together with (3.14) and (3.18), as

N∑

j=0

∣∣Dvj
fk(v0, . . . , vN )

∣∣ ≤ c3κ‖a‖2

4αλ2

(
1 − e−λtN

)
+

+
cN+2κ‖a‖2

αλ2

(
1 − e−λτk

) 1 − e−r(tN+1−tk+1)

erτk − 1
.

Since
1 − e−λτk ≤ λτk ,

it follows with (3.20)

N∑

j=0

∣∣Dvj
fk(v0, . . . , vN )

∣∣ ≤ c3κ‖a‖2

4αλ2

(
1 − e−λtN

)
+

+
cN+2κ‖a‖2

αrλ

(
1 − e−rtN+1

)
,

which leads to (3.3). #

Remark 3.1 If ρ < 1 then Algorithm 1.1 is convergent. This is only ful-
filled if, in particular, κ and tN+1 are small or α, r, and λ are large. As
estimate (3.6) can be improved if z is strongly convex (cf. relation (2.5) for
the denominator in (3.4)), the estimates (3.2) and (3.3) for ρ can then be
improved, too. However, this needs to have concrete information on z.

Theorem 3.1 also includes the case λ > 0 and tN+1 = ∞. We then use
the convention e−λtN+1 = e−rtN+1 = 0.

Theorem 3.2 Let (u∗
0, . . . , u∗

N ) be the solution to Problem 1.1 and let{(
u

(`)
0 , . . . , u

(`)
N

)}

`∈�
be generated by Algorithm 1.2. It then holds, un-

der Assumptions (A1), (A2), and (A3), estimate (3.1) with

ρ :=
cN+2κ‖a‖2

αr2

(
1 + rτmax − (1 + rtN+1)e

−rtN+1
)

(3.21)

in the case λ = 0 and

ρ :=
cN+2κ‖a‖2

αrλ

(
1 − e−rtN+1

)
(3.22)

in the case λ > 0.
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Proof The first part is the same as in the proof of Theorem 3.1 when
replacing fk by gk. Because of (2.4), we have

Gk(v0, . . . , vN , uk) = Duk
Lk (uk, xk(u0, . . . , uk−1), pk(u0, . . . , uk−1, vk, . . . , vN ))

and, therefore, analogously to (2.5)

Duk
Gk (v0, . . . , vN , uk) =

α

r
e−rtk

(
1 − e−rτk

)
+

∫ tk+1

tk

e−rtaT ×

×

∫ t

tk

e(t−σ)AT

dσ Dφφz (φ(t; tk, xk, uk))

∫ t

tk

e(t−σ)Adσa dt

≥
α

r
e−rtk

(
1 − e−rτk

)
.

In opposite to (3.5), it holds

Dvj
Gk(v0, . . . , vN , uk) = Dpkuk

LkDvj
pk ,

whereas (3.8), (3.10), (3.11), and (3.15) remain valid. We have to estimate

N∑

j=0

∣∣Dvj
gk(v0, . . . , vN )

∣∣ ≤ r

α

(
e−rtk − e−rtk+1

)−1
‖Dpkuk

Lk‖

N∑

j=0

∥∥Dvj
pk

∥∥ .

(3.23)

Because of (1.16), we have xk = xk (u0, . . . , uk−1) and

xl = xl (u0, . . . , uk−1, vk, . . . , vl−1) , l = k + 1, . . . , N .

It follows Dvj
xl = 0 for j = 0, . . . , k − 1 and for j = l, . . . , N . From (1.16b)

and (1.6), we find for j = k, . . . , l − 1

Dvj
xl = eτl−1ADvj

xl−1 +

∫ tl

tl−1

e(tl−σ)Adσ a Dvj
vl−1

= e(tl−tk)ADvj
xk +

l−k−1∑

µ=0

∫ tk+1+µ

tk+µ

e(tl−σ)Adσ a Dvj
vk+µ

=

∫ tj+1

tj

e(tl−σ)Adσ a .
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So the identity (3.12) becomes

Dvj
φ(t; tl, xl, vl) = Dxl

φ(t; tl, xl, vl)Dvj
xl + Dvl

φ(t; tl, xl, vl)Dvj
vl

=





∫ tj+1

tj

e(t−σ)Adσ a for j = k, . . . , l − 1 ,

∫ t

tj

e(t−σ)Adσ a for j = l ,

0 else

(3.24)

for l = k + 1, . . . , N , and we obtain from (3.10) and (3.11)

N∑

j=0

∥∥Dvj
pl−1

∥∥ ≤ c2κ‖a‖

∫ tl+1

tl

e−rt−λ(t−tl)

∫ t

tk

e−λ(t−σ)dσ dt

+ ce−λτl

N∑

j=0

∥∥Dvj
pl

∥∥ . (3.25)

Note the difference between (3.16) and (3.25): the second integral is taken
over (0, t) and (tk, t), respectively. It follows for λ = 0

N∑

j=0

∥∥Dvj
pl−1

∥∥ ≤ cN−l+2κ‖a‖

∫ tN+1

tl

(t − tk)e−rt dt

and, therefore, with l = k + 1 using (3.15)

‖Dpkuk
Lk‖

N∑

j=0

∥∥Dvj
pk

∥∥ ≤ cN−k+2κ‖a‖2τk

∫ tN+1

tk+1

(t − tk)e−rt dt

≤ cN+2κ‖a‖2 τk

r2

(
(1 + rτk)e−rtk+1 − (1 + r(tN+1 − tk))e−rtN+1

)

instead of (3.17). We find

N∑

j=0

∣∣Dvj
gk(v0, . . . , vN )

∣∣

≤ cN+2κ‖a‖2 τk

αr

1 + rτk − (1 + r(tN+1 − tk))e−r(tN+1−tk+1)

erτk − 1
.

This gives, together with (3.20) and

(1 + r(tN+1 − tk))e−r(tN+1−tk) ≥ (1 + rtN+1)e
−rtN+1 ,
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the assertion.
If λ > 0, we do not make use of the difference between (3.16) and (3.25),

and so we arrive –as in the proof of Theorem 3.1– at (3.18). This gives

N∑

j=0

∣∣Dvj
gk(v0, . . . , vN )

∣∣ ≤ cN+2κ‖a‖2

αλ2

(
1 − e−λτk

) 1 − e−r(tN+1−tk+1)

erτk − 1
,

which proves, together with (3.20), the assertion. #

Remark 3.1 also applies with respect to Algorithm 1.2 and Theorem 3.2.

4 Infinite time horizon in the case λ = 0

As we have already mentioned, an infinite time interval is of particular
interest in applied problems even if λ = 0. In this case, we need to replace
Assumption (A2), which can be no longer justified since the boundedness of
φ is not at hand, and Assumption (A3) by the more refined criterion (A4).
In the following, let

τmax,0 := max
i=0,...,N−1

τi .

Theorem 4.1 Let λ = 0 in (A1). Under Assumption (A4), Theorem 2.1
then remains valid. Furthermore, Theorem 3.1 holds true with

ρ :=
c3‖a‖2Kr

α

(
tN +

cN − 1

c − 1
τmax,0

)
max

k=0,...,N

(
e−rtk − e−rtk+1

)−1
(4.1)

whereas Theorem 3.2 holds true with

ρ :=
c3‖a‖2Kr

α

cN − 1

c − 1
τmax,0 max

k=0,...,N

(
e−rtk − e−rtk+1

)−1
, (4.2)

and (1.8) need not to be assumed.

Proof The proof of Theorem 2.1 has to be slightly changed since (2.6) is
no longer true: We replace the estimate (2.6) by

Duk
Fk (v0, . . . , vN , uk) ≤

α

r
e−rtk

(
1 − e−rτk

)
+

+ c2‖a‖2

∫ tk+1

tk

e−rt(t − tk)2 ‖Dφφz (φ(t; tk, xk, uk))‖ dt < ∞ , (4.3)

which follows from (2.5) and (A4).
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In order to prove the convergence of Algorithm 1.1, we firstly observe
that, instead of (3.13), from (3.7) and (3.9)

‖Dxkuk
Lk‖

N∑

j=0

∥∥Dvj
xk

∥∥ ≤ c3‖a‖2Ktk ≤ c3‖a‖2KtN (4.4)

follows. Inequality (3.15) remains true for k = 0, . . . , N − 1. Since pN = 0,
LN does not depend on pN and so DpN uN

LN = 0. From (3.10) and (3.12),
we find with (A4)

N∑

j=0

∥∥Dvj
pl−1

∥∥ ≤ c2‖a‖

∫ tl+1

tl

te−rt‖Dφφz(φ(t; tl, xl, vl))‖dt + c

N∑

j=0

∥∥Dvj
pl

∥∥

≤ c2‖a‖K + c

N∑

j=0

∥∥Dvj
pl

∥∥ ,

and so we obtain for k = 0, . . . , N since pN = 0

‖Dpkuk
Lk‖

N∑

j=0

∥∥Dvj
pk

∥∥ ≤ c3‖a‖2K
cN − 1

c − 1
τmax,0 (4.5)

instead of (3.17).
By virtue of (3.6), we finally come up with

max
k=0,...,N

N∑

j=0

∣∣Dvj
fk(v0, . . . , vN )

∣∣ ≤

c3‖a‖2Kr

α

(
tN +

cN − 1

c − 1
τmax,0

)
max

k=0,...,N

(
e−rtk − e−rtk+1

)−1
(4.6)

instead of (3.19), and the assertion follows.
The proof of the convergence of Algorithm 1.2 in the case λ = 0 with infi-

nite time horizon follows the same arguments as in the proof of Theorem 3.2
with the observations just made (compare (3.23) with (3.6)). However, due
to the difference between (3.16) and (3.25), (1.8) need not to be satisfied.

#

It should be noted that the above convergence result is rather rough: A
more refined estimate can be only obtained with a more refined Assump-
tion (A4) relying on the concrete function z and the given time partition.
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5 Numerical results for a global warming model

Wirl [10] considered the Nordhaus model of global warming in which the
greenhouse effect is represented by the following initial value problem:

Ṁ(t) = −δ M(t) + β ϑ E(p(t)) , M(0) = M0 ,

Ṫ (t) = α(γ(M(t)) − T (t)) , T (0) = T0 = 0 .

The first differential equation accumulates the greenhouse gas concentra-
tion in the atmosphere M(t). Its dynamics is determined by the natural
reduction −δ M(t) (the parameter δ ≥ 0 has been proposed by Wirl later
on, although in [10], he deals with δ = 0) and by the consumption of energy
E(p(t)) that depends on the price p per unit of energy. Here, the price p
plays the rôle of the control variable. Each unit of (fossil) energy induces
inevitably carbon dioxide emissions. The parameter ϑ denotes the average
ratio of carbon dioxide emissions per unit of fossil energy and is aggregated
over the diffusion coefficient β.

A rise of the carbon dioxide concentration in the atmosphere increases
stationary the earth temperature T (t) according to the function γ(M). The
assessment of the function γ depends on the model used to quantify this
effect (e. g. global circulation models). The parameter α comes from the lin-
ear demand function. The temperature T is modelled in terms of deviations
from present temperature so that T0 = 0.

The social planner maximises the discounted so-called welfare function
W minus the cost C of the increase in temperature T that leads to the
following objective function

K :=

∫ ∞

0

e−rt
(
W (p(t)) − C(T (t))

)
dt ,

where the welfare function W = W (p(t)) is the sum of consumer and pro-
ducer surplus at time t. Finally, the objective function depends on the
discount rate r ∈ (0, 1). For more details, we refer to [10].

For the numerical experiments, we shall focus our attention on the fol-
lowing class of problems that covers the above application: Let for t ∈
[tk, tk+1) (k = 0, . . . , N) the functions x(t) = x(t; tk, xk, yk, uk) and y(t) =
y(t; tk, xk, yk, uk) be the solution to the initial value problem

ẋ(t) = − ζ x(t) + a uk + b1 , x(tk) = xk , (5.1a)

ẏ(t) = η (ξ x(t) − y(t) + b2) , y(tk) = yk , (5.1b)

where a, b1, b2, ξ, η, ζ ∈
�

and η > 0, ζ ≥ 0. Here, uk is the price to
be controlled, which is assumed to be piecewise constant. Moreover, the
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consumption of energy depends upon the price in an affine-linear way. The
relation between the carbon dioxide concentration and the corresponding
increase of the temperature γ(M(t)) is also taken to be affine-linear.

System (5.1) coincides with (1.5) taking

A =


 −ζ 0

ξ η −η


 , a =


 a

0


 , b =


 b1

η b2


 .

Since A possesses the eigenvalues −ζ and −η, Assumption (A1) is fulfilled
with λ := min{ζ, η}. For simplicity, let us introduce the abbreviation
ηk(t) := 1 − e−η(t−tk) and ζk(t) := 1 − e−ζ(t−tk) for t ≥ tk. The exact
solution to (5.1) is then given by

x(t) =





xk(1 − ζk(t)) + (a uk + b1)ζ
−1ζk(t) for ζ > 0 ,

xk + (a uk + b1)(t − tk) for ζ = 0 ,
(5.2a)

and

y(t) =





ξ(a uk + b1)(t − tk − η−1ηk(t))

+ yk(1 − ηk(t)) + (ξ xk + b2)ηk(t) for ζ = 0 ,

ξ η(a uk + b1)(η − ζ)−1(ζ−1ζk(t) − η−1ηk(t))

+ yk(1 − ηk(t)) + b2 ηk(t)

+ ξ η xk(η − ζ)−1(ηk(t) − ζk(t)) for ζ 6= η ,

yk(1 − ηk(t)) + (ξ η−1(a uk + b1) + b2)ηk(t)

+ ξ η(xk − η−1(a uk + b1))(t − tk)(1 − ηk(t)) for ζ = η .

(5.2b)

According to these state equations, we consider two types of objective func-
tions:

I(u0, . . . , uN , x0, . . . , xN , y0, . . . , yN) :=

N∑

k=0

∫ tk+1

tk

e−rt

(
α

2
u2

k +
β

2
y2(t; tk, xk, yk, uk)

)
dt
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and

J(u0, . . . , uN , x0, . . . , xN , y0, . . . , yN) :=

N∑

k=0

∫ tk+1

tk

e−rt
(α

2
u2

k + eγ y(t;tk,xk,yk,uk)
)

dt .

The functional I appears in [10] by assuming a linear demand function and
quadratic costs with respect to the rise in temperature. The objective is to
maximise the sum of consumer surplus and inland revenue minus the costs
for the greenhouse effect. Wirl [10] suggests further to consider a more
sharp cost function, for instance costs that increase exponentially as it is
modelled by the functional J .

In our setting, where only piecewise constant controls are considered,
the explicit solution to the (discrete) Problem (PK), K ∈ {I, J},

min
u0,... ,uN
x0,... ,xN
y0,... ,yN

K(u0, . . . , uN , x0, . . . , xN , y0, . . . , yN)

such that for k = 0, . . . , N − 1

xk+1 = x(tk+1; tk, xk, yk, uk) , yk+1 = y(tk+1; tk, xk, yk, uk) ,

uk ∈ [0, M ] , M > 0 given,

is not known, neither for K = I nor in the case K = J . However, en-
larging the control space to the set of piecewise continuous functions, at
least the solution to the (continuous) Problem (PI) can be determined by
using the Hamilton-Jacobi-Bellman equation of continuous dynamic pro-
gramming. We, therefore, refer to these different situations as the discrete
and the continuous solution, respectively.

In all our experiments, the following parameter values have been used
relying on [10]:

x0 = 2746 y0 = 0 for the initial condition,

ζ ∈ {0; 0.0025} a = −0.04 b1 = 12.5 in the state equation (5.1a),

η = 0.02 ξ = 0.0011 b2 = −3 in the state equation (5.1b),

α = 0.08 β = 15000 r = 0.03 for the functional I ,

α = 0.08 γ = 3.7066 r = 0.03 for the functional J .
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Note that Assumption (A4) is valid for the functional I. It remains fulfilled
for the functional J if ζ > 0. In the case ζ = 0, we have y(t) ≤ ȳ t + const
where ȳ = ξ(a uN + b1), and (with φ = (x, y)T) ‖Dφφz(φ)‖ = γ2eγy(t).
Hence, in the case of an infinite time horizon, Assumption (A4) is also
fulfilled if

uN <
r

γ ξ a
−

b1

a
≈ 128.553 . (5.3)

Using (5.2), the states x(t), y(t) have been calculated exactly. All inte-
grals appearing in Algorithm 1.1 and 1.2, respectively, have been computed
approximately using the composite Weddle rule with a step size h = 0.1.
This integration formula is of order 8 and needs 7 evaluations on each subin-
terval of length h (cf. e. g. [8]).

The case of an infinite time horizon has been approximated using a
(large) finite value for T := tN+1. The corresponding problem (PK) =
(PK(T )) admits a solution u∗ = u∗,T that converges to u∗,∞ for T → ∞.

A useful stopping criterion for both, the convergence of the iterates and
the convergence in time,

u`,T → u∗,T , u∗,T → u∗,∞ ,

is to require a small residual R`,

R` :=

N∑

k=0

|Duk
Lk| +

N∑

k=1

|Dxk
Lk| +

N∑

k=1

|Dyk
Lk|

+

N−1∑

k=0

|xk+1 − x(tk+1; tk, xk, yk, uk)|

+

N−1∑

k=0

|yk+1 − y(tk+1; tk, xk, yk, uk)| .

Here, Lk has to be evaluated at the current iterates, i. e.

Lk = Lk(u
(`)
k , x

(`)
k , y

(`)
k , x

(`)
k+1, y

(`)
k+1, p

(`)
k , q

(`)
k ) ,

where pk, qk are the multipliers. Again, for the approximate calculation
of the integrals appearing in the definition of the residual, a finite time T
has been used. Let us indicate this by denoting R`(T ). The observation
R`(T ) → 0 then indicates convergence of the iterates. Furthermore, for
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T ′ � T the additional condition R`(T
′) ≈ R`(T ) indicates that u`,T is a

suitable approximation for u∗,T ′

and u∗,∞, respectively.
For problem (PI), the equation determining uk can be solved explic-

itly whereas for problem (PJ ) we have employed Newtons’ method in its
standard form (with excellent convergence properties).

After all, the following has been observed:

(1) Problem (PI) is solved fast and stable even for large T . For instance,
with N = 50, T = 2800, τk = const, ζ = 0, Algorithm 1.2 takes 17
iterations to stop with a residual R(T ′) < 0.001 (T ′ = 2T ). As one
expects, Algorithm 1.1 is less fast and needs 20 iterations to reach the
same accuracy. Increasing the number of unknowns up to N = 500,
Algorithm 1.2 needs ceteris paribus 6 iterations more. The values
I(u`,T ) and R`(2T ) decrease strictly.

(2) In accordance with the theoretical results, the rate of convergence is
higher in the case λ > 0. Keeping the values from the previous item,
we only have 13 iterations for a run with ζ = 0.025 instead of ζ = 0.

(3) The discrete solution approximates the continuous one quite well with
respect to the states x(t) and y(t). Figure 5.1 shows the trajectories for
different discretisations. Choosing large values for N , e. g. N ≥ 100,
there is no obvious difference to the continuous solution.

(4) The error with respect to the objective value of the continuous prob-
lem can be reduced significantly when using a time partition with
constant distances e−rtk − e−rtk+1 . This decreases also the number
of necessary iterations. This observation might be useful to find an
optimal time partition when discretising time-continuous control prob-
lems. Also the estimates in the proofs of Theorem 3.1 and 3.2 as well
as in Theorem 4.1 show that the term e−rtk − e−rtk+1 influences the
convergence.

(5) Problem (PJ ) cannot be solved for large values of T . Taking N = 10,
ζ = 0, and an equidistant time partition, Algorithm 1.2 does not con-
verge for T ≥ 275; the iterates are alternating. The residual evaluation
of the short time solution shows that it is a bad approximation of large
time problems. This behaviour does not change when increasing the
number of unknowns since this does not resolve the trade-off between
N and τmax stated in Theorem 3.2. However, it is possible to solve
the problem with a larger discount rate r, but this does not lead to a
solution of the original problem.
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Figure 5.1: Continuous and discrete solutions for ζ > 0 (equidistant time
partition)
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(6) Using the prox regularisation method (cf. [6]), i. e. in each iteration `
we deal with the regularised functionals

J` :=

N∑

k=0

∫ tk+1

tk

e−rt
(α

2
u2

k +
σ

2
(uk − u

(`−1)
k )2 + eγ y(t;tk,xk,yk,uk)

)
dt

instead of J , where σ > 0 is some parameter chosen appropriately,
leads to convergent sequences even for large T . The regularised func-
tional has a curvature of at least α + σ that gives a better result in
(4.1) and (4.2), where α can be replaced by α + σ.

It should be noted that an additional condition for the control variables
of the form uk ∈ Ωk ⊂

�
, Ωk closed, (k = 0, . . . , N), can easily be im-

plemented by projecting the solution u
(`)
k to (1.13) on Ωk and using this

projection instead of u
(`)
k .

6 Conclusions

In this work, we have presented two iterative algorithms for solving discrete
discounted control problems as they typically arise in economic models.
These problems may have an infinite time horizon but can be approximated
with high accuracy by choosing large final time points. We have only con-
sidered the case of a control function that is piecewise constant on at most
a finite number of time intervals. This situation might be given a priori or
can arise from a time discretisation of a continuous model.

We have provided convergence results under suitable assumptions. These
results show that the algorithms behave better for shorter time intervals,
for larger discount rates, for particular partitions of the time interval, and
for larger curvatures of the objective function. The convergence is at least
linear.

Our numerical experiments are based upon a model of global warming
that has been considered by Wirl [10]. The sequences generated by the iter-
ation scheme converge very fast in the simple case of a quadratic objective
function. We could also observe that the iterates do not converge in the
case of a more general convex objective with a large final time, a problem
that can be resolved by introducing a prox-regularisation.

We have, finally, to remark that the numerical experiments were suc-
cessful although the convergence parameter ρ was not less than 1. This
underlines that the theoretical results obtained here only present sufficient
conditions for convergence and are restricted to situations as described in
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Remark 3.1. Nevertheless, it is possible to find a sharper estimate for ρ in
the case of our example when taking z’s strong convexity into account for
estimating the denominator in (3.4) using (2.5).

References
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