
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, Vol.6(2006), No.2, pp.154–177
c© 2006 Institute of Mathematics of the National Academy of Sciences of Belarus

SUPRACONVERGENCE OF A FINITE DIFFERENCE

SCHEME FOR ELLIPTIC BOUNDARY VALUE PROBLEMS

OF THE THIRD KIND IN FRACTIONAL ORDER SOBOLEV

SPACES

E.EMMRICH1 and R.D.GRIGORIEFF1

Abstract — In this paper, we study the convergence of the finite difference discretiza-
tion of a second order elliptic equation with variable coefficients subject to general
boundary conditions. We prove that the scheme exhibits the phenomenon of supra-
convergence on nonuniform grids, i.e., although the truncation error is in general of
the first order alone, one has second order convergence. More precisely, for s ∈ (1/2, 2]
the optimal order O(hs)-convergence of the finite difference solution and its gradient
appears if the exact solution is in the Sobolev — Slobodetskij space H1+s(Ω). All error
estimates are strictly local.
Another result of the paper is a close relationship between finite difference scheme
and linear finite element methods combined with a special kind of quadrature. As
a consequence, the results of the paper can be viewed as the introduction of a fully
discrete finite element method for which the gradient is superclose, i.e., the error of
the approximate gradient with respect to the linear interpolation of the solution u is
of the second order if u ∈ H3(Ω). A numerical example is given.
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1. Introduction

We consider the discretization of the differential equation

Au := −(aux)x − (buy)y + cu = f in Ω ⊂ R
2 (1.1)

subject to the boundary conditions of the third kind

Bu := auxηx + buyηy + αu = ψ on Γ := ∂Ω (1.2)

by finite differences defined on a generally nonuniform rectangular grid ΩH on the domain
Ω, which is assumed to be a union of rectangles. Here ηx and ηy denote the components of
the outer normal on Γ.

The main aim of the paper is to study the behaviour of the finite difference solution for
a sequence of variable grids ΩH , H ∈ Λ, with the maximal mesh size Hmax converging to
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zero. The grids are assumed to be quasi-uniform except for the cases of s = 1 and s = 2,
where no restriction is placed on the nonuniformity. Under these circumstances the scheme
is, in general, only first order consistent. Our aim is to show that nevertheless the finite
difference solution and its gradient are one order more accurate. This property of the FDM
is usually called supraconvergence (see [24]). More precisely, we prove optimal convergence
rates O(hs), s ∈ (1/2, 2], of the scheme for weak solutions u belonging to the fractional order
Sobolev — Slobodetskij space H1+s(Ω). It is shown that the gradient is also approximated
with the same order. The error estimates are strictly local as is desirable when working with
nonuniform grids.

Supraconvergence results for two-dimensional elliptic problems were obtained by several
authors. Some basic studies can be found in [29]. In [33] the Laplacian in a square domain
subject to Neumann boundary conditions and in [5] a general second order elliptic equation
in a polygonal domain subject to Dirichlet boundary conditions were considered. In both
papers the solution was assumed to be smooth, i.e., that u belongs to C4(Ω).

It is known from the finite elements that the second order convergence in the L2-norm has
already been obtained for solutions u ∈ H3(Ω), which is optimal with respect to the smooth-
ness assumed. The aim of many papers was to establish also for finite difference schemes
the convergence rates that are optimal with respect to the smoothness of the solution, even
in the case of a less smooth solution u ∈ H t(Ω) with t < 3. Major steps in this direction
can be found in [20], [23] and [38], where finite difference schemes on uniform meshes for
different types of (positive definite) elliptic equations in a rectangular domain subject to
Dirichlet boundary conditions are considered. Third kind boundary conditions are analyzed
in [21], where apart from the logarithmic factor the second order convergence was proved for
u ∈ H3(Ω). A weaker typical smoothness assumption is u ∈ H1+s(Ω) with s > 0 ensuring
that the pointwise restriction of u on the mesh makes sense, but even s > −1/2 was con-
sidered in [28]. The convergence is usually studied in discrete analogues of Sobolev spaces.
Relying on another method of analysis, domains with a curved boundary are admitted in
[11]. Other authors, see [16] and [22], concentrate on handling equations with nonsmooth co-
efficients or on obtaining convergence in discrete Lp-norms (see [38]). An excellent overview
has recently been given in [16] and also in [17], where the analysis can be found in detail. In
[7] the supraconvergence was analyzed based on the maximum principle.

Finite differences on nonuniform meshes for the Laplacian in a square with solutions
u ∈ H1+s(Ω) are considered in [40] for s = 2 and in [3] and [19] for s ∈ [1, 2]. The idea in
these papers is to add a correction to the standard finite difference scheme on uniform grids
that makes the scheme second order accurate also on nonuniform meshes. This disagrees with
the result of the present paper that no correction is needed to prove the same convergence
order as on uniform meshes, i.e., supraconvergence takes place. Our kind of analysis works
fine in the case of Dirichlet boundary conditions (see the forthcoming paper [6]). We consider
here the more complicated boundary conditions of the third kind, which were studied in [3]
for s = 2 on nonuniform meshes in rectangular domains. Also mixed derivative terms could
be included in the differential operator A. For ease of presentation we restrict ourselves to
the present simpler case. Problems with mixed derivatives were studied with the aid of the
maximum principle for smooth solutions u in [34].

A one-dimensional version of the results obtained in this paper was published in [1]. In
the one-dimensional case, several authors studied the supraconvergence (see [8–10,15,24,32,
37]). Also for hyperbolic and parabolic equations the supraconvergence was considered (see
[2, 18, 29, 39, 42]).
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In the proofs we prefer to work with the usual norms in the Sobolev — Slobodetskij
spaces thus avoiding the uncomfortable discrete versions of these norms. Also, we find it
helpful in the analysis to establish equivalence with the linear finite element method on the
standard triangulation TH associated with the rectangular grid ΩH combined with a special
kind of quadrature. In fact, this relation opens up the possibility of expressing the discretized
boundary conditions, always a problem for finite difference methods if conditions of the third
kind are involved, in a reasonable form. As a consequence, the second order convergence of
the gradient in the finite difference scheme is nothing but the supercloseness ([36], [41, p. 80])
of the gradient of the fully discrete FEM approximation, i.e., it is second order accurate to
the linear interpolation QHu on TH of the exact solution u. Several recovery techniques for
the gradient are based on the supercloseness property (see [12–14, 25, 26, 30, 43, 44] and the
references in [27]). In the supercloseness results involved in these papers the meshes are
either completely uniform or a smooth transformation of a uniform mesh when working on
nonuniform meshes. We want to point out the significant difference in the behaviour of the
scheme on uniform and nonuniforms grids, which can be well seen from the finite difference
presentation: while on the former grids the truncation error is of the second order and
smoothly varying from grid point to grid point, it is of the first order and strongly oscillating
on the latter. In most cases the Dirichlet conditions were considered, but in [13] and [36] also
boundary conditions of the third kind are admitted. The order of the supercloseness in the
latter case is then reduced to O(h3/2). In [30], the finite element scheme is fully discrete. It is
obtained with the aid of a second order accurate quadrature formula, while our quadrature
formulas are only of the first order. Recently, the supercloseness has been studied in [31] for
nonconforming finite elements.

The paper is organized as follows. In Section 2 we describe the finite difference method for
problem (1.1), (1.2). In the next section an equivalent linear FEM with quadrature for which
stability is easy to obtain is introduced. In Section 4 the crucial estimate for the truncation
error is proved for the low regularity case s ∈ (1/2, 1], from which, together with the stability,
the first convergence result in Theorem 4.1 follows: the H1-norm of the discretization error
QH(u−uH) is of order O(Hs

max) provided u is in the Sobolev — Slobodetskij space H1+s(Ω).
Our supraconvergence result, i.e., that the same convergence result holds also for s ∈ (1, 2],
is stated in Theorem 5.1 and proved in Section 5. In this section it is also shown that in
general supraconvergence does not take place in the case of the right-hand side f ∈ H1(Ω)
in (1.1) if pointwise restriction on the grid ΩH is used in place of the integral average (2.3)
below. But the pointwise restriction can be taken if f ∈ Hs(Ω), s > 1 (see Remark 5.4). In
Section 6 we give some numerical results. Some notations are given in an appendix.

2. The finite difference scheme

In this section, we set up the discretization of (1.1) and (1.2). We first introduce a generally
nonequidistant rectangular grid ΩH . Let h = {hj}j∈Z and k = {k�}�∈Z be two sequences of
mesh sizes, i.e., of positive numbers. We define the grid

R
x
h = {xj ∈ R : xj+1 = xj + hj, j ∈ Z}

with x0 ∈ R given and the corresponding grid R
y
k with the mesh size vector k in place of h

and y0 in place of x0. Points in the middle between two adjacent grid points are denoted
by xj+1/2 := xj + hj/2 and xj−1/2 := xj − hj−1/2 (= x(j−1)+1/2) and, respectively, in the
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y-direction. Let RH be the two-dimensional rectangular grid

RH = R
x
h × R

y
k ⊂ R

2

and define ΩH := Ω ∩ RH , ΓH := Γ ∩ RH , ΩH := Ω ∩ RH (= ΩH ∪ ΓH). The grid ΩH is
assumed to satisfy the condition that the vertices of Ω are in ΓH .

For the formulation of the finite difference approximation we use the centered finite
difference quotients

(δ(1/2)
x v)j,� :=

vj+1/2,� − vj−1/2,�

xj+1/2 − xj−1/2
and (δ(1/2)

x v)j+1/2,� :=
vj+1,� − vj,�

xj+1 − xj
.

Here vj,� := v(xj , y�) and vj+1/2,� := v(xj+1/2, y�) for the functions v defined on Ω. The
operators also apply for the grid functions vH ∈ WH , the space of functions defined on ΩH ,
if the final result makes sense. The definition of δ

(1/2)
y etc. is analogous. If it is convenient

we also use the notation vP := vH(P ) for P ∈ ΩH . Then we approximate the differential
operator (1.1) by

AHuH := −δ(1/2)
x (aδ(1/2)

x uH) − δ(1/2)
y (bδ(1/2)

y uH) + cuH = fH in ΩH . (2.1)

We assume that the coefficients of A belong at least to C(Ω) to ensure that AHuH is well-
defined. We also assume that at least α, ψ ∈ C(Γ) and f ∈ L2(Ω). Further assumptions will
be imposed later. The right-hand side fH in (2.1) is obtained by averaging f in the following
way: for a point P = (xj , y�) ∈ ΩH let xP := xj , yP := y� and

P := (xj−1/2, xj+1/2) × (y�−1/2, y�+1/2) ∩ Ω, ωP := | P |, (2.2)

where | P | denotes the measure of P . Then

fP :=
1

ωP

∫
P

f(x, y) dV. (2.3)

In Section 5 we will also consider the possibility of taking fH to be the pointwise restriction
of f on the grid ΩH . The pointwise restriction of the function v on the grid ΩH will be
denoted by RHv. If it is clear from the context, we often write only v in place of RHv.

The right-hand side ψ of the boundary condition is simply approximated by its restriction
to the points in ΓH . In the case s ∈ (1/2, 1], we can also take (see Remark 4.2)

ψP :=
1

σP

∫
ΓP

ψ(x, y) dσ, P ∈ ΓH , (2.4)

where

σP := |ΓP | with ΓP := (xj−1/2, xj+1/2) × (y�−1/2, y�+1/2) ∩ ∂Ω for P = (xj, y�) ∈ ΓH . (2.5)

We come to the discretization of the boundary conditions, where we distinguish three
different types of boundary points: inner points on straight segments, convex and re-entrant
corners of ΓH . The following discretizations can be systematically derived from the varia-
tional formulation (3.6) in Section 3.
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We start with the point (xj , y�) ∈ ΓH on the interior of the vertical segment with Ω lying
locally to the right. The discretization is then

−(aδ(1/2)
x uH)j+1/2,� − hj

2

(
δ(1/2)
y (bδ(1/2)

y uH)
)

j,�
+

hj

2
(cuH)j,� + (αuH)j,� = ψj,� +

hj

2
fj,�. (2.6)

Next we consider the convex corner (xj , y�) with Ω lying locally to the right and above.
The discretization is in this case given by

− k�

hj + k�

(aδ(1/2)
x uH)j+1/2,� − hj

hj + k�

(bδ(1/2)
y uH)j,�+1/2 +

hjk�

2(hj + k�)
(cuH)j,� + (αuH)j,� =

ψj,� +
hjk�

2(hj + k�)
fj,�. (2.7)

Finally, let (xj, y�) be a re-entrant corner with Ω lying locally to the left and below, which
leads to

k�

hj + k�

(aδ(1/2)
x uH)j−1/2,� − k�−1(hj + hj−1)

2(hj + k�)

(
δ(1/2)
x (aδ(1/2)

x uH)
)

j,�
+

hj

hj + k�

(bδ(1/2)
y uH)j,�−1/2−

hj−1(k� + k�−1)

2(hj + k�)

(
δ(1/2)
y (bδ(1/2)

y uH)
)

j,�
+

hj−1k�−1 + hjk�−1 + hj−1k�

2(hj + k�)
(cuH)j,� + (αuH)j,� =

ψj,� +
hj−1k�−1 + hjk�−1 + hj−1k�

2(hj + k�)
fj,�. (2.8)

The discretization in the remaining points has a corresponding form, we refrain from writing
them down for all possible geometric situations. We refer to them altogether as “discrete
boundary conditions”. These discretizations can be rewritten in a more familiar form by
introducing auxiliary gridpoints. For example, in the case of (2.6) let uj−1,� be an auxiliary
variable in an auxiliary gridpoint (xj − hj , y�). If a = 1, then (2.6) is equivalent to the
equations

(AHuH)j,� = fj,� and
(uH)j+1,� − (uH)j−1,�

2hj
+ (αuH)j,� = ψj,�.

Here, according to the introduction of the auxiliary gridpoint, the coordinate xj−1/2 has to
be replaced by xj − hj/2 in AH .

3. Equivalent fully discrete Galerkin method

Our analysis of the finite difference method is based on the observation that equations (2.1)
and together with the discrete boundary conditions (see (2.6) – (2.8)) can be equivalently
written as a linear finite element method with quadrature which is also of interest in its own.

We start with the common variational formulation of (1.1), (1.2). By (·, ·)0 and 〈·, ·〉0 we
denote the standard inner product on L2(Ω) and L2(Γ), respectively. We also use ‖ · ‖s and
| · |s, or more explicitly ‖ · ‖s,Ω and | · |s,Ω, for the usual norm and seminorm, respectively, in
the Sobolev — Slobodetskij space Hs(Ω) for s � 0. Let us recall that for σ ∈ (0, 1)

|v|σ,Ω :=

( ∫∫
Ω×Ω

|v(x, y) − v(ξ, η)|2
|(x, y) − (ξ, η)|2+2σ

dV dV

)1/2

(3.1)
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and for positive s = [s] + σ with σ ∈ (0, 1)

|v|s,Ω :=

( ∑
|α|=[s]

|Dαv|2σ,Ω

)1/2

, ‖v‖s,Ω := (‖v‖2
[s],Ω + |v|2s,Ω)1/2. (3.2)

We will need the Sobolev — Slobodetskij spaces Hs(Γ), too. In this case, some care has to
be taken if s > 1 since Γ is only Lipschitz. In our situation we circumvent this difficulty by
defining the norm simply as the (Euclidean) sum of its well-defined Hs-norms extended over
the (disjoint) straight sections of Γ. By W t

q (Ω) with t ∈ N0 and q � 1 we denote the usual
Lq Sobolev space with the seminorm and norm

|v|t,q :=

( ∑
|α|=t

∫
Ω

|Dαv(x, y)|q dV

)1/q

, ‖v‖t,q :=

( t∑
k=0

|v|qk,q

)1/q

,

respectively, understanding the case q = ∞ in the usual way.
The variational formulation of our problem is:

find u ∈ H1(Ω) such that A(u, v) = (f, v)0 + 〈ψ, v〉0 for v ∈ H1(Ω), (3.3)

where A(· , ·) is the sesquilinear form defined by

A(v, w) = (avx, wx)0 + (bvy, wy)0 + (cv, w)0 + 〈αv, w〉0 for v, w ∈ H1(Ω). (3.4)

We make the general assumption that the operator A in (1.1) is uniformly elliptic in Ω and,
for simplicity, that c � 0 in Ω, α � 0 on Γ and, additionally, that not both c and α vanish
identically. Recall that the coefficients a, b, c and α are assumed to be at least continuous.
Then the homogeneous problem (3.3), i.e., with f = 0 and ψ = 0, has only the solution
u = 0.

Next we introduce discrete analogues of the inner products (·, ·)0 and 〈·, ·〉0 by

(vH , wH)H :=
∑

P∈ΩH

ωP (vH)P (wH)P for vH , wH ∈ WH (3.5)

and
〈ϕH , χH〉H :=

∑
P∈ΓH

σP (ϕH)P (χH)P

for the grid functions ϕH , χH on ΓH with ωP from (2.2) and σP from (2.5). The fully discrete
variational problem has the form

find uH ∈ WH such that AH(uH , vH) = (fH , vH)H + 〈ψH , vH〉H , vH ∈ WH . (3.6)

Here AH(·, ·) is a sesquilinear form which we are now going to define. Let TH be a triangu-
lation of Ω using the set ΩH as vertices. The specific choice of TH does not matter for the
subsequent results to hold. By QHvH we denote the continuous piecewise linear interpolation
of vH with respect to TH . Then AH(·, ·) is given as the sum

AH = aH + bH + cH + γH (3.7)

of sesquilinear forms corresponding to the different terms in the continuous variational prob-
lem (3.4). They are all constructed in a similar way on the basis of linear triangular finite
elements combined with an individual quadrature for each term.
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Let ∆ ∈ TH . We define a∆,x to be the value of the coefficient a at the midpoint of the
edge of ∆ parallel to the x-axis. Then let

aH(vH , wH) :=
∑

∆∈TH

a∆,x

∫
∆

(QHvH)x(QHwH)x dV for vH , wH ∈ WH . (3.8)

Similarly, let b∆,y denote the value of the coefficient b at the midpoint of the side of ∆ parallel
to the y-axis and

bH(vH , wH) :=
∑

∆∈TH

b∆,y

∫
∆

(QHvH)y(QHwH)y dV for vH , wH ∈ WH . (3.9)

Finally,

cH(vH , wH) := (cvH , wH)H for vH , wH ∈ WH . (3.10)

The boundary term in (3.4) is simply discretized by

γH(vH , wH) := 〈αvH , wH〉H for vH , wH ∈ WH . (3.11)

The finite difference equations belonging to (3.6) are obtained by choosing grid functions
vH that vanish at all but one grid point in ΩH . In this way the following proposition is seen
to hold.

Proposition 3.1. Let the sesquilinear form AH(· , ·) and the operator AH be defined by
(3.7) and (2.1), respectively. Then

AH(vH , wH) = (AHvH , wH)

for all vH , wH ∈ WH with wH = 0 on ΓH . Moreover, the finite difference equations (2.1)
together with the discrete boundary conditions (see (2.6) – (2.8)) are equivalent to the discrete
variational problem (3.6).

We now turn to the stability of (3.6) and consider an infinite sequence of grids RH such
that the maximal mesh size Hmax := max{hj , k� : j, � ∈ Z} tends to zero. By Λ we denote
the sequence of mesh size vectors. The sequence of grids ΩH , H ∈ Λ, is called quasi-uniform
if all possible quotients of mesh sizes in ΩH are bounded uniformly for H ∈ Λ.

From the ellipticity of the variational problem (3.3), also taking into account the conti-
nuity and the sign assumptions of the coefficients, the following proposition is easily seen to
hold.

Proposition 3.2. The following inequality holds for all vH ∈ WH and Hmax small
enough:

‖QHvH‖1 � C sup
0�=wH∈WH

|AH(vH , wH)|
‖QHwH‖1

. (3.12)

Here and in the following C denotes a generic constant independent of significant quan-
tities.
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4. Convergence: case s ∈ (1/2, 1]

Our error estimates are based on the inverse stability inequality (3.12) in Proposition 3.2
applied to the global discretization error RHu−uH in place of vH , where RHu ∈ WH denotes
the pointwise restriction of u to the grid ΩH . Hence, since uH solves (3.6), we have to estimate
the truncation error

τH := AH(RHu, vH) − (fH , vH)H − 〈ψH , vH〉H (4.1)

in terms of ‖QHvH‖1. This will be done in this section for the case of a solution u of low
regularity.

To simplify the presentation, we introduce for P ∈ Ωx
1/2 := {(xj+1/2, y�) ∈ Ω} the coordi-

nates xP := xj+1/2, yP := y�, the step size hP := hj , and the line segments, rectangles and
differences

SP := {xj+1/2} × (y�−1/2, y�+1/2) ∩ Ω, P := (xj , xj+1) × (y�−1/2, y�+1/2) ∩ Ω,

(∆xvH)P := vj+1,� − vj,�. (4.2)

For the point set Ωy
1/2 := {(xj , y�+1/2) ∈ Ω} the corresponding quantities are defined. Note

that the above symbols will be differently defined in the sequel depending on where the point
P is situated.

Our starting point is the quantity (fH , vH)H in (4.1). According to the definition of fH

in (2.3), we have

(fH , vH)H =
∑

P∈ΩH

∫
P

(Au)(x, y) dV (vH)P . (4.3)

We transform the quantities in (4.3) containing derivatives.

Lemma 4.1. The following identity holds:

∑
P∈ΩH

∫
P

(aux)x dV (vH)P = −
∑

P∈Ωx
1/2

∫
SP

aux dy(∆xvH)P +
∑

P∈ΓH

∫
ΓP

auxηx dσ(vH)P . (4.4)

Proof. Integrating by parts, we obtain

∑
P∈ΩH

∫
P

(aux)x dV (vH)P =
∑

P∈ΩH

∫
∂ P

auxηx dσ (vH)P .

Note that ηx takes the values 1, −1, and 0 on ∂ P . Separating the integrals extended over
sections of Γ from the sum and then summing by parts leads to (4.4).

Lemma 4.2. Let s ∈ (1/2, 1), u ∈ H1+s(Ω), a ∈ W 1
2/(1−s)(Ω) and assume that {ΩH}H∈Λ

is quasi-uniform. Then the following estimate holds for all P ∈ Ωx
1/2 :

∣∣∣∣
∫
SP

aux dy−|SP |(aδ(1/2)
x u)P

∣∣∣∣ � C|SP |s
(‖ux‖s, P

+‖uy‖s, P

)
� C(diam P )s‖u‖1+s, P

(4.5)

Proof. Denoting the left-hand side of (4.5) by |FP |, we obtain

|FP | �
∣∣∣aP

∫
SP

(
(δ(1/2)

x u)P − ux

)
dy

∣∣∣ +
∣∣∣
∫
SP

(aP ux − aux

)
dy

∣∣∣. (4.6)
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For the given range of s the imbeddings Hs(Ω) ↪→ L2(SP ), H1+s(Ω) ↪→ C(Ω) and W 1
2/(1−s)(Ω)

↪→ C(Ω) are continuous (see [35, Th. 3.37 with Th. 3.30 and Th. 3.26 with Th. 3.16 and
Th. A.4]). Hence

F1(u) := aP

∫
SP

(
(δ(1/2)

x u)P − ux

)
dy (4.7)

is a bounded linear functional on H1+s(Ω). It vanishes for the functions 1, x, y. We transform

P to the unit square, apply the generalized Bramble — Hilbert Lemma for the fractional
order spaces (see [4, Th. 6.1]), and obtain after transforming back

|F1(u)| � C sup
Ω

|a(x, y)| |SP |
hP

max{|SP |, hP} 1

hP |SP | max{|SP |1+s, h1+s
P }|u|1+s, P

.

Since the grids are quasi-uniform, F1(u) can be estimated by the right-hand side of (4.5).
We will now estimate the second member of the right-hand side of (4.6). Fix ux ∈ Hs(Ω)

and let

F2(a) :=

∫
SP

(aP ux − aux) dy =

∫
SP

(
aP − a(xP , y)

)
ux(xP , y) dy.

For brevity we set r := 2/(1 − s). The linear form F2(a) is bounded for a ∈ W 1
r (Ω) and

vanishes for a = 1. With the aid of the Bramble — Hilbert Lemma we can derive in a similar
way as before the bound

|F2(a)| � C|SP |
(

(hr
P + |SP |r) 1

hP |SP |
)1/r

|a|W 1
r ( P )×

(
1

hP |SP | +
1

(hP |SP |)2
max{h2+2s

P , |SP |2+2s}
)1/2

‖ux‖s, P
.

Thus also F2 can be estimated as desired and the proof is complete.

Remark 4.1. The assertion of Lemma 4.2 holds true if the norm of ux over the rectangle

P is replaced by the norm over the part of P lying to the left or the right of the segment
SP , respectively. This is immediate from the proof. In the proof of Theorem 4.1 we will
make use of this observation. A corresponding remark applies to the following Lemmas 4.3
and 4.4.

Lemma 4.3. Let u ∈ H2(Ω) and a ∈ W 1
∞(Ω). Then the following estimate holds for

P ∈ Ωx
1/2:

∣∣∣
∫
SP

aux dy − |SP |(aδ(1/2)
x u)P

∣∣∣ � Cdiam P

( |SP |
hP

)1/2

‖ux‖1, P
. (4.8)

Proof. Our starting point is again (4.6) and we use F1 and F2 as defined in the proof of
Lemma 4.2. For almost all y ∈ SP , P = (xj+1/2, y�), we obtain by virtue of the Bramble —
Hilbert Lemma

∣∣aP

(
(δ(1/2)

x u)P − ux

)∣∣ � C sup
Ω

|a(x, y)|
xj+1∫
xj

|uxx(x, y)| dx
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and integration with respect to y together with the Schwarz inequality leads to the bound
in (4.8) for |F1|. Similarly, since for each fixed ux ∈ H1(Ω) the linear form F2 is bounded for
a ∈ W 1

∞(Ω), the Bramble — Hilbert Lemma furnishes

|F2| � C|SP |(|SP | + hP ) max{‖ax‖L∞( P ), ‖ay‖L∞( P )}(|SP |hP )−1/2‖ux‖1, P
,

which can be estimated as desired.

Lemma 4.4. Let s ∈ (1/2, 1], u ∈ H1+s(Ω) and a ∈ W 1
2/(1−s)(Ω). For s ∈ (1/2, 1)

assume additionally that the sequence of grids {ΩH}H∈Λ is quasi-uniform. Then for all
vH ∈ WH∣∣∣∣

∑
P∈Ωx

1/2

∫
SP

aux dy (∆xvH)P − aH(RHu, vH)

∣∣∣∣�C

( ∑
P∈Ωx

1/2

(diam P )2s‖u‖2
1+s, P

)1/2

‖QHvH‖1 �

C Hs
max‖u‖1+s‖QHvH‖1. (4.9)

Proof. A short calculation shows that the sesquilinear form aH from (3.8) permits the
representation

aH(RHu, vH) =
∑

P∈Ωx
1/2

|SP |(aδ(1/2)
x u)P (∆xvH)P . (4.10)

Since, with FP from the proof of Lemma 4.2,
∣∣∣∣

∑
P∈Ωx

1/2

FP (∆xvH)P

∣∣∣∣
2

�
∑

P∈Ωx
1/2

hP

|SP | |FP |2
∑

P∈Ωx
1/2

hP |SP ||(δ(1/2)
x vH)P |2

the first inequality follows from Lemma 4.2 if s ∈ (1/2, 1) and from Lemma 4.3 if s = 1. The
second one is a consequence of diam P �

√
2Hmax and

∑
P∈Ωx

1/2
‖u‖2

1+s, P
� ‖u‖2

1+s.

Lemma 4.5. Let s ∈ (1/2, 1], u ∈ H1+s(Ω) and c ∈ W 1
2/(1−s)(Ω). For s ∈ (1/2, 1)

assume additionally that the sequence of grids {ΩH}H∈Λ is quasi-uniform. Then for all
vH ∈ WH∣∣∣∣

∑
P∈ΩH

∫
P

(cu)(x, y) dV (vH)P − (cu, vH)H

∣∣∣∣ � C

( ∑
P∈ΩH

(diam P )2s‖u‖2
1+s, P

)1/2

‖QHvH‖0 �

C Hs
max‖u‖1+s‖QHvH‖0. (4.11)

Proof. The main ingredient of the proof is the estimate

|F | :=

∣∣∣∣
∫
P

(cu)(x, y) dV − ωP (cu)P

∣∣∣∣ � C(diam P )sω
1/2
P ‖u‖1+s, P

(4.12)

for P ∈ ΩH from which the assertion follows using the Schwarz inequality and the relation

∑
P∈ΩH

ωP |(vH)P |2 � C

∫
Ω

|(QHvH)(x, y)|2 dV.

We consider only the case s ∈ (1/2, 1), the case s = 1 being similar. Let

F1 :=

∫
P

(
c(x, y) − cP

)
u(x, y) dV, F2 := cP

∫
P

(
u(x, y) − uP

)
dV,
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such that |F | � |F1|+ |F2|. For brevity let r := 2/(1−s). The imbeddings H1+s(Ω) ↪→ C(Ω)
and W 1

r (Ω) ↪→ C(Ω) are continuous. Fix u ∈ H1+s(Ω). Then F1 is a linear form that is
bounded for c ∈ W 1

r ( P ) and vanishes for c = 1. Hence, the Bramble — Hilbert Lemma
furnishes after a suitable scaling

|F1|�CωP

(
ω−1

P (diam P )r
)1/r|c|W 1

r ( P )

[
ω−1

P

(
1+(diam P )2+ω−1

P (diam P )4+2s
)]1/2‖u‖1+s, P

leading to the desired bound. Next we are going to estimate the linear functional F2, which is
for each fixed c ∈ W 1

r ( P ) bounded for u ∈ H1+s(Ω) and vanishes for u = 1. The generalized
Bramble — Hilbert Lemma shows in this situation that F2 is already bounded with respect

to the semi-norm
(|u|21 + |u|21+s

)1/2
. With the usual scaling procedure it follows that

|F2| � C sup
P

|c(x, y)|ωP

[
ω−1

P (diam P )2|u|21, P
+ ω−2

P (diam P )4+2s|u|21+s, P

]1/2
.

With the same type of arguments one can prove the following lemma.

Lemma 4.6. Let s ∈ (1/2, 1], ψ ∈ Hs(Γ) and α ∈ W 1
1/(1−s)(Γ). Then the following

estimate holds for P ∈ ΓH :

∣∣∣
∫
ΓP

αψ dσ − σP (αψ)P

∣∣∣ � Cσ
s+1/2
P ‖ψ‖s,ΓP

. (4.13)

Lemma 4.7. Let s ∈ (1/2, 1] and ψ ∈ Hs(Γ). Then for all vH ∈ WH

∣∣∣∣
∑

P∈ΓH

∫
ΓP

ψ dσ (vH)P − 〈ψ, vH〉H
∣∣∣∣�C

( ∑
P∈ΓH

σ2s
P ‖ψ‖2

s,ΓP

)1/2

‖QHvH‖1 �CHs
max‖ψ‖s,Γ‖QHvH‖1.

Proof. With the aid of Lemma 4.6, choosing α = 1, and the Schwarz inequality we can
estimate the square of the left-hand side of the asserted inequality by C

∑
P∈ΓH

σ2s
P ‖ψ‖2

s,ΓP
×∑

P∈ΓH
σP |(vH)P |2. Since

∑
P∈ΓH

σP |(vH)P |2 � C〈QHvH , QHvH〉0 � C‖QHvH‖2
1,Ω

the first inequality in the assertion is proved. The second one follows from the same argument
as in the proof of Lemma 4.5.

Remark 4.2. In the case that ψ is discretized by (2.4), the corresponding left-hand side
of the estimate in Lemma 4.7 vanishes identically.

With the aid of Lemma 4.6 we also obtain the next estimate.

Lemma 4.8. Let s ∈ (1/2, 1], u ∈ H1+s(Ω) and α ∈ W 1
1/(1−s)(Γ). Then for all vH ∈ WH∣∣∣∣

∑
P∈ΓH

∫
ΓP

αu dσ(vH)P −〈αu, vH〉H
∣∣∣∣�C

( ∑
P∈ΓH

σ2s
P ‖u‖2

s,ΓP

)1/2

‖QHvH‖1 �CHs
max‖u‖s,Γ‖QHvH‖1.

We are now in the position to prove the low regularity error estimate.



Supraconvergence of a finite difference scheme 165

Theorem 4.1. Let s ∈ (1/2, 1]. Assume u ∈ H1+s(Ω), a, b, c ∈ W 1
2/(1−s)(Ω), α ∈

W 1
1/(1−s)(Γ) and ψ ∈ Hs(Γ). For s ∈ (1/2, 1) assume additionally that the sequence of

grids {ΩH}H∈Λ is quasi-uniform. Then for Hmax small enough there exists a unique solution
uH of the finite difference equations satisfying

‖QH(RHu − uH)‖1 � C

( ∑
P∈ΩH

(diam P )2s‖u‖2
1+s, P

+
∑

P∈ΓH

σ2s
P

(‖u‖2
s,ΓP

+ |ψ|2s,ΓP

))1/2

�

C Hs
max

(‖u‖1+s + ‖ψ‖s,Γ

)
.

Proof. From Proposition 3.2 follows, for Hmax small enough, the uniqueness of problem
(3.6) and hence the unique existence of uH . The asserted bound will be obtained from the
same proposition by estimating τH from (4.1). Note that τH can be written in the form

τH = aH(u, vH) + bH(u, vH) + (cu, vH)H + 〈αu, vH〉H − (fH , vH)H − 〈ψ, vH〉H .

Substitute (fH , vH)H from (4.3). Use now (4.4) and the corresponding relation for the y-
derivative term (buy)y (let us remark that relation (4.4) can be used although u may not have
second order derivatives because it is only an intermediate step in transforming the integral
of f into well-defined quantities). Since (1.2) holds in Hs−1/2(Γ), we have the relation

∫
ΓP

(
auxηx + buyηy

)
dσ =

∫
ΓP

(
ψ − αu

)
dσ. (4.14)

The asserted bound is then obtained by collecting the estimates from Lemmas 4.4, 4.5, 4.7,
and 4.8.

5. Convergence: case s ∈ (1, 2]

We are now going to prove the supraconvergence. We begin with estimating the error in
replacing (aδ

(1/2)
x u)P in (4.10) by (aux)P .

Lemma 5.1. Let s ∈ (1, 2], u ∈ H1+s(Ω) and a ∈ C(Ω). For s ∈ (1, 2) assume addi-
tionally that the sequence of grids {ΩH}H∈Λ is quasi-uniform. Then for all vH ∈ WH

∑
P∈Ωx

1/2

|SP ||
(
(aδ(1/2)

x u)P − (aux)P

)
(∆xvH)P | � C

( ∑
P∈Ωx

1/2

(diam P )2s|ux|2s, P

)1/2

|QHvH |1 �

CHs
max|ux|s|QHvH |1.

Proof. The proof follows similar lines as in the proofs before. We consider only the
case s ∈ (1, 2), the case s = 2 is similar albeit somewhat easier. Note that the imbedding
Hs(Ω) ↪→ C(Ω) is continuous. Let P = (xj+1/2, y�) ∈ Ωx

1/2. We consider

(aδ(1/2)
x u)P − (aux)P = aP

(
1

hj

xj+1∫
xj

ux(x, y�) dx − (ux)P

)
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as a linear functional in ux ∈ Hs(Ω). It vanishes for polynomials of degree 1. By virtue of
the generalized Bramble — Hilbert Lemma we obtain

∣∣(aδ(1/2)
x u)P − (aux)P

)∣∣ � C sup
Ω

|a(x, y)| 1

hP |SP |(hP + |SP |) max{hs
P , |SP |s}|ux|s, P

,

from which the result is easily derived as before.

Remark 5.1. The claim of Lemma 5.1 holds also true if the rectangle P is replaced
by the upper or lower half of P . This is immediate from the proof. We have avoided to
state this fact in the wording of the lemma to keep the presentation easier. But in the proof
of Theorem 5.1 we will make use of this observation. A corresponding remark applies to
Lemmas 5.3 and 5.4.

The next lemma provides an essential step in obtaining supraconvergence. We need for
points P ∈ Ωxy

1/2 := {(xj+1/2, y�+1/2) ∈ Ω} the line segments, points and rectangles

SP := {xj+1/2}×(y�, y�+1), SP− := {xj+1/2}×(y�, y�+1/2), SP+ := {xj+1/2}×(y�+1/2, y�+1),

P− := (xj+1/2, y�), P+ := (xj+1/2, y�+1), P := (xj, xj+1) × (y�, y�+1). (5.1)

For points P = (xj , y�+1/2) ∈ Ωy
1/2 we define the following vertices and half vertical line

segments of the rectangle P (= (xj−1/2, xj+1/2) × (y�, y�+1)): If P ∈ Ωy
1/2\Γ then

S
(1)
P := {xj+1/2} × (y�+1/2, y�+1), S

(2)
P := {xj−1/2} × (y�+1/2, y�+1),

S
(3)
P := {xj−1/2} × (y�, y�+1/2), S

(4)
P := {xj+1/2} × (y�, y�+1/2),

P (1) := (xj+1/2, y�+1), P (2) := (xj−1/2, y�+1), P (3) := (xj−1/2, y�), P (4) := (xj+1/2, y�),

hP := xj+1/2 − xj−1/2, kP := y�+1 − y�.

For P ∈ Γy
1/2 := Ωy

1/2 ∩ Γ, the set of midpoints of the vertical boundary sections, the
definitions are corresponding, only with xj+1/2 or xj−1/2, respectively, replaced adequately
by xj . For Γy

1/2 we need also the half sections Γ−
P , Γ+

P of the boundary sections below and
above P and

ΓP := Γ−
P ∪ Γ+

P , σP := y�+1 − y�. (5.2)

Fig. 1 may help to identify the sets introduced here.

j − 1 j j + 1

l − 1

l

l + 1

P

S
(3)
P

S
(2)
P

S
(4)
P

S
(1)
P

F i g. 1. Notation in the proof of Lemma 5.2 for P ∈ Ωy
1/2
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Lemma 5.2. The following identity

∑
P∈Ωx

1/2

( ∫
SP

aux dy − |SP |(aux)P

)
(∆xvH)P = F1 + F2 + F3 (5.3)

holds, where

F1 =
∑

P∈Ωxy
1/2

( ∫
SP

aux dy − kP

2

(
(aux)P+ + (aux)P−

))(∆xvH)P+ + (∆xvH)P−

2
,

F2 =
∑

P∈Ωy
1/2

4∑
i=1

(−1)i

( ∫

S
(i)
P

aux dy − kP

2
(aux)P (i)

)
(∆yvH)P

2
,

F3 =
∑

P∈Γy
1/2

(ηx)P

( ∫

Γ+
P

aux dσ − σP

2
(aux)P+ −

∫

Γ−
P

aux dσ +
σP

2
(aux)P−

)
(∆yvH)P

2
.

Proof. We divide the integral extended over SP into two integrals over the halfsections
below and above P and note that |SP | is equal to the sum of the lengths of these halfsections.
A straightforward calculation yields that the left-hand side of (5.3) can be written as F1 plus
the quantity

∑
P∈Ωxy

1/2

( ∫
SP+

auxdy − kP

2
(aux)P+ −

∫
SP−

auxdy +
kP

2
(aux)P−

)
(∆xvH)P+ − (∆xvH)P−

2
.

Noting that (∆xvH)P+ − (∆xvH)P− = (∆x∆yvH)P , we perform another summation by parts,
this time with respect to the x-variable, which yields the assertion.

Lemma 5.3. Let s ∈ (1, 2], u ∈ H1+s(Ω) and a ∈ W 2
2/(2−s)(Ω). For s ∈ (1, 2) assume

additionally that the sequence of grids {ΩH}H∈Λ is quasi-uniform. For all vH ∈ WH the
quantity F1 in Lemma 5.2 can be estimated by

|F1| � C
( ∑

P∈Ωxy
1/2

(diam P )2s‖ux‖2
s, P

)1/2

|QHvH |1 � CHs
max‖ux‖s|QHvH |1.

Proof. We begin with the case s ∈ (1, 2). As a preparation, we introduce for P ∈ Ωxy
1/2

the quantities

F11 :=

∫
SP

(
a − aP − (ay)P (y − yP )

)
ux dy,

F12 :=
kP

2

[(
aP − (ay)P

kP

2
− aP−

)
(ux)P− +

(
aP + (ay)P

kP

2
− aP+

)
(ux)P+

]
,

F13 := aP

( ∫
SP

ux dy − kP

2

(
(ux)P+ + (ux)P−

))
,

F14 := (ay)P

( ∫
SP

(y − yP )ux dy − k2
P

4

(
(ux)P+ − (ux)P−

))
, (5.4)
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which we are going to estimate. We use in the following that the imbeddings W 2
r (Ω) ↪→ C1(Ω)

and Hs(Ω) ↪→ C(Ω) are continuous, where r := 2/(2 − s).
Starting with (5.4) we note that F11 is a bounded bilinear form for (a, ux) ∈ W 2

r (Ω) ×
Hs(Ω) that vanishes for a = 1, x, y. With a scaling as in the proofs before, recalling also that
the grids are quasi-uniform, we derive with the aid of the generalized Bramble — Hilbert
Lemma the estimate

|F11| � C(diam P )s |a|W 2
r ( P )‖ux‖s, P

� C(diam P )s‖ux‖s, P
.

A similar argument yields the same bound for F12. In F13 we deal with the second order
accurate trapezoidal rule applied to ux(xP , ·) and obtain again with the aid of the generalized
Bramble — Hilbert Lemma the bound

|F13| � C sup
Ω

|a(x, y)|(diam P )s‖ux‖s, P
� C(diam P )s‖ux‖s, P

.

Finally, F14 is a linear bounded functional with respect to ux ∈ Hs(Ω) vanishing for ux = 1.
Reasoning as before, it is seen that the same bound as for F13 applies to F14. Since F1 can
be written as

F1 =
∑

P∈Ωxy
1/2

(
F11 + F12 + F13 + F14

)hP

2

[(
(QHvH)x

)
P− +

(
(QHvH)x

)
P+

]

the assertion is obtained after an application of the Schwarz inequality.
We now turn to the proof in the case s = 2 and start with the observation that we have

the trapezoidal rule applied to aux under the sum defining F1 which is exact for the functions
1, x and y. The Bramble — Hilbert Lemma furnishes the bound

∣∣∣∣
∫
SP

aux dy − kP

2

(
(aux)P+ + (aux)P−

)∣∣∣∣ � C

(
kP

hP

)1/2

(diam P )2|aux|2, P
.

Note that a ∈ W 2
∞(Ω) and so aux ∈ H2(Ω). The proof can be completed as before.

Lemma 5.4. Let s ∈ (1, 2], u ∈ H1+s(Ω) and a ∈ W 2
2/(2−s)(Ω). For s ∈ (1, 2) as-

sume additionally that the sequence of grids {ΩH}H∈Λ is quasi-uniform. The quantity F2 in
Lemma 5.2 satisfies the same estimate as F1 in Lemma 5.3.

Proof. We begin with the case s ∈ (1, 2). Let P ∈ Ωxy
1/2. We denote by P̄ the center of

the rectangle P and introduce the quantities

F21 :=

4∑
i=1

(−1)i

∫

S
(i)
P

(
a − aP̄ − (ax)P̄

h
(i)
P

2
− (ay)P̄ (y − yP̄ )

)
ux dy,

F22 :=

4∑
i=1

(−1)i kP

2

(
aP̄ + (ax)P̄

h
(i)
P

2
+ (ay)P̄

k
(i)
P

2
− aP (i)

)
(ux)P (i),

F23 :=aP̄

4∑
i=1

(−1)i

(∫

S
(i)
P

ux dy− kP

2
(ux)P (i)

)
, F24 :=

4∑
i=1

(−1)i(ax)P̄

h
(i)
P

2

( ∫

S
(i)
P

ux dy− kP

2
(ux)P (i)

)
,
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F25 :=

4∑
i=1

(−1)i(ay)P̄

( ∫

S
(i)
P

(y − yP̄ )ux dy − kP

2

k
(i)
P

2
(ux)P (i)

)
,

where h
(i)
P := hP for i = 1, 4, h

(i)
P := −hP for i = 2, 3, and k

(i)
P := kP for i = 1, 2, k

(i)
P := −kP

for i = 3, 4. The quantities F21 and F22 can be estimated in the same way as F11 and
F12, respectively, in the proof of Lemma 5.3. Note that F23 vanishes for ux = 1, x, y, and,
consequently, can be estimated as F13 before. Finally, F24 and F25, considered as functionals
in ux, vanish for ux = 1 and hence can be estimated as F13 and F14 before. Upon noting that
F2 =

∑
P∈Ωy

1/2

∑5
j=1 F2jkP

(
(QHvH)y

)
P
/2 the proof is completed in the same way as that of

Lemma 5.3.
Consider now the case s = 2. Let P = (xj , y�+1/2) ∈ Ωy

1/2. We start with the identity

F :=
4∑

i=1

(−1)i

( ∫

S
(i)
P

aux dy − kP

2
(aux)P (i)

)
=

xj+1/2∫
xj−1/2

( y�+1/2∫
y�

(aux)x dy −
y�+1∫

y�+1/2

(aux)x dy − kP

2
(aux)x(x, y�) +

kP

2
(aux)x(x, y�+1)

)
dx.

The integrand of the outer integral exists for almost all x ∈ (xj−1/2, xj+1/2) and is the sum
of errors of one-dimensional rectangle rules applied to (aux)x that can be estimated with the
aid of the Bramble — Hilbert Lemma. We obtain

|F | � C

xj+1/2∫
xj−1/2

k
3/2
P

( y�+1∫
y�

∣∣(a(x, y)ux(x, y)
)

xy

∣∣2 dy

)1/2

� Ch
1/2
P k

3/2
P ‖ux‖2, P

� C(h2
P +k2

P )‖ux‖2, P
,

where we made use of a ∈ W 2
∞(Ω) and invoked the Schwarz and Young inequalities in the

second and third step, respectively. The proof can now be completed as before.

Remark 5.2. The proofs of Lemmas 5.3 and 5.4 simplify considerably if the coefficient
a is constant.

To estimate the error related to the approximation of cu, we need two auxiliary lemmas.
The proof of the first one is straightforward.

Lemma 5.5. The following identity holds for ej , wj ∈ C, j = 1, . . . , 4:

4
4∑

i=1

eiwi =
4∑

i=1

ei

4∑
i=1

wi + (e1 − e2 + e3 − e4)(w1 − w2 + w3 − w4)+

(e1 + e2 − e3 − e4)(w1 + w2 − w3 − w4) + (e1 − e2 − e3 + e4)(w1 − w2 − w3 + w4).

Lemma 5.6. Let s ∈ (1, 2] and g ∈ Hs(Ω). Then for all vH ∈ WH

∣∣∣∣
∑

P∈ΩH

∫
P

g dV (vH)P − (RHg, vH)H

∣∣∣∣ � C
( ∑

P∈Ωxy
1/2

(diam P )2s‖g‖2
s, P

)1/2

‖QHvH‖1.
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Proof. Let P ∈ Ωxy
1/2. Analogously to the case P ∈ Ωy

1/2 considered in Lemma 5.2 we in-

troduce the vertices P (i), i = 1, 2, 3, 4, of P and divide P into four congruent subrectangles
(i)
P (with vertices P and P (i)). It is then seen that

∑
P∈ΩH

∫
P

g dV (vH)P − (RHg, vH)H =
∑

P∈ΩH

( ∫
P

g dV − | P |gP

)
(vH)P =

∑
P∈Ωxy

1/2

4∑
i=1

( ∫
(i)
P

g dV − | (i)
P |gP (i)

)
(vH)P (i).

For P ∈ Ωxy
1/2 we apply Lemma 5.5 with ei :=

∫
(i)
P

g dV − | (i)
P |gP (i), wi := (vH)P (i) and

estimate the resulting quantities. Firstly, discarding a factor 4, there appears the quantity

4∑
i=1

( ∫
(i)
P

g dV − | (i)
P |gP (i)

) 4∑
i=1

(vH)P (i) =

( ∫
P

g dV − | P |
4

4∑
i=1

gP (i)

) 4∑
i=1

(vH)P (i), (5.5)

containing a two-dimensional analogue of the trapezoidal rule which can be estimated with
the aid of the generalized Bramble — Hilbert Lemma by

C(diam P )s|g|s, P

( 4∑
i=1

| P ||(vH)P (i)|2
)1/2

� C(diam P )s|g|s, P
‖QHvH‖0, P

.

Thus for this part the desired bound is obtained. The next quantity resulting from the
application of Lemma 5.5 is

4∑
i=1

(−1)i

( ∫
(i)
P

g dV − | (i)
P |gP (i)

) 4∑
i=1

(−1)i(vH)P (i). (5.6)

In this situation we have quadrature rules that are exact for constant functions only, but we
can exploit the alternating structure in the last sum. We obtain this time the bound

C(diam P )s
(|g|s−1, P

+ ‖gx‖s−1, P
+ ‖gy‖s−1, P

)×
(
| P |

(∣∣∣∣(vH)P (1) − (vH)P (2)

hP

∣∣∣∣
2

+

∣∣∣∣(vH)P (3) − (vH)P (4)

hP

∣∣∣∣
2))1/2

� C(diam P )s‖g‖s, P
|QHvH |1, P

furnishing the bound we need. The remaining quantities can be estimated similarly and the
proof is complete.

Lemma 5.7. Let s ∈ (1, 2], u ∈ Hs(Ω) and c ∈ W 2
2/(2−s)(Ω). Then for all vH ∈ WH

∣∣∣∣
∑

P∈ΩH

∫
P

cu dV (vH)P − (RH(cu), vH)H

∣∣∣∣ � C

( ∑
P∈Ωxy

1/2

(diam P )2s‖u‖2
s, P

)1/2

‖QHvH‖1.

Proof. The first part of the proof is the same as that of Lemma 5.6 until formula (5.5)
with g = cu. We continue the present proof by estimating (5.5). First the coefficient c is
approximated by its first order Taylor polynomial with the midpoint P̄ of P as a center. In
the step corresponding to (5.6), the factor c of u is approximated by cP̄ . The course of the
proof is now similar to that of Lemma 5.4. We do not give the details.
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Lemma 5.8. Let s ∈ (1, 2], φ ∈ Hs(Γ) and α ∈ W 2
1/(2−s)(Γ). Then the following estimate

holds for all vH ∈ WH :
∣∣∣∣

∑
P∈Γy

1/2

[ ∫
ΓP

αφ dσ − kP

2
((αφ)P+ + (αφ)P−)((vH)P+ + (vH)P−)

]∣∣∣∣ �

C

( ∑
P∈Γy

1/2

k2s
P ‖φ‖2

s,ΓP

)1/2

‖QHvH‖1 � CHs
max ‖φ‖s,Γ‖QHvH‖1.

Proof. The main step in the proof is to show the estimate

|G| :=

∣∣∣∣
∫
ΓP

αφ dσ − kP

2

(
(αφ)P+ + (αφ)P−

)∣∣∣∣ � Ck
1/2+s
P ‖φ‖s,ΓP

. (5.7)

To this end we introduce the quantities

G1 :=

∫
ΓP

(
α − αP − (ασ)P (σ − yP )

)
φ dσ,

G2 :=
kP

2

[(
αP + (ασ)P

kP

2
− αP+

)
φP+ +

(
αP − (ασ)P

kP

2
− αP−

)
φP−

]
,

G3 := αP

( ∫
ΓP

φ dσ − kP

2
(φP+ + φP−)

)
, G4 := (ασ)P

( ∫
ΓP

(σ − yP )φ dσ − k2
P

4
(φP+ − φP−)

)

that sum up to G. Here, ασ denotes the derivative of α along the boundary. With the same
arguments as already used before the estimate (5.7) is obtained.

We are now in the position to prove the supraconvergence. We denote by the rectangles
belonging to Ωxy

1/2 (see (5.1)) and by S the sections belonging to Γx
1/2 and Γy

1/2 (see (5.2)).

Theorem 5.1. Let s ∈ (1, 2], u ∈ H1+s(Ω), a, b, c ∈ W 2
2/(2−s)(Ω), ψ ∈ Hs(Γ) and α ∈

W 2
1/(2−s)(Γ). For s ∈ (1, 2) assume additionally that the sequence of grids {ΩH}H∈Λ is quasi-

uniform. Then for Hmax small enough there exists a unique solution uH of the finite difference
equations (2.1) together with the discrete boundary conditions (see (2.6) – (2.8)) satisfying

‖QH(RHu − uH)‖1 � C

( ∑
⊂Ω

(diam )2s‖u‖2
1+s, +

∑
S⊂Γ

|S|2s
(‖u‖2

s,S + |ψ|2s,S
))1/2

�

C Hs
max

(‖u‖1+s,Ω + |ψ|s,Γ
)
.

Proof. The proof follows the same lines as that of Theorem 4.1. We only have to estimate
the truncation error

τH = aH(u, vH) + bH(u, vH) + (cu, vH)H + 〈αu, vH〉H − (fH , vH)H − 〈ψ, vH〉H
in terms of the claimed bound. We begin with the part containing (aux)x in (fH , vH)H , which
is transformed according to Lemma 4.1. For the moment we consider only the quantities
related to subdomains of Ω and leave those related to boundary sections to the second part
of the proof. So we form the difference of aH(u, vH) with the first quantity on the right-hand

side of (4.4). Recall the representation (4.10) in which we can replace aδ
(1/2)
x u by aux at the
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expense of an error that is estimated in Lemma 5.1. We then apply Lemma 5.2 and estimate
the quantities F1 and F2 with the aid of Lemmas 5.3 and 5.4. In these calculations only the
boundary quantity F3 in Lemma 5.2 is left over and needs further consideration (later in this
proof). The error coming from the second order y-derivatives part (buy)y in the differential
operator A is estimated similarly. The last error left over comes along with (cu, vH)H . It
can be estimated with the aid of Lemma 5.7 in the form needed.

We come now to the boundary-related parts of τH which we collect next. In the proof
given so far we left aside the second member of the right-hand side of (4.4) and F3 from
Lemma 5.2. In both of them we replace auxηx with the aid of (1.2) by ψ−αu =: φ. Together
with the corresponding boundary contributions in τH from vertical boundary sections we end
up with

∑
P∈Γy

H

∫
ΓP

φdσ(vH)P−
∑

P∈Γy
1/2

( ∫

Γ+
P

φ dσ−kP

2
φP+−

∫

Γ−
P

φ dσ+
kP

2
φP−

)
(∆yvH)P

2
−〈φ, vH〉(y)

H , (5.8)

where Γy
H and 〈·, ·〉(y)

H denote the part of ΓH and 〈·, ·〉H, respectively, extended over the
vertical sections of Γ. The identity

∑
P∈Γy

H

∫
ΓP

φdσ(vH)P − 〈φ, vH〉(y)
H =

∑
P∈Γy

1/2

( ∫
ΓP

φ dσ − kP

2

(
φP+ + φP−

))(vH)P+ + (vH)P−

2
+

∑
P∈Γy

1/2

( ∫

Γ+
P

φ dσ − kP

2
φP+ −

∫

Γ−
P

φ dσ +
kP

2
φP−

)
(vH)P+ − (vH)P−

2

shows that only the composite trapezoidal rule is left over in (5.8) which can be estimated
according to Lemma 5.8 by

C

( ∑
P∈Γy

1/2

k2s
P ‖φ‖2

s,ΓP

)1/2

‖QHvH‖1 � C

( ∑
P∈Γy

1/2

k2s
P

(‖u‖2
s,ΓP

+ ‖ψ‖2
s,ΓP

))1/2

‖QHvH‖1.

The horizontal boundary sections give rise to corresponding estimates. Altogether the proof
is complete.

By interpolating the result of Theorem 4.1 for s = 1 and of Theorem 5.1 for s = 2 we
obtain the following corollary which holds without the assumption of quasi-uniformity of the
grid. Note that the local error estimates in Theorem 5.1 are not obtained using interpolation.
Also the nonclosed range of exponents s ∈ (1/2, 2] is not accessible by interpolation.

Corollary 5.1. Let s ∈ [1, 2], u ∈ H1+s(Ω), a, b, c ∈ W 2
∞(Ω), ψ ∈ Hs(Γ) and α ∈

W 2
∞(Γ). Then for Hmax small enough there exists a unique solution uH of the finite difference

equations (2.1) with discrete boundary conditions (2.6) – (2.8) satisfying

‖QH(RHu − uH)‖1 � C Hs
max

(‖u‖1+s,Ω + |ψ|s,Γ
)
.

Remark 5.3. If the right-hand side f of (1.1) is in Hs(Ω), s ∈ (1, 2], then its approxi-
mation (2.3) can be replaced by the pointwise restriction to the grid ΩH without changing
the convergence rate. This follows from the observation that according to Lemma 5.6 the
corresponding perturbation of the right-hand side of (3.6) can be estimated by

|(fH − RHf, vH)H | =

∣∣∣∣
∑

P∈ΩH

( ∫
P

f(x, y) dV − ωPf(xP , yP )

)
(vH)P

∣∣∣∣ �



Supraconvergence of a finite difference scheme 173

C

( ∑
P∈Ωxy

1/2

(diam P )2s‖f‖2
s, P

)1/2

‖QHvH‖1.

Remark 5.4. If f is not smooth enough, then the use of the pointwise restriction in the
approximation of f in (1.1) may spoil the supraconvergence. We give an example. Consider
the Neumann boundary value problem

−∆u + u = f in Ω,
∂u

∂n
= 0 on Γ, (5.9)

where Ω := (0, 1)2. We discretize (5.9) on a sequence of uniform grids ΩH , H ∈ Λ, where
Λ, indexed by m, is here the sequence of uniform mesh size vectors H with step sizes
hm = km := 1/m, m ∈ N. We will show that the convergence cannot be quadratic for
all f ∈ H1(Ω). To this end a sequence {f (m) ∈ H1(Ω)}m∈N of the right-hand sides in

(5.9) is constructed such that the corresponding exact and discrete solutions u(m) and u
(m)
H ,

respectively, satisfy

lim
m→∞

h−2
m ‖u(m) − QHu

(m)
H ‖0 = ∞ while {‖f (m)‖1}m∈N is bounded. (5.10)

Then, as a consequence of the uniform boundedness principle, the maps

H1(Ω) � f → h−2
m

(
u − QHuH

) ∈ L2(Ω), H ∈ Λ,

cannot be pointwise bounded. Since u ∈ H3(Ω) then h−2
m {QH(u− uH)}H∈Λ is not pointwise

bounded either. To verify (5.10), take

f (m)(x, y) =
1

m
(1 − cos(2πmx)), u(m)(x, y) =

1

m

(
1 − cos(2πmx)

1 + (2πm)2

)
.

From RHf (m) = 0 it follows that u
(m)
H = 0 and a direct calculation shows (5.10) to hold true.

(Note that {‖f (m)‖2}m∈N is not bounded.)

6. Numerical experiment

In the following we give the result of some numerical calculations. We consider the problem

Au := −uxx − uyy + u = f in (0, π)2 (6.1)

subject to Neumann boundary conditions. The right-hand side f is taken to be the Fourier
series

f(x, y) :=
∑
j,k∈Z

fj,ke
i(jx+ky), fj,k := (1 + j2 + k2)−s/2 log(2 + j2 + k2)r, (6.2)

where r = −0.6 and s ∈ R will be chosen from some range of exponents. The solution
of (6.1) is u(x, y) :=

∑
j,k∈Z

uj,ke
i(jx+ky), uj,k := (1 + j2 + k2)−(2+s)/2 log(2 + j2 + k2)r. We

determined numerically ‖u‖0 = 5.0. It can be seen that for r < −0.5 the norm

( ∑
j,k∈Z

(1 + j2 + k2)1+t|uj,k|2
)1/2

(6.3)



174 E. Emmrich and R.D.Grigorieff

(which is equivalent to ‖u‖1+t) is finite for t = s, such that u ∈ H1+s((0, π)2). But the series
in (6.3) is divergent for t > s and hence u �∈ H1+t((0, π)2) for t > s.

We discretize the problem with the finite difference scheme in Section 2 on an equidistant
grid with mesh size h taking as the discrete right-hand side fH both the averaged restriction
(2.3) and the pointwise restriction of f . The grid function fH can be written as a finite
Fourier series fH(x, y) :=

∑N
j,k=−N+1 Fj,ke

i(jx+ky) for (x, y) ∈ (0, π)2
H, N = π/h, where the

coefficients Fj,k are obtained numerically from the given fj,k in (6.2) by summing up the
aliasing terms. The finite difference solution is then

uH(x, y) :=
N∑

j,k=−N+1

Fj,k

1 + sinc2(jh/2) + sinc2(kh/2)
ei(jx+ky) for (x, y) ∈ (0, π)2

H ,

where sinc(x) := sin(x)/x. The error norm |QH(u−uH)|1 is then easily obtained with the aid
of the Fourier coefficients of the finite Fourier series. Instead of |QH(u − uH)|0 we calculate
the equivalent norm |u−uH |H belonging to the discrete inner product (3.5), which is also eas-
ily obtained from the Fourier coefficients. In fact, if (u−uH)(x, y) =

∑N
j,k=−N+1 Ej,ke

i(jx+ky)

for (x, y) ∈ (0, π)2
H then we work with the equivalent norm

( ∑N
j,k=0 |Ej,k|2

)1/2
. As can be

seen from Figs 2 and 3, in using the averaged restriction (2.3) of f the convergence order in the

F i g. 2. Order of convergence of L2-errors (tri-
angles) and H1-errors (circles) for the averaged

restriction of f as a function of N

F i g. 3. Order of convergence for the pointwise (left) and averaged restrictions of f as a function of s
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L2-norm exceeds the estimated one in Theorems 4.1 and 5.1 for s < 2, for s � 1 even by
one order, while the order for the pointwise restriction of f behaves in accordance with the
bounds. We think that the higher convergence order observed numerically is due to the
symmetries in the solution u. As can also be seen, the pointwise restriction of f shows a
higher order of convergence than the worst case expectation according to Remark 5.4.

Appendix

This appendix provides a collection of some notations invoked in this paper.

• Meshes:
ΩH := Ω ∩ RH , ΓH := Γ ∩ RH , ΩH := Ω ∩ RH .

• Basic rectangles and boundary sections in the partition:
For P = (xj , y�) ∈ ΩH : P := (xj−1/2, xj+1/2) × (y�−1/2, y�+1/2) ∩ Ω, ωP := | P |,
ΓP := (xj−1/2, xj+1/2) × (y�−1/2, y�+1/2) ∩ ∂Ω, σP := |ΓP |.

• Midpoints of horizontal gridline sections:
For P ∈ Ωx

1/2 := {(xj+1/2, y�) ∈ Ω} : SP := {xj+1/2} × (y�−1/2, y�+1/2) ∩ Ω,

P := (xj , xj+1) × (y�−1/2, y�+1/2) ∩ Ω, (∆xvH)P := vj+1,� − vj,�.
Analogous definitions hold in the vertical direction.

• Centers of subdivision rectangles:
For P ∈ Ωxy

1/2 := {(xj+1/2, y�+1/2) ∈ Ω} : SP := {xj+1/2} × (y�, y�+1),

P := (xj , xj+1) × (y�, y�+1), P
− := (xj+1/2, y�), P+ := (xj+1/2, y�+1),

SP− := {xj+1/2} × (y�, y�+1/2), SP+ := {xj+1/2} × (y�+1/2, y�+1).

• For P = (xj , y�+1/2) ∈ Ωy
1/2\Γ :

S
(1)
P := {xj+1/2} × (y�+1/2, y�+1), S

(2)
P := {xj−1/2} × (y�+1/2, y�+1),

S
(3)
P := {xj−1/2} × (y�, y�+1/2), S

(4)
P := {xj+1/2} × (y�, y�+1/2) (see Fig. 1),

P (1) := (xj+1/2, y�+1), P
(2) := (xj−1/2, y�+1), P

(3) := (xj−1/2, y�), P
(4) := (xj+1/2, y�),

hP := xj+1/2 − xj−1/2, kP := y�+1 − y�.

For P = (xj , y�+1/2) ∈ Γy
1/2 := Ωy

1/2 ∩ Γ with the interior of Ω lying to the right of P :
replace xj−1/2 by xj in the definitions before.
Γ−

P := {xj} × (y�, y�+1/2), Γ
+
P := {xj} × (y�+1/2, y�+1), ΓP := Γ−

P ∪ Γ+
P , σP := y�+1 − y�.
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22. B. S. Jovanović and B. Z. Popović, Some convergence rate estimates for finite difference schemes,

Mat. Vesnik, 49 (1997), pp. 249–256.
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