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SUPRACONVERGENCE AND SUPERCLOSENESS

OF A DISCRETISATION FOR ELLIPTIC THIRD-KIND

BOUNDARY-VALUE PROBLEMS

ON POLYGONAL DOMAINS

E.EMMRICH1

Abstract — The third-kind boundary-value problem for a second-order elliptic equa-
tion on a polygonal domain with variable coefficients, mixed derivatives, and first-order
terms is approximated by a linear finite element method with first-order accurate
quadrature. The corresponding bilinear form does not need to be strongly positive.
The discretisation is equivalent to a finite difference scheme.
Although the discretisation is in general only first-order consistent, supraconvergence,
i.e., convergence of higher order, is shown to take place even on nonuniform grids. Local
error estimates of optimal order min(s, 3/2) (with a logarithmic factor if s = 3/2) in
the H1(Ω)-norm are proved for s ∈ (1/2, 2] if the exact solution is in the Sobolev —
Slobodetskij space H1+s(Ω). If neither oblique boundary sections nor mixed derivatives
occur, then the optimal order s is achieved. The supraconvergence result is equivalent
to the supercloseness of the gradient.
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1. Introduction

We consider the discretisation of the differential equation

Au := −(aux)x − (bux)y − (buy)x − (cuy)y + dux + euy + fu = g in Ω ⊂ R
2 (1.1)

with variable coefficients subject to the Robin boundary conditions

Bu := auxηx + buxηy + buyηx + cuyηy + αu = ψ on Γ := ∂Ω, (1.2)

where Ω is a simple polygonal domain and (ηx, ηy) denotes the outer normal on Γ. The
coefficients and the right-hand sides are assumed to be sufficiently smooth. Moreover, A is
assumed to be uniformly elliptic and the corresponding homogeneous problem with g =ψ= 0
is supposed to possess the trivial solution u = 0, only. It is, however, not necessary to assume
strong positiveness of the corresponding bilinear form.

The discretisation is obtained from linear finite elements on a triangulation TH of Ω,
which relies upon a nonuniform rectangular grid ΩH , in combination with an appropriate
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first-order quadrature. This fully discrete finite element method is equivalent to a finite
difference method on ΩH .

Although the scheme is in general only first-order consistent, we prove higher-order con-
vergence. Let uH denote the finite difference solution, PH — the piecewise linear interpola-
tion with respect to TH (note that PHuH then is the corresponding finite element solution),
RH — the pointwise restriction on ΩH , and ‖ · ‖1,2 — the usual H1(Ω)-norm. For a quasi-
uniform sequence of grids ΩH with a maximum meshsize Hmax tending to zero, we derive a
local error estimate from which the global estimate ‖PHRHu−PHuH‖1,2 = O(H

min(s,3/2)
max ) for

s ∈ (1/2, 2], s 6= 3/2, and ‖PHRHu−PHuH‖1,2 = O(H
3/2
max logH−1

max) for s = 3/2, respectively,
follows if u ∈ H1+s(Ω). For s ∈ {1, 2}, the estimate even holds without the assumption of
quasi-uniformity. If Ω is a union of rectangles then for s = 3/2, the logarithmic factor does
not appear. If, moreover, there are no mixed derivatives, then even the optimal order s can
be shown. As a consequence, a global estimate of order O(Hs

max) is obtained for s ∈ [1, 2]
even for an arbitrary sequence of nonuniform grids if there are no oblique boundary sections
and no mixed derivatives. Again by interpolation, a global estimate of order O(H

(1+s)/2
max )

follows for an arbitrary sequence of nonuniform grids in case Ω is a union of rectangles. By
assuming u ∈ H1+s(Ω) ∩W 2,∞(Ω), local error estimates can be proved that lead to global

estimates of order O(H
min(s,3/2)
max ) without the logarithmic factor even if oblique boundary

sections and mixed derivatives occur. Note that the supraconvergence results also show the
supercloseness property for the gradient in the context of finite elements.

The super- and supraconvergence of finite elements and finite difference solutions, re-
spectively, have been considered by many authors; we refer, in particular, to the pioneering
work [44] as well as to [7, 22, 28, 31, 50, 53] and the references cited therein.

Besides elliptic problems, also other types of equations have been considered; without
being exhaustive, we refer to [5,40,48] for parabolic equations, to [4,23,51] for second-order
hyperbolic equations, to [43] for first-order hyperbolic equations, to [14] for the Korteweg-de
Vries equation, and to [39] for other semi- and quasilinear time-dependent problems. Re-
cently, also the supraconvergence of finite volume discretisations for linear advection prob-
lems has been studied (see [45]).

Finite difference approximations of linear second-order elliptic equations with Dirichlet
boundary conditions have been analysed, mostly by means of function space interpolation
techniques and by measuring the error in a discrete Sobolev norm, in [6,21,24–26,34,41,49]
(and other papers by the same authors), see also [54] for a finite element discretisation on a
nonuniform rectangular partition. In order to obtain higher-order convergence on nonuniform
grids, often a correction is added to the standard finite difference scheme on a uniform grid.
This is different from the results of [3,11–13] and of this paper where no correction is needed.

The supercloseness property, which follows from the supraconvergence results, plays an
important rôle in postprocessing, recovery techniques for the gradient, and a posteriori error
estimates (see [1,2,8,9,16–19,29,30,35,36,38,52] and the references cited therein). In all these
papers, either a uniform grid or a smooth transformation of a uniform grid (cf., e.g., [35]) has
to be assumed in order to obtain optimal second-order convergence for the gradient in the
L2(Ω)-norm if u ∈ H3(Ω). Moreover, the coefficients are often supposed to be constant, the
domain is often the unit square or with a smooth boundary, and the quadrature used in [35]
is of second order, which differs from the first-order quadrature studied in this paper. Except
for [17, 36], only Dirichlet boundary conditions are considered. The order of convergence in
[17] is 3/2 for Neumann boundary conditions if (except near the smooth boundary) a uniform
grid is used. Also in the tables in [36], one can find order 3/2 but for bilinear elements. In
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the recent paper [1], again mixed derivatives and Neumann boundary conditions are allowed;
the maximum order of convergence proven there is O(h2 log1/2 h−1) if the exact solution is in
W 3,∞(Ω) and if the triangulation is quasi-uniform and most of the adjacent triangles fulfill
the so-called O(h2)-parallelogram property. Recently, the supercloseness property has been
studied in [37,47] for the finite element discretisation of the Poisson and convection-diffusion
equation with Dirichlet boundary conditions relying on quadrilateral nonconforming elements
even on nonuniform grids.

In [27], a particular finite difference discretisation of (1.1), (1.2) with mixed derivatives
but without lower-order terms was considered on an equidistant partition of the unit square
and global estimates for the error measured in the discrete H1-norm of order O(h2 log3/2 h−1)
are obtained if the exact solution is in H3(Ω). Preceding results can be found in [33, 46],
where the finite difference method on a uniform grid in [33] for (1.1), (1.2) without lower-order
terms and in [46] for the Poisson equation with third-kind boundary conditions, respectively,
has been studied on the unit square. The error measured in the discrete H1-norm is shown to
be of order O(hmin(s,3/2)) (s ∈ (1/2, 2], s 6= 3/2) and O(h3/2 log h−1) (s = 3/2) if u ∈ H1+s(Ω).

Our paper is to some extent a continuation of [3, 11–13]: In [12], the authors deal with
the differential operator (1.1) on a simple polygonal domain subject to Dirichlet boundary
conditions instead of (1.2) and show a local error estimate for ‖PHRHu−PHuH‖1,2 of second
order on arbitrary nonuniform grids if u ∈ C

4(Ω) and if there are no oblique boundary

parts in the case b 6= 0. In this latter case, the convergence order reduces to O(H
3/2
max) if Γ

contains oblique parts. In [13], again (1.1) (but with first-order terms in divergence form)
is considered on a simple polygonal domain subject to Dirichlet boundary conditions and
local error estimates are proved showing first- and second-order convergence if u ∈ H2(Ω)
and u ∈ H3(Ω), respectively, and if there are no oblique boundary parts or if b = 0. In
the case that Γ possesses oblique parts and b 6= 0, again order 3/2 can be retained if

u ∈ H3(Ω) ∩ C
2(Ω) and, by interpolation, order O(H

(1+s)/2−ε
max ) with arbitrary ε > 0 can be

shown for u ∈ H1+s(Ω) (s ∈ (1, 2]).
For the third-kind boundary-value problem (1.1), (1.2) on a domain Ω that is the union of

rectangles but without mixed or first-order derivatives (b = d = e = 0), local error estimates
showing supraconvergence of order s for s ∈ (1/2, 2] if u ∈ H1+s(Ω) are proved in [11].
Preliminary results for the one-dimensional case were obtained in [3]. The aim of this paper
is to generalise the results of [11] by admitting also mixed and first-order derivatives in the
differential operator A as well as a polygonal domain.

An essential step here and in the analysis in [11–13] is the fact that the discretisation can
be regarded as a fully discrete finite element method with quadrature but also as a finite
difference method.

2. Discretisation and error estimates

The variational problem corresponding to (1.1), (1.2) reads as

find u ∈ H1(Ω) such that A(u, v) = (g, v) + (ψ, v)Γ for all v ∈ H1(Ω) (2.1)

with the sesquilinear form

A(v, w) := (avx, wx) + (bvx, wy) + (bvy, wx) + (cvy, wy)+

+(dvx, w) + (evy, w) + (fv, w) + (αv, w)Γ, v, w ∈ H1(Ω). (2.2)
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We employ the usual notation for Lebesgue-, Sobolev-, Sobolev — Slobodetskij spaces
and spaces of continuously differentiable functions. In particular, we denote by (·, ·) and (·, ·)Γ

the inner product on L2(Ω) and L2(Γ), respectively, and by ‖ · ‖r,p,D and | · |r,p,D the usual
norm and seminorm on W r,p(D), respectively, for a domain D (where we omit the subscript
D if D = Ω and set Hr(D) = W r,2(D)). For properties of the aforementioned function
spaces and embedding theorems, we refer in particular to [42] (cf. also [32, pp. 385ff.]). As
the boundary Γ is only Lipschitz, the norm of Sobolev — Slobodetskij spaces on Γ shall
be defined through summing up over disjoint straight boundary sections, which is different
from the usual definition. In particular, the continuous embedding Hr(Ω) →֒ Hr−1/2(Γ) then
holds true for all r > 1/2.

For the discretisation, let h = {hj}j∈Z and k = {kℓ}ℓ∈Z be two sequences of positive real
numbers and consider the two-dimensional grid RH := R

x
h
× R

y
k
, where

R
x
h

:= {xj ∈ R : xj+1 := xj + hj , j ∈ Z} , R
y
k

:= {yℓ ∈ R : yℓ+1 := yℓ + kℓ , ℓ ∈ Z}

for x0, y0 ∈ R given. We define

ΩH := Ω ∩ RH , ΓH := Γ ∩ RH , ΩH := Ω ∩ RH = ΩH ∪ ΓH .

Moreover, let xj+1/2 := xj +hj/2 = xj+1 −hj/2 := x(j+1)−1/2 with an analogous notation for
the y-direction.

Throughout this paper, we impose the following assumptions:
(H1) The coefficients in A and B as well as ψ are sufficiently smooth such that all are

at least uniformly continuous and g ∈ L2(Ω).
(H2) The differential operator A is uniformly elliptic in Ω and the corresponding homo-

geneous variational problem (2.1) is uniquely solvable.
(H3) The vertices of Ω are in ΓH . The triangulation TH is a set of open triangles

in which the vertices are the grid points of ΩH . The intersection of Γ with a rectangle
� := (xj , xj+1) × (yℓ, yℓ+1) is either empty or a diagonal of �.

(H4) The set Λ describes the sequence {ΩH}H∈Λ of grids withHmax :=max{hj, kℓ :j, ℓ∈Z}
tending to zero.

Note that (H2) implies the unique solvability of (2.1) (cf. [42, Thm. 4.11]). Moreover,
we should remark that polygonal domains with an acute angle, whose both sides are non-
paraxial, do not satisfy (H3).

We say that {ΩH}H∈Λ is quasi-uniform if all possible quotients of mesh sizes of ΩH are
bounded independently of H . Throughout this paper, we assume Hmax is sufficiently small.
By WH , we denote the space of grid functions on ΩH . For convenience, we tacitly assume
that a function vH ∈ WH is extended on RH by zero. We often write vP instead of vH(P ).
For P = (xj, yℓ) ∈ ΩH , let

�P := (xj−1/2, xj+1/2) × (yℓ−1/2, yℓ+1/2) ∩ Ω, ΓP := (xj−1/2, xj+1/2) × (yℓ−1/2, yℓ+1/2) ∩ Γ.

Then

(vH , wH)H :=
∑

P∈ΩH

|�P |vPwP and (φH , χH)Γ,H :=
∑

P∈ΓH

|ΓP |φPχP (2.3)

defines an inner product on WH and on the space of grid functions on ΓH , respectively.
With the triangulation TH , we associate the piecewise linear interpolation PH : WH → C(Ω).
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Besides, we use the pointwise restriction RH : C(Ω) → WH on the grid ΩH (or on ΓH for
functions defined on Γ).

Let AH := aH + bH + cH + dH + eH + fH + αH be the sesquilinear form defined by

aH(vH , wH) :=
∑

△∈TH

a△,x

∫

△

(PHvH)x(PHwH)xdV,

dH(vH , wH) :=
∑

△∈TH

(dPHwH)△,x

∫

△

(PHvH)xdV,

fH(vH , wH) := (RHfvH , wH)H , αH(vH , wH) := (RHαvH , wH)Γ,H,

and with forms cH and eH defined analogously to aH and dH, respectively. Here, the subscript
△, x denotes the value at the midpoint of the side of △ ∈ TH parallel to the x-axis. The
definition of the form bH , which corresponds to mixed derivatives, is more intrigued and is
based upon two special triangulations T

(1)
H and T

(2)
H .

Let △
(⊥)
j,ℓ denote an open triangle having an angle π/2 at (xj , yℓ) ∈ RH and two adjacent

grid points as further vertices. We then define T
(ν)
H := T

(ν)
H,1 ∪ T

(ν)
H,2 (ν = 1, 2), where for

ν = 1, 2

T
(ν)
H,1 :=

{

△
(⊥)
j,ℓ ⊂ Ω : (xj , yℓ) ∈ RH with j + ℓ+ ν being even

}

,

T
(ν)
H,2 :=

{

△
(⊥)
j,ℓ ⊂

(

Ω \
⋃

△∈T
(ν)
H,1

△

)

: (xj , yℓ) ∈ RH with j + ℓ+ ν being odd

}

.

With T
(ν)
H , we associate the piecewise linear interpolation P

(ν)
H (ν = 1, 2). Note that the

triangulation TH is in general a mixture of triangles from both T
(1)
H and T

(2)
H , and that

T
(ν)
H,2 = ∅ (ν = 1, 2) if Ω is the union of rectangles. Moreover, let T

obl
H ⊂ TH be the set of

triangles having one side on an oblique part of Γ.

Let (x△, y△) ∈ ΩH be the vertex of △ ∈ TH that corresponds to the angle π/2 and
(x̃△, y△), (x△, ỹ△) ∈ ΩH be the other two vertices. We then define

bH(vH , wH) :=
1

2

(

b
(1)
H (vH , wH) + b

(2)
H (vH , wH)

)

,

where for ν = 1, 2

b
(ν)
H (vH , wH) :=

∑

△∈T
(ν)
H

∫

△

(

b△,x̃(P
(ν)
H vH)x(P

(ν)
H wH)y + b△,ỹ(P

(ν)
H vH)y(P

(ν)
H wH)x

)

dV

and

b△,x̃ :=

{

b(x△, y△) if △ ∈ T
(ν)
H,1 ,

b(x̃△, y△) if △ ∈ T
(ν)
H,2 ,

b△,ỹ :=

{

b(x△, y△) if △ ∈ T
(ν)
H,1 ,

b(x△, ỹ△) if △ ∈ T
(ν)
H,2 .

The fully discrete Galerkin approximation now reads as

find uH ∈WH such that AH(uH, vH) = (gH, vH)H + (ψH , vH)Γ,H for all vH ∈WH (2.4)
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with the right-hand side gH and the boundary value ψH defined via

gP :=
1

|�P |

∫

�P

g dV (P ∈ ΩH), ψP := ψ(P ) (P ∈ ΓH). (2.5)

It can be shown that scheme (2.4) is equivalent to the finite difference approximation

AHuH := −δ(1/2)
x

(

aδ(1/2)
x uH

)

− δy (bδxuH) − δx (bδyuH) − δ(1/2)
y

(

cδ(1/2)
y uH

)

+

+RHd δxuH +RHe δyuH +RHf uH = gH in ΩH ,

supplemented by an appropriate approximation of the boundary condition (cf. also [11]). In
particular, we have

AH(vH , wH) = (AHvH , wH)H

for all vH , wH ∈ WH with wH = 0 on ΓH . Here, we make use of the divided differences

δ(1/2)
x vj,ℓ :=

vj+1/2,ℓ − vj−1/2,ℓ

xj+1/2 − xj−1/2

, δ(1/2)
x vj+1/2,ℓ :=

vj+1,ℓ − vj,ℓ

xj+1 − xj

, δxvj,ℓ :=
vj+1,ℓ − vj−1,ℓ

xj+1 − xj−1

and the corresponding divided differences in the y-direction. We also apply these difference
operators on functions defined on Ω taking the points subscripted as arguments. In the case
of mixed derivatives, the difference operator AH formally acts, near the oblique parts of Γ,
on grid points outside ΩH . The corresponding quantities are obtained in an antisymmetric
way.

The proof of the following inverse stability property follows similar lines as that of [12,
Thm. 2] and relies upon the discrete inf-sup condition for A(·, ·) (cf. [15, Thm. 8.2.8]).

Proposition 2.1. For ΩH (H ∈ Λ) with Hmax being sufficiently small and vH ∈ WH ,
the following estimate holds true:

‖PHvH‖1,2 6 C sup
06=wH∈WH

|AH(vH , wH)|

‖PHwH‖1,2
. (2.6)

By C, we denote a generic positive constant that is independent of significant quantities
such as the grid size. As ‖PH · ‖1,2 defines a norm on WH , Proposition 2.1 shows the inverse
stability of the difference operator AH : (WH , ‖PH · ‖1,2) → (WH , ‖PH · ‖1,2)

∗. It also proves,
for Hmax being small enough, the unique solvability of the discrete problem even if the
bilinear form is not strongly positive.

For the error of the numerical solution compared with the piecewise linear interpolant of
the exact solution, we then find

‖PHRHu− PHuH‖1,2 6 C sup
06=wH∈WH

|τH(wH)|

‖PHwH‖1,2

with the truncation error

τH(wH) := AH(RHu, wH)−AH(uH , wH) = AH(RHu, wH)−(gH , wH)H−(ψH , wH)Γ,H . (2.7)

We can now state our main results that will be proved in the subsequent sections.
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Theorem 2.1. For s ∈ (1/2, 1], let u ∈ H1+s(Ω), a, b, c, d, e, f ∈ W 1,2/(1−s)(Ω), α ∈
W 1,1/(1−s)(Γ), ψ ∈ Hs(Γ) and assume that {ΩH}H∈Λ is quasi-uniform if s 6= 1. For Hmax

being sufficiently small, the discretisation error satisfies the estimate

‖PHRHu−PHuH‖1,2 6C

(

∑

P∈ΩH

(diam �P )2s‖u‖2
1+s,2,�P

+
∑

P∈ΓH

|ΓP |
2s

(

‖u‖2
s,2,ΓP

+‖ψ‖2
s,2,ΓP

)

)1/2

6

6 CHs
max

(

‖u‖1+s,2 + ‖ψ‖s,2,Γ

)

.

Remark 2.1. Theorem 2.1 remains true if the approximation ψH = RHψ is replaced by
an averaged approximation with ψP = |ΓP |

−1
∫

ΓP
ψdσ (P ∈ ΓH).

If △ ∈ TH has an edge on Γ, we denote it by ΓP with P being its midpoint. For what
follows, let Γ1/2 be the set of all these midpoints and let Γxy

1/2 ⊂ Γ1/2 be the set of all

midpoints corresponding to an oblique edge on Γ. The triangle corresponding to P ∈ Γxy
1/2

will be denoted by △P ∈ T
obl
H . Moreover, we set σobl := 1 in the case of oblique boundary

sections and σobl := 0 otherwise, as well as σb := 1 if b 6= 0 and σb := 0 otherwise.

Theorem 2.2. For s ∈ (1, 2], let u ∈ H1+s(Ω), a, b, c, d, e, f ∈ W 2,2/(2−s)(Ω), α ∈
W 2,1/(2−s)(Γ), ψ ∈ Hs(Γ), and assume that {ΩH}H∈Λ is quasi-uniform if s 6= 2. For Hmax

being sufficiently small, the discretisation error satisfies the estimate

‖PHRHu− PHuH‖1,2 6 C

(

∑

P∈ΩH

(diam �P )2s‖u‖2
1+s,2,�P

+
∑

P∈Γxy
1/2

|ΓP |
2‖u‖2

2,2,△P
+

+
∑

P∈Γ1/2

(

(σobl + σb)|ΓP |
min(2s,3)‖u‖2

1/2+s,2,ΓP
+ |ΓP |

2s(‖u‖2
s,2,ΓP

+ ‖ψ‖2
s,2,ΓP

)
)

)1/2

6

6 CHs
max‖ψ‖s,2,Γ + C‖u‖1+s,2

{

H
min(s,3/2)
max if s 6= 3/2 ,

H
3/2
max| logHmax| if s = 3/2 .

If Ω is the union of rectangles (i.e., Γxy
1/2 = ∅), the local estimate above yields convergence

of order O(H
min(s,3/2)
max ). If neither oblique boundary parts nor mixed derivatives appear, then

the local estimate above implies order O(Hs
max).

Remark 2.2. As one can infer from the proofs, the term
∑

P∈Γxy
1/2

|ΓP |
2‖u‖2

2,2,△P
in the

local estimate in Theorem 2.2 can be replaced by

∑

P∈Γxy
1/2

(

|ΓP |
3‖u‖2

2,2,△P
+

∑

S⊂△P

|ΓP |
min(2s,3)‖u‖2

1/2+s,2,S

)

where
∑

S⊂△P
is a finite sum over some characteristic line segments in △P . If u ∈ H1+s(Ω)∩

W 2,∞(Ω), then
∑

P∈Γxy
1/2

|ΓP |
2‖u‖2

2,2,△P
can also be replaced by

∑

P∈Γxy
1/2

(

|ΓP |
3‖u‖2

2,2,△P
+

|ΓP |
4‖u‖2

2,∞,△P

)

. In both cases, a global estimate of order O(H
min(s,3/2)
max ) without a logarith-

mic factor follows.

Interpolating the convergence results for s = 1 and s = 2 immediately proves
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Corollary 2.1. Let s ∈ [1, 2] and assume that u ∈ H1+s(Ω), a, b, c, d, e, f ∈ W 2,∞(Ω),
α ∈ W 2,∞(Γ), and ψ ∈ Hs(Γ). Moreover, let Ω be the union of rectangles. For Hmax being
sufficiently small, the discretisation error satisfies the estimate

‖PHRHu− PHuH‖1,2 6 C
(

‖u‖1+s,2 + ‖ψ‖s,2,Γ

)

{

H
(1+s)/2
max if b 6= 0 ,

Hs
max if b = 0 .

Although the preceding corollary provides convergence results for s ∈ [1, 2] even without
assuming quasi-uniformity, neither local error estimates nor estimates for s ∈ (1/2, 1) can
be derived in this way.

Remark 2.3. In the case of no mixed derivatives or no oblique boundary sections, the
truncation error τH(wH) is of optimal order O(Hs

max) if wH vanishes on Γ, for s = 2 even
without assuming quasi-uniformity. If, however, mixed derivatives and oblique boundary
sections occur, then for s > 3/2 only suboptimal estimates can be derived; for s = 2
and wH = 0 on Γ, the suboptimal estimate remains valid again without assuming quasi-
uniformity. This is in accordance with the results known from [13] for the Dirichlet problem
with mixed derivatives in a domain with oblique boundary sections where an error estimate
of order O(H

3/2−ε
max ) with ε > 0 has been shown if u ∈ H3(Ω).

Remark 2.4. As is shown in [11, Remark 5.3, 5.4], the averaged restriction of the right-
hand side g in (2.5) can be replaced by the pointwise restriction on ΩH if g ∈ Hs(Ω) for
s ∈ (1, 2] retaining the order of convergence. If, however, g is not smooth enough, then
working with the pointwise restriction may destroy the higher order.

3. Notation

In this section, we collect all the notation that will be used in the course of proving the main
results. Always, definitions analogous to those for the x-direction apply for the y-direction
and vice versa. We firstly define some sets of points:

Ωx
1/2 := {(xj+1/2, yℓ) ∈ Ω : j, ℓ ∈ Z}, Ωxy

1/2 := {(xj+1/2, yℓ+1/2) ∈ Ω : j, ℓ ∈ Z},

Γx
1/2 := Ωx

1/2 ∩ Γ, Γxy
1/2 := Ωxy

1/2 ∩ Γ, Γ1/2 := Γx
1/2 ∪ Γy

1/2 ∪ Γxy
1/2.

Let P = (xj+1/2, yℓ) ∈ Ωx
1/2. Then we set

�P := (xj, xj+1) × (yℓ−1/2, yℓ+1/2) ∩ Ω, hP := hj, SP := {xj+1/2} × (yℓ−1/2, yℓ+1/2) ∩ Ω

as well as P l := (xj , yℓ), P
r := (xj+1, yℓ), and vP rl := (v(P r) + v(P l))/2 for the function v.

For P = (xj , yℓ+1/2) ∈ Ωy
1/2 lying not on Γ or a side of a triangle △ ∈ T

obl
H , we set

P 1 := (xj+1/2, yl+1), P 2 := (xj−1/2, yl+1), P 3 := (xj−1/2, yl), P 4 := (xj+1/2, yℓ),

P l := (xj−1/2, yℓ+1/2), P r := (xj+1/2, yℓ+1/2), P := (xj−1/2 + hP/2, yℓ+1/2),

with hP := xj+1/2 − xj−1/2 = (hj−1 + hj)/2 and

S1
P := {xj+1/2} × (yℓ+1/2, yℓ+1), S2

P := {xj−1/2} × (yℓ+1/2, yℓ+1),

S3
P := {xj−1/2} × (yℓ, yℓ+1/2), S4

P := {xj+1/2} × (yℓ, yℓ+1/2).
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The same definitions apply for P ∈ Γy
1/2 or a point P ∈ Ωy

1/2 that lies on a side of a triangle

△ ∈ T
obl
H but with xj+1/2 and xj−1/2 being replaced by xj , hP being replaced by hj and hj−1

if (xj+1, yℓ+1/2) and (xj−1, yℓ+1/2) lies outside Ω, respectively (see also Figure).

j − 1 j j + 1

l − 1

l

l + 1

P

S3
P

S2
P

S4
P

S1
P

Q

S4
Q

S1
QS2

Q

S3
Q

P

SII
P SIII

P

SI
P

P II P III

P I

P V

P IV

ΓII
P

ΓI
P

Notation for P, Q ∈ Ωy
1/2

(left) and triangle △ ∈ T
obl
H

For P = (xj+1/2, yℓ+1/2) ∈ Ωxy
1/2, we define

�P := (xj , xj+1) × (yℓ, yℓ+1) ∩ Ω, hP := hj , kP := kℓ, SP := {xj+1/2} × (yℓ, yℓ+1) ∩ Ω,

S−
P := {xj+1/2} × (yℓ, yℓ+1/2) ∩ Ω, S+

P := {xj+1/2} × (yℓ+1/2, yℓ+1) ∩ Ω,

and

P 1 := (xj+1, yℓ+1), P 2 := (xj , yℓ+1), P 3 := (xj , yℓ), P 4 := (xj+1, yℓ),

P− := (xj+1/2, yℓ), P+ := (xj+1/2, yℓ+1), P l := (xj, yℓ+1/2), P r := (xj+1, yℓ+1/2).

For P ∈ Ωxy
1/2\Γ, the rectangle �P can be split into four congruent rectangles �

(i)
P having P (i)

(i = 1, . . . , 4) as one vertex. For the function v, we again define vP rl := (v(P r) + v(P l))/2.

For P = (xj, yℓ+1/2) ∈ Γy
1/2, let P I := (xj , yℓ+1), P

II := (xj , yℓ), and

ΓP := {xj} × (yℓ, yℓ+1), ΓI
P := {xj} × (yℓ+1/2, yℓ+1), ΓII

P := {xj} × (yℓ, yℓ+1/2).

A triangle △ ∈ T
obl
H can be characterised by the point P = (xj+1/2, yℓ+1/2) ∈ Γxy

1/2 lying on
its oblique side, and we often write △P instead of �P . We set hP := hj , kP := kℓ. Moreover,
let P I , P II , P III be the vertices of this triangle such that P III always corresponds to the angle
π/2, the line between P I and P III is parallel to the y-axis, and the line between P II and
P III is parallel to the x-axis. By P IV and P V , we denote the midpoint of the side parallel
to the y- and x-axis, respectively. We have ΓP = ΓI

P ∪ ΓII
P with Γi

P being the line segment
between P and P i (i ∈ {I, II}). The line segment between P IV and P I is denoted by SI

P ,
the one between P V and P by SII

P , and the one between P III and P IV by SIII
P (see Figure).

Furthermore, the triangle △P can be split into a triangle △I
P with vertices P I , P, P IV , a

triangle △II
P with vertices P II , P V , P , and a rectangle �III

P with vertices P III , P IV , P, P V .
Note that |△I

P | = |△II
P | = |�III

P |/2 = |△P |/4.

Finally, for a point P whatsoever, we denote by xP and yP its coordinates.
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4. Low-order convergence: proof of Theorem 2.1

The truncation error (2.7) can be decomposed in terms corresponding to the parts of the
differential operator. For all wH ∈ WH , we find from (2.3) – (2.5) the definitions of A,
AH(·, ·), and the Green formula

τH(wH) = AH(RHu, wH) −
∑

P∈ΩH

∫

�P

AudV wP − (ψH , wH)Γ,H :=

:= τ
(a)
H (wH) + τ

(b)
H (wH) + τ

(c)
H (wH) + τ

(d)
H (wH) + τ

(e)
H (wH) + τ

(f)
H (wH) + τΓ,H(wH), (4.1)

where

τ
(a)
H (wH) := aH(RHu, wH) −

∑

P∈Ωx
1/2

hP

∫

SP

auxdy δ
(1/2)
x wP , (4.2)

τ
(d)
H (wH) := dH(RHu, wH) −

∑

P∈ΩH

∫

�P

duxdV wP , (4.3)

τ
(f)
H (wH) :=

∑

P∈ΩH

|�P |
(

(fu)(P ) −
1

|�P |

∫

�P

fudV
)

wP , (4.4)

τΓ,H(wH) :=
∑

P∈ΓH

(

∫

ΓP

(ψ − αu)dσ − |ΓP |(ψ − αu)(P )
)

wP , (4.5)

and τ
(b)
H , τ

(c)
H , τ

(e)
H are given analogously.

The following result is already known from [11] for a domain that is the union of rectan-
gles. The proof in the present case of Ω having oblique boundary sections follows the same
lines as that of [11, Lemmata 4.2, 4.3, 4.4] and is omitted here.

Lemma 4.1. Let s ∈ (1/2, 1], u ∈ H1+s(Ω), a ∈W 1,2/(1−s)(Ω) and assume that {ΩH}H∈Λ

is quasi-uniform if s 6= 1. Then for all wH ∈WH

|τ
(a)
H (wH)| 6 C

(

∑

P∈Ωx
1/2

(diam �P )2s‖u‖2
1+s,2,�P

)1/2

‖PHwH‖1,2 .

For the mixed derivatives, we observe the following.

Lemma 4.2. Let s ∈ (1/2, 1], u ∈ H1+s(Ω), b ∈W 1,2/(1−s)(Ω) and assume that {ΩH}H∈Λ

is quasi-uniform if s 6= 1. Then for all wH ∈WH

|τ
(b)
H (wH)| 6 C

(

∑

P∈Ωxy
1/2

(diam �P )2s‖u‖2
1+s,2,�P

)1/2

‖PHwH‖1,2.

Proof. In what follows, we decompose τ
(b)
H into the part τ

(b,xy)
H corresponding to −(bux)y

plus the part τ
(b,yx)
H corresponding to −(buy)x focussing only on the latter as the former

can be handled similarly. Analogously, we decompose bH(RHu, wH) = bxy
H (RHu, wH) +

byx
H (RHu, wH). With integration and summation by parts, we find

τ
(b,yx)
H (wH) = byx

H (RHu, wH) −
∑

P∈Ωx
1/2

hP

∫

SP

buydy δ
(1/2)
x wP = byx

H (RHu, wH)−
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−
∑

P∈Ωxy
1/2

\Γxy
1/2

hP

(
∫

S−

P

buydyδ
(1/2)
x wP− +

∫

S+
P

buydyδ
(1/2)
x wP+

)

−
∑

P∈Γxy
1/2

sgn ηx(P )

∫

SII
P

buydy
(

wP II −wP III

)

.

(4.6)
The definition of bH leads to

byx
H (RHu, wH) =

1

4

∑

P∈Ωxy
1/2

\Γxy
1/2

|�P |
(

b(P 1)δ(1/2)
y uP rδ(1/2)

x wP+ + b(P 2)δ(1/2)
y uP lδ(1/2)

x wP++

+b(P 3)δ(1/2)
y uP lδ(1/2)

x wP− + b(P 4)δ(1/2)
y uP rδ(1/2)

x wP−

)

+

+
1

4

∑

P∈Γxy
1/2

sgn ηx(P )kP

(

b(P I) + b(P III)
)

δ(1/2)
y uP IV

(

wP II − wP III

)

. (4.7)

We firstly concentrate on the contributions corresponding to Ωxy
1/2 \ Γxy

1/2. We find

δ(1/2)
y uP l =

1

kP

yP +kP /2
∫

yP−kP /2

uy

(

xP −
hP

2
, y

)

dy, P ∈ Ωxy
1/2 ,

and an analogous identity holds with P r instead of P l. Transformation on a reference square
�̂, employing the continuous embedding Hs(�̂) →֒ L1(Ŝ) with an arbitrary vertical line
segment Ŝ ⊂ �̂, and rescaling gives

|δ(1/2)
y uP l| 6 C|�P |

−1/2‖uy‖s,2,�P
(4.8)

and the same estimate with P r instead of P l. Since b ∈ W 1,2/(1−s)(Ω) →֒ C(Ω), the gener-
alised Bramble-Hilbert lemma (cf. [10]) and the usual scaling and rescaling now yields for
s ∈ (1/2, 1], P ∈ Ωxy

1/2, i ∈ {1, 2, 3, 4}, and Q ∈ {P r, P l}

|�P |
1/2|b(P i) − b(P )| |δ(1/2)

y uQ| 6 C|�P |
−(1−s)/2 max(hP , kP )|b|1,2/(1−s)‖uy‖s,2,�P

6

6 Cmax(hP , kP )s‖uy‖s,2,�P
.

Here, we have employed |�P |
−(1−s)/2 max(hP , kP ) 6 C max(hP , kP )s which requires quasi-

uniformity for s ∈ (1/2, 1) but not for s = 1. The preceding estimate together with the
Cauchy-Schwarz inequality and

∑

P∈Ωxy
1/2

|�P |
(

|δ(1/2)
x wP−|2 + |δ(1/2)

x wP+|2
)

6 C|PHwH |
2
1,2 (4.9)

shows that replacing b(P i) by b(P ) in (4.7) leads to an error that is bounded as desired.

Since δ
(1/2)
y uP l + δ

(1/2)
y uP r − 4(u(P+) − u(P ))/kP vanishes for u = 1, x, y and since u ∈

H1+s(Ω) →֒ C(Ω), we find again with the generalised Bramble-Hilbert lemma for s < 1

|�P |
1/2|b(P )|

∣

∣

∣

∣

δ(1/2)
y uP l + δ(1/2)

y uP r −
4

kP

(u(P+) − u(P ))

∣

∣

∣

∣

6 C max(hP , kP )s|u|1+s,2,�P
.

The same estimate applies with u(P ) − u(P−) instead of u(P+) − u(P ).



146 E. Emmrich

If s = 1, we observe that for P = (xj+1/2, yℓ+1/2) ∈ Ωxy
1/2

δ(1/2)
y uP l+δ(1/2)

y uP r−
4

kP
(u(P+)−u(P ))=

1

kℓ

yℓ+1
∫

yℓ

(uy(xj , y)+uy(xj+1, y)dy−
4

kℓ

yℓ+1
∫

yℓ+1/2

uy(xj+1/2, y)dy

vanishes for uy = 1. The Bramble — Hilbert lemma furnishes the estimate wanted without
assuming quasi-uniformity which remains true with u(P )− u(P−) instead of u(P+)− u(P ).

With |�P | = hPkP and after applying the triangle inequality, the following contribution
is left from (4.6) and (4.7) with the following contribution:

∑

P∈Ωxy
1/2

\Γxy
1/2

hP

((

b(P )(u(P+) − u(P )) −

∫

S+
P

buydy

)

δ(1/2)
x wP+ +

(

b(P )(u(P ) − u(P−))−

−

∫

S−

P

buydy

)

δ(1/2)
x wP−

)

=
∑

P∈Ωxy
1/2

hP

(
∫

S+
P

(b(P )− b)uydyδ
(1/2)
x wP+ +

∫

S−

P

(b(P )− b)uydy δ
(1/2)
x wP−

)

.

Similar to the arguments used before, we have

h
1/2
P k

−1/2
P

∣

∣

∣

∣

∫

S+
P

(b(P ) − b)uydy

∣

∣

∣

∣

6 C max(hP , kP )s|b|1,2/(1−s)‖uy‖s,2,�P
,

and the same bound applies for the term corresponding to S−
P . For s = 1, the estimate holds

again without assuming quasi-uniformity. Together with the Cauchy — Schwarz inequality,
the asserted bound follows.

It remains to estimate the contributions to (4.6) and (4.7) arising from Γxy
1/2, i.e.,

G1 :=
∑

P∈Γxy
1/2

sgn ηx(P )
(kP

4

(

b(P I) + b(P III)
)

δ(1/2)
y uP IV −

∫

SII
P

buydy
)

(

wP II − wP III

)

. (4.10)

Firstly, we see that kP δ
(1/2)
y uP IV −2

∫

SII
P
uydy vanishes for u = 1, x, y and is linear and bounded

for u ∈ H1+s(Ω). The generalised Bramble-Hilbert lemma, together with

∣

∣wP II − wP III

∣

∣ 6 Ch
1/2
P k

−1/2
P |PHwH |1,2,△P

,

b ∈W 1,2/(1−s)(Ω) →֒ C(Ω), and the Cauchy-Schwarz inequality, thus shows that kP δ
(1/2)
y uP IV

in (4.10) can be replaced by 2
∫

SII
P
uydy as the error can be bounded appropriately. Here,

quasi-uniformity has not to be assumed if s = 1.

Secondly, we observe that
(

b(P I)+ b(P III)
) ∫

SII
P
uydy−2

∫

SII
P
buydy vanishes for b = 1 and

is linear and bounded for b ∈ W 1,2/(1−s)(Ω), uy ∈ Hs(Ω) →֒ L1(Ω). The Bramble-Hilbert
lemma again yields the optimal estimate that is valid for s = 1 even without assuming
quasi-uniformity. �

We now come to the first-order terms.
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Lemma 4.3. Let s ∈ (1/2, 1], u ∈ H1+s(Ω), d ∈ W 1,2/(1−s)(Ω), and assume that
{ΩH}H∈Λ is quasi-uniform if s 6= 1. Then for all wH ∈WH

|τ
(d)
H (wH)| 6 C

(

∑

P∈ΩH

(diam �P )2s‖u‖2
1+s,2,�P

)1/2

‖PHwH‖1,2 .

Proof. A simple calculation shows that

dH(RHu, wH) =
∑

P∈Ωx
1/2

hP |SP |d(P )δ(1/2)
x uP (PHwH)(P ) , (4.11)

where (PHwH)(P ) = (wj,ℓ + wj+1,ℓ)/2 for P = (xj+1/2, yℓ). Note that hP |SP | 6= |�P | if
P ∈ Ωx

1/2 lies on an edge of a triangle △ ∈ T
obl
H . For P ∈ Ωx

1/2, we set

�′
P := �P \

⋃

△∈Tobl
H

△ , S ′
P := SP \

⋃

△∈Tobl
H

△ ,

which allows to consider the contributions from triangles △ ∈ T
obl
H separately. The definition

of �′
P also applies for points P ∈ ΩH . We then have with (4.3) that

τ
(d)
H (wH) = F1 + F2 + F3 +G ,

where

F1 :=
∑

P∈Ωx
1/2

|�′
P |d(P )

(

δ(1/2)
x uP − |�′

P |
−1

∫

�′

P

uxdV

)

(PHwH)(P ),

F2 :=
∑

P∈Ωx
1/2

∫

�′

P

(d(P )−d)uxdV (PHwH)(P ), F3 :=
∑

P∈Ωx
1/2

∫

�′

P

duxdV (PHwH)(P )−
∑

P∈ΩH

∫

�′

P

duxdV wP ,

G :=
∑

P∈Γxy
1/2

(

|△P |d(P
V )δ(1/2)

x uP V (PHwH)(P V )−

∫

△I
P

duxdV wP I −

∫

△II
P

duxdV wP II −

∫

�III
P

duxdV wP III

)

.

Since δ
(1/2)
x uP − |�′

P |
−1

∫

�′

P
uxdV (P ∈ Ωx

1/2) vanishes for u = 1, x, y and since H1+s(Ω) →֒

C(Ω), H1+s(Ω) →֒ W 1,1(Ω), we find for s ∈ (1/2, 1) with the generalised Bramble-Hilbert
lemma

|F1| 6 C

(

∑

P∈Ωx
1/2

|�′
P |

−1h−2
P max(hP , |S

′
P |)

2(2+s)|u|21+s,2,�P

)1/2

‖PHwH‖0,2 .

Here, we have used the fact that d ∈W 1,2/(1−s)(Ω) →֒ C(Ω) and
∑

P∈Ωx
1/2

|�′
P | |(PHwH)(P )|2 6 C‖PHwH‖

2
0,2. (4.12)

Because of the quasi-uniformity of {ΩH}H∈Λ, we have |�′
P |

−1h−2
P max(hP , |S

′
P |)

4 6 C , and
the estimate wanted follows. If s = 1, we observe that for P ∈ Ωx

1/2

|�′
P |

1/2

∣

∣

∣

∣

δ(1/2)
x uP −

1

|�′
P |

∫

�′

P

uxdV

∣

∣

∣

∣

=
1

|�′
P |

1/2

∣

∣

∣

∣

∫

�′

P

(ux(x, yP ) − ux(x, y))dV

∣

∣

∣

∣

6 |S ′
P | ‖uxy‖0,2,�′

P
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and hence the estimate asserted follows without assuming quasi-uniformity.
Since

∫

�′

P
(d(P )−d)uxdV vanishes for d = 1, we find with the Bramble — Hilbert lemma

|F2| 6 C

(

∑

P∈Ωx
1/2

|�′
P |

−1+s max(hP , |S
′
P |)

2‖ux‖
2
s,2,�′

P

)1/2

‖PHwH‖0,2 ,

which gives the estimate wanted, again without assuming quasi-uniformity if s = 1.
Regarding F3, we firstly observe that

F3 =
1

2

∑

P∈Ωx
1/2

(
∫

�l
P

duxdV −

∫

�r
P

duxdV

)

hP δ
(1/2)
x wP ,

where �r
P and �l

P denotes the part of �′
P to the right and left of the vertical line through

P ∈ Ωx
1/2, respectively. So, we come up with

|F3| 6
1

2

∑

P∈Ωx
1/2

hP

∫

�′

P

|dux|dV |δ
(1/2)
x wP | 6 C

(

∑

P∈Ωx
1/2

h2
P

∫

�′

P

|dux|
2dV

∑

P∈Ωx
1/2

|�′
P ||δ

(1/2)
x wP |

2

)1/2

which gives, because of d ∈ C(Ω) and ‖ · ‖0,2,�P
6 ‖ · ‖s,2,�P

, with (4.9)

|F3| 6 C

(

∑

P∈Ωx
1/2

h2
P‖ux‖

2
s,2,�P

)1/2

|PHwH |1,2 .

With respect to the term G, we remember that (PHwH)(P V ) =
(

wP II + wP III

)

/2 and
|△P | = 4|△I

P | = 4|△II
P | = 2|�III

P | for P ∈ Γxy
1/2. We thus find G =

∑

P∈Γxy
1/2

(

GP,1 + GP,2

)

with

GP,1 :=

(

|△I
P | d(P

V )δ(1/2)
x uP V −

∫

△I
P

duxdV

)

wP I+

+

(

|△II
P | d(P

V )δ(1/2)
x uP V −

∫

△II
P

duxdV

)

wP II +

(

|�III
P | d(P V )δ(1/2)

x uP V −

∫

�III
P

duxdV

)

wP III ,

GP,2 :=
|△P |

4
d(P V )δ(1/2)

x uP V

(

wP II − wP I

)

.

With the same arguments as used in the first part of this proof, we find an optimal estimate
for GP,1. Since PHwH ∈ H1(Ω) →֒ H1/2(Γ) with

|PHwH |1/2,2,ΓP
= |wP I − wP II | for P ∈ Γ1/2, (4.13)

it can be shown (with an argument analogous to (4.8)) that

|GP,2| 6 C|△P |
1/2 ‖ux‖s,2,△P

|PHwH |1/2,2,ΓP
.

The assertion finally follows from the application of the Cauchy-Schwarz inequality. �

The following result is already known from [11, Lemma 4.5] for a domain that is the
union of rectangles. In the case of oblique boundary parts, the proof follows the same lines
and shall be omitted.
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Lemma 4.4. Let s ∈ (1/2, 1], u ∈ H1+s(Ω), f ∈ W 1,2/(1−s)(Ω), and assume that
{ΩH}H∈Λ is quasi-uniform if s 6= 1. Then for all wH ∈WH

|τ
(f)
H (wH)| 6 C

(

∑

P∈ΩH

(diam �P )2s‖u‖2
1+s,2,�P

)1/2

‖PHwH‖0,2 .

For the boundary terms, we finally have the following result.

Lemma 4.5. Let s ∈ (1/2, 1], u ∈ H1+s(Ω), α ∈ W 1,1/(1−s)(Γ), ψ ∈ Hs(Γ), and assume
that {ΩH}H∈Λ is quasi-uniform if s 6= 1. Then for all wH ∈WH

|τΓ,H(wH)| 6

(

∑

P∈ΓH

|ΓP |
2s

(

‖u‖2
s,2,ΓP

+ ‖ψ‖2
s,2,ΓP

)

)1/2

‖PHwH‖0,2,Γ .

We omit the proof here as it follows the same arguments as [11, Lemmata 4.6, 4.7].

Proof of Theorem 2.1. Theorem 2.1 immediately follows from the lemmata in this section
together with Proposition 2.1 upon noting that for the terms with c and e analogous results
as for a and d, respectively, are at hand. Remember here that ‖ · ‖s,2,Γ is the Euclidean sum
of the corresponding norm taken over all straight boundary sections of Γ.

5. High-order convergence: proof of Theorem 2.2

Since τΓ,H from (4.5) only admits a first-order estimate, we have to rely upon another de-
composition of the truncation error. The main idea is to correct τΓ,H so that it becomes of
higher order and then to allocate this correction to the the truncation error related to the
main part of the differential operator.

A simple calculation shows that for all wH ∈WH and an appropriate function φ

∑

P∈ΓH

(
∫

ΓP

φdσ − |ΓP |φ(P )

)

wP =
∑

P∈Γ1/2

(
∫

ΓP

φdσ −
|ΓP |

2

(

φ(P I) + φ(P II)
)

)

wP I + wP II

2
+

+
∑

P∈Γ1/2

(
∫

ΓI
P

φdσ −
|ΓP |

2
φ(P I) −

∫

ΓII
P

φdσ +
|ΓP |

2
φ(P II)

)

wP I − wP II

2
. (5.1)

In the following, let for wH ∈WH and an appropriate function φ

Sx
Γ,H(φ, wH) :=

∑

P∈Γ1/2

ηx(P )

(
∫

ΓI
P

φdσ−
|ΓP |

2
φ(P I)−

∫

ΓII
P

φdσ+
|ΓP |

2
φ(P II)

)

wP I − wP II

2
. (5.2)

With

τ̃Γ,H(wH) :=
∑

P∈Γ1/2

(
∫

ΓP

(ψ − αu)dσ −
|ΓP |

2

(

(ψ − αu)(P I) + (ψ − αu)(P II)
)

)

wP I + wP II

2
,

τ̃
(a)
H (wH) := τ

(a)
H (wH) + Sx

Γ,H(aux, wH),

and analogous definitions for τ̃
(b)
H (see also (5.11) below) and τ̃

(c)
H , we find from (1.2) and

(5.1)

τH(wH) = τ̃
(a)
H (wH) + τ̃

(b)
H (wH) + τ̃

(c)
H (wH) + τ

(d)
H (wH) + τ

(e)
H (wH) + τ

(f)
H (wH) + τ̃Γ,H(wH)

in place of (4.1). Since τ̃Γ,H consists of one-dimensional trapezoidal rules, we find
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Lemma 5.1. Let s ∈ (1, 2], u ∈ H1+s(Ω), α ∈ W 2,1/(2−s)(Γ), ψ ∈ Hs(Γ). Then for all
wH ∈WH

|τ̃Γ,H(wH)| 6 C

(

∑

P∈Γ1/2

|ΓP |
2s

(

‖u‖2
s,2,ΓP

+ ‖ψ‖2
s,2,ΓP

)

)1/2

‖PHwH‖1,2 .

The proof, which is omitted here, relies upon the estimate

|ΓP |
(

|wP I |2 + |wP II |2
)

6 C ‖PHwH‖
2
0,2,ΓP

6 C ‖PHwH‖
2
1,2 (5.3)

and follows the same arguments as the proof of [11, Lemma 5.8]. Further, the continuous
embedding H1+s(Ω) →֒ Hs(ΓP ) is employed. Note that the assumption ψ ∈ Hs(Γ) is
essential and does not follow from the regularity of the solution and coefficients together
with (1.2).

In what follows, we often make use of an estimate of the L2-norm on a boundary strip.

Lemma 5.2. For v ∈ H t(Ω) (0 6 t 6 1), the following estimate holds true:

(

∑

P∈Γxy
1/2

‖v‖2
0,2,△P

)1/2

6 c(Hmax) ‖v‖t,2,Ω with c(h) = C

{

hmin(t,1/2) if t 6= 1/2 ,

h1/2| log h| if t = 1/2 .

Proof. Since the polygonal domain Ω possesses only a fixed number of oblique boundary
sections, it suffices to consider one of them. So, let Γ′ ⊂ Γ be one of the oblique boundary
sections. Then all triangles △ ∈ T

obl
H having an oblique edge on Γ′ lie within a trapezoidal

domain Ω′,Hmax ⊂ Ω with dist(x,Γ′) < Hmax for x ∈ Ω′,Hmax . We can construct a new domain
Ω′′ of class C

1 such that Γ′ ⊂ ∂Ω′′ and Ω′,Hmax ⊂ Ω′′ (obviously, Ω′′ is not contained in Ω).
Since Ω′,Hmax is contained within a strip Ω′′,Hmax ⊂ Ω′′ of width Hmax along ∂Ω′′, Il’in’s result
[20, Thm. 4.4 and Rem. 12.4] for domains of class C

1 gives
∑

P∈Γxy
1/2

∩Γ′

‖v‖2
0,2,△P

6 ‖v‖2
0,2,Ω′,Hmax 6 ‖v‖2

0,2,Ω′′,Hmax 6 c(Hmax)
2 ‖v‖2

t,2,Ω′′ 6 C c(Hmax)
2 ‖v‖2

t,2,Ω .

In the last step, we have employed the fact that since Ω is of class C
0+1, we can extend v to

a function on R
2 such that ‖v‖t,2,R2 6 C ‖v‖t,2,Ω (cf. [42, Thm. A.4]). �

For t ∈ [0, 1/2), the estimate above also follows from the continuous embedding of
H t(Ω) into the Lebesgue space L2

ρ(Ω) with the weight function ρ := dist(·,Γ)−2t (cf. [42,
Lemma 3.32]).

From [11, Sect. 5], we already have an optimal estimate of order O(Hs
max) for τ̃

(a)
H but only

on a domain that is the union of rectangles. Unfortunately, in the case of oblique boundary
parts, we can only prove a suboptimal estimate. Remember in the following that Γxy

1/2 = ∅

if oblique boundary parts do not occur.

Lemma 5.3. Let s ∈ (1, 2], u ∈ H1+s(Ω), a ∈W 2,2/(2−s)(Ω), and assume that {ΩH}H∈Λ

is quasi-uniform if s 6= 2. Then for all wH ∈WH

|τ̃
(a)
H (wH)| 6 C

(

∑

P∈Ωy
1/2

(diam �P )2s‖ux‖
2
s,2,�P

+
∑

P∈Γxy
1/2

(

|ΓP |
2s‖ux‖

2
s,2,△P

+|ΓP |
2‖ux‖

2
1,2,△P

)

)1/2

×

×‖PHwH‖1,2 6 C‖u‖1+s,2 ‖PHwH‖1,2

{

H
min(s,3/2)
max if s 6= 3/2 ,

H
3/2
max| logHmax| if s = 3/2 .

If Ω is the union of rectangles (i.e., Γxy
1/2 = ∅) the local estimate above yields order O(Hs

max).
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Proof. From (4.2), we find

τ
(a)
H (wH) =

∑

P∈Ωx
1/2

hP

(

|SP |a(P )δ(1/2)
x uP −

∫

SP

auxdy
)

δ(1/2)
x wP . (5.4)

The generalised Bramble — Hilbert lemma yields for P = (xj+1/2, yℓ) ∈ Ωx
1/2 (which is in

general not the midpoint of SP )

(hP |SP |)
1/2 |δ(1/2)

x uP − ux(P )| = (hP |SP |)
1/2

∣

∣

∣

∣

1

hj

xj+1
∫

xj

(ux(x, yℓ) − ux(xj+1/2, yℓ))dx

∣

∣

∣

∣

6

6 C max(hP , |SP |)
s|ux|s,2,�P

, (5.5)

where quasi-uniformity is not needed if s = 2. Note that the result remains true if one
replaces �P by its lower or upper half. Hence, we can replace δ

(1/2)
x uP in (5.4) by ux(P )

committing an error of the correct order. With

hj

(

δ(1/2)
x wj+1/2,ℓ+1 − δ(1/2)

x wj+1/2,ℓ

)

= kℓ

(

δ(1/2)
y wj+1,ℓ+1/2 − δ(1/2)

y wj,ℓ+1/2

)

(5.6)

and summation by parts, we find

∑

P∈Ωx
1/2

hP

(

|SP |(aux)(P ) −

∫

SP

auxdy
)

δ(1/2)
x wP = F1 + F2 + F3 + F4 + F5 ,

where

F1 :=
∑

P∈Ωxy
1/2

\Γxy
1/2

hP

(

kP

2
((aux)(P

+) + (aux)(P
−)) −

∫

SP

auxdy

)

δ
(1/2)
x wP+ + δ

(1/2)
x wP−

2
,

F2 :=
∑

P∈Ωy
1/2

4
∑

i=1

(−1)ikP

(

kP

2
(aux)(P

i) −

∫

Si
P

auxdy

)

δ
(1/2)
y wP

2
,

F3 :=
∑

P∈Γxy
1/2

sgn ηx(P )

(

kP

2
(aux)(P

I) −

∫

SI
P

auxdy −
kP

2
(aux)(P

III) +

∫

SIII
P

auxdy

)

wP I − wP III

2
,

F4 :=
∑

P∈Γxy
1/2

sgn ηx(P )

(

kP

2
(aux)(P

V ) −

∫

SII
P

auxdy

)

(wP II − wP III ),

F5 :=
∑

P∈Γy
1/2

ηx(P )

(

kP

2
(aux)(P

I) −

∫

ΓI
P

auxdy −
kP

2
(aux)(P

II) +

∫

ΓII
P

auxdy

)

wP I − wP II

2
.

Since Ωy
1/2 and Ωxy

1/2\Γ
xy
1/2 describe the union of rectangles, we can apply [11, Lemmata 5.3, 5.4]

in order to optimally estimate F1 and F2 (if s = 2 without quasi-uniformity). Altogether,
we find

|τ̃
(a)
H (wH)|6C

(

∑

P∈Ωy
1/2

(diam �P )2s‖ux‖
2
s,2,�P

)1/2

|PHwH |1,2 + |F3 + F4 + F5 + Sx
Γ,H(aux, wH)|.
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Since ηx(P ) = sgn ηx(P )kP/|ΓP | (P ∈ Γxy
1/2), we have

F3 + F4 + F5 + Sx
Γ,H(aux, wH) =

1

2

∑

P∈Γxy
1/2

sgn ηx(P )(GP,1 +GP,2)

with

GP,1 :=

(

kP

4
(aux)(P

I)+
kP

4
(aux)(P

IV)−

∫

SI
P

auxdy−
kP

4
(aux)(P

III)−
kP

4
(aux)(P

IV)+

∫

SIII
P

auxdy

)

+

+2

(

kP

4
(aux)(P )+

kP

4
(aux)(P

V )−

∫

SII
P

auxdy

)

(wP II −wP III )+

(

kP

|ΓP |

∫

ΓI
P

auxdσ−
kP

4
(aux)(P

I)−

−
kP

4
(aux)(P ) −

kP

|ΓP |

∫

ΓII
P

auxdσ +
kP

4
(aux)(P

II) +
kP

4
(aux)(P )

)

(wP I − wP II ),

GP,2 :=
kP

4

(

(aux)(P
I)−(aux)(P

III)
)

(wP I−wP III )+
kP

2

(

(aux)(P
V )−(aux)(P )

)

(wP II−wP III )+

+
kP

4

(

(aux)(P
II) − (aux)(P

I)
)

(wP I − wP II ).

Obviously, GP,1 consists of one-dimensional trapezoidal rules. Arguing similarly as in [11,
Lemma 5.3], we find (with diam△P = |ΓP | for P ∈ Γxy

1/2) the optimal estimate

|GP,1| 6 Ck
1/2
P h

−1/2
P |ΓP |

s ‖ux‖s,2,△P

(

|PHwH |1,2,△P
+ |PHwH |1/2,2,ΓP

)

. (5.7)

Note that quasi-uniformity is not needed if s = 2. The estimate of the one-dimensional trape-
zoidal rules in the y-direction leads indeed to a factor (kP/hP )1/2 that cannot be absorbed
if it appears in connection with wP I − wP III since

|wP I − wP III | 6 |wP I − wP II | + |wP II − wP III | 6

6 C
(

|PHwH |1/2,2,ΓP
+ h

1/2
P k

−1/2
P |PHwH |1,2,△P

)

(5.8)

is the best possible estimate (remember here (4.13)). But since P ∈ Γxy
1/2, the quotient kP/hP

is just a constant slope of the corresponding oblique boundary section of Γ.
Regarding GP,2, one can show that

∣

∣2
(

(aux)(P
V ) − (aux)(P )

)

+ (aux)(P
I) − (aux)(P

III)
∣

∣ 6 C|△P |
−1/2|ΓP |

s‖ux‖s,2,△P
.

Here, for 1 < s < 2, we use ux ∈ Hs(Ω) →֒ C(Ω) and a Taylor expansion of a ∈
W 2,2/(2−s)(Ω) →֒ C

1(Ω). Upon noting ‖aux‖2,2,△P
6 C‖a‖2,∞‖ux‖2,2,△P

, the estimate again
holds without assuming quasi-uniformity if s=2. So, we can replace 2((aux)(P

V )−(aux)(P ))
by −((aux)(P

I) − (aux)(P
III)) at the expense of an error having the correct order.

It thus remains to estimate

G′
P,2 :=

kP

4

(

(aux)(P
II) − (aux)(P

III)
)

(wP I − wP II ) . (5.9)



Supraconvergence of a discretisation for elliptic third-kind BVP 153

The Bramble — Hilbert lemma and (4.13) only allow to prove the suboptimal estimate

|G′
P,2| 6 Ck

1/2
P h

−1/2
P |ΓP | ‖ux‖1,2,△P

|PHwH |1/2,2,ΓP
. (5.10)

Here, we used the fact that a ∈ W 2,2/(2−s)(Ω) →֒ C
1(Ω) and ux ∈ Hs(Ω) →֒ H1(Ω) implies

|aux|1,2,△P
6 C ‖a‖1,∞‖ux‖1,2,△P

. Note that estimate (5.10) again does not require quasi-
uniformity if s = 2 since kP/hP is the slope of the corresponding oblique boundary section
of Γ.

The global estimate asserted can be derived from the preceding estimates and Lemma5.2. �

For the truncation error due to mixed derivatives, we have the following result.

Lemma 5.4. Let s ∈ (1, 2], u ∈ H1+s(Ω), b ∈ W 2,2/(2−s)(Ω), and assume that {ΩH}H∈Λ

is quasi-uniform if s 6= 2. Then for all wH ∈ WH

|τ̃
(b)
H (wH)| 6 C

(

∑

P∈ΩH

(diam �P )2s‖u‖2
1+s,2,�P

+
∑

P∈Γx
1/2

∪Γy
1/2

|ΓP |
min(2s,3)‖u‖2

1/2+s,2,ΓP
+

+
∑

P∈Γxy
1/2

(

|ΓP |
2s‖u‖2

1+s,2,△P
+ |ΓP |

2‖u‖2
2,2,△P

+ |ΓP |
3 ‖u‖2

1/2+s,2,ΓP

)

)1/2

‖PHwH‖1,2 6

6 C‖u‖1+s,2‖PHwH‖1,2

{

H
min(s,3/2)
max if s 6= 3/2 ,

H
3/2
max| logHmax| if s = 3/2 .

If Ω is the union of rectangles (i.e., Γxy
1/2 = ∅), then the local estimate above yields order

O(H
min(s,3/2)
max ).

Proof. As in the proof of Lemma 4.2, we concentrate on the contributions due to −(buy)x

that are denoted by a superscript yx. We have for all wH ∈ WH

τ̃
(b,yx)
H (wH) = τ

(b,yx)
H (wH) + Sx

Γ,H(buy, wH) , (5.11)

where τ
(b,yx)
H (wH) is given by (4.6) and (4.7). Let F := τ

(b,yx)
H (wH) − G1 with G1 given by

(4.10). We then find from (4.6) and (4.7)

F =
∑

P∈Ωxy
1/2

\Γxy
1/2

|�P |

4

(

b(P 1)δ(1/2)
y uP r+b(P 2)δ(1/2)

y uP l+b(P 3)δ(1/2)
y uP l+b(P 4)δ(1/2)

y uP r−
4

kP

∫

SP

buydy

)

×

×
δ
(1/2)
x wP+ + δ

(1/2)
x wP−

2
+

∑

P∈Ωxy
1/2

\Γxy
1/2

|�P |

4

(

b(P 1)δ(1/2)
y uP r + b(P 2)δ(1/2)

y uP l −
4

kP

∫

S+
P

buydy−

−b(P 3)δ(1/2)
y uP l − b(P 4)δ(1/2)

y uP r +
4

kP

∫

S−

P

buydy

)

δ
(1/2)
x wP+−δ

(1/2)
x wP−

2
=: F1 + F2. (5.12)

For the sum F1 in (5.12), we firstly conclude from the Bramble — Hilbert lemma and (4.8)

|�P |
1/2|b(P 1) + b(P 4) − 2b(P r)| |δ(1/2)

y uP r|6C|�P |
−(2−s)/2 max(hP , kP )2 |b|2,2/(2−s)‖uy‖s,2,�P

since b ∈W 2,2/(2−s)(Ω) →֒ C(Ω) and uy ∈ Hs(Ω). The application of the Cauchy — Schwarz
inequality and (4.9) thus shows that the error that appears when replacing b(P 1) + b(P 4)
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by 2b(P r) and, analogously, b(P 2) + b(P 3) by 2b(P l) in F1 can be bounded as desired. Here,
quasi-uniformity of

{

ΩH

}

H∈Λ
is only needed if s 6= 2. For P = (xj+1/2, yℓ+1/2) ∈ Ωxy

1/2, the
quantity

(

bδ(1/2)
y uH

)

P rl − bP rl

(

δ(1/2)
y uH

)

P rl =
1

2kP

yℓ+1
∫

yℓ

(

b(xj+1, yℓ+1/2)uy(xj+1, y)+

+b(xj , yℓ+1/2)uy(xj , y) −
1

2

(

b(xj+1, yℓ+1/2) + b(xj , yℓ+1/2)
)(

uy(xj+1, y) + uy(xj , y)
)

)

dy

vanishes for b = 1 and arbitrary uy as well as for arbitrary b and uy = 1, and is bounded for
b ∈W 2,2/(2−s)(Ω) →֒ C

1(Ω), uy ∈ Hs(Ω) →֒ H1(Ω). The bilinear lemma yields

|�P |
1/2

∣

∣

∣

(

bδ(1/2)
y uH

)

P rl − bP rl

(

δ(1/2)
y uH

)

P rl

∣

∣

∣
6 Cmax(hP , kP )2|b|1,∞|uy|1,2,�P

6 Cmax(hP , kP )2|b|1,∞

(

‖uyx‖
2
s−1,2,�P

+ ‖uyy‖
2
s−1,2,�P

)1/2
. (5.13)

We further have with (4.8)

|�P |
1/2|bP rl − b(P )|

∣

∣

∣

(

δ(1/2)
y uH

)

P rl

∣

∣

∣
6 C|�P |

−(2−s)/2 max(hP , kP )2|b|2,2/(2−s)‖uy‖s,2,�P
(5.14)

and with arguments similar to those already used before

|�P |
1/2

∣

∣

∣

(

δ(1/2)
y uH

)

P rl − δ(1/2)
y uP

∣

∣

∣
6 C max(hp, kP )s|uy|s,2,�P

. (5.15)

So, we are left with

∑

P∈Ωxy
1/2

\Γxy
1/2

|�P |
(

b(P )δ(1/2)
y uP −

1

kP

∫

SP

buydy
)δ

(1/2)
x wP+ + δ

(1/2)
x wP−

2
.

In the next step, we employ the identity

b(P )δ(1/2)
y uP −

1

kP

∫

SP

buydy=

(

b(P ) −
1

kP

∫

SP

bdy

)

uy(P ) +
1

kP

∫

SP

(b(P ) − b)(uy − uy(P ))dy.

(5.16)
Since the first member of the right-hand side of (5.16) vanishes for b = 1, x, y, we find

|�P |
1/2

∣

∣

∣

∣

b(P ) −
1

kP

∫

SP

bdy

∣

∣

∣

∣

|uy(P )| 6 C|�P |
−(2−s)/2 max(hP , kP )2|b|2,2/(2−s)‖uy‖s,2,�P

,

which leads to the estimate desired. The second member of the right-hand side of (5.16)
can be bounded as in (5.13). This, finally, shows that F1 can be bounded appropriately.
Moreover, we do not need to assume quasi-uniformity in the case s = 2.

We now come to F2 in (5.12). Due to an estimate similar to (5.13), we can firstly replace

b(P 1)δ(1/2)
y uP r + b(P 2)δ(1/2)

y uP l − b(P 3)δ(1/2)
y uP l − b(P 4)δ(1/2)

y uP r

by 2(bP 12 − bP 34)
(

δ
(1/2)
y uH

)

P rl with the mean values bP 12 := (b(P 1) + b(P 2))/2 and bP 34 :=
(b(P 3) + b(P 4))/2 leading only to an error of the order we need. Reasoning as in (5.14), we
secondly replace bP 12 by b(P+) and bP 34 by b(P−). Applying then (5.15) and

|�P |
1/2|δ(1/2)

y uP − uy(P )| 6 C max(hp, kP )s|uy|s,2,�P
,
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we are left with

F ′
2 :=

∑

P∈Ωxy
1/2

\Γxy
1/2

|�P |

2

(

(

b(P+) − b(P−)
)

uy(P ) −
2

kP

∫

S+
P

buydy +
2

kP

∫

S−

P

buydy

)

δ
(1/2)
x wP+− δ

(1/2)
x wP−

2

to be estimated. With the aid of identity (5.6), the quantity F ′
2 can be rewritten as

F ′
2 =

∑

P∈Ωy
1/2

k2
P

4

(

−
(

b(P 1)−b(P 4)
)

uy(P
r)+

(

b(P 2)−b(P 3)
)

uy(P
l)−

2

kP

4
∑

i=1

(−1)i

∫

Si
P

buydy

)

+

+
∑

P∈Γy
1/2

ηx(P )

(

kP

2

(

b(P I) − b(P II)
)

uy(P ) −

∫

ΓI
P

buydy +

∫

ΓII
P

buydy

)

wP I − wP II

2
+

+
∑

P∈Γxy
1/2

sgn ηx(P )

(

kP

2

(

b(P I) − b(P III)
)

uy(P ) −

∫

SI
P

buydy +

∫

SIII
P

buydy

)

wP I − wP III

2
=:

=: F ′′
2 +G2 +G3. (5.17)

Here, G2 is needed to correct the contributions at the boundary Γy that arise when the sum
F ′

2, which is taken over all P ∈ Ωxy
1/2, is rearranged to a sum over all P ∈ Ωy

1/2. Similarly, G3

appears in the rearrangement of the sum if P ∈ Ωy
1/2 lies on a side of a triangle △ ∈ T

obl
H .

With the Cauchy — Schwarz inequality and a relation analogous to (4.9), we find

|F ′′
2 | 6 C

(

∑

P∈Ωy
1/2

k3
Ph

−1
P |FP |

2

)1/2

‖PHwH‖1,2, (5.18)

where for P = (xj , yℓ+1/2) ∈ Ωy
1/2

FP = −
(

b(P 1) − b(P 4)
)

uy(P
r) +

(

b(P 2) − b(P 3)
)

uy(P
l) −

2

kP

4
∑

i=1

(−1)i

∫

Si
P

buydy =

= −

yℓ+1
∫

yℓ

by(xj+1/2, y)dy
(

uy(P
r) − uy(P )

)

−

yℓ+1
∫

yℓ

by(xj−1/2, y)dy
(

uy(P ) − uy(P
l)
)

−

−
(

b(P 1) − b(P 2) + b(P 3) − b(P 4)
)

uy(P ) −
2

kP

4
∑

i=1

(−1)i

∫

Si
P

buydy. =: E1 + E2 + E3 + E4.

Let 1 < s < 2. Since b ∈ W 2,2/(2−s)(Ω) →֒ C
1(Ω), we find for E1 and E2 with the

generalised Bramble — Hilbert lemma

|E1| + |E2| 6 C|�P |
−1/2kP max(hP , kP )‖by‖0,∞

(

‖uyx‖
2
s−1,2,�P

+ ‖uyy‖
2
s−1,2,�P

)1/2
.

For E3, we apply the Bramble — Hilbert lemma with respect to b ∈W 2,2/(2−s)(Ω) as well as
the embedding uy ∈ Hs(Ω) →֒ C(Ω) and come up with

|E3| 6 C|�P |
−(3−s)/2 max(hP , kP )2|b|2,2/(2−s)‖uy‖s,2,�P

.
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Regarding E4, we observe that

E4 = −
2

kP

4
∑

i=1

(−1)i

∫

Si
P

(

b−b(P )−bx(P )
hi

P

2
−by(P )(y−yP )

)

uydy−
2

kP
b(P )

4
∑

i=1

(−1)i

∫

Si
P

uydy−

−
2

kP

by(P )
4

∑

i=1

(−1)i

∫

Si
P

(y−yP )uydy−
2

kP

bx(P )
4

∑

i=1

(−1)ih
i
P

2

∫

Si
P

uydy =: E41 +E42 +E43 +E44,

where P is the center of �P and h1
P := h4

P := hP , h2
P := h3

P := −hP . Without going into
much detail, all the four sums can be bounded appropriately.

Let s = 2 such that b ∈W 2,∞(Ω) and u ∈ H3(Ω). For P = (xj, yℓ+1/2) ∈ Ωy
1/2, we find

FP = −

xj+1/2
∫

xj−1/2

(

2

kP

yℓ+1/2
∫

yℓ

(buy)xdy −
(

b(x, yℓ)uy(x, yℓ+1/2)
)

x
−

−
2

kP

yℓ+1
∫

yℓ+1/2

(buy)xdy +
(

b(x, yℓ+1)uy(x, yℓ+1/2)
)

x

)

dx.

Upon noting the embeddings uy ∈ H2(Ω) →֒ C(Ω) and uyx ∈ H1(Ω) →֒ L1(S) for any line
segment S ⊂ Ω, the integrand of the outer integral is well-defined for almost all x. After
carrying out the differentiation with respect to x, we wish to replace b(x, yℓ) as well as
b(x, yℓ+1) by b(x, yℓ+1/2) and bx(x, yℓ) as well as bx(x, yℓ+1) by bx(x, yℓ+1/2). This leads to an
error of order (hPkP )1/2 since in particular

∣

∣

∣

∣

xj+1/2
∫

xj−1/2

(

b(x, yℓ+1/2) − b(x, yℓ)
)

uyx(x, yℓ+1/2)dx

∣

∣

∣

∣

6

6
kP

2
‖by‖0,∞

xj+1/2
∫

xj−1/2

|uyx(x, yℓ+1/2)|dx 6 C(hPkP )1/2‖by‖0,∞‖uyx‖1,2,�P
.

Similar estimates apply to the other terms appearing in the replacing. We are thus left with

F ′
P := −

xj+1/2
∫

xj−1/2

(

2

kP

yℓ+1/2
∫

yℓ

(buy)xdy−(buy)x(x, yℓ+1/2)−
2

kP

yℓ+1
∫

yℓ+1/2

(buy)xdy+(buy)x(x, yℓ+1/2)

)

dx.

The integrand of the outer integral is the sum of one-dimensional rectangular rules applied
to (buy)x. With the Cauchy-Schwarz inequality, we have

∣

∣

∣

∣

xj+1/2
∫

xj−1/2

(

2

kP

yℓ+1/2
∫

yℓ

(buy)xdy − (buy)x(x, yℓ+1/2)

)

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

xj+1/2
∫

xj−1/2

2

kP

yℓ+1/2
∫

yℓ

(

y − yℓ

)

(buy)xydydx

∣

∣

∣

∣

6

6 C(hPkP )1/2‖(buy)xy‖0,2,�P
6 C(hPkP )1/2‖b‖2,∞‖uy‖2,2,�P

,
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the estimate for the other part in F ′
P being analogous. This leads to |FP | 6 C(hPkP )1/2 ×

‖b‖2,∞‖uy‖2,2,�P
that gives together with (5.18) the estimate desired (without requiring quasi-

uniformity).
After all, it remains to estimate the contributions from or near the boundary, i.e.,

G := G1 +G2 +G3 + Sx
Γ,H(buy, wH) ,

where G1 is given by (4.10), G2, G3 by (5.17), and Sx
Γ,H(buy, wH) by (5.2). We find

G=
1

4

∑

P∈Γy
1/2

sgn ηx(P )kP

(

b(P I)
(

uy(P ) − uy(P
I)

)

− b(P II)
(

uy(P ) − uy(P
II)

))(

wP I − wP II

)

+

+
1

2

∑

P∈Γxy
1/2

sgn ηx(P )

((

kP

2

(

b(P I)− b(P II)
)

uy(P )−

∫

SI
P

buydy +

∫

SI
PII

buydy

)

(

wP I − wP III

)

+

+2

(

kP

4

(

b(P I) + b(P III)
)

δ(1/2)
y uP IV −

∫

SII
P

buydy

)

(

wP II − wP III

)

+

+

(

kP

|ΓP |

∫

ΓI
P

buydσ −
kP

2
(buy)(P

I) −
kP

|ΓP |

∫

ΓII
P

buydσ +
kP

2
(buy)(P

II)

)

(

wP I − wP II

)

)

=:Gy +Gxy.

For Gy, the generalised Bramble — Hilbert lemma only yields the suboptimal estimate
∣

∣uy(P ) − uy(P
i)
∣

∣ 6 C |ΓP |
−1/2|ΓP |

min(s−1/2,1)‖uy‖s−1/2,2,ΓP
, i ∈ {I, II}.

Here, we used the fact that uy ∈ Hs(Ω) →֒ Hs−1/2(ΓP ) is uniformly continuous on Ω and
|uy|1,2,ΓP

6 C ‖uy‖s−1/2,2,ΓP
for 3/2 < s 6 2 . With b ∈ W 2,2/(2−s)(Ω) →֒ C(Ω) and (4.13), it

follows
|Gy| 6 C

∑

P∈Γy
1/2

|ΓP |
min(s,3/2)‖uy‖s−1/2,2,ΓP

|PHwH |1/2,2,ΓP
,

and the Cauchy — Schwarz inequality proves the asserted bound that holds for s = 2 without
quasi-uniformity.

Regarding Gxy, we can write

Gxy =
1

2

∑

P∈Γxy
1/2

sgn ηx(P )
(

GP,1 +GP,2

)

,

where

GP,1 :=

(

kP

4
(buy)(P

I)+
kP

4
(buy)(P

IV)−

∫

SI
P

buydy−
kP

4
(buy)(P

IV)−
kP

4
(buy)(P

III)+

∫

SIII
P

buydy

)

×

×
(

wP I −wP III

)

+2

(

kP

4
(buy)(P )+

kP

4
(buy)(P

V )−

∫

SII
P

buydy

)

(

wP II −wP III

)

+

(

kP

|ΓP |

∫

ΓI
P

buydσ−

−
kP

4
(buy)(P

I) −
kP

4
(buy)(P ) −

kP

|ΓP |

∫

ΓII
P

buydσ +
kP

4
(buy)(P ) +

kP

4
(buy)(P

II)

)

(

wP I − wP II

)

,
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GP,2 :=
kP

4

(

2
(

b(P I) − b(P II)
)

uy(P ) − (buy)(P
I) + (buy)(P

III)
)

(

wP I − wP III

)

+

+
kP

2

(

(

b(P I) + b(P III)
)

δ(1/2)
y uP IV − (buy)(P ) − (buy)(P

V )
)

(

wP II − wP III

)

+

+
kP

4

(

(buy)(P
II) − (buy)(P

I))
)

(

wP I − wP II

)

.

As in (5.7), GP,1 can be optimally estimated (without quasi-uniformity if s = 2). Since
b ∈W 2,2/(2−s)(Ω) →֒ C

1(Ω) and uy ∈ Hs(Ω) →֒ Hs−1/2(ΓP ) →֒ C(ΓP ), we have

kP

∣

∣b(P I) − b(P II)
∣

∣ |uy(P )| 6 C kP |ΓP |
1/2|b|1,∞‖uy‖s−1/2,2,ΓP

.

In GP,2, reasoning as in the first part of this proof, we can replace
(

b(P I) + b(P III)
)

/2 by

b(P IV ) and afterwards δ
(1/2)
y uP IV by uy(P

IV ) (see also (5.5)) as this leads to an error that
can be bounded optimally. If Q and R ∈ △P are two points lying on a straight line in △P ,
then the Bramble — Hilbert lemma furnishes (similarly as in (5.9), (5.10))

kP

∣

∣(buy)(Q) − (buy)(R)
∣

∣ 6 C|ΓP | ‖uy‖1,2,△P
.

This, together with (5.8) and (4.13), shows that

|GP,2|6C(|ΓP |‖u‖2,2,△P
+ |ΓP |

3/2‖uy‖s−1/2,2,ΓP
)
(

|PHwH |
2
1/2,2,ΓP

+ ‖PHwH‖
2
1,2,△P

)1/2
(5.19)

if {ΩH}H∈Λ is quasi-uniform for s ∈ (1, 2) (which is not needed for s = 2). The assertion
now follows with Lemma 5.2. �

Let us now consider τ
(f)
H ; the terms with first-order derivatives will be studied afterwards.

Lemma 5.5. Let s ∈ (1, 2], u ∈ Hs(Ω), f ∈ W 2,2/(2−s)(Ω), and assume that {ΩH}H∈Λ

is quasi-uniform if s 6= 2. Then for all wH ∈WH

|τ
(f)
H (wH)| 6 C

(

∑

P∈Ωxy
1/2

\Γxy
1/2

(diam �P )2s‖u‖2
s,2,�P

+

+
∑

P∈Γxy
1/2

(

|ΓP |
2s‖u‖2

s,2,△P
+ |ΓP |

3‖u‖2
1,2,△P

)

)1/2

‖PHwH‖1,2 6 C Hs
max‖u‖s,2‖PHwH‖1,2.

Proof. Starting from (4.4), a straightforward calculation shows that for wH ∈WH

τ
(f)
H (wH) =

∑

P∈Ωxy
1/2

\Γxy
1/2

4
∑

i=1

|�
(i)
P |

(

(fu)(P (i)) −
1

|�
(i)
P |

∫

�
(i)
P

fudV
)

wP (i) +
1

4

∑

P∈Γxy
1/2

|△P |FP ,

where

FP :=

(

(fu)(P I) −
4

|△P |

∫

△I
P

fudV

)

wP I +

(

(fu)(P II) −
4

|△P |

∫

△II
P

fudV

)

wP II+

+ 2

(

(fu)(P III) −
2

|△P |

∫

�III
P

fudV

)

wIII
P =: F I

Pw
I
P + F II

P w
II
P + F III

P wP III .
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For bounding the sum over all P ∈ Ωxy
1/2 \ Γxy

1/2, we follow the lines of the proofs of [11,

Lemmata 5.6, 5.7] giving the estimate desired. Regarding FP , we observe that

FP =
(

3F I
P +3F II

P +F III
P

)

wP III +3F I
P

(

wP I −wP III

)

+3F II
P

(

wP II −wP III

)

−2F I
PwP I −2F II

P wP II .

Upon noting that 3F I
P + 3F II

P + F III
P vanishes for fu = 1, x, y, the generalised Bramble —

Hilbert lemma together with a first-order Taylor expansion of f enables us to verify the
estimate

|△P |
1/2

∣

∣3F I
P + 3F II

P + F III
P

∣

∣ 6 C
(

|ΓP |
s‖f‖0,∞|u|s,2,△P

+ |ΓP |
2|f |1,∞|u|1,2,△P

+

+ |△P |
−(2−s)/2|ΓP |

2‖f‖2,2/(2−s)‖u‖1,2,△P

)

6 C|ΓP |
s‖u‖s,2,△P

.

This, together with |△P |
1/2 |wP III | 6 C ‖PHwH‖0,2,△P

, yields the estimate desired that holds
without assuming quasi-uniformity if s = 2.

Since f ∈W 2,2/(2−s)(Ω) →֒ C
1(Ω), we find as usual

|F i
P | 6 C |△P |

−1/2|ΓP | ‖u‖1,2,△P
, i ∈ {I, II, III} .

Because of

h
1/2
P k

−1/2
P

∣

∣wP I − wP III

∣

∣ + k
1/2
P h

−1/2
P

∣

∣wP II − wP III

∣

∣ 6 C |PHwH |1,2,△P
,

it follows (without assuming quasi-uniformity)

|△P |
∣

∣F i
P

∣

∣

∣

∣wP i − wP III

∣

∣ 6 C |ΓP |
2‖u‖1,2,△P

|PHwH |1,2,△P
, i ∈ {I, II} ,

which leads to the optimal estimate. Because of (5.3), we also find

|△P |
∣

∣F i
P

∣

∣ |wP i| 6 C |ΓP |
3/2‖u‖1,2,△P

‖PHwH‖0,2,ΓP
, i ∈ {I, II} .

This leads to the local estimate asserted. The global estimate follows with Lemma 5.2. �

For the terms with first-order derivatives, we obtain the following result.

Lemma 5.6. Let s ∈ (1, 2], u ∈ H1+s(Ω), d ∈W 2,2/(2−s)(Ω), and assume that {ΩH}H∈Λ

is quasi-uniform if s 6= 2. Then for all wH ∈ WH

|τ
(d)
H (wH)| 6 C

(

∑

P∈Ωx
1/2

(diam�P )2s‖ux‖
2
s,2,�P

+
∑

P∈Γxy
1/2

(

|ΓP |
2s‖ux‖

2
s,2,△P

+ |ΓP |
3‖ux‖

2
1,2,△P

+

+ |ΓP |
3‖ux‖

2
s−1/2,2,ΓP

)

)1/2

‖PHwH‖1,2 6 C Hmin(s,3/2)
max ‖ux‖s,2 ‖PHwH‖1,2.

If Ω is the union of rectangles (i.e., Γxy
1/2 = ∅) the local estimate above yields order O(Hs

max).

Proof. We have

τ
(d)
H (wH) = dH(RHu, wH) − (RH(dux), wH)H + (RH(dux), wH)H −

∑

P∈ΩH

∫

�P

duxdV wP .

Since d ∈ W 2,2/(2−s)(Ω) and ux ∈ Hs(Ω), the second difference can be handled exactly as

τ
(f)
H in Lemma 5.5. For the remaining terms, we find with (4.11) and some calculations

dH(RHu, wH)−(RH(dux), wH)H =
∑

P∈Ωx
1/2

hP |SP |
(

d(P )δ(1/2)
x uP (PHwH)(P ) − (duxPHwH)P rl

)

+
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+
1

4

∑

P∈Γxy
1/2

|△P |
(

(dux)(P
I)wP I − (dux)(P

II)wP II

)

=: F +G.

With the techniques already known, F can be bounded as asserted. It remains to estimate
the contribution G that appears due to the oblique boundary parts. For P ∈ Γxy

1/2, we have

(dux)(P
I)wP I − (dux)(P

II)wP II =
(

(dux)(P
I) − (dux)(P

II)
)

wP I+

+(dux)(P
II)

(

wP I − wP II

)

=: GP,1 +GP,2.

Since d ∈ W 2,2/(2−s)(Ω) →֒ C
1(Ω) and ux ∈ Hs(Ω) →֒ Hs−1/2(ΓP ), we find from the genera-

lised Bramble — Hilbert lemma together with (5.3)

|△P | |GP,1| 6 C |△P | |ΓP |
−1+min(1,s−1/2)|dux|min(1,s−1/2),2,ΓP

‖PHwH‖0,2,ΓP
6

6 C|ΓP |
min(2,s+1/2)‖d‖1,∞‖ux‖s−1/2,2,ΓP

‖PHwH‖0,2,ΓP
.

Here, we made use of the fact that for 1 < s < 3/2

|dux|s−1/2,2,ΓP
6 C

(

‖d‖0,∞|ux|s−1/2,2,ΓP
+ |ΓP |

3/2−s|d|1,∞‖u‖0,2,ΓP

)

6 C‖d‖1,∞‖ux‖s−1/2,2,ΓP

and for 3/2 6 s 6 2

|dux|1,2,ΓP
6 C‖d‖1,∞‖ux‖1,2,ΓP

6 C‖d‖1,∞‖ux‖s−1/2,2,ΓP
.

For GP,2, we can only prove a suboptimal estimate. With ux ∈ Hs(Ω) →֒ Hs−1/2(ΓP ) →֒
C(ΓP ) and (4.13), it follows

|△P | |GP,2| 6 C |△P | |ΓP |
−1/2‖d‖0,∞‖ux‖s−1/2,2,ΓP

|PHwH |1/2,2,ΓP
6

6 C|ΓP |
3/2‖ux‖s−1/2,2,ΓP

|PHwH |1/2,2,ΓP
.

The foregoing estimates are again valid for s = 2 without assuming quasi-uniformity. The
assertion follows from the application of the Cauchy — Schwarz inequality. �

Proof of Theorem 2.2. The assertion of Theorem 2.2 is an immediate consequence of
the lemmata in this section together with Proposition 2.1, since for the terms with the
coefficients c and e analogous results hold as for a and d, respectively. Moreover, we have
‖u‖s,2,ΓP

6 C‖u‖1/2+s,2,ΓP
as well as

∑

P∈Γ1/2
‖u‖2

1/2+s,2,ΓP
6 ‖u‖2

1+s,2.

References

1. R. E.Bank and J.Xu, Asymptotically exact a posteriori error estimators, I. Grids with superconver-

gence, SIAM J. Numer. Anal., 41 (2003), no. 6, pp. 2294–2312.
2. R. E.Bank and J.Xu, Asymptotically exact a posteriori error estimators, II. General unstructured

grids, SIAM J. Numer. Anal., 41 (2003), no. 6, pp. 2313–2332.
3. S. Barbeiro, J. A. Ferreira, and R. D. Grigorieff, Supraconvergence of a finite difference scheme for

solutions in Hs(0, L), IMA J. Numer. Anal., 25 (2005), no. 4, pp. 797–811.
4. S. Barbeiro, J. A. Ferreira, and J. Brandts, Superconvergence of piecewise linear semi-discretizations

for parabolic equations with nonuniform triangulations, J. Math. Fluid Mech., 7 (2005), suppl. 2, pp. S192–
S214.
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6. D. Bojović and B. S. Jovanović, Fractional order convergence rate estimates of finite difference method

on nonuniform meshes, CMAM, 1 (2001), no. 3, pp. 213–221.
7. J. H. Brandts, Superconvergence phenomena in finite element methods, Proefschrift, Universiteit

Utrecht, 1995.
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18. I. Hlaváček and M. Kř́ıžek, On a superconvergent finite element scheme for elliptic systems, III. Op-

timal interior estimates, Apl. Mat., 32 (1987), no. 4, pp. 276–289.
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25. B. S. Jovanović, L.D. Ivanović, and E. E. Süli, Convergence of finite-difference schemes for elliptic

equations with variable coefficients, IMA J. Numer. Anal., 7 (1987), pp. 301–305.
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33. L. R. Lalović, Approximation of generalized solutions of the third boundary value problem for elliptic

equation with variable coefficients. Zb. radova (Kragujevcu), 19 (1997), pp. 53–65.



162 E. Emmrich

34. R. D. Lazarov, V. L. Makarov, and W. Weinelt, On the convergence of difference schemes for the

approximation of solutions u ∈ Wm
2 (m > 0.5) of elliptic equations with mixed derivatives, Numer. Math.,

44 (1984), no. 2, pp. 223–232.
35. N. Levine, Superconvergent recovery of the gradient from piecewise linear finite-element approxima-

tions, IMA J. Numer. Anal., 5 (1985), pp. 407–427.
36. Q.Lin, Superclose FE-theory becomes a table of integrals, in: Finite element methods (M. Kř́ıžek et
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46. B.Popović, Convergence of finite-difference schemes for Poisson’s equation with boundary condition

of the third kind, Mat. Vesnik, 47 (1995), pp. 23–30.
47. U. Risch, Superconvergence of a nonconforming low order finite element, Appl. Numer. Math., 54

(2005), pp. 324–338.
48. V. Thomée, J. Xu and N. Y. Zhang, Superconvergence of the gradient in piecewise linear finite-

element approximation to a parabolic problem, SIAM J. Numer. Anal., 26 (1989), no. 3, pp. 553–573.
49. P.N. Vabishchevich, A. A. Samarskij, and P.P. Matus, Second-order accurate finite-difference sche-

mes on nonuniform grids, Comput. Math. Math. Phys., 38 (1998), pp. 399–410 (Zh. Vychisl. Mat. Mat.
Fiz., 38 (1998), no. 3, pp. 413–424).

50. L.B. Wahlbin, Superconvergence in Galerkin finite element methods, Lect. Notes in Math. 1605,
Springer, Berlin, 1995.

51. B.Wendroff and A. B. White Jr., Some supraconvergent schemes for hyperbolic equations on irregular

grids, in: Nonlinear hyperbolic equations — theory, computation methods, and applications, Aachen 1988
(J. Ballmann and R. Jeltsch, eds.), Notes Numer. Fluid Mech. 24, Vieweg, Braunschweig, 1989, pp. 671–677.

52. J.R. Whiteman and G. Goodsell, Some gradient superconvergence results in the finite element me-

thod, in: Numerical analysis and parallel processing (P. R. Turner, ed.), Lect. Notes in Math. 1397, Springer,
Berlin, 1987, pp. 182–260.

53. Q. Zhu, A survey of superconvergence techniques in finite element methods, in: Finite element me-
thods (M. Kř́ıžek et al., eds.), M. Dekker, New York, 1998, pp. 287–302.

54. A. Zlotnik, On superonvergence of a gradient for finite element methods for an elliptic equation with

the nonsmooth right-hand side, CMAM, 2 (2002), no. 3, pp. 295–321.


