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Abstract

Long-range interactions for linearly elastic media resulting in nonlinear dispersion
relations are modelled by an initial-value problem for an integro-differential equation
(IDE) that incorporates non-local effects. Interpreting this IDE as an evolutionary
equation of second order, well-posedness in L∞(

�
) as well as jump relations are

proved. A numerical approximation based upon quadrature is suggested and car-
ried out for two examples, one involving jump discontinuities in the initial data
corresponding to a Riemann-like problem.
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1 Introduction

Motivated by the so-called peridynamic theory of solids (cf. Silling [8]), we are
interested in the integro-differential equation (IDE)

∂2
t u(x, t) =

∫ ∞

−∞
k(x, ξ)u(ξ, t) dξ + c(x)u(x, t) + b(x, t) , (x, t) ∈�× (0, T ) ,

(1.1)

where
�

denotes the unbounded spatial domain, (0, T ) with T > 0 is the time inter-
val under consideration, c is a time-independent coefficient and b an inhomogeneity.
We look for solutions u = u(x, t) to equation (1.1) that fulfill the initial conditions

u(·, 0) = u0 , ∂tu(·, 0) = v0 (1.2)

for prescribed initial data u0, v0. In the context of continuum mechanics, u denotes
the displacement field whereas ∂tu describes the velocity.

1This work was supported by a fellowship of the second author within the Postdoc-Programme
of the German Academic Exchange Service (DAAD).
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The kernel k :
�2 →�might be unsymmetric. However, the integral operator

is often to be assumed of convolution type so that

k(x, ξ) = k̃(x − ξ) with k̃(z) = k̃(−z) , z ∈�, (1.3)

and the coefficient c is assumed to be constant and given by

c(x) ≡ −
∫ ∞

−∞
k̃(z) dz . (1.4)

The peridynamic theory is a non-local model of integral type, which –in contrast
to other such models– only involves the displacement field but not its gradient
or higher-order spatial derivatives as will be discussed in Section 2. This might
be an attractive feature, especially in settings that involve singularities. Formally,
the peridynamic theory seems to be a continuous version of molecular dynamics;
its linearisation resembles the equation of motion for a crystalline structure (cf.
Czycholl [3]). However, this similarity is misleading as the peridynamic theory is
meant to apply at length scales between those of classical continuum mechanics and
molecular dynamics. A discussion of the relation between non-local theories and
atomistic models can be found, e. g., in Chen et al. [2]. For a detailed description
of a variety of non-local theories in continuum mechanics, we refer to Kunin [5]
and Rogula [7]. Non-local models can be also found in the description of other
natural phenomena. So Lee et al. [6] discuss an IDE of first-order in biomathematics
modelling the dynamics of interacting individuals that coexist on a spatial landscape.
One of the ideas behind is the description of density changes due to long-distance
interactions.

Recently, Weckner & Abeyaratne [10] analysed the effects of long-range
forces on the dynamics of an infinite homogeneous bar, corresponding to the IDE

ρ0∂
2
t u(x, t) =

∫ ∞

−∞
C(x̂ − x)[u(x̂, t) − u(x, t)] dx̂ + h(x, t) , (x, t) ∈�× (0, T ) ,

(1.5)

where ρ0 is the constant density and the kernel C, the so-called micromodulus func-
tion, is of convolution type (1.3) due to the homogeneity. Using Fourier transfor-
mations, the authors have shown that the general solution of (1.5) subject to the
initial conditions (1.2) can be expressed in terms of a Green function. The motion
has been found to be dispersive as a result of the long-range forces. The micromodu-
lus C has been chosen such that the limit of short-range forces is in accordance with
the classical results known for a linearly elastic medium. In addition, the first-order
correction to classical local elasticity has been derived in order to characterise weak
non-locality. The most striking observations made are concerning Riemann’s prob-
lem with a discontinuous velocity in the beginning: Although the displacement field
is initially continuous, a jump discontinuity occurs for all times t > 0 and remains
stationary with respect to the Lagrangian coordinates. Moreover, the height of a
displacement jump oscillates around an average value for some materials while for
others, it increases monotonically, eventually fracturing the material.

In this paper we generalise the equation of motion (1.5) to (1.1) taking into
account inhomogeneities in both the inertial and the stiffness distribution resulting in
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the more general kernel k and coefficient c. We prove existence and uniqueness of the
mild solution to the initial-value problem for (1.1) in spaces of abstract functions with
values in L∞(

�
), the space of essentially bounded functions. As (1.5) is a special

case of (1.1), this also completes the proof of uniqueness given in [10]. Moreover, the
solution is explicitly given in terms of an infinite series of potencies of a stationary
Barbashin operator applied to the initial conditions and the external force field.
We also focus on regularity, an a priori estimate for the solution, and stability with
respect to the data and the kernel. It is, furthermore, shown that a jump in either
the initial conditions or the external force field generates a jump in the displacement
field that is stationary with respect to its Lagrangian coordinates. As an example,
the Riemann problem is solved. Specialising the results to the homogeneous case,
our results agree with those given in [10].

As a closed analytical solution cannot be expected in general, an efficient nu-
merical method has to be developed. For the approximate solution in the case
of piecewise continuous data u0, v0, b, we suggest a method that is based upon
quadrature. For the numerical integration, we partition the domain of integration
�

corresponding to the jumps in the data and apply quadrature formulae on each
of the integrals taken over intervals on which the data are continuous. The resulting
initial value problem for a linear system of second-order differential equations can
then be solved by standard methods. Examples are presented in order to illustrate
the numerical approximation proposed. The numerical integration is based upon
the Gauß-Hermite and composite trapezoidal quadrature.

The paper is organised as follows. In Section 2 we give a short introduction into
the peridynamic theory of solids. As a motivation, we present two advantages of the
non-local model in comparison to the classical, local model of continuum mechanics
and we show how these advantages can be exploited for a number of interesting
applications. In Section 3, under certain assumptions on the regularity of the kernel
k in (1.1), the mathematical analysis is presented. A numerical approximation is
suggested in Section 4. The method proposed is then illustrated in two examples
for which analytical solutions are at hand. This allows us to validate the numerical
results.

2 Modelling long-range forces in elasticity theory

In the peridynamic theory of a solid (cf. Silling [8]), the force applied on the
particle at position x ∈ R by the particle at x̂ ∈ R is characterised by a pairwise
force function f = f(x̂,x, t). So the equation of motion for the particle at x reads as

ρ0(x)∂2
t u(x, t) =

∫

R
f(x̂,x, t)dx̂ + h(x, t) , (x, t) ∈ R × (0, T ) . (2.1)

Here, R ⊆�3 is the region occupied by the body, x is the position of a material
point and ρ0(x) is the mass density at x, all in the reference configuration. The
motion is characterised by the displacement field u = u(x, t) and the material is
characterised by f . The value f(x, x̂, t) of the pairwise force function denotes the
force per unit reference volume applied on the particle at x at time t by a unit
volume of material at x̂. The field h represents an external force density.
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In the following, we restrict our considerations to the one-dimensional case.
Newton’s third law requires the symmetry f(x̂, x, t) = −f(x, x̂, t) . The constitu-
tive response of the material is characterised by a function F , which relates the force
between particles to the kinematics. Here, we assume that the relevant variables of
the constitutive function are the positions in both the present and the reference
configuration:

f(x̂, x, t) = F (y(x̂, t), y(x, t), x̂, x)

where

y(x, t) = x + u(x, t)

is the momentary position of particle x at time t and u is the corresponding displace-
ment. This excludes, for example, materials capable to remember their deformation
history. From objectivity principles, the force between the two particles x and x̂
cannot depend on the choice of the origin. The constitutive relation is thus given by

F (y(x̂, t), y(x, t), x̂, x) = f̃(η(x̂, x, t), x̂, x) , η(x̂, x, t) := u(x̂, t) − u(x, t) .

A Taylor expansion with respect to the first argument of the function f̃ leads to

f̃(η(x̂, x, t), x̂, x) = f̃(0, x̂, x) + ∂ηf̃(0, x̂, x)η(x̂, x, t) + O(η(x̂, x, t)2) .

Assuming small relative deformations η, equation (2.1) reduces to (1.1) in the one-
dimensional case with R =

�
and

k(x, ξ) :=
∂η f̃(0, ξ, x)

ρ0(x)
, c(x) := −

∫ ∞

−∞

∂ηf̃(0, ξ, x)

ρ0(x)
dξ ,

b(x, t) :=

∫ ∞

−∞

f̃(0, ξ, x)

ρ0(x)
dξ +

h(x, t)

ρ0(x)
.

Assuming further a homogeneous material, equation (1.5) follows.

In what follows, we shall discuss two different applications in which the peridy-
namic theory seems to be of particular advantage compared to the classical theory
of continuum mechanics.

The absence of spatial gradients has been the main motivation for the introduc-
tion of the peridynamic theory by Silling [8]. This feature promises computational
advantages, especially in settings that involve singularities such as problems aris-
ing in fracture mechanics. In the classical theory of elasticity, which is based upon
partial differential equations, a discontinuity has to be accounted for by dividing
the original domain into two subdomains and deriving additional jump conditions.
However, discontinuities can form spontaneously and grow along trajectories not
known in advance. So the classical method just described seems to be cumbersome
for this kind of problems. In the peridynamic theory, the deformation of a body is
described by an IDE that remains well-defined both in regular and singular regions
of a body. This advantage is currently exploited at a commercial aircraft producer
in order to calculate fatigue cracking and failure in composite materials using a code
that has been developed by Silling.
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The second advantage arises in the modelling of material behaviour. The be-
haviour predicted by the peridynamic theory in the case of small wavelengths is
quite different from what is predicted by the conventional theory. Especially, the
peridynamic theory may imply nonlinear dispersion relations. In contrast, the con-
ventional theory of elasticity predicts linear dispersion curves corresponding to a
constant phase velocity. The (nonlinear) dispersion curves can, in principle, be de-
termined by experiments (cf. Graff [4]). The kernel of the IDE (1.1) can then
be constructed from the dispersion relation. The resulting mechanical model con-
tains more information about the material behaviour than it can be expressed in
conventional local models.

In the case of a homogeneous, infinite bar, described by the IDE (1.5), a disper-
sion analysis yields the angular frequency ω as a function of the wavenumber k,

ω(k) =

(

1

ρ0
(γ −F [C(z)](k))

)1/2

=

(
∫ ∞

−∞
[1 − cos(kz)]

C(z)

ρ0
dz

)1/2

, (2.2)

γ := F [C(z)](0) =

∫ ∞

−∞
C(z) dz ,

where F denotes the Fourier transformation with respect to space. Note that
C(−z) = C(z), and so ω(−k) = ω(k). The dispersion relation can be used to define
the Green function

g(x, t) = F−1

[

sin(ω(k) t)

ω(k)

]

(x, t) =
1

2π

∫ ∞

−∞
cos(kx)

sin(ω(k) t)

ω(k)
dk . (2.3)

The solution to (1.5) is then found by convolution,

u(x, t) =

∫ ∞

−∞
u0(x − x̂)∂tg(x̂, t) dx̂ +

∫ ∞

−∞
v0(x − x̂)g(x̂, t) dx̂

+

∫ t

0

∫ ∞

−∞

h(x − x̂, t − t̂)

ρ0
g(x̂, t̂) dx̂dt̂ , (2.4)

which holds in the distributional sense.

On the other hand, the dispersion relation (2.2) can be used to determine the
micromodulus function C for a given or experimentally determined dispersion re-
lation ω = ω(k). As a first example, we assume that, within the relevant range
of wavelengths, the measured phase velocity vp(k) = ω(k)/k is constant such that
vp(k) ≡ c0, where c0 denotes the velocity of sound. This corresponds to the classical
linear elasticity theory with a phase velocity that is independent of wavelength. The
equation of motion is then given by the wave equation

ρ0∂
2
t u(x, t) = E∂2

xu(x, t) + h(x, t) (2.5)

with Young’s modulus E = ρ0c
2
0, which is equivalent to (1.5) with

C(z) = F−1
[

γ − ρ0ω(k)2
]

(z) = γδ(z) + Eδ′′(z) ,
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where δ = δ(z) denotes Dirac’s δ-distribution. In this case, the Green function
(2.3) is given by

g(x, t) =
1

2c0
(H(x + c0t) − H(x − c0t)) ,

where H = H(z) denotes Heaviside’s jump function that is zero for negative and
one for positive arguments. The solution (2.4) of the IDE (1.5) then reduces to the
d’Alembert solution of the wave equation.

From an augmented model incorporating lateral contraction, the phase velocity

vp(k) =
c0

√

1 + (krν)2

results. Here, ν is the Poisson number and r2 = J/A is the second moment J
devided by the cross section area A. The equation of motion here reads as

∂2
t u(x, t) = c2

0∂
2
xu(x, t) + (rν)2 ∂2

t ∂2
xu(x, t) . (2.6)

Taking into account the additional inertial effect, the improved theory results in a
dispersive system extending the range of admissible wavelengths compared to the
conventional theory of elasticity where ν = 0. For a detailed discussion, we refer to
Graff [4, p. 121]. However, here we take the point of view that vp is given (e. g.
by the interpolation of experimental data) and the corresponding dynamical model
(2.6) is not known in advanvce. The equation (2.2) can then be used to find the
micromodulus function C via ω(k) = vp(k) k and the experimentally determined vp.
It follows

C(z) = F−1
[

γ − ρ0(vp(k)k)2
]

(z) = γδ(z) +
ρ0c

2
0

2r3ν3
exp

(

−|z|
rν

)

.

So the peridynamic equation of motion reads as

∂2
t u(x, t) =

c2
0

2r3ν3

∫ ∞

−∞
exp

(

−|x − ξ|
rν

)

u(ξ, t) dξ −
( c0

rν

)2
u(x, t) , (2.7)

since
ρ0c

2
0

2r3ν3

∫ ∞

−∞
exp

(

−|z|
rν

)

dz =
( c0

rν

)2
.

Indeed, one can show that a smooth, bounded solution to the IDE (2.7) is also a
solution to the partial differential equation (2.6) and vice versa, so that both equa-
tions are equivalent in the class of sufficiently smooth functions (cf. also Tricomi [9,
p. 162]).

These two examples suggest that the same peridynamic equation of motion (1.5)
can be used to describe the material behaviour at different length scales just by
using appropriate micromodulus functions C. It, therefore, seems to be promising
to model an even more complicated material behaviour by means of the peridynamic
theory.
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3 Mathematical analysis

As usual, we denote by C the space of continuous functions, by Cb the space of
bounded continuous functions, by Lp (1 ≤ p < ∞) the space of Lebesgue-measurable
functions u such that |u|p is Lebesgue-integrable and by L∞ the space of essen-
tially bounded Lebesgue-measurable functions. The canonical norm in a normed
function space X is denoted by ‖ · ‖X . Moreover, let Cm([0, T ];X) with m ∈�be
the space of m-times continuously differentiable abstract functions u : [0, T ] → X
with norm

‖u‖Cm([0,T ];X) = max
t∈[0,T ]

m
∑

j=0

∥

∥

∥

∥

dmu(t)

dtm

∥

∥

∥

∥

X

.

We also write C([0, T ];X) if m = 0. The function space L1(0, T ;X) consists of
Bochner-integrable abstract functions u : [0, T ] → X such that t 7→ ‖u(t)‖X is
Lebesgue-integrable and is equipped with the norm

‖u‖L1(0,T ;X) =

∫ T

0
‖u(t)‖dt .

Unfortunately, we cannot apply the Hilbert-Schmidt theory as the integral
operator might be of convolution type and the solutions to (1.1) we have in mind
are not integrable over the whole line (−∞,∞).

For the kernel k, we shall assume

(H1) k ∈ C(
�×�) with k0 := sup

x∈�

∫ ∞

−∞
|k(x, ξ)|dξ < ∞;

(H2) for all x ∈�and ε > 0 there is a δ > 0 such that for all y ∈�

|x − y| < δ implies

∫ ∞

−∞
|k(x, ξ) − k(y, ξ)|dξ < ε .

Note that, for convolution operators, (H1) is fulfilled if k̃ ∈ C(
�

) ∩ L1(
�

). We
then have k0 = ‖k̃‖L1(�). Assumption (H2) does not follow from the continuity of k
as the domain is unbounded. However, it is fulfilled if k possesses a partial derivative
kx = kx(x, ξ) such that for all x ∈�

sup
x∈�

∫ ∞

−∞
|kx(x, ξ)|dξ < ∞ ,

or if k has compact support on
�×�(which cannot be the case for convolution

operators).

Example 3.1 For

k̃(z) =















sin z − z cos z

z3
if z 6= 0

1

3
if z = 0

, k(x, ξ) = k̃(x − ξ) ,



8 Emmrich & Weckner

the assumptions (H1) and (H2) are fulfilled. Moreover,

c(x) ≡ −
∫ ∞

−∞
k̃(z) dz = −π ,

see also Example 4.2 in Section 4.

Let c ∈ L∞(
�

). For functions u = u(x) ∈ L∞(
�

), we define the (autonomous)
operator A via

(Au)(x) :=

∫ ∞

−∞
k(x, ξ)u(ξ) dξ + c(x)u(x) , x ∈�. (3.1)

Due to (H1), the operator A maps into L∞(
�

) and is linear and bounded with

‖Au‖L∞(�) ≤ α ‖u‖L∞(�) , α := k0 + ‖c‖L∞(�) .

We may write A as the sum of the integral and the multiplication operator, such
that

A = K + C , where (Ku)(x) :=

∫ ∞

−∞
k(x, ξ)u(ξ) dξ , (Cu)(x) := c(x)u(x) , x ∈�.

So A is a stationary Barbashin operator (cf. Appell et al. [1]).

Proposition 3.1 Under the assumptions (H1) and (H2), the integral operator K
maps u ∈ L∞(

�
) to the bounded continuous function Ku ∈ Cb(

�
).

Let c be continuous. If u ∈ L∞(
�

) is continuous then Au is continuous, too. If
u ∈ L∞(

�
) is a piecewise continuous function with a jump at x̂ of height

[[u(x̂)]] := lim
x↘x̂

u(x) − lim
x↗x̂

u(x)

then Au is again piecewise continuous with a jump at x̂ of height

[[(Au)(x̂)]] = c(x̂) [[u(x̂)]] .

Proof Let u ∈ L∞(
�

) be arbitrary. We show that Ku is continuous on
�

. For
x, y ∈�, we have

|(Ku)(x) − (Ku)(y)| =

∣

∣

∣

∣

∫ ∞

−∞
(k(x, ξ) − k(y, ξ)) u(ξ) dξ

∣

∣

∣

∣

≤
∫ ∞

−∞
|k(x, ξ) − k(y, ξ)|dξ ‖u‖L∞(�) .

Because of (H1), it holds

∫ ∞

−∞
|k(x, ξ) − k(y, ξ)|dξ ≤ 2k0 ,
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so the integral converges for all x, y ∈�. The continuity of Ku follows from (H2).
Moreover, we find from (H1) that

|(Ku)(x)| ≤
∫ ∞

∞
|k(x, ξ)|dξ ‖u‖L∞(�) ≤ k0 ‖u‖L∞(�)

for all x ∈�, so Ku is bounded.
If c and u are continuous then cu is continuous, too. Hence Au = Ku + Cu is

continuous. If c is continuous and u has a jump at x̂ then Ku is continuous at x̂ and
(Cu)(x) = c(x)u(x) has a jump at x̂ of height c(x̂) [[u(x̂)]]. Since Au = Ku + Cu,
the assertion follows.

Denoting by u = u(t) and b = b(t) the abstract functions with values in L∞(
�

)
that correspond to u = u(x, t) and b = b(x, t), respectively, we may consider the
evolutionary equation

ü(t) = Au(t) + b(t) , t ∈ (0, T ) , (3.2)

instead of (1.1), where ü is the second derivative of u : [0, T ] → L∞(
�

).
On the product space L∞(

�
) × L∞(

�
), equipped with the norm

∣

∣

∣

∣

∣

∣

∣

∣

∣
(u, v)T

∣

∣

∣

∣

∣

∣

∣

∣

∣
:= max

{

‖u‖L∞(�), ‖v‖L∞(�)
}

,

we can now define the operator

A :=





0 I

A 0



 , A
(

u

v

)

=

(

u

Au

)

,

where I denotes the identity in L∞(
�

). The operator A : L∞(
�

)2 → L∞(
�

)2 is
linear and bounded with

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A
(

u

v

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ α̂

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

u

v

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, α̂ := max{1, α} .

With v := u̇, equation (3.2) is equivalent to the first-order operator-differential
equation

d

dt

(

u(t)

v(t)

)

= A
(

u(t)

v(t)

)

+

(

0

b(t)

)

, t ∈ (0, T ) . (3.3)

It immediately follows from standard arguments and Duhamel’s principle

Proposition 3.2 Under the assumption (H1), the operator A : L∞(
�

)2 → L∞(
�

)2

generates the uniformly continuous semigroup {etA}t≥0 with

etA =





cosh(t
√

A)
√

A
−1

sinh(t
√

A)
√

A sinh(t
√

A) cosh(t
√

A)



 =











∞
∑

n=0

t2nAn

(2n)!

∞
∑

n=0

t2n+1An

(2n+1)!

∞
∑

n=0

t2n+1An+1

(2n+1)!

∞
∑

n=0

t2nAn

(2n)!











.

(3.4)
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Let b ∈ L1(0, T ;L∞(
�

)). Then

(

u(t)

v(t)

)

= etA
(

u0

v0

)

+

∫ t

0
e(t−s)A

(

0

b(s)

)

ds , t ∈ (0, T ) , (3.5)

is the unique mild solution to (3.3) with the initial values u(0) = u0 ∈ L∞(
�

) and
v(0) = v0 ∈ L∞(

�
). If b ∈ C([0, T ];L∞(

�
)) then ü ∈ C([0, T ];L∞(

�
)).

Note that
√

A and
√

A
−1

is only a symbolic notation as A need not to be inver-

tible but cosh(t
√

A),
√

A
−1

sinh(t
√

A), and
√

A sinh(t
√

A) are well defined as series
of potencies of A as in (3.4).

Theorem 3.1 Let b ∈ L1(0, T ;L∞(
�

)) and assume (H1). Then

u(t) = cosh(t
√

A)u0 +
√

A
−1

sinh(t
√

A) v0 +
√

A
−1

∫ t

0
sinh((t − s)

√
A) b(s) ds

(3.6)

is the unique mild solution to (3.2) with the initial values u(0) = u0 ∈ L∞(
�

) and
u̇(0) = v0 ∈ L∞(

�
) and lies in C([0, T ];L∞(

�
)). Moreover, the a priori estimate

‖u(t)‖L∞(�) ≤ cosh(t
√

α) ‖u0‖L∞(�) +
√

α
−1

sinh(t
√

α) ‖v0‖L∞(�) +

+
√

α
−1

∫ t

0
sinh((t − s)

√
α) ‖b(s)‖L∞(�) ds (3.7)

holds for t ∈ (0, T ). If b ∈ Cm([0, T ];L∞(
�

)) (m ∈�) then u ∈ Cm+2([0, T ];L∞(
�

)).
If b is constant in time, then

u(t) = cosh(t
√

A)u0 +
√

A
−1

sinh(t
√

A) v0 + A−1
(

cosh(t
√

A) − I
)

b . (3.8)

Proof Existence and uniqueness follow directly from Proposition 3.2. The esti-
mate (3.7) follows from the boundedness of A and properties of the Bochner in-
tegral. The representation (3.6) results from (3.4) and (3.5). The regularity is a
direct consequence of the differential equation (3.2) and the linearity of the time-
independent operator A. Carrying out the integration gives the representation for
stationary b with the symbolic notation

A−1
(

cosh(t
√

A) − I
)

:=
∞

∑

n=1

t2nAn−1

(2n)!
.

In virtue of the linearity of the problem, the estimate (3.7) also proves stability
with respect to the data u0, v0, and b.

Theorem 3.2 Let b ∈ L1(0, T ;L∞(
�

)) and let, for arbitrary ε > 0, k and kε be
kernels satisfying (H1) and c, cε ∈ L∞(

�
) such that

sup
x∈�

∫ ∞

−∞
|k(x, ξ) − kε(x, ξ)|dξ + ‖c − cε‖L∞(�) < ε .
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For the unique mild solutions u, uε ∈ C([0, T ];L∞(
�

)) to equation (3.2) with k, c
and kε, cε, respectively, and with the initial values u(0) = uε(0) = u0 ∈ L∞(

�
) and

u̇(0) = u̇ε(0) = v0 ∈ L∞(
�

), the estimate

‖u(t) − uε(t)‖L∞(�) ≤ ε
√

α + ε
−1

∫ t

0
sinh((t − s)

√
α + ε) ‖u(s)‖L∞(�) ds (3.9)

holds true for all t ∈ (0, T ).

Proof Let Aε be the operator (3.1) corresponding to kε and cε. For the difference
wε := u − uε, it follows

ẅε = Aεwε + (A − Aε) u

with wε(0) = ẇε(0) = 0. Note that (A − Aε)u ∈ C([0, T ];L∞(
�

)) since u ∈
C([0, T ];L∞(

�
)) and A − Aε is a linear bounded operator in L∞(

�
). Due to The-

orem 3.1, now applied on the foregoing initial-value problem with the unknown wε

and the inhomogeneity (A − Aε)u, and because of

‖Aεv‖L∞(�) ≤ ‖Av‖L∞(�) + ‖Av − Aεv‖L∞(�) ≤ α ‖v‖L∞(�) + ε ‖v‖L∞(�)

for all v ∈ L∞(
�

), we find

‖wε(t)‖L∞(�) ≤
√

α + ε
−1

∫ t

0
sinh((t − s)

√
α + ε) ‖(A − Aε)u(s)‖L∞(�) ds

and thus the assertion.
Estimate (3.9), together with (3.7), justifies the idea of measuring the dispersion

relation and the experimental determination of the micromodulus function, which
then gives the kernel k and the coefficient c.

Corollary 3.1 Let b ∈ L1(0, T ;L∞(
�

)) and assume (H1) and (H2) with c ∈ Cb(
�

).
If u0, v0 and b(t) (t ∈ [0, T ]) are bounded and continuous then the solution u from
Theorem 3.1, given by (3.6), is in C([0, T ]×�). If, in addition, b ∈ C([0, T ]; Cb(

�
))

then u is the unique classical solution to the initial-value problem for (1.1). If u0, v0

or the stationary b is bounded and piecewise continuous with a jump at x̂ then the
solution u is also piecewise continuous with respect to x and, for all times t ∈ [0, T ],
the jump remains at x̂ with

[[u(x̂, t)]] = cosh(t
√

c(x̂)) [[u0(x̂)]] +
√

c(x̂)
−1

sinh(t
√

c(x̂)) [[v0(x̂)]]

+ c(x̂)−1
(

cosh(t
√

c(x̂)) − 1
)

[[b(x̂)]] (3.10)

and no other jumps are generated. If c ≡ 0 then

[[u(x̂, t)]] = [[u0(x̂)]] + t [[v0(x̂)]] +
1

2
t2 [[b(x̂)]] .

Proof From Proposition 3.1, we know that A maps continuous functions into con-
tinuous functions. Potencies of A do so, too. The solution u ∈ C([0, T ];L∞(

�
)) from

Theorem 3.1 is, therefore, continuous with respect to x if u0, v0 and b(t) (t ∈ [0, T ])
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are continuous. It follows the continuity on [0, T ] ×�. If b ∈ C([0, T ]; Cb(
�

)) then
u ∈ C2([0, T ]; Cb(

�
)) and u solves (1.1) in the classical sense. Moreover, (1.1) pos-

sesses at most one solution since any classical solution is also a mild solution but the
mild solution is unique. The jump relations immediately follow from Proposition 3.1
and the representation (3.8).

Example 3.2 Consider the Riemann-like problem with c(x) ≡ c ∈�, u0(x) =
ulH(−x) + urH(x) (ul, ur ∈�given), v0(x) ≡ 0, and b(x, t) ≡ 0, where H denotes
again the Heaviside function. Then

u(x, t) =

∞
∑

n=0

t2n

(2n)!
(Anu0)(x)

with

[[u(0, t)]] = (ur − ul)
∞
∑

n=0

t2ncn

(2n)!
= (ur − ul) ·























cosh(t
√

c) if c > 0

1 if c = 0

cos(t
√−c) if c < 0

.

Note that a jump in the initial velocity v0 produces a jump in the displacement
field u = u(x, t) for t > 0 even if the initial displacement u0 is continuous. This is
shown in

Example 3.3 Consider the Riemann-like problem with c(x) ≡ c ∈�, u0(x) ≡ 0,
v0(x) = vlH(−x) + vrH(x) (vl, vr ∈�given), and b(x, t) ≡ 0. Then

u(x, t) =

∞
∑

n=0

t2n+1

(2n + 1)!
(Anv0)(x)

with

[[u(0, t)]] = (vr − vl)
∞

∑

n=0

t2n+1cn

(2n + 1)!
= (vr − vl) ·



























1√
c
sinh(t

√
c) if c > 0

t if c = 0

1√
−c

sin(t
√−c) if c < 0

.

4 Numerical approximation and examples

For the numerical solution of (1.1), we suggest the following method. We assume
that u0, v0, and b(·, t) (t ∈ [0, T ]) are bounded and piecewise continuous and that
for any fixed x the mapping t 7→ b(x, t) is continuous. Let

−∞ < s1 < s2 < · · · < sm < ∞
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be the abscissae where u0, v0 or b(·, t) has a jump discontinuity. The integral operator
K may then be represented as

(Ku)(x) =

∫ s1

−∞
k(x, ξ)u(ξ) dξ +

∫ s2

s1

k(x, ξ)u(ξ) dξ + · · · +
∫ ∞

sm

k(x, ξ)u(ξ) dξ

=: (K0u)(x) + (K1u)(x) + · · · + (Kmu)(x) .

If m = 0 then K ≡ K0. For each integral operator Ki (i = 0, 1, . . . ,m), we consider
a sequence of quadrature formulae

(Kiu)(x) ≈
Ni
∑

j=0

σ
(Ni)
i,j k

(

x, ξ
(Ni)
i,j

)

u
(

ξ
(Ni)
i,j

)

=:
(

K
(Ni)
i u

)

(x) ,

where Ni ∈�, the weights σ
(Ni)
i,j , and the quadrature points ξ

(Ni)
i,j are given. Note

that ξ
(Ni)
i,Ni

and ξ
(Ni+1)
i+1,0 might coincide. For convenience, we introduce another nota-

tion:

N :=

m
∑

i=0

(Ni +1)−1 , x(N)
n := ξ

(Ni)
i,j , σ(N)

n := σ
(Ni)
i,j with n =

i−1
∑

ν=0

(Nν +1)+ j .

We shall assume
x

(N)
0 ≤ x

(N)
1 ≤ · · · ≤ x

(N)
N .

The integral operator K is thus approximated by the composite quadrature

(Ku)(x) ≈
N

∑

n=0

σ(N)
n k

(

x, x(N)
n

)

u
(

x(N)
n

)

=:
(

K(N)u
)

(x) . (4.1)

Regarding the IDE (1.1), remember that its solution u = u(x, t) possesses only
jumps at the abscissae s1, . . . , sm, which justifies the composite quadrature sug-

gested. We are now looking for functions U
(N)
l = U

(N)
l (t) approximating t 7→

u(x
(N)
l , t) (l = 0, 1, . . . , N) that fulfill the initial-value problem

d2U
(N)
l (t)

dt2
=

N
∑

n=0

σ(N)
n k

(

x
(N)
l , x(N)

n

)

U (N)
n (t) + c

(

x
(N)
l

)

U
(N)
l (t) + b

(

x
(N)
l , t

)

,

l = 0, 1, . . . , N , t ∈ (0, T ) , (4.2)

with

U
(N)
l (0) = u0

(

x
(N)
l

)

,
dU

(N)
l (0)

dt
= v0

(

x
(N)
l

)

, l = 0, 1, . . . , N . (4.3)

As this is a linear system, there is a unique solution U (N) :=
(

U
(N)
0 , . . . , U

(N)
N

)T

.

In order to demonstrate the numerical method presented we consider two exam-
ples for the solution to the initial-value problem for the IDE (1.5) of the homogeneous



14 Emmrich & Weckner

bar. For both examples, analytical solutions are at hand, which allows us to validate
our numerical results and also to discuss the limits of the method suggested. The
first example shows the response to continuous initial conditions while the second
example is concerned with discontinuous initial conditions: the velocity field involves
jump discontinuities and the initial displacement field is taken to be zero.

Example 4.1 (Gaußian initial displacement) We consider (1.5) for the initial
conditions and micromodulus function

u0(x) = Ue−(x/L)2 , v0(x) ≡ 0 , C(x) =
4E

`3
√

π
e−(x/`)2

with Young’s modulus E, a length-scale parameter ` > 0, and U ∈�, L > 0 given.
For ` → 0, equation (1.5) then becomes the wave equation of local elasticity theory

ρ0∂
2
t u(x, t) = E∂2

xu(x, t) + h(x, t) . (4.4)

So ` represents the degree of non-locality. In the following, let the right-hand side
h be zero. With the normalisation

x̂ :=
x

L
, t̂ :=

c0t

L
with c0 :=

√

E

ρ0
, û(x̂, t̂) :=

u(x, t)

U
,

the equation of motion (1.5) can be rewritten in dimensionless form (1.1) with the
convolution kernel k̃ and the constant coefficient c given by

k̃(ẑ) :=
L3

E
C(z) =

4√
π

(

L

`

)3

e−(ẑL/`)2 , c(x̂) := −
∫ ∞

−∞
k̃(ẑ)dẑ = −

(

2L

`

)2

.

The exact solution of this initial value problem is given by

û(x̂, t̂) =
2√
π

∫ ∞

0
cos (2αx̂) e−α2

cos

(

2Lt̂

`

√

1 − e−(α`/L)2
)

dα , (4.5)

cf. Weckner & Abeyaratne [10]. Expanding (4.5) in a Taylor series around
`/L = 0, one obtains in the limit `/L → 0 the d’Alembert solution to (4.4)

(x̂, t̂) 7→ U
e−(x̂−t̂)2 + e−(x̂+t̂)2

2
.

In what follows, we omit the hat and deal only with the dimensionless quantities.
We apply the numerical method suggested with m = 0 as there is no disconti-

nuity in the data. The numerical integration is based upon the Gauß-Hermite

quadrature

∫ ∞

−∞
e−ξ2

Φ(ξ)dξ ≈
N

∑

j=0

γ
(N)
j Φ(ξ

(N)
j ) ,

where ξ
(N)
0 < ξ

(N)
1 < · · · < ξ

(N)
N are the roots of the Hermite polynomial

HN+1(ξ) := (−1)N+1eξ2 dN+1

dξN+1

(

e−ξ2
)
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and the weights γ
(N)
j > 0 (j = 0, 1, . . . , N) are given by

γ
(N)
j :=

∫ ∞

−∞
e−ξ2

L
(N)
j (ξ)dξ , L

(N)
j (ξ) :=

N
∏

i=0

i6=j

ξ − ξ
(N)
i

ξ
(N)
j − ξ

(N)
i

. (4.6)

The Gauß-Hermite quadrature is exact for polynomials Φ = Φ(ξ) of highest
degree 2N + 1.

The approximate operator K(N) is now given by (4.1) with

σ
(N)
j := γ

(N)
j exp

(

(

ξ
(N)
j

)2
)

, x
(N)
j := ξ

(N)
j (j = 0, 1, . . . , N) ,

and we have to solve the initial-value problem (4.2), (4.3).

We choose N = 48 and `/L = 3/4. The location of the roots ξ
(48)
j (j =

0, 1, . . . , 48) of the Hermite polynomial H49 is shown in Figure 1.

−10 −5 0 5 10

Fig. 1: Roots of the Hermite polynomial H49

The numerical time integration of (4.2) has been carried out with the software
Mathematica 4.0 that uses the Livermore Solver LSODE. The results are compared
with the exact solution given by (4.5). (In order to evaluate (4.5), we again use
Mathematica. For the following discussion, we assume that the spatial numerical
integration of (4.5) and the temporal numerical integration of (4.2) are exact within
the resolution of the line thickness. This can be verified by increasing the working
precision such that the numerical and graphical results presented do not change.)

The classical wave solution and the peridynamic solution is presented in Figure 2.

t

u

xx

−5−5
00

55 0

8

16

0

1

t

u

xx

−5−5
00

55 0

8

16

0

1

Fig. 2: Exact peridynamic (left) and wave (right) solution for Example 4.1

Figure 3 shows the numerical solution.
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t

u

xx

−2.5−2.5
00

2.52.5 0

4

8

0

1

t

u

xx

−5−5
00

55 0

8

16

0

1

Fig. 3: Numerical peridynamic solution for Example 4.1

It turns out that the numerical results agree quite well with the analytical results

for all points x ∈
[

ξ
(48)
0 ≈ −9.1, ξ

(48)
48 ≈ 9.1

]

if we limit the time of observation up

to t < 6. Increasing the number of integration points extends both the spatial and
temporal observation interval. The valid temporal observation period can be also
extended if we restrict our attention to points closer to the origin: the computed

displacement of the particle located at the origin 0 = ξ
(48)
24 is a good approximation

until t ≈ 14. For t > 14, however, the results diverge for all points x. In particular,
the method presented fails when predicting long-time behaviour.

Example 4.2 (Multiple jump discontinuities in the initial velocity field)
For s1 < s2 < · · · < sm and v0, v1, . . . , vm ∈ �given, we consider the initial
displacement and velocity (see also Figure 4)

u0(x) ≡ 0 , v0(x) =
v0 + vm

2
+

m
∑

i=1

vi − vi−1

2
sgn(x − si) .

Here, sgn is the sign function. The Fourier transforms are given by

F [u0](k) ≡ 0 , F [v0](k) = (v0 + vm)πδ(k) − ı

m
∑

i=1

(vi − vi−1)
e−ısik

k
,

where ı denotes the imaginary unit and δ is again Dirac’s δ-distribution. The
right-hand side is taken to be zero.
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v0

v1

v2

v3

vm−1

vm

s1 s2 s3 sm−1 sm x

v0(x)

Fig. 4: Initial velocity field involving multiple jump discontinuities

The micromodulus function we wish to investigate reads as

C(x) =
2E

π`3



















sin(x
` ) − x

` cos(x
` )

(x
` )3

if
x

l
6= 0 ,

1

3
if

x

l
= 0 .

and corresponds to the simple dispersion relation

ω(k) =
c0

`

{

|k`| if |k`| < 1 ,

1 if |k`| ≥ 1 .

Again, ` denotes a length-scale parameter, which characterises the non-locality, and
c0 =

√

E/ρ. The homogeneous solution for this material with u0 ≡ 0 and arbitrary
v0 is given by

u(x, t) =
sin(c0t/`)

c0/`
v0(x) +

1

2π

∫ +1/`

−1/`
eıkxF [v0](k)

(

sin(c0tk)

c0k
− sin(c0t/`)

c0/`

)

dk .

For the above initial velocity, we obtain

û(x̂, t̂) =
v̂0 + v̂m

2
t̂

+ sin(t̂)

m
∑

i=1

v̂i − v̂i−1

2

(

sgn(x̂ − ŝi) −
2

π
sin(x̂ − ŝi) −

2

π
Si(x̂ − ŝi)

)

+
1

π

m
∑

i=1

v̂i − v̂i−1

2

(

(x̂ − ŝi + t̂) Si(x̂ − ŝi + t̂) − (x̂ − ŝi − t̂) Si(x̂ − ŝi − t̂)
)

,

where

x̂ :=
x

`
, ŝi :=

si

`
, t̂ :=

c0t

`
, v̂i :=

vi

c0
, û(x̂, t̂) :=

u(x, t)

`
,
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and Si(x) :=
∫ x
0 ξ−1 sin ξdξ is the integral sine. In the following, we omit the hat

and consider only the dimensionless quantities.
Let us assume that m = 2 with s1 = −1 and s2 = 1. We then have

K(N) = K
(N0)
0 + K

(N1)
1 + K

(N2)
2 ,

where K
(N0)
0 is the approximation of the integral over (−∞, s1), K

(N1)
1 corresponds

to (s1, s2), and K
(N2)
2 corresponds to (s2,∞).

For K
(N0)
0 and K

(N2)
2 , we again employ the Gauß-Hermite quadrature: Out-

side the corresponding interval, the integrand is extended by zero and the quadrature
points are centred at s1 and s2, respectively. For a function f : (−∞, s1) →

�
, we

thus have

∫ s1

−∞
f(ξ)dξ ≈ K

(N0)
0 f :=

N0
∑

j=0

γ
(2N0+1)
j exp

(

(

ξ
(2N0+1)
j

)2
)

f
(

s1 + ξ
(2N0+1)
j

)

,

and a similar representation for K
(N2)
2 , with the roots ξ

(2N0+1)
j of the Hermite

polynomial H2N0+2 and γ
(2N0+1)
j given by (4.6). The integral over (s1, s2) is approx-

imated by the composite trapezoidal rule with equidistant quadrature points. For
simplicity, we take N0 = N2 and N1 = 2(N0 + 1). The system (4.2) then consists of
N + 1 = 4(N0 + 1) + 1 equations.

Figure 5 shows the analytical and numerical solution u = u(x, t) at the fixed
times t = 2, 3, 4 with v0 = v2 = 0, v1 = 0.5 and N + 1 = 101 quadrature points. For
the presentation of the numerical solution, we use piecewise cubic interpolation.

Another way to present the results is to look at a fixed particle at x = 0 as in
Figure 6.

2 4 6 8 10

-0.2

0.2

0.4

0.6

0.8

1

t

u(x = 0, t), N = 40

2 4 6 8 10

-0.2

0.2

0.4

0.6

0.8

1

t

u(x = 0, t), N = 100

Fig. 6: Numerical (thin lines) compared to analytical (thick lines) results for Exam-
ple 4.2 at fixed spatial points

Whereas the left figure shows the numerical results for 41 quadrature points,
the right one shows the results for 101 quadrature points. As in Example 4.1,
one finds that the numerical results are reasonable only for a finite time interval.
The more integration points are taken, the longer this time interval becomes. The
convergence seems, however, to be rather slow in this example. In the context of
fracture mechanics this is of no concern since the long-time behaviour is neither
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-10 -7.5 -5 -2.5 2.5 5 7.5 10

0.2

0.4

0.6

0.8

x

u(x, t = 4)

Fig. 5: Numerical (dashed lines) compared to analytical (thin lines) results for
Example 4.2 at fixed times
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interesting nor could it be described by the same mathematical model (one would
expect nonlinearity, plasticity etc. to play an important rôle here).

The following table shows the CPU-time TCPU needed for the calculation (with
an Intel Pentium M 1.4 GHz and 512 MB RAM) with a fixed time interval [0, 10] in
dependence of the number N + 1 of quadrature points:

N + 1 [1] TCPU [s]

41 92

61 408

81 1244

101 2791
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