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Abstract A class of discontinuous Galerkin methods is studied for the time discreti-
sation of the initial-value problem for a nonlinear first-order evolution equation that
is governed by a monotone, coercive, and hemicontinuous operator. The numerical
solution is shown to converge towards the weak solution of the original problem.
Furthermore, well-posedness of the time-discrete problem as well as a priori error
estimates for sufficiently smooth exact solutions are studied.
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1 Introduction

In the last two decades, the discontinuous Galerkin method attained more and more
attention and has become a widely used numerical method (see the monographs [20,
28] for an overview). Besides its application to the spatial approximation, the discon-
tinuous Galerkin method has also been studied for the discretisation in time (see the
initial work [12] and, for an overview, the monographs [28,33], see, e.g., also [31,32]
for the hp-version and [3] for the discretisation of an integro-differential equation).

Our interest lies in the study of nonlinear evolution problems and their time dis-
cretisation. Methods other than the discontinuous Galerkin approximation in time
have been considered by many authors. For quasilinear problems, we refer to, e.g.,
[16,21,22,24,35]. Stability and error estimates for nonlinear evolution equations are
proven in [25] relying on a linearisation. Fully nonlinear problems have been dealt
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with, again by linearisation, in [15,26,27]. Evolution equations governed by a maxi-
mal monotone operator have been studied in [17–19,30].

A space-time finite element method with basis functions that are discontinuous in
time has been analysed in [13] for a semilinear problem. In [10], the discontinuous
Galerkin method in time with polynomial order zero (reducing then to the backward
Euler or Rothe method) has been studied for a particular class of non-degenerate
scalar quasilinear problems (the governing operator possesses a coercive and angle-
bounded Fréchet derivative), see also [11]. The quasilinear problems studied in [1]
can be described by a time-independent strongly positive, linear bounded operator
perturbed by a locally Lipschitz continuous operator. Besides well-posedness of the
h-version of the discontinuous Galerkin method in time (employing the concept of
strongly monotone Lipschitz continuous operators, which corresponds to the special
case p = 2 in our setting), error estimates are derived for sufficiently regular exact
solutions. An essential aspect in [1] is the control over the L2(0,T ;H)-norm of the
time discrete solution.

The aim of this paper is to provide an analysis for a much larger class of nonlinear
problems (including degenerate and non-autonomous problems), to incorporate the
hp-variant with variable polynomial degree, to prove convergence results even for
exact solutions not possessing additional smoothness, and to give estimates of the
approximation and discretisation error in a Lp-setting.

The main focus in the aforementioned work is on error estimates (thus requiring
smoothness of the exact solution) rather than on convergence only. In this paper,
however, we study the convergence for a class of discontinuous Galerkin methods in
time covering the h- as well as hp-version, on non-uniform time grids, for the general
class of nonlinear evolution problems

u′+Au = f in (0,T ) , u(0) = u0 , (1.1)

governed by a time-dependent monotone and coercive operator A. More precisely,
the operator A is assumed to be the Nemytskii operator corresponding to a family
of hemicontinuous operators A(t) : V → V ∗ (t ∈ [0,T ]) acting on a Gelfand triple
V ⊆ H ⊆ V ∗ such that A(t)+κI : V → V ∗ (with I being the identity) is p-coercive
and monotone for some κ ≥ 0, uniformly in t ∈ [0,T ]. Moreover, A(t) : V → V ∗

is assumed to fulfill a certain (p− 1)-growth condition. This framework allows to
consider partial differential equations with more involved nonlinearities compared to
the results known so far, including degenerate problems.

The numerical method under consideration is as follows: With the variable time
grid {

I : 0 = t0 < t1 < · · ·< tN = T (N ∈ N) with In := (tn−1, tn) ,

τn := tn− tn−1 (n = 1,2, . . . ,N) , τmax := max
n=1,2,...,N

τn ,
(1.2)

we associate the vector qqq= [q1,q2, . . .qN ]
T ∈NN of polynomial degrees and the linear

space

WI :=
{

v : (0,T )→V : v|In ∈Pqn(In;V ) , n = 1,2, . . . ,N
}
,
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where Pq(I;V ) denotes the space of polynomials of highest degree q on the interval
I taking values in V . We set for vI ∈WI and n = 0,1, . . . ,N−1

vI(t+n ) := lim
t→tn
t>tn

vI(t) , vI(t−n ) := lim
t→tn
t<tn

vI(t) , [[vI(tn)]] := vI(t+n )− vI(t−n ) ,

where vI(0−) is prescribed, as well as vI(t−N ) := lim t→T
t<T

vI(t). The method then reads:

For given f and u0
I , find uI ∈WI such that for all vI ∈WI

N

∑
n=1

∫
In
(u′I(t),vI(t))dt +

N

∑
n=1

(
[[uI(tn−1)]],vI(t+n−1)

)
+
∫ T

0
〈A(t)uI(t),vI(t)〉dt =

∫ T

0
〈 f (t),vI(t)〉dt with uI(0−) := u0

I .

(1.3)

In practice, a suitable composite quadrature will be employed in order to approximate
the terms

∫ T
0 〈A(t)uI(t),vI(t)〉dt and

∫ T
0 〈 f (t),vI(t)〉dt, which shall not be taken into

account here.
We prove the convergence of the sequence of numerical solutions of (1.3), cor-

responding to an appropriate sequence of time grids and associated degree vectors,
towards the weak solution of (1.1). The proof of convergence essentially relies upon
a priori estimates (which follow from the coercivity assumption) as well as upon
compactness arguments and the theory of monotone operators.

The advantage of our convergence result lies in the fact that it does not require
any additional regularity of the weak solution. Remember that results on higher regu-
larity of solutions of nonlinear evolution problems are very rare and always restricted
to special situations. The convergence result is complementary to error estimates that
are of importance for situations where a smooth solution is at hand. Note that, with-
out additional assumptions such as the smoothness of the exact solution, one cannot
expect convergence “better” than the weak convergence provided here. We provide,
however, a result on the strong convergence under an additional monotonicity as-
sumption. We also remark that the consideration of variable time grids as studied here
is a prerequisite for any analysis of adaptive methods. It turns out that, in contrast to
other methods (see, e.g., [7,8]), there are no severe restrictions on the sequence of
variable time grids.

We also present results on the existence, uniqueness, and stability of the numer-
ical solution as well as a priori error estimates in the case of a sufficiently regular
exact solution. These error estimates rely on estimates of the approximation error in
appropriate norms of Bochner–Lebesgue spaces for vector-valued functions taking
values in a Banach space. To our best knowledge, also these error estimates are new.

Convergence results analogous to those obtained here can be found in, e.g., [29,
Ch. 8.2] for the backward Euler method. For other time discretisation methods, we
have recently been able to prove similar results (see [5,6] for the two-step backward
differentiation formula (BDF) on an equidistant grid, [7] for the two-step BDF on a
variable time grid, [8] for the ϑ -scheme on a variable time grid, and [9] for a class
of stiffly accurate Runge–Kutta methods) although the assumptions on the under-
lying operator as well as the convergence results themselves differ from method to
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method. Moreover, in contrast to the techniques used there, the analysis of the discon-
tinuous Galerkin method is indeed more involved and requires additional techniques
due to their non-conforming character and the external approximation of the stan-
dard solution space for (1.1) by WI. This is also the reason why we do not consider
non-monotone perturbations of the principle part, which require more intrigued com-
pactness arguments based on additional a priori estimates for the numerical solution.

The paper is organised as follows: In Section 2, we introduce the necessary no-
tation and recapitulate the functional analytical framework. The solvability of the
numerical scheme (1.3) and a priori estimates for its solution are studied in Section 3.
The main convergence result is then formulated and proven in Section 4. In Sec-
tion 5, we finally present results on the stability of (1.3) and a priori error estimates
for smooth exact solutions together with estimates of the approximation error.

2 Notation and time continuous problem

Let V ⊆ H ⊆ V ∗ be a Gelfand triple with (V,‖ · ‖) being a reflexive, separable,
real Banach space that is dense and continuously embedded in the Hilbert space
(H,(·, ·), | · |). The dual V ∗ of V is equipped with the norm ‖ f‖∗ := supv∈V\{0}〈 f ,v〉/‖v‖,
where 〈·, ·〉 denotes the duality pairing.

For a Banach space X and the time interval [0,T ], let Lr(0,T ;X) (r ∈ [1,∞]) de-
note the Banach space of Bochner integrable (for r = ∞ Bochner measurable and
essentially bounded) abstract functions equipped with the standard norm denoted by
‖ · ‖Lr(0,T ;X). Let p ∈ (1,∞) and set p∗ := p/(p−1). The function space

X := Lp(0,T ;V )∩L2(0,T ;H) , ‖v‖X := ‖v‖Lp(0,T ;V )+‖v‖L2(0,T ;H) ,

is a reflexive, separable Banach space. Its dual X ∗ = Lp∗(0,T ;V ∗)+L2(0,T ;H) is
equipped with the norm

‖ f‖X ∗ := inf
f1∈Lp∗ (0,T ;V∗), f2∈L2(0,T ;H)

f= f1+ f2

max
(
‖ f1‖Lp∗ (0,T ;V ∗),‖ f2‖L2(0,T ;H)

)
.

If f allows the representation f = f1 + f2 with f1 ∈ Lp∗(0,T ;V ∗), f2 ∈ L2(0,T ;H)
then the duality pairing between f ∈X ∗ and v ∈X is given by

〈 f ,v〉X ∗×X =
∫ T

0
(〈 f1(t),v(t)〉V ∗×V +( f2(t),v(t)))dt =

∫ T

0
〈 f (t),v(t)〉V ∗×V dt ,

see, e.g., [14] for more details. Note that X ⊆ L2(0,T ;H)⊆X ∗ is again a Gelfand
triple. In the case p≥ 2, we can just take X = Lp(0,T ;V ).

The solution of (1.1) will be sought in the Banach space

W := {v ∈X : v′ ∈X ∗} , ‖v‖W := ‖v‖X +‖v′‖X ∗ ,

which is continuously embedded in the space C ([0,T ];H) of uniformly continuous
functions with values in H. Here, v′ denotes the distributional time derivative of v.

The structural properties we always assume for A read as follows:
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Assumption A. {A(t)}t∈[0,T ] is a family of hemicontinuous operators A(t) : V →
V ∗, such that for all v ∈V the mapping t 7→ A(t)v : [0,T ]→V ∗ is Bochner integrable
on (0,T ). There is a constant κ ≥ 0 such that A(t)+κI : V →V ∗ is monotone. For a
suitable p ∈ (1,∞), there are constants µ > 0, λ ≥ 0 such that for all t ∈ [0,T ] and
v ∈V

〈(A(t)+κI)v,v〉 ≥ µ‖v‖p−λ .

There exists α > 0 such that for all t ∈ [0,T ] and v ∈V

‖A(t)v‖∗ ≤ α
(
1+‖v‖p−1) .

With {A(t)}t∈[0,T ], we associate the Nemytskii operator A that is defined by (Av)(t) :=
A(t)v(t) (t ∈ [0,T ]) for a function v : [0,T ]→V .

Under Assumption A, the Nemytskii operator A maps Lp(0,T ;V ) into (Lp(0,T ;V ))∗=
Lp∗(0,T ;V ∗) and is hemicontinuous and bounded. Moreover, A+κI : X →X ∗ is
monotone and satisfies for all v ∈X

〈(A+κI)v,v〉 ≥ µ‖v‖p
Lp(0,T ;V )

−λT .

Problem (1.1) then possesses for any u0 ∈H and f ∈X ∗ a unique solution u∈W
such that the evolution equation holds in X ∗ (see, e.g., [29, Thm. 8.28], [2, Thm. 4.2
on p. 167], [34, Thm. 30.A], [14, Satz 1.1 on p. 201, Bem. 1.5 on p. 210]).

A standard example that fits into the above framework is the weak formulation of
the evolutionary p-Laplacian on a bounded domain Ω with locally Lipschitz contin-
uous boundary ∂Ω , endowed with homogeneous Dirichlet boundary conditions. The
corresponding initial-boundary value problem reads as

∂tu−∇ · (|∇u|p−2
∇u) = f in Ω × (0,T )

u = 0 on ∂Ω × (0,T ) (2.1)
u(·,0) = u0 in Ω .

The underlying function spaces are then the standard Sobolev space V = W 1,p
0 (Ω)

and the Hilbert space H = L2(Ω). The time-independent operator A : W 1,p
0 (Ω)→

W−1,p∗(Ω) is given by

〈Av,w〉=
∫

Ω

|∇v(x)|p−2
∇v(x) ·∇w(x)dx , v,w ∈W 1,p

0 (Ω).

Another example is the fluid flow through a porous medium when working with
the Sobolev space H = H−1(Ω) as the pivot space and with V = Lp(Ω) (with p > 1
if d ∈ {1,2} and p ≥ 2d/(d + 2) if d > 3, where d denotes the dimension of Ω ) in
the underlying Gelfand triple (see [23, pp. 191 ff.], [14, pp. 72 f.] for more details).
This choice of function spaces is appropriate for the very weak formulation of the
corresponding initial-boundary value problem

∂tu−∆σ(u) = f in Ω × (0,T )
σ(u) = g on ∂Ω × (0,T ) (2.2)

u(·,0) = u0 in Ω ,
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where the boundary ∂Ω is of class C 1,1 and f ,g,u0 are suitably given functions. The
function σ : R→R is assumed to be continuous, monotonically increasing, coercive,
and to fulfill an appropriate growth condition. A typical choice is σ(u) = |u|p−2u.
The operator A : Lp(Ω)→ Lp∗(Ω) is now given by

〈Av,w〉=
∫

Ω

σ(v(x)) ·w(x)dx , v,w ∈ Lp(Ω) .

More examples for operators possessing the above properties can be found, e.g.,
in [14, pp. 68 ff., 215 ff.], [23], [29, pp. 232 ff.], and [34, pp. 567 ff., 590 ff., 779
ff.]). In particular, initial-boundary value problems for systems of quasilinear partial
differential equations of the type

∂t −∇ · (σ(x, t,u,∇u)∇u) = f in Ω × (0,T )

fit into our framework if the function σ fulfills appropriate assumptions. The corre-
sponding operator A then depends, via the function σ , explicitly on time t. But also
quasilinear problems of higher differentiation order in space are included. We should
remark that the Navier–Stokes problem or generalised Newtonian fluid flow problems
as studied in [6] are not included because of the appearance of the convection term as
a non-monotone perturbation of the principle part.

In what follows, we restrict our considerations to the case κ = 0. This is always
possible by a suitable transformation (see [8, Remark 1], [14, Satz 1.3 on p. 211]).

3 Solvability and a priori estimates for the time discrete problem

We commence with a statement on the solvability of the time discrete problem.
In what follows let qmin := minn=1,2,...,N qn, qmax := maxn=1,2,...,N qn.

Theorem 3.1 Let Assumption A be fulfilled. For given f ∈ L1(0,T ;V ∗) and u0
I ∈ H,

problem (1.3) possesses a solution uI ∈WI. If qmax ≤ 1 or if A(t) : V →V ∗ (t ∈ [0,T ])
is strictly monotone then the solution is unique.

Proof We first observe that (1.3) is equivalent to the N (n = 1, . . . ,N) problems For
given f|In ∈ L1(In;V ∗) and uI(t−n−1) ∈ H, find uI|In ∈Pqn(In;V ) such that for all
v ∈Pqn(In;V )∫

In
(uI′|In(t),v(t))dt +

(
uI|In(t

+
n−1),v(t

+
n−1)

)
+
∫

In
〈A(t)uI|In(t),v(t)〉dt

=
∫

In
〈 f|In(t),v(t)〉dt +

(
uI(t−n−1),v(t

+
n−1)

)
. (3.1)

This can be seen from testing (1.3) by functions vI ∈ WI that vanish in all but one
subinterval.

Let {ϕ j} j=0,1,...,qn be a basis of the finite dimensional space Pqn(In;R). Then
each element v = v(t) ∈Pqn(In;V ) can be represented as

v(t) =
qn

∑
j=0

v jϕ j(t) , t ∈ In , (3.2a)
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where v j ∈V ( j = 0,1, . . . ,qn), and we have Pqn(In;V )∼=V qn+1 via the mapping

Pqn(In;V ) 3 v 7→ vvv = [v0,v1, . . . ,vqn ]
T ∈V qn+1 . (3.2b)

Moreover,

‖vvv‖V qn+1 :=
(∫

In
‖v(t)‖pdt

)1/p

then defines a norm on V qn+1.
Let now s : V qn+1×V qn+1→ R be defined by

s(uuu,vvv) :=
∫

In
(u′(t),v(t))dt +

(
u(t+n−1),v(t

+
n−1)

)
+
∫

In
〈A(t)u(t),v(t)〉dt ,

where again u and v correspond to uuu and vvv, respectively, via (3.2). One may show
that, for fixed uuu ∈ V qn+1, the mapping vvv 7→ s(uuu,vvv) ,V qn+1→ R is linear and contin-
uous. For doing so, we employ an inverse inequality combined with the continuous
embedding of V into H,

|v(t+n−1)| ≤ ‖v‖L∞(In;H) ≤ τ
−1/p
n ‖v‖Lp(In;H) ≤ cτ

−1/p
n ‖v‖Lp(In;V ) = cτ

−1/p
n ‖vvv‖V qn+1 ,

(3.3)
which can be derived from the transformation of In onto [0,1], the equivalence of the
norms ‖ · ‖L∞(0,1;H) and ‖ · ‖Lp(0,1;H) on Pqn(0,1;H), and the inverse transformation.
This gives rise to the definition of the associated operator S : V qn+1→ (V qn+1)∗ via
〈Suuu,vvv〉= s(uuu,vvv). Since also ggg : vvv 7→

∫
In〈 f|In(t),v(t)〉dt+

(
uI(t−n−1),v(t

+
n−1)

)
,V qn+1→

R is an element of (V qn+1)∗ (use again (3.3)), we can rewrite (3.1) as the operator
equation

Suuu = ggg in (V qn+1)∗ .

We now wish to apply the Browder–Minty theorem (see, e.g., [34, Thm. 26.A])
in order to prove existence. We thus have to show that S : V qn+1 → (V qn+1)∗ is co-
ercive, monotone and hemicontinuous. Uniqueness will then follow from the strict
monotonicity of S.

Regarding the coercivity, we observe (employing integration by parts and the
coercivity of A(t)) that for any vvv∈V qn+1 (and corresponding function v∈Pqn(In;V ),
see (3.2))

〈Svvv,vvv〉=
∫

In
(v′(t),v(t))dt + |v(t+n−1)|

2 +
∫

In
〈A(t)v(t),v(t)〉dt

≥ 1
2
|v(t−n )|2 + 1

2
|v(t+n−1)|

2 +µ

∫
In
‖v(t)‖pdt−λτn

≥ µ‖vvv‖p
V qn+1 −λτn ,

which shows indeed the coercivity of S : V qn+1→ (V qn+1)∗.
With respect to the monotonicity, we similarly find (employing again integration

by parts and the monotonicity of A(t)) for any vvv,www ∈V qn+1 (and corresponding func-
tions v,w ∈Pqn(In;V ), see (3.2))

〈Svvv−Swww,vvv−www〉 ≥ 1
2
|v(t−n )−w(t−n )|2 + 1

2
|v(t+n−1)−w(t+n−1)|

2 .
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This shows the monotonicity of S : V qn+1→ (V qn+1)∗. If qn ≤ 1 (n = 1,2, . . . ,N) then
vvv 6= www implies v(t−n ) 6= w(t−n ) or v(t+n ) 6= w(t+n ), and S : V qn+1→ (V qn+1)∗ becomes
strictly monotone. Moreover, S : V qn+1→ (V qn+1)∗ is strictly monotone if A(t) : V →
V ∗ (t ∈ [0,T ]) is. In both cases, uniqueness of a solution of the time discrete problem
follows.

The hemicontinuity of S : V qn+1 → (V qn+1)∗ can easily be derived from the bi-
linearity and boundedness of the first two terms in sss together with (3.3), and the hemi-
continuity of A(t) (t ∈ [0,T ]) together with the growth condition (applying Lebesgue’s
theorem of dominated convergence). ut

We shall remark that the foregoing result covers the existence and uniqueness
result given in [1] for the h-version in the situation of a strongly monotone Lipschitz
continuous operator A(t) (t ∈ [0,T ]), which corresponds here to p = 2 and a stronger
monotonicity assumption.

An essential prerequisite for proving convergence is an appropriate a priori esti-
mate for the numerical solution. This is provided by the following theorem.

Theorem 3.2 Let Assumption A be fulfilled. Let u0
I ∈ H and f ∈ Lp∗(0,T ;V ∗). Any

solution uI ∈WI to (1.3) then satisfies the a priori estimate

max
n=1,2,...,N

|uI(t−n )|2 + max
n=1,2,...,N

|uI(t+n−1)|
2 +

N

∑
n=1
|[[uI(tn−1)]]|2 +‖uI‖p

Lp(0,T ;V )

≤ c
(
|u0

I |2 +‖ f‖p∗

Lp∗ (0,T ;V ∗)
+λT

)
,

where c > 0 only depends on µ and p.

Proof Taking vI = uIχ[0,tk] (k = 1,2, . . . ,N; χI denotes the characteristic function on
the interval I) in (1.3) leads to

k

∑
n=1

∫
In
(u′I(t),uI(t))dt +

k

∑
n=1

(
[[uI(tn−1)]],uI(t+n−1)

)
+
∫ tk

0
〈A(t)uI(t),uI(t)〉dt

=
∫ tk

0
〈 f (t),uI(t)〉dt .

From integration by parts, we find for n = 1,2, . . . ,k∫
In
(u′I(t),uI(t))dt =

1
2
(
|uI(t−n )|2−|uI(t+n−1)|

2) . (3.4)

Moreover, the binomic formula shows that(
[[uI(tn−1)]],uI(t+n−1)

)
=

1
2
(
|uI(t+n−1)|

2−|uI(t−n−1)|
2 + |[[uI(tn−1)]]|2

)
. (3.5)

This, together with the coercivity of A(t) (t ∈ [0,T ]) and Young’s inequality, shows
that

1
2
|uI(t−k )|2 + 1

2

k

∑
n=1
|[[uI(tn−1)]]|2 +

µ

2

∫ tk

0
‖uI(t)‖pdt

≤ 1
2
|uI(t−0 )|2 + c

∫ tk

0
‖ f (t)‖p∗

∗ dt +λ tk ,
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where c > 0 only depends on µ and p. Finally, we observe that for all n = 1,2, . . . ,N

|uI(t+n−1)|
2 ≤ 2

(
|uI(t−n−1)|

2 + |[[uI(tn−1)]]|2
)
.

This immediately proves the assertion. ut

It should be noted that we have no L∞(0,T ;H)-bound on the solution at hand
unless the polynomial degree is less or equal 1. We, therefore, were not able to deal
with more general right-hand sides in X ∗. Furthermore, we have no bound on the
discrete counterpart of the time derivative (that would be analogous to u′ ∈X ∗ for
the continuous problem).

4 Convergence towards a weak solution

In what follows, we often write, e.g., τmax(I) in order to emphasise the dependence
of a quantity on the time grid I.

From now on, we consider a sequence {I`}`∈N of time grids (1.2) with corre-
sponding degree vectors qqq(I`) such that

τmax(I`)→ 0 as `→ ∞ , qmin(I`)≥ 1 and WI` ⊆WI`+1 , ` ∈ N . (4.1)

The last condition is fulfilled if the time grid at level `+ 1 contains all abscissae of
the time grid at level ` (i.e., the time grid at level `+ 1 is not a coarsening of the
foregoing one) and if the polynomial degree on a subinterval is not decreasing.

The main result of the paper now reads as follows.

Theorem 4.1 Let Assumption A be fulfilled. Let u0 ∈ H and f ∈ Lp∗(0,T ;V ∗) be
given. Let {I`}`∈N be a sequence of time grids (1.2) with a corresponding sequence
of degree vectors such that (4.1) is fulfilled. Moreover, let {u0

I`}`∈N ⊆ H be such that

u0
I` → u0 in H as `→ ∞. (4.2)

The sequence {uI`}`∈N of solutions of the discontinuous Galerkin method (1.3) then
converges weakly in Lp(0,T ;V ) towards the exact solution u ∈W to (1.1).

Proof Theorem 3.2, together with the growth condition for A(t) (t ∈ [0,T ]) and stan-
dard compactness arguments, immediately shows the existence of a subsequence (de-
noted by `′) and elements ξ ∈ H, u ∈ Lp(0,T ;V ), a ∈ Lp∗(0,T ;V ∗) such that

uI`′ (T
−)⇀ ξ in H , uI`′ ⇀ u in Lp(0,T ;V ) , AuI`′ ⇀ a in Lp∗(0,T ;V ∗) as `′→ ∞ .

(4.3)
We will show that u is indeed in W and solves the original problem (i.e., fulfills
the differential equation and the initial condition in (1.1)). Moreover, a = Au and
ξ = u(T ).
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Let m ∈ N be arbitrary but fixed. Because of (4.1), we then find from (1.3) for all
vIm ∈WIm ∩W ⊆ C ([0,T ];H) with vIm(0) = vIm(T ) = 0 and all `′ ≥ m

∫ T

0
〈 f (t),vIm(t)〉dt =

N(I`′ )

∑
n=1

∫
In(I`′ )

(u′I`′ (t),vIm(t))dt

+
N(I`′ )

∑
n=1

(
[[uI`′ (tn−1(I`′))]],vIm(tn−1(I`′))

)
+
∫ T

0
〈A(t)uI`′ (t),vIm(t)〉dt

= (with integration by parts and vIm(0) = vIm(T ) = 0)

=−
∫ T

0
〈v′Im

(t),uI`′ (t)〉dt +
∫ T

0
〈A(t)uI`′ (t),vIm(t)〉dt

→−
∫ T

0
〈v′Im

(t),u(t)〉dt +
∫ T

0
〈a(t),vIm(t)〉dt as `′→ ∞ .

(4.4)

Let ε > 0. Then for each v ∈ C 1([0,T ];V ) there is a sufficiently fine partition
Im(ε) (m(ε) ∈ N) such that the corresponding piecewise linear interpolant π1

Im(ε)
v of

v, which is an element of WIm(ε)
∩W if qmin(Im(ε))≥ 1, fulfills

‖v−π
1
Im(ε)

v‖W < ε .

Therefore, we conclude from (4.4) that for all v∈C 1([0,T ];V ) with compact support

−
∫ T

0
〈v′(t),u(t)〉dt =

∫ T

0
〈 f (t)−a(t),v(t)〉dt . (4.5)

This, however, shows that the distributional time derivative of u ∈ Lp(0,T ;V ) equals
f −a ∈ Lp∗(0,T ;V ∗) (which already implies u ∈ C ([0,T ];H)) and thus we have u ∈
W . Moreover, from integration by parts (which is now allowed because of u ∈ W )
and by the density of functions v∈C 1([0,T ];V ) with compact support in Lp(0,T ;V ),
we find from (4.5) that

u′+a = f in Lp∗(0,T ;V ∗) . (4.6)

We now prove that u(0) = u0 and u(T ) = ξ . Let v ∈V and ϕ be a linear polyno-
mial on [0,T ]. Then vϕ ∈W ∩WI` for all `∈N. For readability, we omit denoting the
subsequence by `′ for a moment. From integration by parts, inserting (4.6) and (1.3),
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and employing again integration by parts, we find

(u(T ),vϕ(T ))− (u(0),vϕ(0)) =
∫ T

0

(
〈u′(t),vϕ(t)〉+ 〈vϕ

′(t),u(t)〉
)

dt

=
∫ T

0

(
〈 f (t)−a(t),vϕ(t)〉+ 〈vϕ

′(t),u(t)〉
)

dt

=
N

∑
n=1

∫
In

(
u′I(t),vϕ(t)

)
dt +

N

∑
n=1

([[uI(tn−1)]],vϕ(tn−1))

+
∫ T

0
〈A(t)uI(t)−a(t),vϕ(t)〉dt +

∫ T

0
〈vϕ

′(t),u(t)〉dt

=
N

∑
n=1

(
(uI(t−n ),vϕ(tn))− (uI(t+n−1),vϕ(tn−1))

)
+

N

∑
n=1

([[uI(tn−1)]],vϕ(tn−1))

+
∫ T

0
〈A(t)uI(t)−a(t),vϕ(t)〉dt +

∫ T

0
〈vϕ

′(t),u(t)−uI(t)〉dt

= (uI(T−),vϕ(T ))− (u0
I ,vϕ(0))

+
∫ T

0
〈A(t)uI(t)−a(t),vϕ(t)〉dt +

∫ T

0
〈vϕ

′(t),u(t)−uI(t)〉dt .

Taking the limit then leads, because of (4.2) and (4.3), to

(u(T ),vϕ(T ))− (u(0),vϕ(0)) = (ξ ,vϕ(T ))− (u0,vϕ(0)) .

Choosing now ϕ(T ) = 0 and ϕ(0) = 0 proves u(0) = u0 and u(T ) = ξ , respectively.
For proving a = Au, we employ the monotonicity of A(t) (t ∈ [0,T ]). We again

omit denoting the subsequence by `′. Taking vI = uI in (1.3) and integrating by parts
employing (3.4) and (3.5) yields for arbitrary w ∈ Lp(0,T ;V )

1
2
|uI(T−)|2−

1
2
|u0

I |2 +
1
2

N

∑
n=1
|[[uI(tn−1)]]|2

=
N

∑
n=1

∫
In
(u′I(t),uI(t))dt +

N

∑
n=1

(
[[uI(tn−1)]],uI(t+n−1)

)
=
∫ T

0
〈 f (t)−A(t)uI(t),uI(t)〉dt

≤
∫ T

0
〈 f (t)−A(t)uI(t),uI(t)〉dt +

∫ T

0
〈A(t)uI(t)−A(t)w(t),uI(t)−w(t)〉dt

=
∫ T

0
〈 f (t),uI(t)〉dt−

∫ T

0
〈A(t)uI(t),w(t)〉dt−

∫ T

0
〈A(t)w(t),uI(t)−w(t)〉dt .

(4.7)

Taking the limit on both sides of the foregoing inequality and taking into account
(4.2), (4.3) and ξ = u(T ), the weak lower semicontinuity of the norm in H as well as
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(4.6) then shows for all w ∈ Lp(0,T ;V )

∫ T

0
〈u′(t),u(t)〉dt =

1
2
|u(T )|2− 1

2
|u0|2

≤
∫ T

0
〈 f (t),u(t)〉dt−

∫ T

0
〈a(t),w(t)〉dt−

∫ T

0
〈A(t)w(t),u(t)−w(t)〉dt

=
∫ T

0
〈u′(t),u(t)〉dt +

∫ T

0
〈a(t),u(t)−w(t)〉dt−

∫ T

0
〈A(t)w(t),u(t)−w(t)〉dt .

We, hence, come up with∫ T

0
〈A(t)w(t)−a(t),w(t)−u(t)〉dt ≥ 0 .

With w = u± sv (v ∈ Lp(0,T ;V ), s ∈ (0,1]), the hemicontinuity of A (together with
the growth condition and Lebesgue’s theorem of dominated convergence) implies the
assertion a = Au.

After all, we have shown the convergence asserted at least for a subsequence.
Since the solution u ∈W to (1.1) is unique, the whole sequence {uI`}`∈N converges
weakly in Lp(0,T ;V ) towards u. This is proven by contradiction. ut

We shall emphasise here that we have no L∞(0,T ;H)-bound on the sequence of
numerical solutions and, in particular, no control over the time derivative of the nu-
merical solutions (which, in general, does not exist in the weak sense). We, therefore,
cannot make any statement about strong convergence due to the lack of compactness
except under additional structural assumptions.

Corollary 4.1 In addition to the assumptions of Theorem 4.1 let V be uniformly con-
vex. Moreover, assume that there is a constant µ0 > 0 such that for all v,w ∈ V and
all t ∈ [0,T ]

〈A(t)v−A(t)w,v−w〉 ≥ µ0
(
‖v‖p−1−‖w‖p−1)(‖v‖−‖w‖) . (4.8)

Then {uI`}`∈N converges strongly in Lp(0,T ;V ) towards the exact solution u ∈W .

Proof With V also Lp(0,T ;V ) is a uniformly convex Banach space (see, e.g., [14,
Satz 1.15]). In order to prove strong convergence in Lp(0,T ;V ) of the already weakly
convergent sequence of numerical solutions, it thus suffices to show that the sequence
of the corresponding norms converges towards the norm of the exact solution.

With Hölder’s inequality, it is easy to show that (4.8) implies∫ T

0
〈A(t)v(t)−A(t)w(t),v(t)−w(t)〉dt

≥ µ0

(
‖v‖p−1

Lp(0,T ;V )
−‖w‖p−1

Lp(0,T ;V )

)(
‖v‖Lp(0,T ;V )−‖w‖Lp(0,T ;V )

)
for all v,w ∈ Lp(0,T ;V ).
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Let u be the exact solution and {uI`}`∈N be the sequence of numerical solutions.
With (4.7), (3.4), and (3.5), we then find

µ0

(
‖uI`‖

p−1
Lp(0,T ;V )

−‖u‖p−1
Lp(0,T ;V )

)(
‖uI`‖Lp(0,T ;V )−‖u‖Lp(0,T ;V )

)
≤
∫ T

0
〈A(t)uI`(t)−A(t)u(t),uI`(t)−u(t)〉dt

=
∫ T

0
〈A(t)uI`(t),uI`(t)〉dt−

∫ T

0
〈A(t)uI`(t),u(t)〉dt−

∫ T

0
〈A(t)u(t),uI`(t)−u(t)〉dt

=−1
2
|uI`(T

−)|2 + 1
2
|u0

I` |
2− 1

2

N

∑
n=1

∣∣[[uI`(tn−1)]]
∣∣2 +∫ T

0
〈 f (t),uI`(t)〉dt

−
∫ T

0
〈A(t)uI`(t),u(t)〉dt−

∫ T

0
〈A(t)u(t),uI`(t)−u(t)〉dt .

Because of (4.2), (4.3) (with ξ = u(T ) and a = Au), the weak lower semicontinuity
of the norm in H, and (4.6), the limes superior of the right-hand side of the foregoing
estimate is bounded by

−1
2
|u(T )|2 + 1

2
|u0|2 +

∫ T

0
〈 f (t),u(t)〉dt−

∫ T

0
〈A(t)u(t),u(t)〉dt

=
∫ T

0
〈−u′(t)+ f (t)−A(t)u(t),u(t)〉dt = 0 .

Since z 7→ zp−1 is strictly monotonically increasing, this proves

‖uI`‖Lp(0,T ;V )→‖u‖Lp(0,T ;V )

and hence the assertion. ut

Note that a monotone operator fulfilling (5.1) below always fulfills (4.8). An ex-
ample is given in the following section. Moreover, the function spaces W 1,p

0 (Ω) and
Lp(Ω) (p ∈ (1,∞)) from the examples in Section 2 are uniformly convex.

5 Stability and smooth-data error estimates

In addition to Assumption A, let us suppose that the operators A(t) : V → V ∗ (t ∈
[0,T ]) are uniformly monotone in the sense that there is a constant µ0 > 0 such that
for all t ∈ [0,T ] and v,w ∈V

〈A(t)v−A(t)w,v−w〉 ≥ µ0‖v−w‖p . (5.1)

Note that this restricts the range for the Lebesgue exponent p to the interval [2,∞) as
there is no nontrivial monotone operator fulfilling (5.1) with 1 < p < 2. Furthermore,
uniform monotonicity implies the coercivity condition as well as strict monotonicity
(and thus uniqueness of a solution of the time discrete problem). We could also allow
uniform monotonicity up to a shift +κI. However, the problem can then again be
transformed into a problem with κ = 0.
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For deriving error estimates, we will also require the following Hölder-like con-
dition on bounded subsets: there are β > 0, γ ∈ (0,1] such that for all t ∈ [0,T ] and
v,w ∈V

‖A(t)v−A(t)w‖∗ ≤ β (1+‖v‖+‖w‖)p−1−γ‖v−w‖γ . (5.2)

Taking γ = 1, both the conditions (5.1) and (5.2) are, e.g., fulfilled for the p-
Laplacian (see (2.1)) and the porous medium equation (see (2.2)) with σ(u)= |u|p−2u.
This is an immediate consequence of the elementary fact that there are constants
µ0,β > 0 such that for all x,y ∈ R

(|x|p−2x−|y|p−2y)(x− y)≥ µ0(x− y)p

and ∣∣|x|p−2x−|y|p−2y
∣∣≤ β (1+ |x|+ |y|)p−2|x− y| .

A simple example with γ = 1/2 and p = 2 is given by the weak formulation of
the initial-boundary value problem

∂tu−∂xρ(∂xu) = f in (a,b)× (0,T )
u(a, ·) = u(b, ·) = 0 in (0,T )

u(·,0) = u0 in (a,b) ,

where f ,u0 are suitably given functions and

ρ(z) =


0 if z = 0 ,
|z|−1/2z if 0 < |z| ≤ 1 ,
z else.

It is elementary to show that for all x,y ∈ R

(ρ(x)−ρ(y))(x− y)≥ 1
2
|x− y|2

and

|ρ(x)−ρ(y)| ≤
√

2(1+ |x|+ |y|)1/2|x− y|1/2 .

This implies the properties of the corresponding time-independent operator A when
choosing H = L2(a,b) and V =H1

0 (a,b). Here, the operator A : H1
0 (a,b)→H−1(a,b)

is given by

〈Av,w〉=
∫ b

a
ρ(∂xv)∂xwdx , v,w ∈ H1

0 (a,b) .

Let us turn back to the abstract setting. We are now in the position to prove the
continuous dependence of the numerical solution on the problem’s data.
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Theorem 5.1 Let Assumption A be fulfilled with p≥ 2 and assume (5.1). Let uI ∈WI
and vI ∈WI be the solution of (1.3) corresponding to u0

I ∈ H, f ∈ Lp∗(0,T ;V ∗) and
v0
I ∈ H, g ∈ Lp∗(0,T ;V ∗), respectively. Then

max
n=1,2,...,N

|(uI− vI)(t−n )|2 + max
n=1,2,...,N

|(uI− vI)(t+n−1)|
2 +

N

∑
n=1
|[[(uI− vI)(tn−1)]]|2

+‖uI− vI‖p
Lp(0,T ;V )

≤ c
(
|u0

I − v0
I |2 +‖ f −g‖p∗

Lp∗ (0,T ;V ∗)

)
,

where c > 0 only depends on µ0 and p.

Proof We subtract the two equations (1.3) corresponding to uI and vI, test with (uI−
vI)χ[0,tk] (k = 1,2, . . . ,N) and employ the uniform monotonicity of A(t) (t ∈ [0,T ]).
The rest of the proof follows the same arguments as that of Theorem 3.2. ut

Unfortunately, we cannot derive a priori error estimates (in the case of sufficiently
regular exact solutions) directly from the foregoing stability estimate, since we cannot
test (1.3) by u−uI as the discretisation error is not an element of WI. We, therefore,
introduce the interpolation π

qqq
I u ∈ WI of u ∈ W (see also [31, p. 842], [33, p. 207])

defined by

(πqqq
I u)(t−n ) = u(tn) in H for n = 1,2, . . . ,N ,∫

In
(πqqq

I u)(t)ϕ(t)dt =
∫

In
u(t)ϕ(t)dt in V for all ϕ ∈Pqn−1(In;R) , n = 1,2, . . . ,N .

(5.3)

Remember here that W ↪→ C ([0,T ];H) and note that the number of degrees of free-
dom for π

qqq
I u∈WI coincides with the number of conditions above, namely ∑

N
n=1 (qn +1).

Relying on a Hilbert space theory, existence and uniqueness of π
qqq
I u ∈WI is shown in

[31,33] (for slightly different definitions). For the sake of completeness, we show in
the sequel existence and uniqueness also for our setting.

The determination of π
qqq
I u∈WI can be split into that of (πqqq

I u)|In ∈Pqn(In;V ) (n=
1,2, . . . ,N) fulfilling the conditions of (5.3) for the current n. We may now transform
In on (−1,1) and may introduce the local interpolation operator π̂q defined by

(π̂qû)(1)= û(1) ,
∫ 1

−1
(π̂qû)(t)ϕ(t)dt =

∫ 1

−1
û(t)ϕ(t)dt for all ϕ ∈Pq−1(−1,1;R) ,

where û denotes the transform of the restriction u|In on the interval [−1,1] and q = qn.

Note that π̂qû = ̂(πqqq
I u)|In .

Denoting by

Li(t) :=
(−1)i

2i i!
di

dt i (1− t2)i ∈P i(−1,1;R) , i = 0,1, . . . ,q ,

the Legendre polynomials, which form a basis in Pq(−1,1;R), we can make the
ansatz

(π̂qû)(t) =
q

∑
i=0

ûiLi(t) (5.4)
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and have to determine the coefficients ûi ∈V . Employing the relations

Li(1) = 1 ,
∫ 1

−1
Li(t)L j(t)dt =

2
2i+1

δi j ,

there is obviously a unique solution of the corresponding linear system of equations,
which is given by

ûi =
2i+1

2

∫ 1

−1
û(t)Li(t)dt (i = 0,1, . . . ,q−1) , ûq = û(1)−

q−1

∑
i=0

ûi , (5.5)

which proves the existence and uniqueness of the local interpolant and thus also of
the interpolant π

qqq
I u.

Unfortunately, the results in [32] on the interpolation error cannot be applied here
as these results rely upon a setting in L2(0,T ;V ) with V being a separable Hilbert
space. We, therefore, provide in the following an estimate of the approximation and
interpolation error. The dependence on the polynomial degree and order of regularity
in our estimate might, however, not be optimal as it is in [32, Prop. 3.9]. Nevertheless,
we obtain the same order of convergence.

We commence by proving an approximation result.

Lemma 5.1 Let (X ,‖ ·‖X ) be a real Banach space and let v : [−1,1]→ X be a given
function with v,v′, . . . ,v(q+1) ∈ Lr(−1,1;X), where q ∈ N and r ∈ [1,∞]. Then there
is a polynomial Qv ∈Pq(−1,1;X) such that for all s ∈ [1,∞]

‖v−Qv‖Ls(−1,1;X) ≤C( j,r,s)‖v( j+1)‖Lr(−1,1;X) , j = 0,1, . . . ,q ,

‖v′− (Qv)′‖Ls(−1,1;X) ≤C( j−1,r,s)‖v( j+1)‖Lr(−1,1;X) , j = 1,2, . . . ,q ,

where (with the convention 1/0 := ∞, 1/∞ := 0, ∞0 := 1)

C( j,r,s) =
2 j+1+2/s−1/r

j!( j+1+ j/(r−1))1−1/r( j+1+1/s−1/r)1/ss1/s . (5.6)

Proof The proof employs, as in the classical setting for deriving estimates of the
approximation error in Sobolev spaces, an averaged Taylor expansion.

The assumption on v implies that v,v′, . . . ,v(q) : [−1,1]→ X are absolutely con-
tinuous. We, therefore, have for all t,y ∈ [−1,1] the Taylor expansion

v(t) =
j

∑
k=0

(t− y)k

k!
v(k)(y)+

∫ t

y

(t− z) j

j!
v( j+1)(z)dz .

Let ϕ ∈ C ∞
0 (−1,1) be nonnegative with

∫ 1
−1 ϕ(y)dy = 1 and define

(Qv)(t) :=
∫ 1

−1

(
j

∑
k=0

(t− y)k

k!
v(k)(y)

)
ϕ(y)dy .
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It is clear that Qv ∈P j(−1,1;X)⊆Pq(−1,1;X). We then find

v(t)− (Qv)(t) =
∫ 1

−1

(∫ t

y

(t− z) j

j!
v( j+1)(z)dz

)
ϕ(y)dy

=
∫ t

−1

(∫ z

−1
ϕ(y)dy

)
(t− z) j

j!
v( j+1)(z)dz

+
∫ 1

t

(∫ 1

z
ϕ(y)dy

)
(t− z) j

j!
v( j+1)(z)dz .

Let r∗ = r/(r− 1) be the exponent conjugated to r > 1 with r∗ := 1 for r = ∞ (and
the usual modifications). With the properties of ϕ and Hölder’s inequality, we obtain
for r > 1

‖v(t)− (Qv)(t)‖X ≤
∫ 1

−1

|t− z| j

j!
‖v( j+1)(z)‖X dz

≤

(∫ 1

−1

[
|t− z| j

j!

]r∗

dz

)1/r∗

‖v( j+1)‖Lr(−1,1;X) ,

where ∫ 1

−1

[
|t− z| j

j!

]r∗

dz =
(t +1) jr∗+1

( j!)r∗( jr∗+1)
+

(1− t) jr∗+1

( j!)r∗( jr∗+1)
.

If r = 1, we have analogously

‖v(t)− (Qv)(t)‖X ≤
max(t +1,1− t) j

j!
‖v( j+1)‖L1(−1,1;X) .

We thus come up with

‖v−Qv‖Ls(−1,1;X) ≤C( j,r,s)‖v( j+1)‖Lr(−1,1;X) ,

where for r > 1 and s < ∞∫ 1

−1

[
(t +1) jr∗+1

( j!)r∗( jr∗+1)
+

(1− t) jr∗+1

( j!)r∗( jr∗+1)

]s/r∗

dt

1/s

≤ 2 j+1/r∗+2/s

j!( jr∗+1)1/r∗( js+ s/r∗+1)1/s =: C( j,r,s)

and

C( j,1,s)=
2 j+2/s

j!( js+1)1/s (s<∞) , C( j,1,∞)=
2 j

j!
, C( j,r,∞)=

2 j+1/r∗

j!( jr∗+1)1/r∗ (r > 1) .

This, together with some elementary calculations, proves the first assertion.
For the second estimate, we observe that

v′(t)− (Qv)′(t) =
∫ 1

−1

∫ t

y

(t− z)( j−1)

( j−1)!
v( j+1)(z)dzϕ(y)dy .

The rest of the proof follows the same arguments as before but with j being replaced
by j−1 at the appropriate places. ut
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Note that we have, in particular,

C( j, p∗, p) =
2 j+3/p

j! p
√
( jp+1)( jp+2)

.

The following result provides the boundedness of the local interpolation operator.

Lemma 5.2 Let (X ,‖ ·‖X ) be a real Banach space and let v : [−1,1]→ X be a given
function with v,v′ ∈ Ls(−1,1;X) (s ∈ [1,∞]). Then (with the convention (2q−1) := 0
for q = 0 and denoting by s∗ the exponent conjugated to s)

‖π̂qv‖Ls(−1,1;X) ≤
(
(2q−1)3/2−1/max(s,s∗)+(2q+1)−1/max(2,s)

)
‖v‖Ls(−1,1;X)

+ 2(2q+1)−1/max(2,s)‖v′‖Ls(−1,1;X) .

Proof We restrict our considerations to the case q ≥ 1; the proof for q = 0 immedi-
ately follows from (5.7) below. As in (5.4) and (5.5), we have

(π̂qv)(t) =
q−1

∑
i=0

vi (Li(t)−Lq(t))+ v(1)Lq(t) ,

vi =
2i+1

2

∫ 1

−1
v(t)Li(t)dt (i = 0,1, . . . ,q−1) .

We, therefore, find

‖π̂qv‖Ls(−1,1;X) ≤
q−1

∑
i=0
‖vi‖X‖Li−Lq‖Ls(−1,1)+‖v(1)‖X‖Lq‖Ls(−1,1) ,

where for i = 0,1, . . . ,q−1

‖vi‖X ≤
2i+1

2
‖v‖Ls(−1,1;X)‖Li‖Ls∗ (−1,1) .

Because of the continuous embedding of the space W 1,s(0,T ;X) := {v∈Ls(−1,1;X) :
v′ ∈ Ls(−1,1;X)} into C ([−1,1];X), there holds

‖v(1)‖X ≤ 2−1/s‖v‖Ls(−1,1;X)+21/s∗‖v′‖Ls(−1,1;X) . (5.7)

Moreover, we have

‖Li‖Ls(−1,1) ≤ 21/s(2i+1)−1/max(2,s) (i = 0,1, . . . ,q) ,

which can be shown by employing the properties of the Legendre polynomials (in
particular, ‖Li‖L∞(−1,1) = 1, ‖Li‖2

L2(−1,1) = 2/(2i+ 1)). The assertion follows from
some simple but tedious estimates showing in particular that

q−1

∑
i=0

2i+1
2
‖Li‖Ls∗ (−1,1)‖Li−Lq‖Ls(−1,1) ≤ (2q−1)3/2−1/max(s,s∗) .

ut
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An immediate consequence is the following stability of the interpolation operator.

Lemma 5.3 Let (X ,‖ · ‖X ) be a real Banach space and let v : [0,T ]→ X be a given
function with v,v′ ∈ Lr(In;X) (n = 1,2, . . . ,N), where qmin ≥ 1 and r ∈ [1,∞]. Then
for all s ∈ [1,∞] and jn = 1,2, . . . ,qn (n = 1,2, . . . ,N)

‖πqqq
I v‖Ls(0,T ;X) ≤

(
(2qmax−1)3/2−1/max(s,s∗)+(2qmin +1)−1/max(2,s)

)
‖v‖Ls(0,T ;X)

+ 2(2qmin +1)−1/max(2,s)
τmax‖v′‖Ls(0,T ;X) .

Proof Since

‖πqqq
I v‖s

Ls(0,T ;X) =
N

∑
n=1
‖πqqq

I v‖s
Ls(In;X) ,

the assertion follows immediately from a transformation of In onto (−1,1), estimat-
ing the local interpolation on (−1,1), and an inverse transformation. Remember here

that π̂qv̂ = π̂
qqq
I v (with ˆ denoting the transformation). We only have to employ that

max
n=1,...,N

(
(2q−1)3/2−1/max(s,s∗)+(2q+1)−1/max(2,s)

)
≤ (2qmax−1)3/2−1/max(s,s∗)+(2qmin +1)−1/max(2,s)

and
max

n=1,...,N
2(2q+1)−1/max(2,s) ≤ 2(2qmin +1)−1/max(2,s) .

ut

We are now in the position to prove an estimate for the interpolation error.

Lemma 5.4 Let (X ,‖ · ‖X ) be a real Banach space and let v : [0,T ]→ X be a given
function with v,v′, . . . ,v(qn+1) ∈ Lr(In;X) (n = 1,2, . . . ,N), where qmin ≥ 1 and r ∈
[1,∞]. Then for all s ∈ [1,∞] and jn = 1,2, . . . ,qn (n = 1,2, . . . ,N)

‖v−π
qqq
I v‖Ls(0,T ;X) ≤

(
N

∑
n=1

τ
( jn+1)s
n Dn( jn,r,s)s‖v( jn+1)‖s

Lr(In;X)

)1/s

,

where (see (5.6))

Dn( jn,r,s) :=
(

1+(2qn−1)3/2−1/max(s,s∗)+(2qn +1)−1/max(2,s)
)

C( jn,r,s)

+ 2(2qn +1)−1/max(2,s)C( jn−1,r,s) .

Proof Since

‖v−π
qqq
I v‖s

Ls(0,T ;X) =
N

∑
n=1
‖v−π

qqq
I v‖s

Ls(In;X) ,

the assertion will follow again from a transformation of In onto (−1,1), estimating
the local interpolation error on (−1,1), and an inverse transformation. Remember

that π̂qv̂ = π̂
qqq
I v (with ˆ denoting the transformation).
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For the local interpolation error (with q = qn when transforming In on (−1,1)),
we have

v̂− π̂
qv̂ = v̂− π̂

qQv̂+ π̂
qQv̂− π̂

qv̂ = v̂−Qv̂− π̂
q (v̂−Qv̂) ,

and thus with Lemma 5.2

‖v̂− π̂
qv̂‖Ls(−1,1;X)

≤
(

1+(2q−1)3/2−1/max(s,s∗)+(2q+1)−1/max(2,s)
)
‖v̂−Qv̂‖Ls(−1,1;X)

+ 2(2q+1)−1/max(2,s)‖v̂′− (Qv̂)′‖Ls(−1,1;X) .

Lemma 5.1 now yields

‖v̂− π̂
qv̂‖Ls(−1,1;X) ≤ Dn( j,r,s)‖v̂( j+1)‖Lr(−1,1;X) ,

from which the assertion follows. ut

The error estimate now reads as follows.

Theorem 5.2 Let Assumption A be fulfilled with p ≥ 2 and assume (5.1) as well as
(5.2). Moreover, let u ∈ W ↪→ C ([0,T ];H) be the solution of (1.1) with u0 ∈ H and
f ∈C ([0,T ];V ∗). If u′ ∈ Lp(0,T ;V ) and u(r) ∈ Lp∗(In;V ∗) (r = 2, . . . , jn+1, 1≤ jn≤
qn, jmin := minn=1,...,N jn) then the solution uI ∈WI to (1.3) fulfills for k = 1,2, . . . ,N
the error estimates

|u(tk)−uI(t−k )|+
∣∣u0−uI(0+)

∣∣
≤ c
∣∣u0−u0

I
∣∣+ cD1( j1, p∗, p)1/2

τ
( j1 p+2p−1)/(2p)
1 ‖u′‖1/2

C (I1;V ∗)‖u
( j1+1)‖1/2

Lp∗ (I1;V ∗)

+ c
(

1+
(

1+(2qmax−1)3/2−1/p
)
‖u‖Lp(0,tk;V )+ τmax ‖u′‖Lp(0,tk;V )

)p(p−1−γ)/(2(p−1))
×

×

(
k

∑
n=1

τ
( jn+1)p
n Dn( jn, p∗, p)p‖u( jn+1)‖p

Lp∗ (In;V ∗)

)γ/(2(p−1))

,

‖u−uI‖Lp(0,tk;V )

≤ c
∣∣u0−u0

I
∣∣2/p

+ cD1( j1, p∗, p)1/p
τ
( j1 p+2p−1)/p2

1 ‖u′‖1/p
C (I1;V ∗)‖u

( j1+1)‖1/p
Lp∗ (I1;V ∗)

+ c
(

1+
(

1+(2qmax−1)3/2−1/p
)
‖u‖Lp(0,tk;V )+ τmax ‖u′‖Lp(0,tk;V )

)(p−1−γ)/(p−1)
×

×

(
k

∑
n=1

τ
( jn+1)p
n Dn( jn, p∗, p)p‖u( jn+1)‖p

Lp∗ (In;V ∗)

)γ/(p(p−1))

,

and thus

|u(tk)−uI(t−k )|+
∣∣u0−uI(0+)

∣∣≤ c
∣∣u0−u0

I
∣∣+ c̄1τ

( j1 p+2p−1)/(2p)
1 + c̄τ

( jmin+1)γ p/(2(p−1))
max ,

‖u−uI‖Lp(0,tk;V ) ≤ c
∣∣u0−u0

I
∣∣2/p

+ c̄1τ
( j1 p+2p−1)/p2

1 + c̄τ
( jmin+1)γ/(p−1)
max .

Here c> 0 is independent of u and qqq but c̄1 may depend on qqq as well as on ‖u′‖C (I1;V ∗),
‖u( j1+1)‖Lp∗ (I1;V ∗), and c̄ may depend on qqq as well as on ‖u‖Lp(0,T ;V ), ‖u′‖Lp(0,T ;V ),

‖u( jmin+1)‖Lp∗ (0,T ;V ∗).
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Remark 5.1 Let the initial error be of appropriate order and let τ1 be chosen appro-
priately. The above theorem then provides a global error estimate of maximum order
(qmin + 1)γ p/(2(p− 1)) for the left values of the numerical solution in each of the
subintervals, measured in the H-norm, and of order (qmin +1)γ/(p−1) for the error
measured in the Lp(0,T ;V )-norm.

The order of the error here coincides with the result known from [1] for the special
situation p = 2, γ = 1, and qn ≡ q dealt with there; the order then is q+1.

We do not claim that the given orders are optimal with respect to the dependence
on p. It is, e.g., known for the evolutionary p-Laplacian and similar problems with
p-structure that the concept of quasi-norms allows to derive convergence rates of op-
timal first order for the implicit Euler method (see [4] and the references given there).
Quasi-norms are depending on the exact solution and take into account the possible
degeneracy of the underlying problem. It remains open for future research whether
analogous results can be derived for the discontinuous Galerkin approximation in
time.

We are also not going to quantify the dependence on qqq in more detail as we would
do for a hp-variant method since, in general, we cannot expect a very high regularity
of the exact solution of the nonlinear problem.

Proof (of Theorem 5.2) We test (1.1) as well as (1.3) by an arbitrary function vI ∈
WI ⊆X and subtract the two equations. This gives (with the convention u(0−) := u0,
(πqqq

I u)(0−) := (πqqq
I u)(0+)) the relation

N

∑
n=1

∫
In

(
u′(t)−u′I(t),vI(t)

)
dt +

N

∑
n=1

(
[[u(tn−1)−uI(tn−1)]],vI(t+n−1)

)
+
∫ T

0
〈A(t)u(t)−A(t)uI(t),vI(t)〉dt = 0 , (5.8)

which resembles the classical Galerkin orthogonality. (Remember [[u(tn−1)]]≡ 0 since
u is continuous.)

With (5.1), integration by parts (employing (3.4), (3.5)), taking vI=(uI−π
qqq
I u)χ[0,tk]

(k = 1,2, . . . ,N) in (5.8) and integration by parts again, we find

1
2
|uI(t−k )− (πqqq

I u)(t−k )|2− 1
2
|uI(0−)− (πqqq

I u)(0−)|2

+
1
2

k

∑
n=1

∣∣[[uI(tn−1)− (πqqq
I u)(tn−1)]]

∣∣2 +µ

∫ tk

0
‖uI(t)− (πqqq

I u)(t)‖pdt

≤
k

∑
n=1

∫
In

(
u′I(t)− (πqqq

I u)′(t),uI(t)− (πqqq
I u)(t)

)
dt

+
k

∑
n=1

(
[[uI(tn−1)− (πqqq

I u)(tn−1)]],uI(t+n−1)− (πqqq
I u)(t+n−1)

)
+
∫ tk

0

〈
A(t)uI(t)−A(t)(πqqq

I u)(t),uI(t)− (πqqq
I u)(t)

〉
dt
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=
k

∑
n=1

∫
In

(
u′(t)− (πqqq

I u)′(t),uI(t)− (πqqq
I u)(t)

)
dt

+
k

∑
n=1

(
[[u(tn−1)− (πqqq

I u)(tn−1)]],uI(t+n−1)− (πqqq
I u)(t+n−1)

)
+
∫ tk

0

〈
A(t)u(t)−A(t)(πqqq

I u)(t),uI(t)− (πqqq
I u)(t)

〉
dt

=−
k

∑
n=1

∫
In

(
u(t)− (πqqq

I u)(t),u′I(t)− (πqqq
I u)′(t)

)
dt

−
k

∑
n=1

(
u(t−n−1)− (πqqq

I u)(t−n−1), [[uI(tn−1)− (πqqq
I u)(tn−1)]]

)
+
(
u(t−k )− (πqqq

I u)(t−k ),uI(t−k )− (πqqq
I u)(t−k )

)
−
(
u(0−)− (πqqq

I u)(0−),uI(0−)− (πqqq
I u)(0−)

)
+
∫ tk

0

〈
A(t)u(t)−A(t)(πqqq

I u)(t),uI(t)− (πqqq
I u)(t)

〉
dt .

The first term of the right-hand side of the foregoing estimate vanishes in view of
the definition of π

qqq
I since the restriction of u′I− (πqqq

I u)′ on In is in Pqn−1(In;V ). The
second (except for the initial error with n = 1) and the third term vanish also because
of the definition of π

qqq
I . Hence, we find

1
2
|uI(t−k )− (πqqq

I u)(t−k )|2− 1
2
|uI(0−)− (πqqq

I u)(0−)|2

+
1
2

k

∑
n=1

∣∣[[uI(tn−1)− (πqqq
I u)(tn−1)]]

∣∣2 +µ

∫ tk

0
‖uI(t)− (πqqq

I u)(t)‖pdt

≤−
(
u(0−)− (πqqq

I u)(0−), [[uI(0)− (πqqq
I u)(0)]]

)
−
(
u(0−)− (πqqq

I u)(0−),uI(0−)− (πqqq
I u)(0−)

)
+
∫ tk

0

〈
A(t)u(t)−A(t)(πqqq

I u)(t),uI(t)− (πqqq
I u)(t)

〉
dt .

Recalling u(0−) := u0, uI(0−) := u0
I , (πqqq

I u)(0−) :=(πqqq
I u)(0+) and employing Cauchy–

Schwarz’s and Young’s inequality yields

1
2
|uI(t−k )− (πqqq

I u)(t−k )|2 + 1
2

∣∣uI(0+)−u0
I
∣∣2 +µ

∫ tk

0
‖uI(t)− (πqqq

I u)(t)‖pdt

≤ 1
2
|u0

I − (πqqq
I u)(0+)|2−

(
u0− (πqqq

I u)(0+),uI(0+)−u0
I +u0

I − (πqqq
I u)(0+)

)
+
∫ tk

0

〈
A(t)u(t)−A(t)(πqqq

I u)(t),uI(t)− (πqqq
I u)(t)

〉
dt

≤ |u0
I − (πqqq

I u)(0+)|2 + 3
2

∣∣u0− (πqqq
I u)(0+)

∣∣2 + 1
4

∣∣uI(0+)−u0
I
∣∣2

+ c
∫ tk

0
‖A(t)u(t)−A(t)(πqqq

I u)(t)‖p∗
∗ dt +

µ

2

∫ tk

0
‖uI(t)− (πqqq

I u)(t)‖pdt ,
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where c > 0 only depends on µ and p. It follows

|uI(t−k )− (πqqq
I u)(t−k )|2 +

∣∣uI(0+)−u0
I
∣∣2 +µ

∫ tk

0
‖uI(t)− (πqqq

I u)(t)‖pdt

≤ c
(
|u0

I − (πqqq
I u)(0+)|2 +

∣∣u0− (πqqq
I u)(0+)

∣∣2 +∫ tk

0
‖A(t)u(t)−A(t)(πqqq

I u)(t)‖p∗
∗ dt

)
≤ c
(
|u0

I −u0|2 +
∣∣u0− (πqqq

I u)(0+)
∣∣2 +∫ tk

0
‖A(t)u(t)−A(t)(πqqq

I u)(t)‖p∗
∗ dt

)
.

(5.9)

With (5.2), Hölder’s inequality and Lemma 5.2, we also have

∫ tk

0
‖A(t)u(t)−A(t)(πqqq

I u)(t)‖p∗
∗ dt

≤ c
(
1+‖u‖Lp(0,tk;V )+‖π

qqq
I u‖Lp(0,tk;V )

)p∗(p−1−γ) ‖u−π
qqq
I u‖p∗γ

Lp(0,tk;V )
. (5.10)

Recalling that u ∈ C ([0,T ];H) and u(tk) = (πqqq
I u)(t−k ) (k = 1,2, . . . ,N), we find

with (5.9) and (5.10)

|u(tk)−uI(t−k )|2 +
∣∣u0−uI(0+)

∣∣2 +µ

∫ tk

0
‖u(t)−uI(t)‖pdt

≤ c
(
|(πqqq

I u)(t−k )−uI(t−k )|2 +
∣∣u0−u0

I
∣∣2 + ∣∣u0

I −uI(0+)
∣∣2

+µ

∫ tk

0
‖u(t)− (πqqq

I u)(t)‖pdt +µ

∫ tk

0
‖(πqqq

I u)(t)−uI(t)‖pdt
)

≤ c
(∣∣u0−u0

I
∣∣2 + |u0− (πqqq

I u)(0+)|2 +‖u−π
qqq
I u‖p

Lp(0,tk;V )

)
+ c
(
1+‖u‖Lp(0,tk;V )+‖π

qqq
I u‖Lp(0,tk;V )

)p∗(p−1−γ) ‖u−π
qqq
I u‖p∗γ

Lp(0,tk;V )
.

The final error estimate now follows from the foregoing estimate together with Lemma 5.3
and 5.4 upon noting that p ≥ p∗γ and that with (5.3), integration by parts, and
u′ ∈W 1,p∗(0,T ;V ∗) ↪→ C ([0,T ];V ∗)

|u0− (πqqq
I u)(0+)|2 = |u0− (πqqq

I u)(0+)|2−|u(t1)− (πqqq
I u)(t−1 )|2

=−
∫ t1

0
〈u′(s)− (πqqq

I u)′(s),u(s)− (πqqq
I u)(s)〉ds

=−
∫ t1

0
〈u′(s),u(s)− (πqqq

I u)(s)〉ds

≤ ‖u′‖Lp∗ (0,t1;V ∗)‖u−π
qqq
I u‖Lp(0,t1;V )

≤ τ
1/p∗

1 ‖u′‖C ([0,t1];V ∗)‖u−π
qqq
I u‖Lp(0,t1;V ) .

Indeed, in order to get a local error estimate, we apply Lemma 5.3 and 5.4 only on
the subintervals I1 and (0, tk), which is clear from the corresponding proofs.



24 Etienne Emmrich

Altogether, we obtain

|u(tk)−uI(t−k )|2 +
∣∣u0−uI(0+)

∣∣2 +µ

∫ tk

0
‖u(t)−uI(t)‖pdt

≤ c
∣∣u0−u0

I
∣∣2 + cD1( j1, p∗, p)τ j1+1+1/p∗

1 ‖u′‖C (I1;V ∗)‖u
( j1+1)‖Lp∗ (I1;V ∗)

+ c
(

1+
(

1+(2qmax−1)3/2−1/p
)
‖u‖Lp(0,tk;V )+ τmax ‖u′‖Lp(0,tk;V )

)p(p−1−γ)/(p−1)
×

×

(
k

∑
n=1

τ
( jn+1)p
n Dn( jn, p∗, p)p‖u( jn+1)‖p

Lp∗ (In;V ∗)

)γ/(p−1)

,

which proves the assertion. ut
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