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Abstract

The well-known Gronwall lemma often serves as a major tool for the anal-

ysis of time-dependent problems via energy methods. However, there is the

need for a similar tool when considering temporal discretizations of evolution-

ary problems.

With the paper in hand, the author wishes to give an overview of some

discrete versions of the Gronwall lemma and presents a uni�ed approach.

In particular, new discrete versions of the lemma in its di�erential form and

their application, showing decay behaviour for discretized parabolic problems,

are studied.

These versions give e�ective tools for the stability and error analysis of the

temporal semi-discretization of parabolic problems covering non-homogeneous

problems as well as approximations with variable step sizes.

Keywords Gronwall-type inequality, di�erential inequality, di�erence inequal-

ity, parabolic di�erential equation, temporal discretization, Euler method
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1 Introduction

Stability analysis and a priori estimates for the exact solution to parabolic problems

often lead to an initial value problem for an ordinary di�erential inequality that

reads as

d

dt
ju(t)j2 + � ku(t)k2 � kg(t)k2

�
; t > 0 ; (1.1a)

ju(0)j = ju0j ; (1.1b)

where u = u(t) : R+
0 ! V � H is the function analysed and g = g(t) : R+

0 ! V �,

u0 2 H are given. Here, the set of real numbers is denoted by R whereas its subset

of nonnegative numbers is denoted by R+
0 = R+ [ f0g. The set of positive integers
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will be denoted by N. The spaces (V; k � k), (H; j � j) are suitable Banach spaces

with a continuous embedding (Poincar�e-Friedrichs inequality):

9� > 0 8v 2 V : jvj � � kvk : (1.2)

The function g represents a right hand side of the underlying parabolic problem,

measured in the dual norm k � k� (V � denotes the dual space to V ). However, in

some applications, jg(t)j appears rather than kg(t)k� if g is somewhat \better", say

g 2 H.

Moreover, the parameter � > 0 comes from the ellipticity (strong positiveness) of

the underlying di�erential operator and reects in some sense the problem's compli-

cation: for a singular perturbed problem, �� 1 is characteristic, whereas di�usion

dominates if �� 1.

For what we have in mind, the heat equation, describing the non-stationary

process of heat conduction in a domain 
, may serve as a simple example:

ut �r � �ru = f ;

where u = u(x; t) is the (scaled) temperature with a given initial temperature �eld

u(�; 0) = u0 and vanishing temperature at the boundary, and f = f(x; t) is the

quotient of heat production per time and mass unit and the speci�c heat. The

coeÆcient � = �(x; t) > 0 is the heat conductivity, a material constant that is

positive due to the second law of thermodynamics, divided by speci�c heat and

mass density.

Multiplying the equation by u, integrating over 
 with integration by parts, and

applying Cauchy-Schwarz', Poincar�e-Friedrichs', and Young's inequality

leads, under suitable assumptions, to the di�erential inequality

d

dt

Z


u2dx + ��

Z


(ru)2dx �

�2

��

Z


f 2dx ;

where �� := inf(x;t) �(x; t) > 0.

This inequality is of structure (1.1) with V = H1
0 (
), H = L2(
), and norms

chosen appropriately. Here, L2(
) denotes the usual Lebesgue space and H1
0 (
)

the Sobolev space of functions in L2(
) whose generalized �rst derivatives also lie

in L2(
).

By integration, we easily derive from (1.1) an a priori estimate at (almost) each

time level t 2 R+
0 ,

ju(t)j2 + �
Z t

0
ku(s)k2 ds � ju0j

2 +

Z t

0
kg(s)k2

�
ds : (1.3)

This gives stability w. r. t. the maximum in time norm of u = u(t), considered as an

abstract function mapping into H, as well as the L2-norm of u = u(t), considered

as a function mapping into V .

However, we may use the continuous embedding V ,! H in the course of the

analysis: With (1.1) and (1.2), we have

d

dt

�
e�t=�

2

ju(t)j2
�

= e�t=�
2

 
d

dt
ju(t)j2 +

�

�2
ju(t)j2

!
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� e�t=�
2

 
d

dt
ju(t)j2 + � ku(t)k2

!
� e�t=�

2

kg(t)k2
�
:

By integration, we then arrive at the estimate desired

ju(t)j2 � e��t=�
2

ju0j
2 +

Z t

0
e�(s�t)=�

2

kg(s)k2
�
ds (1.4)

that holds for (almost) all t 2 R+
0 and gives a somewhat improved estimate w. r. t.

the norm j � j. Simultaneously, the estimate shows exponential decay whenever the

right-hand side g is suitable. To be more precise, the upper bound of ju(t)j is
decreasing with time t for suitable g, say kg(t)k� is bounded for (almost) all t in the

time interval under consideration.

The estimate above can be only achieved by using the di�erential form (1.1) of

the problem that provides more information than the integral inequality (1.3). We

shall refer to (1.4) as an application of the Gronwall lemma in di�erential form

as it will be formulated in Proposition 2.2.

Let us now consider a discretization in time of the underlying parabolic problem

or even of inequality (1.1) itself by means of the implicit Euler scheme. We then

come up with an estimate of the form

jun+1j2 � junj2

�t
+ � kun+1k2 � kgn+1k2

�
; n = 0; 1; : : : ; (1.5)

where un � u(tn), n = 0; 1; : : :, tn = n�t, �t > 0, and u0, gn � g(tn) are given.

The question arising immediately is: Are there any estimates similar to those of the

continuous problem?

Summation over n leads from (1.5) to

junj2 + ��t
nX

j=1

kujk2 � ju0j2 +�t
nX

j=1

kgjk2
�
; n = 1; 2; : : : (1.6)

that is similar to estimate (1.3) of the continuous case, and again gives stability,

now for the discrete solution.

However, using the embedding (1.2) as well as some discrete version of Gron-

wall's lemma, we are able to prove the estimate

junj2 � (1 +
�

�2
�t)�n ju0j2 +�t

nX
j=1

(1 +
�

�2
�t)j�1�n kgjk2

�
; n = 1; 2; : : : (1.7)

that is analogous to estimate (1.4) of the continuous case, and indeed shows decay

of the stability constants with increasing number of time steps.

Again, for this estimate, we have to use the original di�erence form (1.5) and,

therefore, we will refer to it as an application of the Gronwall lemma in di�erence

form, that is a discrete version of the lemma in di�erential form. It will be stated

in Proposition 3.1 and in the more general Proposition 3.3.

We are faced with the same demand for discrete analogues when considering not

the discrete solution but the error en = u(tn)�un. For the discretization error en, an
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inequality of essentially the same structure as (1.5) can be derived from estimating

en in terms of the consistency error.

Besides the applications above, we often need to apply the Gronwall lemma

when studying nonlinear problems or parabolic problems for which the underlying

di�erential operator is not strongly positive but satis�es a G�arding inequality.

Instead of the estimates (1.1) or (1.3), we then have modi�ed estimates with an

additional term � ju(t)j2 or �
R t
0 ju(s)j

2ds, resp., on the right hand side, where � > 0

is a given constant. Again, there is the need for counterparts of such estimates in the

time discrete case. The lemmata, which have to be used here, are those in integral

or sum form and will be stated in Proposition 2.1 and 4.1.

In the next section, we recall the Gronwall lemma in its original and nowadays

well-known integral as well as in its di�erential form and discuss the di�erence

between them. In particular, we emphasize on a sign assumption that is necessary

for the integral but not for the di�erential version. Although the latter one might

be not found running explicitly under the name Gronwall lemma, some authors

use the idea behind, cf. e. g. Temam [10], Thom�ee [12]. The integral version and

extensions of it have been studied in detail and in di�erent context by many authors.

We refer e. g. to Brunner/van der Houwen [1] and the references cited there.

In Section 3, we turn to discrete versions of the lemma in its di�erential form.

As to the knowledge of the author, those versions are not known from the literature.

We consider di�erence inequalities that can be derived from an original di�erential

inequality by means of the implicit or explicit Euler scheme or the more general

�-method. By this, the second order Crank-Nicolson scheme is covered, too.

In a further section, we deal with a discrete version of the lemma in its inte-

gral form. Indeed, the Gronwall lemma in sum form is rather known from the

literature and many authors make use of it, cf. e. g. Girault/Raviart [5], Brun-

ner/van der Houwen [1].

The results of both, Section 3 and Section 4, apply to the case of variable step

sizes. However, as with the integral version, the sum form has a sign restriction which

does not appear with the di�erence form. Moreover, there may appear restrictions

on the step sizes we carefully take into account.

Finally, results will be applied to a linear parabolic problem in an abstract set-

ting. This covers linear partial di�erential operators with constant in time coeÆ-

cients satisfying a G�arding inequality and problems with non-homogeneous right-

hand side. The numerical methods analysed are the backward Euler scheme with

variable time steps as well as the general �-method. Again, we will also focus on

step size restrictions appearing. The application to problems with time-dependent

coeÆcients is left out here and will be considered in forthcoming research.

Although the lemmata presented and their proofs might be simple, they give

e�ective tools in the analysis of numerical approximations to evolutionary problems.

It has been tried throughout the proofs of the propositions to employ a uni�ed

approach that shows the similarities of the continuous and the discrete case.
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2 Gronwall's lemma in integral and di�erential

form

Let us �rst recall the Gronwall lemma both in its integral, cf. e. g. Wloka [13],

Dautray/Lions [2], as well as di�erential form.1

In the following for an interval S � R, let L1(S) and L1(S) denote the usual

Lebesgue spaces, and W 1;1(S) the usual Sobolev space of all L1(S)-functions

whose generalized derivative lies in L1(S). Furthermore, C(S) denotes the space of
continuous functions. Finally, if T =1, the interval is [0; T ) instead of [0; T ].

Proposition 2.1 (Gronwall lemma: integral form)

Let T 2 R+ [ f1g, a; b 2 L1(0; T ) and � 2 L1(0; T ), �(t) � 0 for almost all

t 2 [0; T ]. Then,

a(t) � b(t) +
Z t

0
�(s)a(s)ds a. e. in [0; T ] (2.1)

implies for almost all t 2 [0; T ]

a(t) � b(t) +
Z t

0
e�(t)��(s)�(s)b(s)ds ; (2.2)

where �(t) :=
R t
0 �(�)d� . If b 2 W 1;1(0; T ), it follows

a(t) � e�(t)
�
b(0) +

Z t

0
e��(s)b0(s)ds

�
: (2.3)

Moreover, if b is a monotonically increasing, continuous function, it holds

a(t) � e�(t)b(t) : (2.4)

Proof Since a; b 2 L1(0; T ) and � 2 L1(0; T ), the integrals appearing are well-

de�ned.

Let

~a(t) := e��(t)
Z t

0
�(s)a(s)ds :

Then, for almost all t 2 [0; T ], the estimate

~a0(t) = e��(t)�(t)

�
a(t)�

Z t

0
�(s)a(s)ds

�
� e��(t)�(t)b(t)

holds due to (2.1) and �(t) � 0. With ~a(0) = 0 by de�nition, integration over t

leads to

~a(t) �
Z t

0
e��(s)�(s)b(s)ds :

Recalling assumption (2.1) as well as the de�nition of ~a, we then arrive at

e��(t) (a(t)� b(t)) � e��(t)
Z t

0
�(s)a(s)ds = ~a(t) �

Z t

0
e��(s)�(s)b(s)ds

1The lemma was �rst mentioned in Gronwall [6] by T. Hakon Gr�onvall (1877 {1932) himself,

originally in integral form.
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that gives us the wanted estimate (2.2).

As b is di�erentiable, inequality (2.3) follows immediately via integration by

parts:

Z t

0
e��(s)�(s)b(s)ds =

h
�e��(s)b(s)

it
0
+

Z t

0
e��(s)b0(s)ds

= �e��(t)b(t) + b(0) +
Z t

0
e��(s)b0(s)ds :

Note here, that W 1;1(0; t) ,! C([0; t]) for all t, 0 < t < T , cf. Zeidler [14].

Finally, let b be monotonically increasing and continuous. We then derive from

(2.2), in virtue of �(t) � 0, the estimate

a(t) � b(t)

�
1 +

Z t

0
e�(t)��(s)�(s)ds

�
= b(t)

 
1 + e�(t)

Z t

0

d

ds

�
�e��(s)

�
ds

!

= b(t)
�
1 + e�(t)

�
�e��(t) + 1

��
= e�(t)b(t)

that proves (2.4). #

Obviously, the assumption �(t) � 0 a. e. in [0; T ] is of essential importance and

cannot be omitted as the following counterexample shows.

Example 2.1 (Negative �) Let �(t) � � < 0, b(t) = b+!(t), where b 2 R and

! = !(t) : [0; T ]! R
+
0 , supp ! � (0; T ), and a(t) = b e�t. We then have

b(t) +
Z t

0
�(s)a(s)ds = b+ !(t) + �b

Z t

0
e�sds = be�t + !(t) = a(t) + !(t) � a(t)

for all t 2 [0; T ], and the assumption of Proposition 2.1 holds.

Furthermore, we have

b(t) +
Z t

0
e�(t)��(s)�(s)b(s)ds

= b + !(t) + �b
Z t

0
e�(t�s)ds+ �

Z
(0;t)\supp !

e�(t�s)!(s)ds

= a(t) + !(t) + �
Z
(0;t)\supp !

e�(t�s)!(s)ds :

Let t 2 [0; T ] be suÆciently large, such that supp ! � (0; t). Then, by construc-

tion, !(t) = 0, and, in virtue of � < 0, it follows immediately

a(t) > a(t) + �
Z
(0;t)\supp !

e�(t�s)!(s)ds = b(t) +
Z t

0
e�(t)��(s)�(s)b(s)ds :

Hence, the proposition is violated. #

We now turn to a Gronwall-type lemma in which the inequality assumed is

not given in integral but in di�erential form. Hence, we have got more, not only

global but local information.
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Proposition 2.2 (Gronwall lemma: di�erential form)

Let T 2 R+ [ f1g, a 2 W 1;1(0; T ) and g; � 2 L1(0; T ). Then,

a0(t) � g(t) + �(t)a(t) a. e. in [0; T ] (2.5)

implies for almost all t 2 [0; T ]

a(t) � e�(t)a(0) +
Z t

0
e�(t)��(s)g(s)ds ; (2.6)

where �(t) :=
R t
0 �(s)ds.

Note, that integration of (2.5) gives, with b(t) := a(0) +
R t
0 g(s)ds, inequality

(2.1). If Proposition 2.1 is applicable, i. e. �(t) � 0, the resulting estimates (2.2)

and (2.3), resp., coincide with inequality (2.6). However, we are about to prove

Proposition 2.2 without any assumption on the sign of �.

Proof Since a 2 W 1;1(0; t) ,! C([0; t]) for all t, 0 < t < T , cf. Zeidler [14], and

g; � 2 L1(0; T ), the terms appearing are well-de�ned.

Let

~a(t) = e��(t)a(t) : (2.7)

Then it follows from (2.5)

~a0(t) = e��(t) (a0(t)� �(t)a(t)) � e��(t)g(t)

and integration gives

~a(t)� ~a(0) = e��(t)a(t)� a(0) �
Z t

0
e��(s)g(s)ds :

Thus, inequality (2.6) holds a. e. in [0; T ] #

The essential di�erence between the integral and di�erential version is the re-

quirement for the function � which has to be nonnegative in the integral but not

necessarily in the di�erential version.

With Proposition 2.2, we may show some decay behaviour for negative � (de-

pending on how g behaves). This is not possible in the context of Proposition 2.1.

3 Gronwall's lemma in di�erence form

The same di�erence as between Propositions 2.1 and 2.2 might be expected in the

discrete case. In this section, we will consider discrete versions of the Gronwall

lemma in di�erential form, Proposition 2.2.
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3.1 Euler method with constant time steps

Let us consider a sequence of inequalities

an+1 � an

�t
� gn+1 + � an+1 ; n = 0; 1; : : : ; (3.1)

where fang; fgng � R and a0, fgng are given. We then ask for an explicit inequality

for an.

Inequality (3.1) might be interpreted as the backward Euler discretization of

(2.5) with �(t) � � and is similar to (1.5) with � = ��=�2.

Proposition 3.1 (Discrete Gronwall lemma: backward di�erence form)

Let fang; fgng � R and 1���t > 0. Then, inequality (3.1) implies for n = 1; 2; : : :

an � (1� ��t)�n

0
@a0 +�t

n�1X
j=0

(1� ��t)j gj+1

1
A : (3.2)

Moreover, if fgng is monotonically increasing, it holds

an � (1� ��t)�n a0 +
1

�

�
(1� ��t)�n � 1

�
gn : (3.3)

Proof Let ~an := (1� ��t)nan. We then achieve from (3.1) for 1� ��t > 0

~an+1 � ~an

�t
=

1

�t
(1� ��t)n ((1� ��t)an+1 � an)

= (1� ��t)n
�
an+1 � an

�t
� � an+1

�
� (1� ��t)n gn+1 :

Summation over n leads to

~an � ~a0

�t
�

n�1X
j=0

(1� ��t)j gj+1

that gives us immediately estimate (3.2).

If fgng is monotonically increasing, we may estimate gj+1 � gn in the sum of the

r. h. s. of (3.2). Evaluation of the remaining partial sum gives

n�1X
j=0

(1� ��t)j =
1

��t
(1� (1� ��t)n) ;

and the assertion follows. #

Let � � 0. Then, the assumption 1 � ��t > 0 of Proposition 3.1 is trivially

ful�lled and, for suitable fgng, decay of the upper bound for fang with increasing

n can be observed analogously to the continuous case. For positive �, we have to
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assume �t to be suÆciently small in order to ful�l 1� ��t > 0 and growth can be

observed.

Note, that for fgng � R
+
0 , a0 2 R

+
0 , with arbitrary  � � 1

�t
ln(1 � ��t), we

have from (3.2)

an � etn

0
@a0 +�t

n�1X
j=0

e�tjgj+1

1
A (3.4)

that shows exponential growth or decay as in the continuous case but with  > �

since e���t � 1 � ��t � e��t. It cannot be expected to improve this result to

 = � (except for � = 0). However, since

e��t=(1���t) � 1 +
��t

1� ��t
=

1

1� ��t
;

we may choose

 =
�

1� ��t
= �+

�2�t

1� ��t
� � :

We now proceed with the inequality

an+1 � an

�t
� gn + � an ; n = 0; 1; : : : (3.5)

with given a0, fgng, that is similar to (3.1) and might be interpreted as the forward

Euler discretization of (2.5).

Proposition 3.2 (Discrete Gronwall lemma: forward di�erence form)

Let fang, fgng � R and 1+��t > 0. Then, inequality (3.5) implies for n = 1; 2; : : :

an � (1 + ��t)n

0
@a0 +�t

n�1X
j=0

(1 + ��t)�(j+1) gj

1
A (3.6)

Moreover, if fgng is monotonically increasing, it holds

an � (1 + ��t)n a0 +
1

�
((1 + ��t)n � 1) gn�1 : (3.7)

Proof Let ~an := (1 + ��t)�nan. Then it holds

~an+1 � ~an

�t
=

1

�t
(1 + ��t)�(n+1) (an+1 � (1 + ��t)an)

= (1 + ��t)�(n+1)
�
an+1 � an

�t
� � an

�

� (1 + ��t)�(n+1)gn :

Summation over n leads to

~an � ~a0

�t
�

n�1X
j=0

(1 + ��t)�(j+1)gj
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that gives estimate (3.6).

If fgng is monotonically increasing, we may estimate gj � gn�1 in the sum of

(3.6), and with

n�1X
j=0

(1 + ��t)�(j+1) =
1

��t

�
1� (1 + ��t)�n

�
;

the assertion follows. #

Let � < 0. Then, the assumption 1 + ��t > 0 is satis�ed whenever �t is

suÆciently small. For nonnegative �, the assumption is trivially ful�lled. The decay

(or growth) behaviour is essentially the same as in the foregoing proposition.

Note further, that, under the assumption 1� ��t > 0, the backward discretiza-

tion (3.1) might be rewritten as

an+1 � !(��t) (an +�t gn+1) ; (3.8)

where !(z) = 1=(1 � z). Analogously, we may rewrite the forward discretization

(3.5) in the form

an+1 � !(��t) an +�t gn ; (3.9)

where !(z) = 1+z. Therefore, using the ansatz ~an := !(��t)�nan in both the proof

of the backward as well as forward di�erence version of the Gronwall lemma is

not surprising.

These ampli�cation factors ! are well-known in the context of one-step dis-

cretization methods. In comparison with the ansatz made for proving Proposition

2.2, we shall remark that the factors !(��t) are indeed approximations of e��t

and in this sense the approaches for proving Proposition 2.2 as well as its discrete

versions coincide.

3.2 Linear one-step methods with variable step sizes

In the following, we extend the foregoing results to situations in which � as well as

�t may vary with each (time) level n. This is e. g. of essential importance with

respect to discretizations using non-equidistant partitions of the time interval as

adaptive methods do.

In addition, we generalize the approximation of e��t by !(��t) and turn to the

well-known �-scheme, described by

!�(z) =
1 + (1� �)z

1� �z
; � 2 [0; 1] :

By this, every linear one-step method is included, esp. the Euler forward (� = 0)

and backward (� = 1) and theCrank-Nicolson (or trapezoidal) scheme (� = 1=2).

For convenience, we set in the following
Q0

l=1 xl := 1 for any xl whatsoever.

Furthermore, let tn+1 = tn + �n+1 =
Pn+1

i=1 �i, n = 0; 1; : : :, t0 = 0, �i > 0. We

consider the sequence of inequalities

an+1 � an

�n+1
� gn+1 + (1� �)�nan + ��n+1an+1 ; n = 0; 1; : : : ; (3.10)
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which might be rewritten for 1� ��n+1�n+1 > 0 as

an+1 �
�n+1gn+1

1� ��n+1�n+1
+ !n+1an ; n = 0; 1; : : : ;

where

!n+1 :=
1 + (1� �)�n�n+1

1� ��n+1�n+1
: (3.11)

Proposition 3.3 (Discrete Gronwall lemma: general di�erence form)

Let fang, fgng, f�ng � R, f�ng � R
+ and

1� ��n+1�n+1 > 0 ; 1 + (1� �)�n�n+1 > 0 ; n = 0; 1; : : : : (3.12)

Then, inequality (3.10) implies for n = 1; 2; : : :

an � a0

nY
l=1

!l +
n�1X
j=0

�j+1gj+1

1 + (1� �)�j�j+1

nY
l=j+1

!l : (3.13)

Proof Let

~an := an

nY
l=1

!�1l ; n = 0; 1; : : : :

Because of (3.12), we derive from (3.10)

~an+1 � ~an

�n+1
=

1

�n+1

 
nY
l=1

!�1l

! �
an+1!

�1
n+1 � an

�

= (1 + (1� �)�n�n+1)
�1

 
nY
l=1

!�1l

!  
an+1 � an

�n+1
� ��n+1an+1 � (1� �)�nan

!

� (1 + (1� �)�n�n+1)
�1

 
nY
l=1

!�1l

!
gn+1 :

Summation over n leads to (~a0 = a0)

~an � a0 +
n�1X
j=0

�j+1gj+1

1 + (1� �)�j�j+1

jY
l=1

!�1l ;

and the assertion follows. #

Let �n < 0 for all n = 0; 1; : : :. Then, the assumption (3.12) holds if �n+1 is

suÆciently small,

�n+1 <
1

(1� �)j�nj
;

or � = 1 (backward Euler). For �n > 0, n = 0; 1; : : :, again suÆciently small step

sizes have to be required,

�n+1 <
1

��n+1
;
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or � = 0 (forward Euler).

Regarding the requirement of suÆciently small time steps, we shall give some

remarks related to the concept of A-stability, cf. Strehmel/Weiner [9]. The �-

method is said to be A-stable if j!�(z)j � 1 for all z 2 C with <(z) < 0. This is the

case for � � 1=2. Considering the simple test problem

u0(t) = �u(t) ; t > 0 ;

u(0) = u0 ;

where u : R+
0 ! C, � 2 C, <(�) < 0, the approximate solution fung, computed by

an A-stable method, ful�ls jun+1j � junj for all n = 0; 1; : : : and behaves asymptot-

ically as the exact solution u(t) = u0 exp(�t). If � < 1=2, this can be only achieved

for small step sizes: �t < 2j<(�)j=((1� 2�)j�j2) (with equidistant time steps).

However, in order to adapt also the monotonicity behaviour in the real case

(u : R+
0 ! R, � 2 R, � < 0), the stricter inequality 0 < !�(��t) < 1 has to be

assumed. This leads to restrictions even for A-stable methods: �t < 1=((1� �)j�j).
A similar consideration for !�(��t) > 0 if � > 0 leads to �t < 1=(��).

4 Gronwall's lemma in sum form

In this section, we prove a discrete version of Proposition 2.1, theGronwall lemma

in integral form. For this, we consider the inequalities

an+1 � bn+1 +
nX

j=0

((1� �)�jaj + ��j+1aj+1) �j+1 ; n = 0; 1; : : : ; (4.1)

which can be interpreted as an approximation of (2.1) with

Z tn+1

0
�(s)a(s)ds �

nX
j=0

((1� �)�jaj + ��j+1aj+1) �j+1 =: sn+1

and variable time steps �j+1 > 0, tj+1 = tj + �j+1. Again, we assume � 2 [0; 1].

Proposition 4.1 (Discrete Gronwall lemma: general sum form)

Let fang, fbng � R, f�ng � R
+
0 , f�ng � R

+ and 1 � ��n+1�n+1 > 0 for all

n = 0; 1; : : :. Then, inequality (4.1) with the initial inequality a0 � b0 implies for

n = 0; 1; : : :

an+1 � bn+1 +
nX

j=0

�j+1

1� ��j+1�j+1
((1� �)�jbj + ��j+1bj+1)

nY
l=j+1

!l+1 ; (4.2)

where !l+1 is de�ned by (3.11). If �n = � = const and �n = �t = const, it holds

an+1 � bn+1 +
��t

1� ���t

nX
j=0

 
1 + (1� �)��t

1� ���t

!n�j

((1� �)bj + �bj+1) : (4.3)

Moreover, if fbng is monotonically increasing, it follows

an � bn

 
1 + (1� �)��t

1� ���t

!n

: (4.4)
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Proof Let

~an+1 = sn+1

n+1Y
l=1

!�1l :

Since 1� ��n+1�n+1 > 0 and �n � 0, we have from (4.1) for n = 1; 2; : : :

~an+1 � ~an =

 
nY
l=1

!�1l

! �
!�1n+1sn+1 � sn

�

= �n+1 (1 + (1� �)�n�n+1)
�1

 
nY
l=1

!�1l

!  
sn+1 � sn

�n+1
� ��n+1sn+1 � (1� �)�nsn

!

= �n+1 (1 + (1� �)�n�n+1)
�1

 
nY
l=1

!�1l

!
((1� �)�n(an � sn) + ��n+1(an+1 � sn+1))

� �n+1 (1 + (1� �)�n�n+1)
�1

 
nY
l=1

!�1l

!
((1� �)�nbn + ��n+1bn+1) :

Summation leads to

~an+1 � ~a1 +
nX

j=1

�j+1 (1 + (1� �)�j�j+1)
�1

0
@ jY
l=1

!�1l

1
A ((1� �)�jbj + ��j+1bj+1) :

Since a0 � b0 and a1 � b1 + s1, it holds

a1 �
b1 + (1� �)�0�1a0

1� ��1�1
�

b1 + (1� �)�0�1b0

1� ��1�1

and thus

s1 �
(1� �)�0�1

1� ��1�1
b0 +

��1�1

1� ��1�1
b1 :

With ~a1 = s1=!1, we then arrive at

~a1 �
�1

1 + (1� �)�0�1
((1� �)�0b0 + ��1b1) :

The assertion follows with

an+1 � bn+1 + sn+1 = bn+1 + ~an+1

n+1Y
l=1

!l

and some changes in the indices.

For constant �n and �n, the resulting estimate (4.3) follows obviously from (4.2).

If, moreover, fbng is monotonically increasing, we use (1��)bj+�bj+1 � bn+1 in the

sum of (4.3) and estimate the remaining sum that is a partial sum of a geometric

sequence. #

Again, in order to ful�l 1� ��n�n+1 > 0 for �n � 0, we have to choose the step sizes

�n suÆciently small.
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Comparing the foregoing proposition with its continuous counterpart, Proposi-

tion 2.1, as well as comparing their proofs, we �nd again direct accordance when

recalling that !�(z) is an approximation of ez.

Finally, the necessity of �n � 0 is obvious in the course of the proof and restricts

the applicability of discrete versions of the Gronwall lemma in integral form in

opposite to those of the lemma in di�erential form.

For later applications, we will need slightly changed versions with bn+1 = dn+1�
cn+1, where fcng ; fdng � R

+
0 and fdng is monotonically increasing. The assump-

tions are as in the proposition above except that the initial inequality a0 � b0 is not

given.

Without proof, we provide here the resulting estimates needed later. The proofs

follow exactly the same steps as above, taking into account that cn, dn are nonneg-

ative and fdng is monotonically increasing.

Let us �rst consider �n = � = const and �n = �t = const as it is the case for

the �-scheme with an equidistant partition of the time interval. We then have

an + cn �
!n

1 + (1� �)��t
(dn + (1� �)��ta0) (4.5)

for n = 1; 2; ; : : : with ! = (1 + (1� �)��t)=(1� ���t).

Now, we consider �n = � = const, variable �n, and � = 1 as it is the case for

the backward Euler scheme with variable step sizes. The estimate sought for then

reads as

an + cn � dn + �
n�1X
j=0

�j+1dj+1

nY
l=j+1

(1� ��l)
�1 � (1� ��max)

n dn (4.6)

for n = 1; 2; ; : : : with �max := max f�ng.

5 Application to linear parabolic problems

Let V be a separable, reexive Banach space with norm k � k and H be a separable

Hilbert space with inner product (�; �) and induced norm j�j. The dual space of V is

denoted by V � and equipped with the usual dual norm kfk� := supv2V nf0ghf; vi=kvk,
where h�; �i denotes the dual product between V � and V (that gives the value hf; vi
of a functional f 2 V � at the element v 2 V ).2

Furthermore, V is assumed to be dense and continuously embedded in H. Iden-

tifying H with its dual, we have, due to the reexivity of V , that H is dense and

continuously embedded in V �. Thus V , H and V � form an evolutional or Gelfand

triple. The dual pairing h�; �i then is an extension of the inner product in H. Owing

to the continuous embeddings, there is a constant � > 0 such that the Poincar�e-

Friedrichs inequalities

jvj � �kvk 8v 2 V ; (5.1a)

kvk� � � jvj 8v 2 H (5.1b)

2Due to the reexivity of V , h�; �i is also the dual pairing between V �� and V � and in this sense

symmetric.
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hold.

For a Banach space X with its dual X� and a time interval S � R, let

L2(S;X) be the set of Bochner measurable functions u : S ! X equipped

with the norm kuk2L2(S;X) :=
R
S ku(s)k

2
Xds < 1, let further W(S;X) := fu 2

L2(S;X) : u0 2 L2(S;X�) = (L2(S;X))�g equipped with the norm kuk2
W(S;X) =

kuk2L2(S;X) + ku
0k2L2(S;X�), and C(S;X) be the set of continuous functions u : S ! X

equipped with the norm kukC(S;X) = sups2S ku(s)kX.
3

For compact S, C(S;X) is a Banach space. By interpolation, the continuous

embedding W(S;X) ,! C(S;Y ) holds true for compact S whenever X ,! Y �
Y � ,! X� is an evolutional triple.

Finally, if (X; k � kX) is a Banach space, then in Xd, d 2 N, we use the Eu-

clidean norm kukXd =
qPd

i=1 kuik
2
X , where u = (u1; u2; : : : ; ud) 2 Xd.

For more details on the foregoing abstract setting, in particular on the con-

cept of Bochner integral and the related function spaces, we refer to Gajew-

ski/Gr�oger/Zacharias [4], and Wloka [13].

Let a(�; �) : V � V ! R be a continuous bilinear form satisfying a G�arding

inequality. Thus we have constants �; � > 0 and � � 0 such that for all u; v 2 V

ja(u; v)j � � kuk kvk ; (5.2a)

a(v; v) � � kvk2 � � jvj2 : (5.2b)

The form a(�; �) is said to be strongly positive i� � = 0 can be chosen. Without

loss of generality, we may assume � � �2� if � > 0. Otherwise, a(�; �) would be

strongly positive with a constant � = �� �2� > 0 due to (5.1).

With the bilinear form a(�; �), we associate the linear operator A : V ! V �

via hAu; vi = a(u; v) for all u; v 2 V . We should mention that A is the energetic

extension of the underlying di�erential operator.

Finally, we mention that V is indeed a Hilbert space with the inner product

[u; v] := (a(u; v) + a(v; u))=2 + � (u; v) and induced norm jjjujjj =
q
a(u; u) + � juj2.

However, we will not make use of this structure in V .

We consider the weak formulation of the initial-boundary value problem for a

linear parabolic equation in the time interval [0; T ] which can be written as

Problem (P ) For given u0 2 H and f 2 L2(0; T ;V �), �nd u 2 L2(0; T ;V ) s. t.

hu0(t); vi+ a(u(t); v) = hf(t); vi 8v 2 V ; a. e. in (0; T ], (5.3a)

u(0) = u0 : (5.3b)

Problem (P ) has a unique solution u 2 W(0; T ;V ), cf.Gajewski/Gr�oger/Za-

charias [4], Wloka [13]. Since u 2 W(0; T ;V ) ,! C([0; T ];H), the initial condi-

tion makes sense.

We now give two concrete examples for Problem (P ).

3With u0, the derivative in the distributional sense is meant. We shall also use the notation

u 2 C(S;X) to say that a function u is a. e. in S equal to a continuous function. We then deal

with the continuous representative, only.
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Example 5.1 (Singularly perturbed problem) Let 
 � Rd be a bounded do-

main with locally Lipschitz continuous boundary @
 2 C0;1. The space H is chosen

to be the L2(
) with the usual inner product (�; �) and norm j � j, the space V to be

the H1
0 (
) with the inner product ((�; �)) � (r�;r�) and norm k � k � jr � j.

For given 0 < " � 1, b : 
 ! R
d, c : 
 ! R, and f : 
 ! R (all suÆciently

smooth), we consider the initial-boundary value problem

ut(x; t)� "�u(x; t) + (b(x) � r)u(x; t) + c(x)u(x; t) = f(x; t) in 
� (0; T ] ;

u(x; t) = 0 on @
� (0; T ] ;

u(x; 0) = u0 in 
 ;

where u : 
 � [0; T ] ! R is wanted. Singularly perturbed problems of that kind

arise in many applications, covering convection- or reaction-di�usion problems in

uid dynamics, heat conduction, or semiconductor device simulation. For more

details, we refer to Roos/Stynes/Tobiska [8].

With

a(u; v) = "((u; v)) + ((b � r)u; v) + (cu; v) ;

Problem (P ) then is a weak formulation for the foregoing initial-boundary value

problem. The constants can be chosen as � = ", � = k1
2
r � b � ckL1(
) or, if

 := ess supx2
(
1
2
r � b� c) < "=�2, � = "� �2 and � = 0, � = " + � kbkL1(
)d +

�2kckL1(
). The constant � = diam 
 comes from the Poincar�e-Friedrichs

inequality representing the continuous embedding H1
0 (
) ,! L2(
). #

Example 5.2 (Stokes problem) Let 
 � R
d, d 2 f2; 3g, be a bounded do-

main with locally Lipschitz continuous boundary @
 2 C0;1. We consider the

initial-boundary value problem describing the non-stationary, isothermal motion of

a viscous, incompressible, homogeneous Newtonian uid neglecting nonlinear phe-

nomena,

ut(x; t)�
1

Re
�u(x; t) +rp(x; t) = f(x; t) in 
� (0; T ] ;

r � u(x; t) = 0 in 
� (0; T ] ;

u(x; t) = 0 on @
� (0; T ] ;

u(x; 0) = u0 in 
 ;

where Re is the Reynolds number, u denotes the velocity and p the quotient of

pressure and constant mass density. The function f describes a speci�c force.

Let H and V be de�ned as the following solenoidal spaces

H =
n
v 2 L2(
)d : r � v = 0 in H�1(
) ; nu = 0 in H�1=2(@
)

o
;

V =
n
v 2 H1

0 (
)
d : r � v = 0 in L2(
)

o
;

where n is the trace operator mapping from a subset of L2(
)d on H�1=2(@
) with

nv = (v � n)j@
 for all smooth v. Here, n denotes the outer normal on @
. The
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inner products and norms are as in Example 5.1, except that we deal here with

vector-valued functions.

Let a be de�ned by a(u; v) = Re�1 ((u; v)) for all u; v 2 V . Then with Problem

(P ), a weak formulation for the foregoing initial-boundary value problem is given,

and the constants are � = Re�1, � = 0, � = �. As in Example 5.1, � is the constant

from the Poincar�e-Friedrichs inequality.

For more details see e. g. Temam [10]. #

At this point, it is worth to mention, that no assumptions on the dimension of

V or H had to be made. Both spaces could be �nite dimensional, too. This is

particularly of interest when �rst discretizing in space and then discretizing in time.

The spatial semi-discretization could be e. g. a conforming �nite element method;

for more details, we refer to Thom�ee [12], Fujita/Suzuki [3], and the references

cited there. Hence, with the analysis in hand, we cover both the line method as well

as the Rothe method. However, in the �nite dimensional case, the spaces of the

Gelfand triple V ,! H ,! V � di�er in particular in the use of di�erent spatially

discrete norms.

In the following, we consider discretizations in time of Problem (P ) by means of

linear one-step methods (�-method), covering the backward Euler method as well

as the Crank-Nicolson method . Based upon energy methods, we provide a priori

stability as well as error estimates assuming suÆciently smooth and compatible data.

To exemplify the approach, we �rstly study the backward Euler method for

the linear parabolic problem with a strongly positive bilinear form based upon an

equidistant partition of the time interval [0; T ].

We then discuss the more general �-method and take into consideration bilinear

forms satisfying a G�arding inequality. It turns out, that parts of the analysis can

be only carried out for so-called A-stable methods, i. e. � 2 [1=2; 1].

Finally, we consider the backward Euler method with variable step sizes.

The more general case of a linear parabolic problem with time-dependent form

a(t; �; �), arising from time-dependent coeÆcients in the underlying di�erential oper-

ator, as well as an error analysis for non-smooth or incompatible data that takes ad-

vantage of parabolic smoothing properties are considered partly inHuang/Thom�ee

[7], Thom�ee [12], and will be discussed in detail in a forthcoming paper.

5.1 Backward Euler method with constant step size

Let N 2 N be given and �t = T=N , tn = n�t, n = 0; 1; 2; : : : ; N . Since f 2
L2(0; T ;V �), we can use the natural restriction

fn+1 =
1

�t

Z tn+1

tn

f(t) dt : (5.4)

The method under consideration is then de�ned as

Problem (P�t) For given u0 2 H and ffngNn=1 � V �, �nd fungNn=1 � V s. t. for

n = 0; 1; : : : ; N � 1 and all v 2 V

1

�t
(un+1 � un; v) + a(un+1; v) = hfn+1; vi : (5.5)
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Here, the initial value u0 might be taken to be the exact value u0 or an approx-

imation of it.

We assume a(�; �) to be strongly positive. Due to the main theorem for mono-

tone operators by Browder andMinty, cf.Gajewski/Gr�oger/Zacharias [4],

Problem (P�t) has a unique solution if the bilinear form (�; �) + �ta(�; �) is strongly
positive on V . Because of the strong positiveness of a(�; �), this is obviously ful�lled

without any restriction on the time step size �t.4

Proposition 5.1 (Stability estimates for Problem (P�t))

The discrete solution fung to Problem (P�t) is stable in the following sense:

max
j=0; :::;N

jujj2+
N�1X
j=0

juj+1�ujj2+��t
N�1X
j=0

kuj+1k2 � 2

 
ju0j2 +

1

�
kfk2L2(0;T ;V �)

!
(5.6)

junj2 �
�
1 +

��t

�2

��n
ju0j2 +

1

�

n�1X
j=0

�
1 +

��t

�2

�j�n Z tj+1

tj

kf(t)k2� dt (5.7)

for n = 0; 1; : : : ; N .

Here, maxj=0; :::;N ju
jj2 can be interpreted as the square of the (time) discrete

l1(0; T ;H)-norm, and �t
PN�1

j=0 ku
j+1k2 as the square of the discrete l2(0; T ;V )-

norm.

Indeed, (5.6) coincides with the usual stability estimate for the exact solution:

With v = u(t), we easily derive from Problem (P ),

ess sup
t2[0;T ]

ju(t)j2 + �
Z T

0
ku(t)k2 dt � 2

 
ju0j

2 +
1

�
kfk2L2(0;T ;V �)

!
: (5.8)

The analysis presented for proving (5.6) will be more or less known from the

literature, cf. e. g. Girault/Raviart [5]. However, there is the more re�ned es-

timate regarding the l1(0; T ;H)-norm of the discrete solution, estimate (5.7), that

uses the continuous embedding and a discrete version of the Gronwall lemma in

di�erential form.

This estimate again has a continuous counterpart (cf. also Proposition 2.2):

ju(t)j2 � e��t=�
2

ju0j
2 +

1

�

Z t

0
e��(t�s)=�

2

kf(s)k2
�
ds ; t 2 [0; T ] a. e. (5.9)

However, for singularly perturbed problems (i. e. for small �), a virtual improve-

ment only turns up in the long-term behaviour for large t.

Proof Let us choose v = un+1 in (5.5) in order to pro�t by the strong positiveness

of a(�; �). However, we then have to deal with the term (un+1 � un; un+1) that is of

the structure (a� b)a. We have (using implicitly the Hilbert space structure)

(a� b)a = a2 � ab =
a2

2
�

b2

2
+
1

2

�
a2 � 2ab + b2

�
=

a2

2
�

b2

2
+
1

2
(a� b)2

4Since V is at �rst a Banach space, the Lax-Milgram lemma does not apply directly.

18



and analogously

1

2
jun+1j2 �

1

2
junj2 �

1

2
jun+1j2 �

1

2
junj2 +

1

2
jun+1 � unj2 = (un+1 � un; un+1) :

From this, we conclude (using Cauchy-Schwarz' and Young's inequality)

1

2�t

�
jun+1j2 � junj2 + jun+1 � unj2

�
+ � kun+1k2

= hfn+1; un+1i � kfn+1k� ku
n+1k �

1

2�
kfn+1k2� +

�

2
kun+1k2 :

After summing from 0 up to n� 1, we end up with the a priori estimate

junj2 +
n�1X
j=0

juj+1 � ujj2 + ��t
n�1X
j=0

kuj+1k2 � ju0j2 +
�t

�

n�1X
j=0

kf j+1k2
�
:

Furthermore, we have with (5.4)

�t
n�1X
j=0

kf j+1k2
�
�

1

�t

n�1X
j=0

 Z tj+1

tj

kf(t)k�dt

!2

�
1

�t

n�1X
j=0

Z tj+1

tj

dt
Z tj+1

tj

kf(t)k2
�
dt

=

Z tn

0
kf(t)k2

�
dt � kfk2L2(0;T ;V �) ; (5.10)

and the numerical solution is stable in the sense of (5.6). The factor 2 in the r. h. s.

of (5.6) comes from splitting the inequality and taking the maximum on the l. h. s.

With the Poincar�e-Friedrichs inequality, we derive analogously

1

�t

�
jun+1j2 � junj2

�
+

�

�2
jun+1j2 �

1

�
kfn+1k2

�
:

Applying the discrete Gronwall lemma in backward di�erence form, Proposition

3.1, with � = ��=�2 < 0, we come to (5.7). #

For the discretization error en := u(tn)� un, the following result can be proved.

Proposition 5.2 (Error estimates for Problem (P�t))

For the discretization error en, the following estimates hold for n = 1; 2; : : : ; N

whenever the exact solution and the problem's data are smooth:

jenj2 +
n�1X
j=0

jej+1 � ejj2 + ��t
n�1X
j=0

kej+1k2 � je0j2 +
(�t)2

3�
kf 0 � u00k2L2(0;T ;V �) ; (5.11)

jenj2 �
�
1 +

��t

�2

��n
je0j2 +

(�t)2

3�

n�1X
j=0

�
1 +

��t

�2

�j�n Z tj+1

tj

kf 0(t)� u00(t)k2� dt :

(5.12)
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As we will prove in the appendix, it holds for suÆciently smooth solutions and

compatible data the a priori estimate

kf 0 � u00k2L2(0;T ;V �) �
�2

�

 
jAu0j

2 +
�2

�
kfk2L2(0;T ;V )

!
: (5.13)

Proof Firstly, we derive an error equation that gives a relation between the dis-

cretization error en and the consistency error �n, i. e. the error appearing when

putting the exact solution into the scheme.

For all v 2 V and n = 0; 1; : : : ; N � 1, we have

1

�t
(en+1 � en; v) + a(en+1; v) = h�n+1; vi : (5.14)

The consistency error �n+1 is given by

h�n+1; vi = �

*
u0(tn+1)�

u(tn+1)� u(tn)

�t
; v

+
+ hf(tn+1)� fn+1; vi

for all v 2 V . With integration by parts, we �nd with (5.4)

�n+1 = �
1

�t

Z tn+1

tn

(t� tn)u
00(t)dt+

1

�t

Z tn+1

tn

(t� tn)f
0(t)dt ;

where the integrals shall be understood as Bochner integrals.

The error analysis now follows exactly the same steps as the stability analysis,

so that we end up with the a priori error estimate for n = 0; 1; : : : ; N

jenj2 +
n�1X
j=0

jej+1 � ejj2 + ��t
n�1X
j=0

kej+1k2 � je0j2 +
�t

�

n�1X
j=0

k�j+1k2
�
:

Furthermore, we have

k�j+1k2� �

 1

�t

Z tj+1

tj

(t� tj)(f
0(t)� u00(t))dt


2

�

�
1

(�t)2

 Z tj+1

tj

(t� tj)kf
0(t)� u00(t)k�dt

!2

�
1

(�t)2

Z tj+1

tj

(t� tj)
2dt

Z tj+1

tj

kf 0(t)� u00(t)k2
�
dt

=
�t

3

Z tj+1

tj

kf 0(t)� u00(t)k2
�
dt ;

and hence

�t
n�1X
j=0

k�j+1k2� �
(�t)2

3

Z tn

0
kf 0(t)� u00(t)k2�dt

�
(�t)2

3
kf 0 � u00k2L2(0;T ;V �) :
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We end up with the a priori error estimate (5.11).

Again, we can apply Proposition 3.1 after estimating kej+1k � jej+1j=�. This

yields
1

�t

�
jen+1j2 � jenj2

�
+

�

�2
jen+1j2 �

1

�
k�n+1k2

�
;

and hence (5.12). #

5.2 A-stable �-method

As in the previous section, we proceed with an equidistant partition of the time

interval. However, the use of variable time steps is (almost) straightforward. The

method under consideration is now de�ned as

Problem (P �
�t) For given u0 2 V and ffn+�gN�1

n=0 � V �, �nd fungNn=1 � V s. t. for

n = 0; 1; : : : ; N � 1 and all v 2 V

1

�t
(un+1 � un; v) + a(un+�; v) = hfn+�; vi : (5.15)

Here, � 2 [0; 1] is a parameter, un+� := �un+1 + (1� �)un, and fn+� is an approxi-

mation of f at tn+� := � tn+1 + (1 � �) tn, e. g. f
n+� = �f(tn+1) + (1 � �)f(tn) if f

is suÆciently smooth or, which we will use in the following, fn+� = 1
�t

R tn+1
tn f(t)dt.

Note, that u0 { the approximation of u0 { has to be an element of V except for

� = 1 where u0 2 H is suÆcient.

It is known that the method applied to an ordinary di�erential equation with a

smooth solution is convergent of �rst order, whereas second order is achieved for � =

1=2, only. Moreover, the method is A-stable for � 2 [1=2; 1] and strongly A-stable

if, in addition, � 6= 1=2. For more details, we refer e. g. to Strehmel/Weiner [9].

The bilinear form a(�; �) ful�ls aG�arding inequality. Again, due to the main the-

orem for monotone operators byBrowder andMinty, cf.Gajewski/Gr�oger/Za-

charias [4], Problem (P �
�t) possesses a unique solution if c(�; �) := (�; �) + ��ta(�; �)

is strongly positive. For all v 2 V , we have

c(v; v) = jvj2 + ��ta(v; v) � jvj2 + ��t(�kvk2 � �jvj2)

= (1� ���t)jvj2 + ���tkvk2 :

If now ���t � 1, i. e. N � ��T , the form c(�; �) is strongly positive. In the opposite

case, if ���t > 1, we have with the Poincar�e-Friedrichs inequality

c(v; v) �
�
�2(1� ���t) + ���t

�
kvk2 ;

and c(�; �) is strongly positive if �2 + (�� �2�)��t > 0. Since � � �2� if � > 0 by

assumption, we arrive at

�2�� �

�2
��t < 1 ; i. e. N >

�2�� �

�2
�T : (5.16)

The latter case is less restrictive than ���t � 1. Hence, Problem (P �
�t) has

a unique solution if (5.16) is ful�lled, i. e. if the time steps are suÆciently small.
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However, for the forward Euler method with � = 0 as well as for a positive a(�; �)
(� = 0 or � = �2�), there will be no restriction on the time step size.

We �rstly come to stability estimates. There are many di�erent ways to estimate

the discrete solution in some norm. Hence, the following analysis can only present

one possibility.

To derive the estimates desired, we choose v = un+� in (5.15). We then have to

estimate the term (un+1 � un; �un+1 + (1� �)un) which is of the structure

(a� b)(�a + (1� �)b) = �a2 + (1� 2�)ab� (1� �)b2

=
a2

2
�

b2

2
+ (� �

1

2
)(a� b)2

�
a2

2
�

b2

2
if � � 1=2.

Obviously, there is no such estimate for � 2 [0; 1=2): Assume, there were con-

stants Æ, " > 0 such that

�a2 + (1� 2�)ab� (1� �)b2 � Æa2 � "b2 :

In order to be able to proceed with the analysis, we have to ensure Æ > ". On the

other hand, b = 0 and a = 0, resp., imply � � Æ and �(1 � �) � ". Thus, we have

� � Æ � " � 1� � and hence � � 1=2 which is in contradiction to our assumption.

If, however, the form a(�; �) is not strongly positive, then the G�arding inequality

with � > 0 e�ects in some sense a stabilization: The numerical solution need not

to cover all the qualitative behaviour of the exact solution to a strongly positive

problem. By this, the scheme can be stable even for � < 1=2 as we will show next.

Proposition 5.3 (Stability estimates for Problem (P �
�t))

The discrete solution fung to Problem (P �
�t) is stable in the following sense:

If � 2 [1=2; 1] and

2���t < 1 (5.17)

then

junj2 +
�
(2� � 1) + 2��(1� �)�t

� n�1X
j=0

juj+1 � ujj2

+�(2� � 1)2�t
n�1X
j=0

kuj+1k2 + �(2� � 1)(1� �)�t kunk2

� !n
�
ju0j2 + �(2� � 1)(1� �)�t ku0k2

�
+

!n

1 + 2(1� �)��t

1

�
kfk2L2(0;T ;V �) (5.18)

for n = 1; 2; : : : ; N , where ! = (1 + 2(1� �)��t)=(1� 2���t).

If � 6= 0 and

1� 2�

2��(1� �)
� �t <

1

2��
; (5.19)
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where � can be less than 1=2, then the weaker stability estimate

junj2 +
�
(2� � 1) + 2��(1� �)�t

� n�1X
j=0

juj+1 � ujj2 + ��t
n�1X
j=0

kuj+�k2

� !nju0j2 +
!n

1 + 2(1� �)��t

1

�
kfk2L2(0;T ;V �) ; (5.20)

holds for n = 1; 2; : : : ; N with ! as above.

If � = 0 and

��(1� �)�t � �2(2� � 1) (5.21)

with � 2 (1=2; 1] or � 6= 0 and

�2(1� 2�)

(2�2�� �)�(1� �)
� �t <

�2

(2�2�� �)�
(5.22)

then

junj2 � !n ju0j2 +
�t

�

n�1X
j=0

!n�j

1 + (1� �)�t(2�� �=�2)
kf j+�k2

�
(5.23)

for n = 1; 2; : : : ; N , where ! is given by

! =
1 + (1� �)�t(2�� �=�2)

1� ��t(2�� �=�2)
:

We �rstly remark that step size restriction appearing are stronger than (5.16)

which gave solvability of the discrete problem.

Furthermore, for � 6= 0, it is not necessary to have � � 1=2, but �t has to be

appropriate: not to large and { if � < 1=2 { not to small.

The estimate (5.23) again is an improvement w. r. t. the l1(0; T ;H)-norm and

will be proved by using the discrete Gronwall lemma in di�erence form. However,

in the strongly positive case, this improvement can be only obtained for strongly A-

stable schemes (� 2 (1=2; 1]). Then, it holds 0 � ! < 1, and some decaying of the

stability constants can be observed. For � 6= 0, we have ! > 1 since � � �2� by

assumption.

Proof From (5.15), we have with the G�arding and Young inequality

jun+1j2 � junj2 + (2� � 1)jun+1 � unj2 + ��t kun+�k2 � 2��t jun+�j2 �
�t

�
kfn+�k2� :

With the identity

j�un+1 + (1� �)unj2 = �jun+1j2 + (1� �)junj2 � �(1� �)jun+1 � unj2

and the inequality

kun+�k2 �
�
� kun+1k � (1� �) kunk

�2
= �2 kun+1k2 � 2�(1� �) kun+1k kunk+ (1� �)2 kunk

� �2 kun+1k2 � �(1� �)
�
kun+1k2 + kunk2

�
+ (1� �)2 kunk

= (2� � 1)
�
� kun+1k2 � (1� �) kunk2

�
; (5.24)
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we obtain

jun+1j2 � junj2 +
�
(2� � 1) + 2��(1� �)�t

�
jun+1 � unj2

+�(2� � 1)�t
�
� kun+1k2 � (1� �) kunk2

�

�
�t

�
kfn+�k2

�
+ 2��t

�
� jun+1j2 + (1� �) junj2

�
:

Summation yields for n = 1; 2; : : :

junj2 +
�
(2� � 1) + 2��(1� �)�t

� n�1X
j=0

juj+1 � ujj2

+�(2� � 1)2�t
n�1X
j=0

kuj+1k2 + �(2� � 1)(1� �)�t
�
kunk2 � ku0k2

�

� ju0j2 +
�t

�

n�1X
j=0

kf j+�k2
�
+ 2��t

n�1X
j=0

�
� juj+1j2 + (1� �) jujj2

�
:

Applying the (slightly changed) discrete Gronwall lemma in sum form, Proposi-

tion 4.1, with the resulting inequality (4.5), we end up with

junj2 +
�
(2� � 1) + 2��(1� �)�t

� n�1X
j=0

juj+1 � ujj2

+�(2� � 1)2�t
n�1X
j=0

kuj+1k2 + �(2� � 1)(1� �)�t kunk2

� !n
�
ju0j2 + �(2� � 1)(1� �)�t ku0k2

�
+

!n

1 + 2(1� �)��t

�t

�

n�1X
j=0

kf j+�k2
�

under the assumption (5.17).

Analogously to (5.10), we have

�t
n�1X
j=0

kf j+�k2
�
� kfk2L2(0;T ;V �) ;

and estimate (5.18) follows.

If � 6= 0, the estimate (5.24) makes no sense, and we have instead of (5.18) the

(weaker) stability estimate (5.20) assuming (5.19).

We now come to the more re�ned estimate (5.23): With

�2 kun+�k2 � jun+�j2 = �jun+1j2 + (1� �)junj2 � �(1� �)jun+1 � unj2 ;

we �nd

1

�t

�
jun+1j2 � junj2

�
+

 
2� � 1

�t
+
2�2�� �

�2
�(1� �)

!
jun+1 � unj2

�
1

�
kfn+�k2

�
+
2�2�� �

�2

�
� jun+1j2 + (1� �) junj2

�
:
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The assumptions of Proposition 3.3 are obviously ful�lled in the strongly positive

case (� = 0) for � = 1. Otherwise, the time step size �t has to be small enough:

�t <

8>>>><
>>>>:

�2

�(1� �)
if � = 0

�2

(2�2�� �)�
if � 6= 0

:

We repeat that by assumption � � �2� if � 6= 0.

In addition, the coeÆcient of jun+1 � unj2 has to be nonnegative in order to

obtain stability. This is the case for

�t �
�2(2� � 1)

��(1� �)
if � = 0

and

�t �
�2(1� 2�)

(2�2�� �)�(1� �)
if � 6= 0 :

This shows that for strongly positive a(�; �), it is necessary to have � > 1=2 and a

suÆciently small step size. The case � = 1=2 is covered by (5.18).

Applying now the discrete Gronwall lemma, we obtain (after some simple

inspections and omitting the term with jun+1 � unj) estimate (5.23). #

Finally, we should remark that it is possible to avoid restrictions on the time

step size in the strongly positive case. For this, we have to estimate

hfn+1; un+1i �


2
kun+1k2 +

1

2
kfn+1k2� ;

where  2 (0; 2�) has to be chosen appropriately. We then have to replace � by

2� �  in the above analysis (where we used  = �). We would end up with a

restriction on 

 > 2��
�2(2� � 1)

�t�(1� �)
: (5.25)

However, this leads to worse stability constants.

Proposition 5.4 (Error estimates for Problem (P �
�t))

For the discretization error en, the following estimates hold whenever the exact so-

lution and the problem's data are smooth: If � 2 [1=2; 1] and (5.17), then

jenj2 +
�
(2� � 1) + 2��(1� �)�t

� n�1X
j=0

jej+1 � ejj2

+�(2� � 1)2�t
n�1X
j=0

kej+1k2 + �(2� � 1)(1� �)�t kenk2

� !n
�
je0j2 + �(2� � 1)(1� �)�t ke0k2

�

+
!n

1 + 2(1� �)��t

(�t)2

3�
kf 0 � u00k2L2(0;T ;V �) (5.26)
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for n = 1; 2; : : : ; N , where ! = (1 + 2(1� �)��t)=(1� 2���t).

If � = 0 and (5.21) with � 2 (1=2; 1] or � 6= 0 and (5.22) then

jenj2 � !n je0j2 +
(�t)2

3�

n�1X
j=0

!n�j

1 + (1� �)�t(2�� �=�2)

Z tj+1

tj

kf 0(t)� u00(t)k2
�
dt

(5.27)

for n = 1; 2; : : : ; N , where

! =
1 + (1� �)�t(2�� �=�2)

1� ��t(2�� �=�2)
:

Moreover, if � = 1=2 second order accuracy is obtained: If ��t < 1, then

jenj2 +
��t

2

n�1X
j=0

jej+1 � ejj2 � !n je0j2 +
!n

1 + ��t

(�t)4

120�
kf 00 � u000k2L2(0;T ;V �) (5.28)

for n = 1; 2; : : : ; N , where ! = (1 + ��t)=(1� ��t). If in addition � 6= 0, then

jenj2 � !n je0j2 +
(�t)4

120�

n�1X
j=0

2!n�j

2 + �t(2�� �=�2)

Z tj+1

tj

kf 00(t)� u000(t)k2� dt (5.29)

for n = 1; 2; : : : ; N , where

! =
2 +�t(2�� �=�2)

2��t(2�� �=�2)
:

Again, we could also consider � < 1=2 if � 6= 0 and prove a result similarly to

(5.20) under the restriction (5.19). We omit this here.

Proof We start with an error equation giving the relation between the discretiza-

tion error en and the consistency error �n+�, n = 0; 1; : : :,

1

�t
(en+1 � en; v) + a(en+�; v) = h�n+�; vi 8v 2 V ; (5.30)

with en+� := �en+1 + (1� �)en and

h�n+�; vi = �

*
�u0(tn+1) + (1� �)u0(tn)�

u(tn+1)� u(tn)

�t
; v

+

+
D
�f(tn+1) + (1� �)f(tn)� fn+�; v

E
(5.31)

for all v 2 V . With integration by parts and using the restriction

fn+� :=
1

�t

Z tn+1

tn

f(t)dt ;

we �nd

�n+� =
1

�t

Z tn+1

tn

(t� (1� �)tn+1 � �tn)(f
0(t)� u00(t))dt : (5.32)
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in the sense of a Bochner integral.

The error analysis follows the same steps as the stability analysis. Similarly to

(5.18), we have under the restriction (5.17)

jenj2 +
�
(2� � 1) + 2��(1� �)�t

� n�1X
j=0

jej+1 � ejj2

+�(2� � 1)2�t
n�1X
j=0

kej+1k2 + �(2� � 1)(1� �)�t kenk2

� !n
�
je0j2 + �(2� � 1)(1� �)�t ke0k2

�
+

!n

1 + 2(1� �)��t

�t

�

n�1X
j=0

k�j+�k2�

With (5.21) for � = 0 and (5.22) for � 6= 0, resp., we have similarly to estimate

(5.23) the error estimate (5.27).

For the consistency error, we have

k�j+�k2
�
�

1

(�t)2

 Z tj+1

tj

jt� (1� �)tj+1 � �tjj kf
0(t)� u00(t)k�dt

!2

�
1

(�t)2

Z tj+1

tj

(t� (1� �)tj+1 � �tj)
2 dt

Z tj+1

tj

kf 0(t)� u00(t)k2� dt

=
�t

3

�
�3 + (1� �)3

� Z tj+1

tj

kf 0(t)� u00(t)k2� dt :

Since �(�) := �3+(1� �)3, � 2 [0; 1], has maximum value �(0) = �(1) = 1, we come

to

�t
n�1X
j=0

k�j+�k2
�
�

(�t)2

3

Z tn

0
kf 0(t)� u00(t)k2

�
dt �

(�t)2

3
kf 0 � u00k2L2(0;T ;V �) (5.33)

if the exact solution u and the right-hand side f are smooth enough.

However, if � = 1=2, we are able to improve the estimate in order to achieve

second order accuracy. Again, integration by parts gives

�n+1=2 =
1

2�t

Z tn+1

tn

(tn+1 � t)(t� tn)(f
00(t)� u000(t))dt (5.34)

and thus

k�j+1=2k2� �
1

4(�t)2

Z tj+1

tj

(tj+1 � t)2(t� tj)
2dt

Z tj+1

tj

kf 00(t)� u000(t)k2�dt

=
(�t)3

120

Z tj+1

tj

kf 00(t)� u000(t)k2
�
dt :

Hence, it holds

�t
n�1X
j=0

k�j+1=2k2
�
�

(�t)4

120

Z tn

0
kf 00(t)�u000(t)k2

�
dt �

(�t)4

120
kf 00�u000k2L2(0;T ;V �) (5.35)

if the exact solution u and the right-hand side f are smooth enough. #
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For the right-hand sides of the foregoing estimates (5.33) and (5.35), we have

the following a priori estimates if the exact solution and the data u0 and f are

suÆciently smooth, i. e. if the equivalent compatibility conditions are ful�lled, cf.

also Temam [11] or Wloka [13]:

Z t

0
kf 0(s)� u00(s)k2

�
ds

�
�2

�
e2�t

 
jAu0j

2 +
2

�

 
�2 kfk2L2(0;T ;V ) +

4�2�� �

�2
� kfk2L2(0;T ;V �)

!!
(5.36)

Z t

0
kf 00(s)� u000(s)k2ds

�
�2

�
e2�t

 
jA2u0j

2 + �

 
1 +

3�

�

! �
kf 0k2L2(0;T ;V ) + kf

0 � Afk2L2(0;T ;V )

�

+
2�

�2�
(6�2�� �) kf 0 � Afk2L2(0;T ;V �)

!
: (5.37)

We shall give a proof in the appendix.

As we have introduced the incompressible Stokes problem as an example for

Problem (P ), we shall remark here that higher compatibility conditions on the

data and thus higher regularity of the exact solution to the Stokes (and Navier-

Stokes) problem are unrealistic. Therefore, the analysis presented for the second

order Crank-Nicolson scheme is not applicable. Due to the divergence free con-

straint, higher regularity, as it is required for second order accuracy, leads to an

overdetermined Neumann problem that is hardly ever ful�lled, and in most cases

the conditions are uncheckable for given data, cf. Temam [11].

5.3 Backward Euler method with variable step sizes

We now consider the backward Euler scheme with a non-equidistant partition of

the time interval. Let 0 = t0 < t1 < : : : < tN = T for N 2 N n f0g be given, and
�n+1 := tn+1 � tn, n = 0; 1; : : : ; N � 1.

The method under consideration reads as

Problem (P� ) For given u0 2 H and ffngNn=1 � V �, �nd fungNn=1 � V s. t. for

n = 0; 1; : : : ; N � 1 and all v 2 V

1

�n+1
(un+1 � un; v) + a(un+1; v) = hfn+1; vi : (5.38)

For f 2 L2(0; T ;V �), we use again restriction (5.4),

fn+1 =
1

�n+1

Z tn+1

tn

f(t)dt :
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We assume that a(�; �) ful�ls a G�arding inequality.

Analogously to the previous case with � = 1, there is a unique solution to

Problem (P� ) if
�2�� �

�2
�max < 1 ; (5.39)

where �max = maxn=1; :::;N �n. However, there will be again no restriction on the

time step size in the positive case (� = 0 or � = �=�2).

As we will see in the following, the estimates coincide with those of the previous

section setting �t = �max and � = 1. However, due to the variable step sizes, an

improvement of the stability and error constants can be achieved.

Proposition 5.5 (Stability estimates for Problem (P� ))

The discrete solution fung to Problem (P� ) is stable in the following sense:

If � = 0 or

�max <
1

2�
; (5.40)

then

junj2 +
n�1X
j=0

juj+1 � ujj2 + �
n�1X
j=0

�j+1 ku
j+1k2

� (1� 2��max)
�n

 
ju0j2 +

1

�
kfk2L2(0;T ;V �)

!
(5.41)

for n = 1; 2; : : : ; N .

If � = 0 or

�max <
�2

2�2�� �
; (5.42)

then

junj2 � ju0j2
nY
l=1

!l +
1

�

n�1X
j=0

Z tj+1

tj

kf(t)k2
�
dt

nY
l=j+1

!l ; (5.43)

for n = 1; 2; : : : ; N , where

!l =

 
1�

(2�2�� �)�l

�2

!�1
: (5.44)

Note, that (5.40) and (5.42) are more restrictive than (5.39), which gave solvabil-

ity. Furthermore, we have 0 < !l < 1 in the strongly positive case whereas !l > 1

for � 6= 0. In addition, we have !l � !max if � 6= 0, where

!max =

 
1�

(2�2�� �)�max

�2

!�1
:

Proof Setting v = un+1 in (5.38), we obtain with G�arding's inequality

1

2�n+1

�
jun+1j2 � junj2 + jun+1 � unj2

�
+ � kun+1k2 � � jun+1j2

� kfn+1k�ku
n+1k �

1

2�
kfn+1k2

�
+

�

2
kun+1k2
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and after summation, it follows for n = 1; 2; : : :

junj2 +
n�1X
j=0

juj+1 � ujj2 + �
n�1X
j=0

�j+1 ku
j+1k2

� ju0j2 +
1

�

n�1X
j=0

�j+1 kf
j+1k2

�
+ 2�

n�1X
j=0

�j+1 ju
j+1j2 :

If (5.40), we can apply the discrete Gronwall lemma Proposition 4.1 (slightly

changed with resulting inequality (4.6)) and end up with the a priori stability esti-

mate for n = 1; 2; : : :

junj2 +
n�1X
j=0

juj+1 � ujj2 + �
n�1X
j=0

�j+1 ku
j+1k2 � ju0j2 +

1

�

n�1X
j=0

�j+1 kf
j+1k2

�

+2�
n�1X
j=0

�j+1

0
@ nY
l=j+1

(1� 2��l)
�1

1
A
0
@ju0j2 + 1

�

jX
l=0

�l+1 kf
l+1k2

�

1
A

� (1� 2��max)
�n

0
@ju0j2 + 1

�

n�1X
j=0

�j+1 kf
j+1k2�

1
A :

Similarly to (5.10), it holds

n�1X
j=0

�j+1kf
j+1k2

�
�

n�1X
j=0

1

�j+1

 Z tj+1

tj

kf(t)k�dt

!2

�
n�1X
j=0

1

�j+1

Z tj+1

tj

dt
Z tj+1

tj

kf(t)k2
�
dt =

Z tn

0
kf(t)k2

�
dt � kfk2L2(0;T ;V �) ;

and the assertion (5.41) follows.

Using the continuous embedding V ,! H leads to

1

�n+1

�
jun+1j2 � junj2

�
+

�� 2�2�

�2
jun+1j2 �

1

�
kfn+1k2

�
:

In order to apply the discrete Gronwall lemma Proposition 3.3 with � = 1, we

have to assume suÆciently small step sizes if � 6= 0, i. e. (5.42). We then arrive at

(5.43). #

Proposition 5.6 (Error estimates for Problem (P� ))

For the discretization error en, the following estimates hold whenever the exact so-

lution and the problem's data are smooth:

If � = 0 or (5.40), then

jenj2 +
n�1X
j=0

jej+1 � ejj2 + �
n�1X
j=0

�j+1 ke
j+1k2

� (1� 2��max)
�n

 
je0j2 +

� 2max

3�
kf 0 � u00k2L2(0;T ;V �)

!
(5.45)
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for n = 1; 2; : : : ; N .

If � = 0 or (5.42), then

jenj2 � je0j2
nY
l=1

!l +
� 2max

3�

n�1X
j=0

Z tj+1

tj

kf 0(t)� u00(t)k2
�
dt

nY
l=j+1

!l (5.46)

for n = 1; 2; : : : ; N , where !l is given by (5.44).

Again, we have 0 < !l < 1 in the strongly positive case and !l > 1 otherwise.

Also, we have !l � !max if � 6= 0. Finally, we refer to the a priori estimate (5.36)

for the exact solution that will be proved in the appendix.

Proof Starting with the error equation for n = 0; 1; : : : ; N � 1

1

�n+1
(en+1 � en; v) + a(en+1; v) = h�n+1; vi 8v 2 V ; (5.47)

where

�n+1 =
1

�n+1

Z tn+1

tn

(t� tn)(f
0(t)� u00(t))dt

is the consistency error, we follow the steps of the stability analysis.

Then, we come with � = 0 and (5.40) otherwise to the estimate

jenj2 +
n�1X
j=0

jej+1 � ejj2 + �
n�1X
j=0

�j+1 ke
j+1k2

� (1� 2��max)
�n

0
@je0j2 + 1

�

n�1X
j=0

�j+1 k�
j+1k2�

1
A :

Using the continuous embedding V ,! H leads with � = 0 and (5.42) otherwise to

jenj2 � je0j2
nY
l=1

!l +
1

�

n�1X
j=0

�j+1k�
j+1k2�

nY
l=j+1

!l :

For the consistency error, we have

k�j+1k2
�
�

 1

�j+1

Z tj+1

tj

(t� tj)(f
0(t)� u00(t))dt


2

�

�
1

� 2j+1

Z tj+1

tj

(t� tj)
2 dt

Z tj+1

tj

kf 0(t)� u00(t)k2
�
dt

=
�j+1

3

Z tj+1

tj

kf 0(t)� u00(t)k2
�
dt ;

and thus

n�1X
j=0

�j+1 k�
j+1k2

�
�

� 2max

3
kf 0 � u00k2L2(0;T ;V �) :

The assertions follow immediately. #
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Appendix A priori estimates for Problem (P )

In the following, we prove the estimates (5.13), (5.36), and (5.37). For this, we shall

assume higher regularity and hence (higher) compatibility of the data, cf. Temam

[11] and Wloka [13] for more details.

However, there are smoothing a priori estimates and correlated smoothing er-

ror estimates even for rough data not satisfying compatibility and without assuming

higher regularity of the exact solution. Such estimates rely on the parabolic smooth-

ing property and use time weights. They will be discussed in detail in a forthcoming

paper, cf. also Huang/Thom�ee [7] and Fujita/Suzuki [3].

Note furthermore, that the following analysis holds even for non-symmetric a(�; �)
and A, resp.

Let u0 2 V , Au0 2 H, f 2 L2(0; T ;V ), and f 0 2 L2(0; T ;V �). Then, it holds

u; u0; Au 2 L2(0; T ;V ) \ C([0; T ];H), and u00; Au0 2 L2(0; T ;V �).

Since V ,!dense V
� and V reexive, it follows from (5.3a)

hu00(t); vi+ a(u0(t); v) = hf 0(t); vi (A.1)

for all v 2 V and almost all t 2 [0; T ]. Therefore, we have with the continuity of

a(�; �)

kf 0(t)� u00(t)k� = sup
v2V nf0g

ja(u0(t); v)j

kvk
� � ku0(t)k :

Furthermore, G�arding's inequality leads to

1

2

d

dt
jAu(t)j2 � � jAu(t)j2 + � ku0(t)k2

�
1

2

d

dt
jAu(t)j2 � � jAu(t)j2 + a(u0(t); u0(t)) + � ju0(t)j2

= hAu0(t); Au(t)i � � hAu(t); Au(t)i+ hAu0(t); u0(t)i+ � hu0(t); u0(t)i

= hAu0(t); u0(t) + Au(t)i+ � hu0(t); u0(t)i � � hAu(t); Au(t)i

= hAu0(t); f(t)i+ � hu0(t); u0(t)i � � hf(t)� u0(t); f(t)� u0(t)i

= a(u0(t); f(t)) + 2� hu0(t); f(t)i � � jf(t)j2

� � ku0(t)k kf(t)k+ 2�ku0(t)k kf(t)k� � � jf(t)j2

�
�

4
ku0(t)k2 +

�2

�
kf(t)k2 +

�

4
ku0(t)k2 +

4�2

�
kf(t)k2

�
� � jf(t)j2

�
�

2
ku0(t)k2 +

�2

�
kf(t)k2 +

 
4�2

�
�

�

�2

!
kf(t)k2

�
:
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We should mention that either � = 0 (strongly positive A) and then the last term

of the right-hand side vanishes or � 6= 0 with � � �2� and it holds

3�2

�
�

4�2

�
�

�

�2
<

4�2

�
:

With
d

dt

�
e�2�tjAu(t)j2

�
= e�2�t

 
d

dt
jAu(t)j2 � 2� jAu(t)j2

!

we �nally obtain

d

dt

�
e�2�tjAu(t)j2

�
+ �e�2�tku0(t)k2 �

2

�
e�2�t

 
�2 kf(t)k2 +

4�2�� �

�2
� kf(t)k2�

!
:

Integration over t gives

jAu(t)j2 + �
Z t

0
e2�(t�s)ku0(s)k2ds

� e2�tjAu0j
2 +

2

�

Z t

0
e2�(t�s)

 
�2 kf(s)k2 +

4�2�� �

�2
� kf(s)k2

�

!
ds ;

and with 1 � e2�(t�s) � e2�t for t � s � 0, it follows

jAu(t)j2 + �
Z t

0
ku0(s)k2ds

� e2�t
 
jAu0j

2 +
2

�

 
�2 kfk2L2(0;T ;V ) +

4�2�� �

�2
� kfk2L2(0;T ;V �)

!!
: (A.2)

The a priori estimate desired then reads as

Z t

0
kf 0(s)� u00(s)k2�ds � �2

Z t

0
ku0(s)k2ds

�
�2

�
e2�t

 
jAu0j

2 +
2

�

 
�2 kfk2L2(0;T ;V ) +

4�2�� �

�2
� kfk2L2(0;T ;V �)

!!
; (A.3)

which is (5.36).

If � = 0, we may prove in the same way estimate (5.13),

Z t

0
kf 0(s)� u00(s)k2

�
ds �

�2

�

 
jAu0j

2 +
�2

�
kfk2L2(0;T ;V )

!
: (A.4)

For the a priori estimate of kf 00 � u000kL2(0;T ;V �), we assume in addition5 Au0 2
V , A2u0 2 H, f 0; Af 2 L2(0; T ;V ), and f 00; Af 0 2 L2(0; T ;V �). By this, we

have in addition u00; Au0 2 L2(0; T ;V ) \ C([0; T ];H) and u000; Au00 2 L2(0; T ;V �).

Furthermore, it holds (5.3a) and

hAu0(t); vi+ hA2u(t); vi = hAf(t); vi (A.5a)

hu00(t); vi+ hAu0(t); vi = hf 0(t); vi (A.5b)

5We use the notation A2v := A(Av) 2 V � for all v 2 V with Av 2 V .
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for all v 2 V � and almost all t 2 [0; T ] as well as

hAu00(t); vi+ hA2u0(t); vi = hAf 0(t); vi (A.5c)

hu000(t); vi+ hAu00(t); vi = hf 00(t); vi (A.5d)

for all v 2 V and almost all t 2 [0; T ].

From (A.5d), we immediately obtain

kf 00(t)� u000(t)k� � � ku00(t)k :

With (A.5a) and (A.5b), we have

hu00(t); vi = hf 0(t); vi � hAf(t); vi+ hA2u(t); vi (A.5e)

for all v 2 V �. Moreover, G�arding's inequality gives

1

2

d

dt
jA2u(t)j2 � � jA2u(t)j2 + � ku00(t)k2

�
1

2

d

dt
jA2u(t)j2 � � jA2u(t)j2 + a(u00(t); u00(t)) + � ju00(t)j2

= hA2u0(t); A2u(t)i � � hA2u(t); A2u(t)i+ hAu00(t); u00(t)i+ �hu00(t); u00(t)i :

Setting v = A2u(t) in (A.5c), it follows with (A.5e)

hA2u0(t); A2u(t)i = hAf 0(t); A2u(t)i � hAu00(t); A2u(t)i = hA2u(t); Af 0(t)� Au00(t)i

= hu00(t); Af 0(t)� Au00(t)i � hf 0(t)� Af(t); Af 0(t)� Au00(t)i

= �hAu00(t); u00(t)i+ hAf 0(t); u00(t)i+ hAu00(t); f 0(t)� Af(t)i

�hAf 0(t); f 0(t)� Af(t)i :

With (A.5e), we have furthermore

hA2u(t); A2u(t)i = hu00(t)� f 0(t) + Af(t); A2u(t)i

= hu00(t)� f 0(t) + Af(t); u00(t)� f 0(t) + Af(t)i

= hu00(t); u00(t)i � 2 hu00(t); f 0(t)� Af(t)i

+hf 0(t)� Af(t); f 0(t)� Af(t)i :

Therefore, we have

1

2

d

dt
jA2u(t)j2 � � jA2u(t)j2 + � ku00(t)k2

� hAf 0(t); u00(t)i+ hAu00(t); f 0(t)� Af(t)i � hAf 0(t); f 0(t)� Af(t)i

+2� hu00(t); f 0(t)� Af(t)i � � hf 0(t)� Af(t); f 0(t)� Af(t)i

� � ku00(t)k kf 0(t)k+ � ku00(t)k kf 0(t)� Af(t)k+ � kf 0(t)k kf 0(t)� Af(t)k

+2� ku00(t)k kf 0(t)� Af(t)k� � � jf 0(t)� Af(t)j2
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�
�

6
ku00(t)k2 +

3�2

2�
kf 0(t)k2 +

�

6
ku00(t)k2 +

3�2

2�
kf 0(t)� Af(t)k2 +

�

2
kf 0(t)k2

+
�

2
kf 0(t)� Af(t)k2 +

�

6
ku00(t)k2 +

6�2

�
kf 0(t)� Af(t)k2

�
�

�

�2
kf 0(t)� Af(t)k2

�

=
�

2
ku00(t)k2 +

�

2

 
1 +

3�

�

!
kf 0(t)k2 +

�

2

 
1 +

3�

�

!
kf 0(t)� Af(t)k2

+
�

�2�
(6�2�� �) kf 0(t)� Af(t)k2� :

Integration over t leads to

jA2u(t)j2 + �
Z t

0
e2�(t�s)ku00(s)k2ds

� e2�t jA2u0j
2 +

Z t

0
e2�(t�s)

 
�

 
1 +

3�

�

! �
kf 0(s)k2 + kf 0(s)� Af(s)k2

�

+
2�

�2�
(6�2�� �) kf 0(s)� Af(s)k2�

!
ds

and we end up with the a priori estimateZ t

0
kf 00(s)� u000(s)k2ds � �2

Z t

0
ku00(s)k2ds

�
�2

�
e2�t

 
jA2u0j

2 + �

 
1 +

3�

�

! �
kf 0k2L2(0;T ;V ) + kf

0 � Afk2L2(0;T ;V )

�

+
2�

�2�
(6�2�� �) kf 0 � Afk2L2(0;T ;V �)

!
; (A.6)

which is (5.37).
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