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Abstract

The incompressible Navier-Stokes problem is discretised in time by the two-step backward differentiation formula
with constant step sizes. Error estimates are proved under feasible assumptions on the regularity of the exact
solution. The question of compatibility of problem data is taken into account. Whereas the time-weighted
velocity error is of optimal second order in the l∞(L2)- and l2(H1

0 )-norm, the time-weighted error in the
pressure is of first order in the l∞(L2/R)-norm. Furthermore, a linearisation that is based upon a modification
of the convective term using a formally second-order extrapolation is considered. The velocity error is then
shown to be of order 3/2, and the pressure error is of order 1/2. The results presented cover both the two- and
three-dimensional case. Particular attention is directed to appearing constants and step size restrictions.
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1 Introduction

In comparison with the spatial approximation of the incompressible Navier-Stokes problem, only a small num-
ber of articles is concerned with a strict mathematical substantiation of time discretisation methods. Meth-
ods with constant time steps have been considered for instance in Temam [14], Girault/Raviart [5], Hey-
wood/Rannacher [8], Müller-Urbaniak [11], Hill/Süli [9], and Prohl [12]. For an overview and the state-of-the-
art, we refer to Rannacher [13] and Marion/Temam [10].

A main problem in deriving higher-order error estimates is the requirement of higher regularity of the
exact solution. This is equivalent to compatibility conditions on the problem’s data that lead –due to the
divergence-free constraint– to a virtually uncheckable and often violated over-determined Neumann problem for
the initial pressure (cf. Heywood [7], Temam [15]). So it seems to be inappropriate to assume higher regularity
for proving higher-order error estimates. However, A- or G-stable methods can take advantage of parabolic
smoothing properties (leading to so-called non-smooth data or smoothing error estimates, cf. Thomée [17]
and the references cited therein). Smoothing properties are also at hand for the Navier-Stokes solution. In
Heywood/Rannacher [8], optimal second-order smoothing error estimates have been proven for the Crank-
Nicolson scheme under feasible regularity assumptions. The fractional-step-θ-scheme has been considered in
Müller-Urbaniak [11], and Prohl [12] has studied smoothing error estimates for projection methods.

In this paper, we shall consider the two-step backward differentiation formula (BDF) for the Navier-Stokes
problem in its pressure-free variational formulation. The backward differentiation formulae, even with variable
time steps, have been used by many authors for the time integration of (nonlinear) ordinary and partial differ-
ential equations. The two-step BDF with constant time steps is known to be formally of second order and zero-
as well as strongly A- and G-stable (cf. Hairer/Wanner [6]).

The time discretisation of the incompressible Navier-Stokes problem by means of the two-step BDF has been
firstly studied in Girault/Raviart [5]. They have considered a linearised variant replacing the convective term
(un·∇)un by ((2un−1−un−2)·∇)un, where un is the approximate velocity at time tn. Unfortunately, the optimal
second-order error estimate for the velocity in the l∞(L2)- and l2(H1

0 )-norm given there relies upon higher
regularity that leads to the above-mentioned over-determined Neumann problem. In Baker et al. [1], the three-
step BDF has been analysed, and a second-order error estimate has been postulated for the linearised variant
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of the two-step BDF under higher regularity assumptions as well and under restrictions on the time step size
in dependence of the mesh size of an underlying spatial discretisation. Recently, Hill/Süli [9] have proven sub-
optimal error estimates for the velocity of order 1/4 in the l∞(H1

0 )-norm under feasible regularity assumptions.
Indeed, they get along with solenoidal initial data in H1

0 . Their result applies to the two-dimensional case with
autonomous right-hand side. Yet, the original nonlinear approximation has not been considered in the literature
so far. Moreover, the pressure approximation and its error have also not been studied. Solvability, stability of
the discrete problem, and convergence of a prolongated, time continuous approximate solution towards a weak
solution have been recently proven in Emmrich [2, 4] for the original nonlinear approximation and its linearised
variant as well.

Here, we shall derive optimal error estimates for the nonlinear and sub-optimal estimates for the linearised
approximation: The velocity error, measured in the natural l∞(L2)- and l2(H1

0 )-norm, is firstly shown to be of
first order. Afterwards, we prove –via a duality trick– an optimal second-order estimate for the time-weighted
velocity error to the nonlinear approximation. For the linearised method, only order 3/2 can be obtained.
We also derive error estimates for the pressure: The time-weighted error is of first order in the l∞(L2/R)-
norm for the nonlinear approximation and of order 1/2 for the linearised variant. The order reduction in the
pressure approximation goes back to the difference between the dual spaces of H1

0 and its solenoidal subspace,
respectively, and the employment of the Babuška-Brezzi condition. The results apply to the two- and three-
dimensional Navier-Stokes problem with time-dependent right-hand side.

In all our estimates, we also try to focus on appearing constants and time step restrictions. So it turns out
that for instance the first-order estimate for the linearised variant holds without any restriction on the step size
whereas the result for the nonlinear approximation requires sufficiently small step sizes depending strongly on
the Reynolds number.

Although efficient time integration requires adaptive methods, there is, to the best knowledge of the author,
no analysis of time discretisations of the Navier-Stokes equations on non-uniform grids available. Only in
Prohl [12], discretisations on structured time grids that are condensed near t = 0 have been considered in order
to compensate the incompatibility and irregularity of fluid flows. In Emmrich [3], we have recently proven
stability and optimal smooth-data error estimates for linear and moderate semilinear evolutionary problems
discretised by the variable two-step BDF if the ratios of adjacent step sizes are bounded from above by 1.91.
Unfortunately, the Navier-Stokes problem does not meet the structural assumptions there. Studying the variable
two-step BDF for the Navier-Stokes problem, therefore, remains an open problem.

The paper is organised as follows: Section 2 contains the description of the continuous problem and its
discretisation as well as auxiliary results. In Section 3, the velocity error to the nonlinear approximation is
studied, whereas Section 4 deals with its linearised variant. The error in the reintroduced pressure is considered
in Section 5.

2 Continuous and time discrete problem

We consider the Navier-Stokes equations describing the non-stationary flow of an incompressible, homogeneous,
viscous fluid at constant temperature,

ut − ν∆u + (u · ∇)u + ∇p = f , ∇ · u = 0 in Ω × (0, T ) ,

u = 0 on ∂Ω × (0, T ) , u(·, 0) = u0 in Ω ,

where Ω ⊂ Rd (d = dim Ω ∈ {2, 3}) is a bounded domain with smooth boundary ∂Ω, (0, T ) is the time interval
under consideration, ν = 1/Re > 0 denotes the inverse of the Reynolds number, u = u(x, t) is the d-dimensional
velocity vector with prescribed initial velocity u0 = u0(x), p = p(x, t) is the pressure, and f = f(x, t) is an outer
force per unit mass.

Let us introduce the solenoidal Hilbert spaces

V := {v ∈ H1
0 (Ω)d : ∇ · v = 0} , ((u, v)) :=

d∑

i,j=1

∫

Ω

∂ui(x)

∂xj

∂vi(x)

∂xj
dx , ‖u‖ := ((u, u))1/2 ,
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H := {v ∈ L2(Ω)d : ∇ · v = 0 , γnv = 0} , (u, v) :=

d∑

i=1

∫

Ω

ui(x)vi(x)dx , |u| := (u, u)1/2 ,

where γn denotes the trace operator in normal direction, cf. Temam [14] for more details. Here, by L2 and
Hm (m ∈ N), we denote the usual Lebesgue and Sobolev spaces, respectively, and H1

0 (Ω) is the subspace
of H1(Ω)-functions vanishing at the boundary ∂Ω. Note that V , H and the dual V ∗ form a Gelfand triple.
The dual pairing between V and V ∗ is denoted by 〈·, ·〉, the dual norm by ‖ · ‖∗, which is different from the
H−1(Ω)d-norm ‖ · ‖−1. We consider the variational formulation of the Navier-Stokes problem:

Problem (P) For given u0 ∈ H and f ∈ L2(0, T ; V ∗), find u ∈ L2(0, T ; V ) such that for all v ∈ V

d

dt
(u(t), v) + ν ((u(t), v)) + b(u(t), u(t), v) = 〈f(t), v〉 (2.1)

holds in (0, T ) in the distributional sense with u(0) = u0.

The nonlinearity is incorporated by the trilinear form

b(u, v, w) := ((u · ∇)v, w) .

By Lp(S; X) (p ∈ [1,∞]) for some time interval S and a Banach space X , we denote the usual space of Bochner
integrable abstract functions with its natural norm ‖ · ‖Lp(S;X).

Problem (P) possesses at least one solution u ∈ L2(0, T ; V )∩L∞(0, T ; H) with u′ ∈ L4/3(0, T ; V ∗), where u′

denotes the time derivative of the abstract function u in the distributional sense. As then u is at least almost
everywhere equal to a continuous function with values in V ∗, u ∈ C([0, T ]; V ∗), the initial condition makes sense.
In the two-dimensional case, the solution is unique and in C([0, T ]; H) with u′ ∈ L2(0, T ; V ∗) (cf. Temam [14]).
For more regular data (u0 ∈ V , f ∈ L∞(0, T ; H), ∂Ω ∈ C2), a unique, so-called strong solution u ∈ C([0, T ]; V )
exists in the two-dimensional case for arbitrary T , but in the three-dimensional case only locally up to a possibly
rather small time T (cf. Temam [16]).

We now come to the time discrete problem. Let the time interval [0, T ] for given N ∈ N be equidistantly
partitioned with the time step ∆t and tn := n∆t (n = 0, . . . , N). For a grid function {vn}, we denote the
backward divided differences by

D1v
n :=

vn − vn−1

∆t
, D2v

n :=
3

2
D1v

n − 1

2
D1v

n−1 =
1

∆t

(
3

2
vn − 2vn−1 +

1

2
vn−2

)
.

For a Bochner integrable function g, we also consider the natural restrictions

Rn
1 g :=

1

∆t

∫ tn

tn−1

g(t)dt , Rn
2 g :=

3

2
Rn

1 g − 1

2
Rn−1

1 g .

Furthermore, we use the extrapolation
Evn := 2vn−1 − vn−2 .

Note that Rn
q v′ = Dqv(tn) = v′(tn)+O((∆t)q) (q ∈ {1, 2}) and Ev(tn) = v(tn)+O((∆t)2) for smooth functions

v = v(t). The time discretisation of Problem (P) by the two-step BDF for computing un approximating u(tn)
reads as

Problem (P∆t) For given u0, u1 ∈ H and f ∈ L2(0, T ; V ∗), find {un} ⊂ V such that for all v ∈ V

(D2u
n, v) + ν((un, v)) + b(un, un, v) = 〈Rn

2 f, v〉 , n = 2, 3, . . . , N . (2.2)

Besides, we consider the linearised variant:
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Problem (LP∆t) For given u0, u1 ∈ V and f ∈ L2(0, T ; V ∗), find {un} ⊂ V such that for all v ∈ V

(D2u
n, v) + ν((un, v)) + b(Eun, un, v) = 〈Rn

2f, v〉 , n = 2, 3, . . . , N . (2.3)

In opposite to the original method, the convective term b(un, un, v) has been replaced by the formally second-
order modification b(Eun, un, v). In both problems, the starting values can be obtained by taking u0 = u0 and
computing u1 from u0 using the implicit Euler method. The use of Rn

2 f instead of an arbitrary approximation
fn is only for simplicity and avoids to consider the extra error fn − Rn

2f .
As we have shown in Emmrich [2, 4], there is at least one solution to Problem (P∆t) and a unique solution to

Problem (LP∆t). Furthermore, a solution to Problem (P∆t) or (LP∆t) is stable in l∞(0, T ; H) and l2(0, T ; V ),
where lp(S; X) (p ∈ [1,∞]) for some time interval S and a Banach space X denotes the discrete counterpart
of Lp(S; X) for functions defined on a time grid. Finally, certain piecewise polynomial prolongations of {un}
converge towards a weak solution as ∆t tends to 0 under quite general assumptions on the initial data and
right-hand side.

We now wish to collect some auxiliary results and introduce some notations that will be useful in the
sequel. Let us firstly introduce the energetic extension A : V → V ∗ of the classical Stokes operator, defined
via 〈Au, v〉 := ((u, v)) for u, v ∈ V . The operator A is linear, bounded, symmetric, strongly positive, and
bijective. It follows that ‖g‖∗ = ‖A−1g‖ = 〈g, A−1g〉1/2 for g ∈ V ∗. It is further known that A restricted to
D(A) := H2(Ω)d ∩ V ⊂ H (Friedrichs extension of the classical Stokes operator) is an isomorphism onto H
whose inverse A−1 is self-adjoint, strongly positive, and compact in H . Due to Cattabriga’s inequality, |A · | is
equivalent to the natural H2(Ω)d-norm on D(A).

The following regularity results are rather known:

Theorem 2.1 Let ∂Ω be sufficiently smooth and let

u0 ∈ D(A) , f, tf ′, t2f ′′ ∈ L2(0, T ; V ) , f ′, tf ′′ ∈ L2(0, T ; V ∗) .

Then there is –if d = 3 only for sufficiently small T– a unique solution u ∈ C([0, T ];D(A)) to Problem (P) with

u′′ ∈ L2(0, T ; V ∗) ,
√

t u′′ ∈ L2(0, T ; H) , u′, tu′′ ∈ L2(0, T ; V ) ,

t(f ′′ − u′′′) ∈ L2(0, T ; V ∗) , t3/2(f ′′ − u′′′) ∈ L2(0, T ; H) .

Note that v ∈ L2(0, T ; V ) and v′ ∈ L2(0, T ; V ∗) implies v ∈ C([0, T ], H). The proof of Theorem 2.1,
which can be found in Emmrich [2], follows from arguments and results that can be found in Temam [16] and
Heywood/Rannacher [8]. We shall remark that the results above are optimal in the sense that higher, not
time-weighted regularity of the solution is equivalent to compatibility conditions on the problem’s data. In
view of the divergence-free constraint, these conditions become global and, therefore, virtually uncheckable and
hardly fulfillable. We set

K1 := max
t∈[0,T ]

‖u(t)‖ , K2 := max
t∈[0,T ]

|Au(t)| , K3,n := ‖u′‖L2(0,tn;V ) , K4,n := ‖u′′‖L2(0,tn;V ∗) ,

and omit the index n if n = N , so that the norm is taken over (0, T ).
The trilinear form b(·, ·, ·) satisfies the following well-known properties (cf. Temam [16]):

Lemma 2.1 If u ∈ V , v, w ∈ H1
0 (Ω)d then b(u, v, w) = −b(u, w, v). There is further some β > 0 such that

|b(u, v, w)| ≤ β





|u|1/2 ‖u‖1/2 ‖v‖ ‖w‖ for u, v, w ∈ V ,
‖u‖ ‖v‖ ‖w‖ for u, v, w ∈ V ,
|u| |Av| |w|1/2 ‖w‖1/2 for u ∈ H, v ∈ D(A), w ∈ V ,
|u| |Av| ‖w‖ for u ∈ H, v ∈ D(A), w ∈ V ,

‖u‖1/2 |Au|1/2 |v| ‖w‖ for u ∈ D(A), v ∈ H, w ∈ V ,
|u| ‖v‖1/2 |Av|1/2 ‖w‖ for u ∈ H, v ∈ D(A), w ∈ V ,
|u| ‖v‖ |Aw| for u ∈ H, v ∈ V, w ∈ D(A) ,
‖u‖ |v| |Aw| for u ∈ V, v ∈ H, w ∈ D(A) .
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The identity that reflects the G-stability of the two-step BDF and that is crucial in all our estimates is

4(D2v
j , vj) = D1

(
|vj |2 + |Evj+1|2

)
+ (∆t)3|D2vj−1|2 , j = 2, 3, . . . (2.4a)

for any grid function {vj} ⊂ H , which implies

4∆t
n∑

j=2

(D2v
j , vj) = |vn|2 + |Evn+1|2 + (∆t)4

n−1∑
j=1

|D2vj |2 − |v1|2 − |Ev2| , n = 2, 3, . . . , (2.4b)

where

D2vj :=
vj+1 − 2vj + vj−1

(∆t)2

is the second divided difference. Note that for smooth functions D2v(tn) = v′′(tn) + O((∆t)2).
The dual to the difference operator D2 is given by

D∗
2v

j :=
1

∆t

(
3

2
vj − 2vj+1 +

1

2
vj+2

)
.

We will also use
E∗vj := 2vj+1 − vj+2 .

Similarly to (2.4), we have for k = 2, 3, . . . , n − 1 with n = 3, 4, . . .

4∆t
n−1∑
j=k

(D∗
2v

j , vj) = |vk|2 + |E∗vk−1|2 + (∆t)4
n∑

j=k+1

|D2vj |2 − |vn|2 − |E∗vn−1| , (2.5)

For arbitrary grid functions {vj}, {wj},
n−1∑
j=2

(
(D2v

j , wj) − (vj , D∗
2w

j)
)

=
1

2
(Evn, wn) +

1

2
(vn−1, E∗wn−1) − 1

2
(Ev2, w2) − 1

2
(v1, E∗w1) (2.6)

as well as
n−1∑
j=k

‖D2v
j+2‖2 =

n−1∑
j=k

‖D∗
2v

j‖2 + 2
(
‖D1v

n+1‖2 − ‖D1v
k+1‖2

)
, k = 2, 3, . . . , n − 1 , (2.7)

hold true, as straightforward calculations show.
Let g be a Bochner integrable function. We may then define the following integrals:

In2 g :=
1

4∆t

(∫ tn

tn−1

(tn − t) (tn + 3t − 4tn−1) g(t)dt +

∫ tn−1

tn−2

(t − tn−2)
2
g(t)dt

)
,

Sng :=
1

(∆t)2

(∫ tn+1

tn

(tn+1 − t) g(t)dt +

∫ tn

tn−1

(t − tn−1) g(t)dt

)
.

For smooth functions, we have with integration by parts

In2 g′′ = g(tn) − Rn
2 g , In2 g′′′ = g′(tn) − D2g(tn) , Sng′′ = D2g(tn) .

With standard arguments, we find for n = 2, 3, . . . , N

∆t
n∑

j=2

‖Ij2g‖2
∗ ≤ c (∆t)4

∫ tn

0

‖g(t)‖2
∗ dt for g ∈ L2(0, T ; V ∗) ,

∆t
n∑

j=2

‖tqj Ij2g‖2
∗ ≤ c (∆t)2(1+q)

∫ tn

0

‖tg(t)‖2
∗ dt for tg ∈ L2(0, T ; V ∗) , q ∈ {0, 1} ,

∆t
n∑

j=2

|tj Ij2g|2 ≤ c (∆t)3
∫ tn

0

|t3/2g(t)|2 dt for t3/2g ∈ L2(0, T ; H) ,

(2.8)
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as well as

∆t
n−1∑
j=1

|Sjg|2 ≤ c

∫ tn

0

|g(t)|2dt for g ∈ L2(0, T ; H) ,

∆t
n−1∑
j=1

|Sjg|2 ≤ c (∆t)−1

∫ tn

0

|
√

t g(t)|2dt for
√

t g ∈ L2(0, T ; H) ,

∆t
n−1∑
j=1

|tqj+1S
jg|2 ≤ c (∆t)2(q−1)

∫ tn

0

|tg(t)|2dt for tg ∈ L2(0, T ; H) , q ∈ {0, 1} .

(2.9)

Here and in the following, let c > 0 be a generic constant that does not depend on problem parameters at all,
whereas C > 0 denotes a generic constant that may depend on the domain Ω and its dimension, on embedding
constants, β, etc., but not on T , the Reynolds number, the exact solution, or the initial data or right-hand side.

Moreover, for an arbitrary grid function {vj}, we set ṽj := tjv
j . It follows

D̃2vj = D2ṽ
j − Evj , Ẽvj = Eṽj + 2(∆t)2D1v

j−1 .

Finally, we set for n = 2, 3, . . . , N

|||vn||| :=

(
|vn|2 + (∆t)4

n−1∑
j=1

|D2vj |2 + ν∆t
n∑

j=2

‖vj‖2

)1/2

that includes, in particular, the l∞(0, tn; H)- and l2(0, tn; V )-norm. We may further use the conventions
n∑

j=m

xj := 0 and
n∏

j=m

xj := 1 if m > n.

We make use of the following discrete Gronwall lemmata.

Lemma 2.2 Let {an}, {bn}, and {cn} sequences of nonnegative real numbers with {cn} being monotonically
increasing and let λ ≥ 0. Then

an + bn ≤ λ
n−1∑
j=k

aj + cn , n = k, k + 1, . . . with fixed k = 2, 3, . . . , (2.10)

implies for n = k, k + 1, . . .
an + bn ≤ cn(1 + λ)n−k .

Proof With ãm := λ(1 + λ)k−m
m−1∑
j=k

aj for m = k, k + 1, . . . , we have

ãm+1 − ãm = λ(1 + λ)k−m−1

(
am − λ

m−1∑
j=k

aj

)
≤ λ(1 + λ)k−m−1cm .

Summation gives (because of ãk = 0)

ãn ≤ λ
n−1∑
m=k

(1 + λ)k−m−1cm ≤
(
1 − (1 + λ)k−n

)
cn .

We thus have from (2.10)

an + bn ≤ (1 + λ)n−k ãn + cn ≤
(
(1 + λ)n−k − 1 + 1

)
cn,

which is the assertion. #
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Corollary 2.1 Let, in addition to the assumptions of Lemma 2.2, λ < 1. Then

an + bn ≤ λ
n∑

j=k

aj + cn , n = k, k + 1, . . . with fixed k = 2, 3, . . . , (2.11)

implies for n = k, k + 1, . . .
an + bn ≤ cn(1 − λ)k−n−1 .

Proof It immediately follows from (2.11) that

an + bn ≤ an +
bn

1 − λ
≤ λ

1 − λ

n−1∑

j=k

aj +
cn

1 − λ
,

and we may apply Lemma 2.2 with λ := λ/(1 − λ) and cn := cn/(1 − λ). #

For the analysis of a dual problem, we need the following “backward-in-time” version of Corollary 2.1:

Lemma 2.3 Let n = 3, 4, . . . be fixed and aj , bj , c ≥ 0, 0 ≤ λj < 1 for j = 2, 3, . . . , n − 1. Then

ak + bk ≤
n−1∑
j=k

λjaj + c , k = 2, 3, . . . , n − 1 , (2.12)

implies for k = 2, 3, . . . , n − 1

ak + bk ≤ c

n−1∏

j=k

(1 − λj)
−1 .

Proof With ãm :=

(
n−1∏
j=m

(1 − λj)

)
n−1∑
j=m

λjaj for m = k, k + 1, . . . , n and using (2.12), we have

ãm − ãm+1 =

(
n−1∏

j=m+1

(1 − λj)

)(
(1 − λm)

n−1∑
j=m

λjaj −
n−1∑

j=m+1

λjaj

)

=

(
n−1∏

j=m+1

(1 − λj)

)(
λmam − λm

n−1∑
j=m

λjaj

)
≤
(

n−1∏
j=m+1

(1 − λj)

)
λm c .

Summation gives (because of ãn = 0)

ãk ≤ c
n−1∑
m=k

λm

n−1∏
j=m+1

(1 − λj) .

We thus have from (2.12)

ak + bk ≤
(

n−1∏
j=k

(1 − λj)
−1

)
ãk + c ≤ c

(
n−1∏
j=k

(1 − λj)
−1

)(
n−1∑
m=k

λm

n−1∏
j=m+1

(1 − λj) +
n−1∏
j=k

(1 − λj)

)
.

The assertion follows from the identity

n−1∑
m=k

λm

n−1∏
j=m+1

(1 − λj) +
n−1∏
j=k

(1 − λj) = 1 , k = 2, 3, . . . , n − 1 ,

that is easily verified if one writes it out:

λn−1 + λn−2(1 − λn−1) + · · · + λk(1 − λk+1) . . . (1 − λn−1) + (1 − λk)(1 − λk+1) . . . (1 − λn−1) = 1 .

#
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3 Velocity error to Problem (P∆t)

Let en := u(tn)−un (n = 0, 1, . . . , N) be the velocity error to Problem (P∆t). The corresponding error equation,
which follows directly from (2.1) and (2.2), reads as

(D2e
n, v) + ν ((en, v)) + b(u(tn), en, v) + b(en, u(tn), v) − b(en, en, v) = 〈ρn, v〉 , n = 2, 3, . . . , N , (3.1)

for all v ∈ V , where

ρn = D2u(tn) − u′(tn) + f(tn) − Rn
2 f = In2 (f ′′ − u′′′) (3.2)

is the consistency error to the corresponding linear Stokes problem.

Theorem 3.1 Let u ∈ C([0, T ];D(A)) and t(f ′′−u′′′) ∈ L2(0, T ; V ∗). Assume further that ∆t or the problem’s
data are sufficiently small such that

l0 := 1 − cβ4/3ν−1/3K
4/3
2 ∆t > 0 . (3.3)

Then for n = 2, 3, . . . , N

|||en|||2 ≤ c l1−n
0

(
|e0|2 + |e1|2 + ν−1 (∆t)2 ‖t(f ′′ − u′′′)‖2

L2(0,tn;V ∗)

)
.

Proof We set v = en in (3.1) and observe b(u(tn), en, en) = b(en, en, en) = 0. With Lemma 2.1 and Young’s
inequality, we find

|b(en, u(tn), en)| ≤ β |en|3/2‖en‖1/2|Au(tn)| ≤ cβ4/3ν−1/3K
4/3
2 |en|2 +

ν

4
‖en‖2 ,

|〈ρn, en〉| ≤ ‖ρn‖∗‖en‖ ≤ ν−1 ‖ρn‖2
∗ +

ν

4
‖en‖2 .

The assertion follows from (2.4), (3.2) with (2.8), and the discrete Gronwall lemma Corollary 2.1. #

As

ea∆t ≤ (1 − a∆t)−1 ≤ exp

(
a∆t

1 − a∆t

)

for arbitrary a ∈ [0, 1), we find

l1−n
0 ≤ l−N

0 → exp
(
cβ4/3ν−1/3K

4/3
2 T

)
as ∆t → 0 ,

and the theorem shows first-order convergence if |e0|, |e1| = O(∆t). The regularity assumptions are ensured by
Theorem 2.1. It should be noted that the proof above together with the estimate

∆t
n∑

j=2

‖ρj‖2
∗ = ∆t

n∑
j=2

‖Ij2(f ′′ − u′′)‖2
∗ ≤ c (∆t)4 ‖f ′′ − u′′′‖2

L2(0,tn;V ∗) , (3.4)

which follows from (2.8) if f ′′ −u′′′ ∈ L2(0, T ; V ∗), would show optimal second order. However, the assumption
f ′′ − u′′′ ∈ L2(0, T ; V ∗) leads to global compatibility conditions, and an over-determined Neumann problem
for the initial pressure had to be fulfilled. Since this seems to be inappropriate, we shall now consider the
time-weighted error ẽn.

Proposition 3.1 Under the assumptions of Theorem 3.1, it follows for n = 2, 3, . . . , N

|||ẽn|||2 ≤ c l1−n
0


(∆t)2|e1|2 + ν−1 (∆t)4 ‖t(f ′′ − u′′′)‖2

L2(0,tn;V ∗) + ν−1 ∆t

n∑

j=2

‖Eej‖2
∗


 .
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Proof Multiplying (3.1) by tn leads (because of D̃2en = D2ẽ
n − Een) to

(D2ẽ
n, v) + ν ((ẽn, v)) + b(u(tn), ẽn, v) + b(ẽn, u(tn), v) − b(en, ẽn, v) = 〈ρ̃n, v〉 + (Een, v) .

With
|(Een, ẽn)| ≤ ‖Een‖∗‖ẽn‖

and ẽ0 = 0, ẽ1 = ∆t e1, the proof is analogously to the proof of Theorem 3.1. #

For proving a second-order estimate for the time-weighted error, it remains to show an estimate of the type

∆t
n∑

j=2

‖Eej‖2
∗ ≤ const (∆t)4 (3.5)

under suitable regularity assumptions. We shall employ a duality argument that is based upon the following
auxiliary problem for fixed n = 2, 3, . . . , N .

Problem (P∗
∆t,n) For given φn+1 = φn = 0 and gj := A−1ej ∈ V find φj ∈ V (j = n− 1, . . . , 0) such that for

all w ∈ V

(w, D∗
2φ

j) + ν ((w, φj)) + b(u(tj), w, φj) + b(w, u(tj), φ
j) = (w, gj) . (3.6)

Problem (P∗
∆t,n) can be interpreted as the backward-in-time, dual problem to a linearisation of Problem

(P∆t) by means of u = û + δu with “small” δu and

b(u, u, v) ≈ b(û, u, v) + b(u, û, v) − b(û, û, v)

since the dual operator to

Bû : V → V ∗, 〈Bûu, v〉 := b(û, u, v) + b(u, û, v) ∀v ∈ V ,

is given by
B∗

û : V → V ∗, 〈B∗
ûφ, w〉 := b(û, w, φ) + b(w, û, φ) ∀w ∈ V .

Remark 3.1 As it can be shown with the lemma by Lax and Milgram, Problem (P∗
∆t,n) admits a unique solution

if u ∈ C([0, T ]; V ) and βK1 < ν. There is also a unique solution if u ∈ C([0, T ];D(A)) and ∆t or the problem’s
data are sufficiently small such that (3.3) holds true, cf. Emmrich [2].

Before going to analyse the auxiliary problem in more detail, we give its relation to the desired estimate
(3.5). However, due to

n∑
j=2

‖Eej‖2
∗ ≤ c

(
‖e0‖2

∗ + ‖e1‖2
∗ +

n−1∑
j=2

‖ej‖2
∗

)
, (3.7)

it is sufficient to estimate ∆t
∑

j ‖ej‖2
∗.

Proposition 3.2 Let u′ ∈ L2(0, T ; V ) and u′′ ∈ L2(0, T ; V ∗). Then for arbitrary η1, η2 > 0 and n = 3, 4, . . . , N

∆t

n−1∑

j=2

‖ej‖2
∗ ≤ η1


 max

j=2,...,n−1
‖φj‖2 + 2ν∆t

n−1∑

j=2

|Aφj |2



+ η2


2∆t

n−1∑

j=2

‖D∗
2φ

j‖2 + ν|Aφ2|2 + ν|AE∗φ1|2

+ R1 + R2 , (3.8)
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where

R1 =
β2

2νη1

(
max

j=2,...,n−1
|ej |2

)
∆t

n−1∑

j=2

‖ej‖2 +
cβ2K4

3,n−1(∆t)4

η1
+ cK2

4,n−1

(
2 +

1

η2

)
(∆t)4 ,

R2 =
1

4νη2

(
|A−1e1|2 + |A−1Ee2|2

)
.

Proof Because of (3.6) with gj := A−1ej and (3.1), we have

‖ej‖2
∗ = (ej , A−1ej) = (ej , gj) =

(
ej , D∗

2φ
j
)

+ ν ((ej , φj)) + b(u(tj), e
j , φj) + b(ej , u(tj), φ

j)

=
(
ej , D∗

2φ
j
)
−
(
D2e

j, φj
)

+ b(ej , ej, φj) + 〈ρj , φj〉 .

We thus obtain for fixed n = 3, 4, . . . , N with (2.6) and φn+1 = φn = 0

∆t
n−1∑

j=2

‖ej‖2
∗ = ∆t

n−1∑

j=2

((
ej , D∗

2φ
j
)
−
(
D2e

j , φj
))

+ ∆t
n−1∑

j=2

(
b(ej, ej , φj) + 〈ρj , φj〉

)

=
1

2
(Ee2, φ2) +

1

2
(e1, E∗φ1) + ∆t

n−1∑

j=2

(
b(ej , ej, φj) + 〈ρj , φj〉

)
. (3.9)

With the Cauchy-Schwarz and Young inequality, we find for arbitrary η2 > 0

|(Ee2, φ2)| = |(A−1Ee2, Aφ2)| ≤ 1

4νη2
|A−1Ee2|2 + νη2 |Aφ2|2 , (3.10)

|(e1, E∗φ1)| = |(A−1e1, AE∗φ1)| ≤ 1

4νη2
|A−1e1|2 + νη2 |AE∗φ1|2 . (3.11)

With Lemma 2.1, we have for arbitrary η1 > 0

|b(ej, ej , φj)| ≤ β |ej | ‖ej‖ |Aφj | ≤ β2

4νη1
|ej |2 ‖ej‖2 + νη1 |Aφj |2 ,

and thus

∆t

n−1∑

j=2

|b(ej , ej, φj)| ≤ β2

4νη1

(
max

j=2,...,n−1
|ej |2

)
∆t

n−1∑

j=2

‖ej‖2 + νη1∆t

n−1∑

j=2

|Aφj |2 . (3.12)

The estimate of ∆t
∑

j〈ρj , φj〉 is more intricate: We firstly observe with (3.2) for arbitrary v ∈ V

〈ρj , v〉 = 〈Ij2(f ′′ − u′′′), v〉 = Ij2〈f ′′ − u′′′, v〉 ,

where the last step is a property of the Bochner integral. Differentiation of (2.1) gives

〈f ′′(t) − u′′′(t), v〉 = ν ((u′′(t), v)) +
d2

dt2
b(u(t), u(t), v) .

Setting w = u′′(t) in (3.6) yields

ν ((u′′(t), φj)) = 〈u′′(t), A−1ej〉 − 〈u′′(t), D∗
2φ

j〉 − b(u′′(t), u(tj), φ
j) − b(u(tj), u

′′(t), φj) .
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In view of the linearity of Ij2 and Rj
2 and because of Ij2v

′′ = v(tj) − Rj
2v, we come to

〈ρj , φj〉 = Ij2

(
d2

dt2
b(u(t), u(t), φj)

)
− b(Ij2u

′′, u(tj), φ
j) − b(u(tj), I

j
2u

′′, φj) + 〈Ij2u′′, A−1ej〉 − 〈Ij2u′′, D∗
2φ

j〉

as well as

Ij2

(
d2

dt2
b(u(t), u(t), φj)

)
− b(Ij2u

′′, u(tj), φ
j) − b(u(tj), I

j
2u

′′, φj)

=Rj
2

(
b(u(t), u(tj), φ

j) + b(u(tj), u(t), φj) − b(u(t), u(t), φj)
)
− b(u(tj), u(tj), φ

j)

= (since Rj
21 = 1)

=Rj
2

(
b(u(t), u(tj), φ

j) + b(u(tj), u(t), φj) − b(u(t), u(t), φj) − b(u(tj), u(tj), φ
j)
)

= − Rj
2 b(u(tj) − u(t), u(tj) − u(t), φj) = −Rj

2 b

(∫ tj

t

u′(s)ds,

∫ tj

t

u′(s)ds, φj

)

≤ β

2∆t

(
3

∫ tj

tj−1

∥∥∥∥
∫ tj

t

u′(s)ds

∥∥∥∥
2

dt +

∫ tj−1

tj−2

∥∥∥∥
∫ tj

t

u′(s)ds

∥∥∥∥
2

dt

)
‖φj‖

≤ β

2∆t

(
3

∫ tj

tj−1

(tj − t)dt

∫ tj

tj−1

‖u′(s)‖2ds +

∫ tj−1

tj−2

(tj − t)dt

∫ tj

tj−2

‖u′(s)‖2ds

)
‖φj‖

=
3β∆t

4

(∫ tj

tj−1

‖u′(t)‖2dt +

∫ tj

tj−2

‖u′(t)‖2dt

)
‖φj‖ .

So we come up with

∆t

n−1∑

j=2

(
Ij2

(
d2

dt2
b(u(t), u(t), φj)

)
− b(Ij2u

′′, u(tj), φ
j) − b(u(tj), I

j
2u

′′, φj)

)

≤ cβ (∆t)2
∫ tn−1

0

‖u′(t)‖2dt max
j=2,...,n−1

‖φj‖ ≤
cβ2K4

3,n−1(∆t)4

η1
+

η1

2
max

j=2,...,n−1
‖φj‖2 . (3.13)

We have furthermore

|〈Ij2u′′, A−1ej〉| ≤ ‖Ij2u′′‖∗ ‖ej‖∗ ≤ 1

2
‖Ij2u′′‖2

∗ +
1

2
‖ej‖2

∗

|〈Ij2u′′, D∗
2φ

j〉| ≤ ‖Ij2u′′‖∗ ‖D∗
2φ

j‖ ≤ 1

4η2
‖Ij2u′′‖2

∗ + η2 ‖D∗
2φ

j‖2 .

We finally obtain

∆t

n−1∑

j=2

|〈ρj , φj〉| ≤
cβ2K4

3,n−1(∆t)4

η1
+

η1

2
max

j=2,...,n−1
‖φj‖2

+
∆t

4

(
2 +

1

η2

) n−1∑

j=2

‖Ij2u′′‖2
∗ + η2∆t

n−1∑

j=2

‖D∗
2φ

j‖2 +
∆t

2

n−1∑

j=2

‖ej‖2
∗ . (3.14)

The relations (3.9), (3.10), (3.11), (3.12), and (3.14) prove, together with (2.8) for the term with Ij2u
′′, the

assertion. #

As we see from the proposition above, we need optimal stability estimates in higher norms for the solution
to Problem (P∗

∆t,n).
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Proposition 3.3 Let u ∈ C([0, T ];D(A)) and let ∆t or the problem’s data be sufficiently small such that

l1 := 1 − cβ2ν−1K1K2∆t > 0 . (3.15)

Then for n = 3, 4, . . . , N

max
j=2,...,n−1

(
‖φj‖2 + ‖E∗φj−1‖2

)
+ (∆t)4

n∑

j=3

‖D2φj‖2 + 2ν∆t
n−1∑

j=2

|Aφj |2 ≤ Λ1,n∆t
n−1∑

j=2

‖ej‖2
∗ , (3.16)

where

Λ1,n := Cν−1 l2−n
1 ≤ Cν−1 l−N

1 → Cν−1 exp
(
cβ2ν−1K1K2T

)
as ∆t → 0. (3.17)

Let, in addition, u′ ∈ L2(0, T ; V ) and

l2 := 1 − cβ2ν−1K1K2∆t − cβν−1K3

√
∆t > 0 . (3.18)

It then follows

2∆t

n−1∑

j=2

‖D∗
2φ

j‖2 + ν max
j=2,...,n−1

(
|Aφj |2 + |AE∗φj−1|2

)
+ 2ν(∆t)4

n∑

j=3

|AD2φj |2 ≤ Λ2,n∆t

n−1∑

j=2

‖ej‖2
∗ ,

where

Λ2,n := c(1 + β2ν−1K1K2Λ1,n) exp

(
βν−1

(
βK1K2tn +

∫ tn

t2

‖u′(t)‖ dt

)
l−1
2

)

≤ c(1 + Cν−2K1K2l
−N
1 ) exp

(
cβν−1

(
βK1K2T + K3

√
T
)

l−1
2

)

→ c(1 + Cν−2K1K2) exp
(
cβ2ν−1K1K2T + cβν−1K3

√
T
)

as ∆t → 0. (3.19)

Proof We commence with the first estimate: We take w = Aφj in (3.6), observe (A·, ·) = ((·, ·)) as well as
((A·, ·)) = (A·, A·), and estimate with Cauchy-Schwarz’s and Young’s inequality using Lemma 2.1

|(Aφj , A−1ej)| ≤ |A−1ej | |Aφj | ≤ ν−1 |A−1ej |2 +
ν

4
|Aφj |2 ,

|b(u(tj), Aφj , φj) + b(Aφj , u(tj), φ
j)|

≤ 2β‖u(tj)‖1/2|Au(tj)|1/2 ‖φj‖ |Aφj | ≤ 4β2ν−1K1K2 ‖φj‖2 +
ν

4
|Aφj |2 .

This leads, after summing from j = k up to n − 1 (k = 2, 3, . . . , n − 1), with an identity for ∆t
∑
j

((φj , D∗
2φ

j))

analogously to (2.5), with φn+1 = φn = 0, and because of |A−1ej | ≤ C ‖ej‖∗ to

‖φk‖2 + ‖E∗φk−1‖2 + (∆t)4
n∑

j=k+1

‖D2φj‖2 + 2ν∆t

n−1∑

j=k

|Aφj |2

≤ cν−1∆t
n−1∑

j=k

|A−1ej |2 + cβ2ν−1K1K2∆t
n−1∑

j=k

‖φj‖2

≤ Cν−1∆t
n−1∑

j=2

‖ej‖2
∗ + cβ2ν−1K1K2∆t

n−1∑

j=k

‖φj‖2 .
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Under the assumption (3.15), the assertion follows from Lemma 2.3.
The proof of the second estimate is more involved and rather tricky: With w = AD∗

2φ
j in (3.6), and the

Cauchy-Schwarz and Young inequality, we find

‖D∗
2φ

j‖2 + ν (AD∗
2φ

j , Aφj) ≤ (D∗
2φ

j , ej) − b(u(tj), AD∗
2φ

j , φj) − b(AD∗
2φ

j , u(tj), φ
j)

≤ 1

4
‖D∗

2φ
j‖2 + ‖ej‖2

∗ − b(u(tj), AD∗
2φ

j , φj) − b(AD∗
2φ

j , u(tj), φ
j) . (3.20)

A direct estimate of the terms in b(·, ·, ·) fails. However, we have the decomposition

b(u(tj), AD∗
2φ

j , φj) = b(u(tj+1), Aφj+2, D2φ
j+2) +

3

2
b(D1u(tj+2), Aφj+2, φj+2) − 1

2
b(D1u(tj+1), Aφj+2, φj)

− 3

2∆t

(
b(u(tj+2), Aφj+2, φj+2) − b(u(tj), Aφj , φj)

)
+

2

∆t

(
b(u(tj+1), Aφj+2, φj+1) − b(u(tj), Aφj+1, φj)

)
.

The term b(AD∗
2φ

j , u(tj), φ
j) can be treated in the same way, so we omit this here. We are now going to estimate

term by term using Lemma 2.1 as well as Young’s inequality: Firstly, we have

|b(u(tj+1), Aφj+2, D2φ
j+2)| ≤ β‖u(tj+1)‖1/2|Au(tj+1)|1/2 |Aφj+2| ‖D2φ

j+2‖

≤ β2K1K2 |Aφj+2|2 +
1

4
‖D2φ

j+2‖2 .

Since

‖D1u(tj+2)‖ =

∥∥∥∥∥
1

∆t

∫ tj+2

tj+1

u′(t) dt

∥∥∥∥∥ ≤ 1

∆t

∫ tj+2

tj+1

‖u′(t)‖ dt ,

it follows

3

2
|b(D1u(tj+2), Aφj+2, φj+2)| ≤ 3β

2
‖D1u(tj+2)‖ |Aφj+2|2 ≤ 3β

2∆t

∫ tj+2

tj+1

‖u′(t)‖ dt |Aφj+2|2

as well as

1

2
|b(D1u(tj+1), Aφj+2, φj)| ≤ β

2∆t

∫ tj+1

tj

‖u′(t)‖ dt |Aφj+2| |Aφj | ≤ β

4∆t

∫ tj+1

tj

‖u′(t)‖ dt
(
|Aφj+2|2 + |Aφj |2

)
.

Summation of (3.20) now leads with φn+1 = φn = 0, the identity (2.5) applied to ∆t
∑

j(Aφj , AD∗
2φ

j), and
(2.7) to

3∆t
n−1∑

j=k

‖D∗
2φ

j‖2 + ν


|Aφk|2 + |AE∗φk−1|2 + (∆t)4

n∑

j=k+1

|AD2φj |2



≤ 4∆t

n−1∑

j=k

‖ej‖2
∗ + 2∆t

n−1∑

j=k

‖D2φ
j+2‖2 + 8β2K1K2∆t

n−1∑

j=k

|Aφj+2|2 + 12β

n−1∑

j=k

(∫ tj+2

tj+1

‖u′(t)‖ dt |Aφj+2|2
)

+2β

n−1∑

j=k

(∫ tj+1

tj

‖u′(t)‖ dt
(
|Aφj+2|2 + |Aφj |2

)
)

+ 4RT

≤ 4∆t

n−1∑

j=2

‖ej‖2
∗ + 2∆t

n−1∑

j=k

‖D∗
2φ

j‖2 +

n−1∑

j=k

λj |Aφj |2 + 4RT , (3.21)
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where we can choose

λ2 = 2β

∫ t3

t2

‖u′(t)‖ dt , λ3 = 2β

∫ t4

t3

‖u′(t)‖ dt ,

λj = 8β2K1K2∆t + 2β

∫ tj−1

tj−2

‖u′(t)‖ dt + 12β

∫ tj

tj−1

‖u′(t)‖ dt + 2β

∫ tj+1

tj

‖u′(t)‖ dt , j = 4, . . . , n − 1 ,

and

RT = −3

2

(
b(u(tk), Aφk, φk) + b(u(tk+1), Aφk+1, φk+1)

)
+ 2b(u(tk), Aφk+1, φk)

−3

2

(
b(Aφk, u(tk), φk) + b(Aφk+1, u(tk+1), φ

k+1)
)

+ 2b(Aφk+1, u(tk), φk) .

After some calculations, we obtain with Lemma 2.1

−3

2

(
b(u(tk), Aφk, φk) + b(u(tk+1), Aφk+1, φk+1)

)
+ 2b(u(tk), Aφk+1, φk)

= b

((5
2
u(tk) − 6u(tk+1)

)
, Aφk, φk

)
+ b(

(
− 2u(tk) + 3u(tk+1)

)
, AE∗φk−1, φk)

+ 3b(u(tk+1), Aφk, E∗φk−1) − 3

2
b(u(tk+1), AE∗φk−1, E∗φk−1)

≤ cβ
(
‖u(tk)‖1/2|Au(tk)|1/2 + ‖u(tk+1)‖1/2|Au(tk+1)|1/2

)
|Aφk| ‖φk‖

+ cβ
(
‖u(tk)‖1/2|Au(tk)|1/2 + ‖u(tk+1)‖1/2|Au(tk+1)|1/2

)
|AE∗φk−1| ‖φk‖

+ cβ‖u(tk+1)‖1/2|Au(tk+1)|1/2|Aφk| ‖E∗φk−1‖ + cβ‖u(tk+1)‖1/2|Au(tk+1)|1/2|AE∗φk−1| ‖E∗φk−1‖

≤ cβ2ν−1K1K2

(
‖φk‖2 + ‖E∗φk−1‖2

)
+

ν

16

(
|Aφk|2 + |AE∗φk−1|2

)

and an analogous result for the terms of the type b(Aφ, u(t), φ). With the first part (3.16) of the proposition
under proof, we now find for the remaining terms RT the estimate

4RT ≤ cβ2ν−1K1K2

(
‖φk‖2 + ‖E∗φk−1‖2

)
+

ν

2

(
|Aφk|2 + |AE∗φk−1|2

)

≤ cβ2ν−1K1K2Λ1,n∆t

n−1∑

j=2

‖ej‖2
∗ +

ν

2

(
|Aφk|2 + |AE∗φk−1|2

)
.

We finally conclude from (3.21) that for k = 2, 3, . . . , n − 1

∆t

n−1∑

j=k

‖D∗
2φ

j‖2 +
ν

2


|Aφk|2 + |AE∗φk−1|2 + 2(∆t)4

n∑

j=k+1

|AD2φj |2



≤ c
(
1 + β2ν−1K1K2Λ1,n

)
∆t

n−1∑

j=2

‖ej‖2
∗ +

n−1∑

j=k

λj |Aφj |2 .

Because of
∫ tj+2

tj+1

‖u′(t)‖ dt ≤
√

∆t

(∫ tj+2

tj+1

‖u′(t)‖2 dt

)1/2

≤ K3

√
∆t ,

14



we have
λj ≤ λ := cβ2K1K2∆t + cβK3

√
∆t , j = 2, 3, . . . , n − 1 ,

and the assertion follows under the assumption (3.18) from applying Lemma 2.3 with respect to the term∑
j λj |Aφj |2. Note that

(
1 − 2

ν
λj

)−1

≤ exp

(
2λj

ν − 2λj

)
≤ exp

(
2λj

ν − 2λ

)

and, therefore,

n−1∏

j=k

(
1 − 2

ν
λj

)−1

≤
n−1∏

j=2

(
1 − 2

ν
λj

)−1

≤ exp


 2

ν − 2λ

n−1∑

j=2

λj




≤ exp

(
16β

ν − 2λ

(
βK1K2tn + 2

∫ tn

t2

‖u′(t)‖ dt

))
≤ exp

(
16β

ν − 2λ

(
βK1K2T + 2

∫ T

0

‖u′(t)‖ dt

))

≤ exp

(
16β

√
T

ν − 2λ

(
βK1K2

√
T + 2K3

))
→ exp

(
16βν−1

√
T
(
βK1K2

√
T + 2K3

))
as ∆t → 0 .

This gives (3.19). #

We may now state our main result:

Theorem 3.2 Let the assumptions of Theorem 3.1 and Propositions 3.2 and 3.3 be fulfilled. The time-weighted
error ẽn (n = 2, 3, . . . , N) to Problem (P∆t) then satisfies

|||ẽn|||2 ≤ Cl1−n
0

(
e

2
0,n

+ ν−1(∆t)4r2
n

)
,

where e0,n depends, in the following way, on e0, e1, the exact solution, and problem parameters,

e
2
0,n

= ν−3l
2(1−n)
0 Λ1,n

(
|e0|4 + |e1|4

)
+ (∆t)2|e1|2 + ν−1∆t

(
‖e0‖2

∗ + ‖e1‖2
∗

)
+ ν−2Λ2,n

(
|A−1e0|2 + |A−1e1|2

)
,

and rn only depends on f , the exact solution, and problem parameters,

r
2
n

=
(
1 + ν−4l

2(1−n)
0 Λ1,n ‖t(f ′′ − u′′′)‖2

L2(0,tn;V ∗)

)
‖t(f ′′ − u′′′)‖2

L2(0,tn;V ∗) + Λ1,nK4
3,n−1 + (1 + Λ2,n) K2

4,n−1 .

Here l0, Λ1,n, and Λ2,n are given by (3.3), (3.17), and (3.19).

Proof Propositions 3.2 and 3.3 immediately lead to

∆t
n−1∑
j=2

‖ej‖2
∗ ≤ (η1Λ1,n + η2Λ2,n) ∆t

n−1∑
j=2

‖ej‖2
∗ + R1 + R2 .

The assertion follows by taking ηi = 1/4Λi,n (i = 1, 2) with some tedious, but simple calculations from (3.7),
Proposition 3.1, and Theorem 3.1. #

The foregoing estimate shows second-order convergence of the time-weighted error if e
0 = O((∆t)2), i. e. if

|A−se0| , |A−se1| = O((∆t)1+s) , s ∈
{

0,
1

2
, 1

}
, (3.22)

where |A−1/2 · | = ‖ · ‖∗. The regularity assumptions are ensured by Theorem 2.1.
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4 Velocity error to Problem (LP∆t)

In the following, let en = u(tn)−un (n = 0, 1, . . . , N) be the velocity error to Problem (LP∆t). The corresponding
error equation

(D2e
n, v) + ν ((en, v)) + b(Eu(tn), en, v) + b(Een, u(tn), v) − b(Een, en, v)

= 〈ρn, v〉 − (∆t)2 b(D2u(tn−1), u(tn), v) ∀v ∈ V , n = 2, 3, . . . , N , (4.1)

follows from (2.1) and (2.3). The consistency error ρn is again given by (3.2).

Theorem 4.1 Let u ∈ C([0, T ];D(A)),
√

tu′′ ∈ L2(0, T ; H), and t(f ′′ − u′′′) ∈ L2(0, T ; V ∗). Then

|||en|||2 ≤ cln−2
3

(
l3 |e0|2 + l3 |e1|2 + β2ν−1K2

2 (∆t)3 ‖
√

tu′′‖2
L2(0,tn;H) + ν−1(∆t)2 ‖t(f ′′ − u′′′)‖2

L2(0,tn;V ∗)

)

holds for n = 2, 3, . . . , N with

l3 := 1 + cβ2ν−1K2
2∆t . (4.2)

Proof We set v = en in (4.1) and observe b(Eu(tn), en, en) = b(Een, en, en) = 0. With Lemma 2.1 and Young’s
inequality, one finds

|b(Een, u(tn), en)| ≤ β |Een| |Au(tn)| ‖en‖ ≤ β2ν−1K2
2 |Een|2 +

ν

4
‖en‖2 ,

(∆t)2 |b(D2u(tn−1), u(tn), en)| ≤ β (∆t)2 |D2u(tn−1)| |Au(tn)| ‖en‖ ≤ 2β2ν−1K2
2 (∆t)4 |D2u(tn−1)|2 +

ν

8
‖en‖2 ,

|〈ρn, en〉| ≤ ‖ρn‖∗‖en‖ ≤ 2ν−1 ‖ρn‖2
∗ +

ν

8
‖en‖2 .

Since D2u(tn−1) = Sn−1u′′, we have with (2.9)

(∆t)5
n−1∑
j=1

|D2u(tj)|2 = (∆t)5
n−1∑
j=1

|Sju′′|2 ≤ c (∆t)3 ‖
√

tu′′‖2
L2(0,tn;H) . (4.3)

The assertion follows from (2.4), (3.2) with (2.8), and Lemma 2.2. #

Since
ln−2
3 ≤ lN3 → exp

(
cβ2ν−1K2

2T
)

as ∆t → 0,

the theorem shows first-order convergence if |e0|, |e1| = O(∆t). The regularity assumptions follow from Theo-
rem 2.1. We emphasise that, as for an explicit scheme, there is no restriction on the time step size. Moreover,
we might have shown second order with (3.4) and (using (2.9))

(∆t)5
n−1∑
j=1

|Sju′′|2 ≤ c (∆t)4 ‖u′′‖2
L2(0,tn;H)

instead of (4.3). Unfortunately, it again seems to be inappropriate to assume f ′′ − u′′′ ∈ L2(0, T ; V ∗) and
u′′ ∈ L2(0, T ; H). Finally, we remark that instead of (4.3) the somewhat weaker estimate

(∆t)5
n−1∑
j=1

|Sju′′|2 ≤ c (∆t)2 ‖tu′′‖2
L2(0,tn;H) ,

which again follows from (2.9), would be enough to show first order.
We shall now consider the time-weighted error ẽn and begin with a preliminary result.
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Proposition 4.1 Let u ∈ C([0, T ];D(A)), tu′′ ∈ L2(0, T ; H), and t(f ′′ − u′′′) ∈ L2(0, T ; V ∗). Then

|||ẽn|||2 ≤ c ln−2
3


β2ν−1K2

2 (∆t)3 |e0|2 + l3 (∆t)2 |e1|2 + β2ν−1K2
2 (∆t)4 ‖tu′′‖2

L2(0,tn;H)

+ ν−1 (∆t)4 ‖t(f ′′ − u′′′)‖2
L2(0,tn;V ∗) + ν−1 ∆t

n∑

j=2

‖Eej‖2
∗




holds for n = 2, 3, . . . , N with l3 given by (4.2).

Proof Multiplying (4.1) by tn leads for n = 2, 3, . . . , N and all v ∈ V to

(D2ẽ
n, v) + ν ((ẽn, v)) + b(Eu(tn), ẽn, v) + b(Eẽn, u(tn), v) − b(Een, ẽn, v) + 2(∆t)2 b(D1e

n−1, u(tn), v)

= 〈ρ̃n, v〉 − (∆t)2 b(tnD2u(tn−1), u(tn), v) + (Een, v) ,

We test with v = ẽn and observe b(Eu(tn), ẽn, ẽn) = b(Een, ẽn, ẽn) = 0. With Cauchy-Schwarz’s and Young’s
inequality, we arrive at

|〈ρ̃n, ẽn〉| ≤ cν−1 ‖ρ̃n‖2
∗ +

ν

10
‖ẽn‖2 , |(Een, ẽn)| ≤ cν−1 ‖Een‖2

∗ +
ν

10
‖ẽn‖2 .

With Lemma 2.1 and Young’s inequality, we obtain

|b(Eẽn, u(tn), ẽn)| ≤ cβ2ν−1K2
2 |Eẽn|2 +

ν

10
‖ẽn‖2 ,

2(∆t)2 |b(D1e
n−1, u(tn), ẽn)| ≤ cβ2ν−1K2

2 (∆t)4 |D1e
n−1|2 +

ν

10
‖ẽn‖2 ,

(∆t)2 |b(tnD2u(tn−1), u(tn), ẽn)| ≤ cβ2ν−1K2
2 (∆t)4 |tnD2u(tn−1)|2 +

ν

10
‖ẽn‖2 .

Moreover, we have for n = 3, 4, . . . , N

(∆t)2 |D1e
n−1| ≤ ∆t

(
|en−1| + |en−2|

)
≤ |ẽn−1| + |ẽn−2| ,

and with (2.9), we find

(∆t)5
n−1∑
j=1

|tj+1D
2u(tj)|2 = (∆t)5

n−1∑
j=1

|tj+1S
ju′′|2 ≤ c (∆t)4‖tu′′‖2

L2(0,tn;H) .

The assertion follows after summation from (2.4), (3.2) with (2.8), and Lemma 2.2. #

For proving a higher-order estimate, we again employ Problem (P∗
∆t,n) and its stability estimates in order

to estimate ∆t
∑

j ‖ej‖2
∗.

Proposition 4.2 Let u ∈ C([0, T ];D(A)), u′, tu′′ ∈ L2(0, T ; V ),
√

tu′′ ∈ L2(0, T ; H) and u′′ ∈ L2(0, T ; V ∗).
Then (3.8) holds true with

R1 =
β2

2νη1

(
max

j=2,...,n−1
|Eej|2

)
∆t

n−1∑

j=2

‖ej‖2 +
cβ2K4

3,n−1(∆t)4

η1
+ cK2

4,n−1

(
2 +

1

η2

)
(∆t)4

+
cβ2(∆t)2

η1
‖tu′′‖2

L2(0,tn−1;V )∆t

n−1∑

j=2

‖ej‖2 +
cβ2K2

2T (∆t)5

η1

n−2∑

j=1

|D2ej |2 +
cβ2K2

2T (∆t)3

η1
‖
√

tu′′‖2
L2(0,tn−1;H) ,

R2 =
1

4νη2

(
|A−1e1|2 + |A−1Ee2|2

)
.
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Proof Since vn − Evn = (∆t)2D2vn−1, we obtain from (3.6) and (4.1), analogously to (3.9),

∆t
n−1∑

j=2

‖ej‖2
∗ =

1

2
(Ee2, φ2) +

1

2
(e1, E∗φ1) + ∆t

n−1∑

j=2

(
b(Eej, ej, φj) + 〈ρj , φj〉

)

+ (∆t)3
n−1∑

j=2

(
b(D2u(tj−1), e

j , φj) + b(D2ej−1, u(tj), φ
j) − b(D2u(tj−1), u(tj), φ

j)
)
. (4.4)

The first two terms of the right-hand side can be treated as in (3.10) and (3.11). The first sum on the right-hand
side can be estimated as in the proof of Proposition 3.2. So we have analogously to (3.12)

∆t

n−1∑

j=2

|b(Eej, ej, φj)| ≤ β2

4νη1

(
max

j=2,...,n−1
|Eej|2

)
∆t

n−1∑

j=2

‖ej‖2 + νη1∆t

n−1∑

j=2

|Aφj |2 .

We also find analogously to (3.14) (with a slight modification of some weights when applying Young’s inequality)

∆t
n−1∑

j=2

|〈ρj , φj〉| ≤
cβ2K4

3,n−1(∆t)4

η1
+

η1

4
max

j=2,...,n−1
‖φj‖2

+
∆t

4

(
2 +

1

η2

) n−1∑

j=2

‖Ij2u′′‖2
∗ + η2∆t

n−1∑

j=2

‖D∗
2φ

j‖2 +
∆t

2

n−1∑

j=2

‖ej‖2
∗ .

For the term with Ij2u
′′, we apply (2.8).

We now come to the second sum on the right-hand side of (4.4): With D2u(tj−1) = Sj−1u′′ and (2.9) (with
norm ‖ · ‖ instead of | · |), we find

(∆t)3
n−1∑

j=2

b(D2u(tj−1), e
j, φj) ≤ β(∆t)3

n−1∑

j=2

‖D2u(tj−1)‖ ‖ej‖ ‖φj‖

≤ cβ2

η1


(∆t)5

n−1∑

j=2

‖D2u(tj−1)‖2




∆t

n−1∑

j=2

‖ej‖2


+

η1

8
max

j=2,...,n−1
‖φj‖2

≤ cβ2(∆t)2

η1
‖tu′′‖2

L2(0,tn−1;V ) ∆t

n−1∑

j=2

‖ej‖2 +
η1

8
max

j=2,...,n−1
‖φj‖2 .

Furthermore, we have

(∆t)3
n−1∑

j=2

b(D2ej−1, u(tj), φ
j) ≤ βK2(∆t)3

n−1∑

j=2

|D2ej−1| ‖φj‖

≤ cβ2K2
2 (∆t)6

η1




n−1∑

j=2

|D2ej−1|




2

+
η1

8
max

j=2,...,n−1
‖φj‖2

≤ cβ2K2
2 T (∆t)5

η1

n−2∑

j=1

|D2ej|2 +
η1

8
max

j=2,...,n−1
‖φj‖2 ,
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and with D2u(tj−1) = Sj−1u′′ and (2.9)

(∆t)3
n−1∑

j=2

b(D2u(tj−1), u(tj), φ
j) ≤ βK2(∆t)3

n−1∑

j=2

|D2u(tj−1)| ‖φj‖

≤ cβ2K2
2 (∆t)6

η1




n−1∑

j=2

|D2u(tj−1)|




2

+
η1

4
max

j=2,...,n−1
‖φj‖2

≤ cβ2K2
2 T (∆t)3

η1
‖
√

t u′′‖2
L2(0,tn−1;H) +

η1

4
max

j=2,...,n−1
‖φj‖2 .

Keep in mind that t 7→
√

tu′′ is in L2(0, T ; H) but not u′′ itself.
All this together proves the assertion. #

In order to take advantage of the maximal regularity of the exact solution as well as of the solution to the
auxiliary problem (P∗

∆t,n), we would need an estimate of the type

|b(u, v, w)| ≤ β ‖u‖∗|Av| |Aw| ,
which is not at hand. Then we would be able to find better estimates for the terms

(∆t)3
n−1∑
j=2

b(D2ej−1, u(tj), φ
j) , (∆t)3

n−1∑
j=2

b(D2u(tj−1), u(tj), φ
j) ,

leading to an optimal second-order estimate. However, as in the proof above, we loose half an order in ∆t.
We are now in the position to prove the main result for the linearised variant:

Theorem 4.2 Let the assumptions of Theorem 4.1 and Propositions 3.3 and 4.2 be fulfilled. The time-weighted
error ẽn (n = 2, 3, . . . , N) to Problem (LP∆t) then satisfies

|||ẽn|||2 ≤ Cln−2
3

(
e

2
0,n

+ ν−1(∆t)3r2
n

)
,

where e0,n depends on e0, e1, the exact solution, and problem parameters,

e
2
0,n

= ν−3(1 + l
2(n−1)
3 )Λ1,n

(
|e0|4 + |e1|4

)
+ (ν−1ln−2

3 Λ1,nK2
2T + ∆t)l3∆t

(
|e0|2 + |e1|2

)

+ν−1∆t
(
‖e0‖2

∗ + ‖e1‖2
∗

)
+ ν−2Λ2,n

(
|A−1e0|2 + |A−1e1|2

)
,

and rn depends on f , the exact solution, and problem parameters,

r
2
n

= K2
2∆t ‖tu′′‖2

L2(0,tn;H) + Λ1,n∆t ‖tu′′‖4
L2(0,tn−1;V ) + Λ1,nK4

3,n−1∆t + (1 + Λ2,n) K2
4,n−1∆t

+
(
ν−1ln−2

3 Λ1,nK2
2T + ∆t + ν−4l

2(n−2)
3 Λ1,n∆t ‖t(f ′′ − u′′′)‖2

L2(0,tn;V ∗)

)
‖t(f ′′ − u′′′)‖2

L2(0,tn;V ∗)

+Λ1,nK2
2

(
T + ν−1ln−2

3 K2
2T∆t + ν−4l

2(n−2)
3 K2

2(∆t)3‖
√

tu′′‖2
L2(0,tn;V )

)
‖
√

tu′′‖2
L2(0,tn;H) .

Here l3, Λ1,n, and Λ2,n are given by (4.2), (3.17), and (3.19).

Proof Propositions 4.2 and 3.3 immediately lead to

∆t
n−1∑
j=2

‖ej‖2
∗ ≤ (η1Λ1,n + η2Λ2,n) ∆t

n−1∑
j=2

‖ej‖2
∗ + R1 + R2 .

The assertion follows by taking ηi = 1/4Λi,n (i = 1, 2) with a few calculations from (3.7), Proposition 4.1, and
Theorem 4.1. #

This theorem shows order 3/2 if (3.22) is fulfilled. The regularity assumptions are again fulfilled in view of
Theorem 2.1.
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5 Reintroduction of the pressure

After the velocity field {un} is determined, we may compute approximations pn (n = 2, 3, . . . , N) for the pressure
p(tn) from the variational formulation of the Navier-Stokes problem in the function spaces H1

0 (Ω)d ∋ u(t) and
L2(Ω)/R ∋ p(t):

(pn,∇ · v) = (D2u
n, v) + ν((un, v)) + b(un, un, v) − 〈Rn

2 f, v〉 ∀v ∈ H1
0 (Ω)d . (5.1)

The nonlinear term b(un, un, v) could be also replaced by b(Eun, un, v). However, this does not simplify the
computation but complicates the error estimate.

For the error πn := p(tn) − pn (n = 2, 3, . . . , N), it follows the error equation

(πn,∇ · v) = (D2e
n, v) + ν ((en, v)) + b(u(tn), en, v) + b(en, u(tn), v) − b(en, en, v) − 〈ρn, v〉 ∀v ∈ H1

0 (Ω)d .

¿From Babuška-Brezzi’s condition (cf. Heywood/Rannacher [8]),

∃ℓ > 0 ∀q ∈ L2(Ω)/R : sup
v∈H1

0
(Ω)d\{0}

(q,∇ · v)

‖v‖ ≥ ℓ ‖q‖L2(Ω)/R
with ‖q‖L2(Ω)/R := infc∈R ‖q + c‖L2(Ω), we immediately conclude with Lemma 2.1

‖πn‖L2/R ≤ ℓ−1
(
‖D2e

n‖−1 + ν ‖en‖ + 2βK1 ‖en‖ + β |en|1/2‖en‖3/2 + ‖ρn‖−1

)
. (5.2)

Note that V ⊂ H1
0 (Ω)d implies

‖g‖−1 := sup
v∈H1

0
(Ω)d\{0}

〈g, v〉
‖v‖ ≥ sup

v∈V \{0}

〈g, v〉
‖v‖ =: ‖g‖∗ , g ∈ H−1(Ω)d ⊂ V ∗ .

Theorem 5.1 Let {pn} be computed from {un} by (5.1), let ρn (n = 2, 3, . . . , N) be given by (3.2), and let
u ∈ C([0, T ]; V ), t3/2(f ′′ − u′′′) ∈ L2(0, T ; H). Furthermore, suppose for some constants M1, M2 > 0 (that may
depend on problem data) and some q > 0 that

maxn=0,...,N |en| +
(

ν∆t
N∑

j=0

‖ej‖2

)1/2

≤ M1∆t , maxn=0,...,N |ẽn| +
(

ν∆t
N∑

j=0

‖ẽj‖2

)1/2

≤ M2(∆t)1+q .

(5.3)

Then ‖π̃n‖L2(Ω)/R (n = 2, 3, . . . , N) is of order min(q, 1) with

‖π̃n‖L2(Ω)/R ≤ Cℓ−1
(
M1∆t + M2(∆t)q + M2ν

1/2
(
1 + K1ν

−1
)
(∆t)1/2+q

+M1M2ν
−3/4(∆t)5/4+q + ∆t ‖t3/2(f ′′ − u′′′)‖L2(0,tn;H)

)
.

Proof Multiplying (5.2) by tn leads to

‖π̃n‖L2/R ≤ ℓ−1
(
‖D2ẽ

n‖−1 + ‖Een‖−1 + ν ‖ẽn‖ + 2βK1 ‖ẽn‖ + β |en|1/2‖en‖1/2‖ẽn‖ + ‖ρ̃n‖−1

)
.

In view of the continuous embedding L2(Ω)d →֒ H−1(Ω)d, we have with (5.3)

‖D2ẽ
n‖−1 ≤ C |D2ẽ

n| ≤ C

∆t

(
3

2
|ẽn| + 2 |ẽn−1| + 1

2
|ẽn−2|

)
≤ 4 CM2 (∆t)q
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as well as

‖Een‖−1 ≤ C |Een| ≤ CM1 ∆t .

Furthermore, we find

‖ẽn‖ ≤




N∑

j=0

‖ẽj‖2




1/2

≤ M2ν
−1/2 (∆t)1/2+q

and

|en|1/2‖en‖1/2‖ẽn‖ ≤ M1 (∆t)1/2(ν−1∆t)1/4 M2ν
−1/2(∆t)1/2+q = M1M2ν

−3/4 (∆t)5/4+q .

Finally, we obtain from (3.2) with (2.8)

‖ρ̃n‖−1 ≤ C |ρ̃n| ≤ C




n∑

j=2

|ρ̃j |2



1/2

= C




n∑

j=2

| ˜Ij2(f
′′ − u′′′)|2




1/2

≤ C ∆t ‖t3/2(f ′′ − u′′′)‖L2(0,tn;H) , (5.4)

and the assertion follows. #

As the theorem shows, the time-weighted pressure error is of order 1 for the original nonlinear two-step BDF
(q = 1 by Theorem 3.2) and of order 1/2 for its linearised variant (q = 1/2 by Theorem 4.2) if (3.22) is fulfilled.
The regularity assumptions are guaranteed by Theorem 2.1.

We shall note that in Heywood/Rannacher [8], a first-order estimate for the Crank-Nicolson scheme is

presented for t
3/2
n πn. For our estimate above, the time-weight tn instead of t

3/2
n is sufficient as we employ the

estimate |tnρn| ≤ C ∆t instead of the stronger estimate |t3/2
n ρn| ≤ C (∆t)3/2.

Finally, we remark that Theorem 5.1 is applicable not only for the two-step BDF but also for other methods
that use (5.1) for the computation of the pressure and that allow higher-order error estimates of the type (5.3)
for the velocity as well as an estimate of the type (5.4) for the consistency error to the corresponding Stokes
problem. In addition, we may replace D2 in (5.1) by another divided difference that is appropriate for the
method used for the computation of the velocity.
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Stokes-Gleichungen. Preprint 94-01 (SFB 359), Univ. Heidelberg, Interdisziplinäres Zentrum für wis-
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